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Key Points:

• NASA’s OCO-3 instrument provides the densest spatial coverage of urban XCO2

from space, which includes information on spatially variant surface fluxes. We show
this spatial coverage makes it possible to disaggregate sectoral emissions informa-
tion from observations.

• Using OCO-3 and the Los Angeles Basin as a case study, three emission sectors
from an emission inventory are optimized to include effects from COVID-19 lock-
downs. In two contributing sectors, On-road Transportation and Industry, opti-
mized CO2 flux decreased considerably around the time COVID-19 lockdowns were
implemented in the Los Angeles area. In the third sector, Maritime Transporta-
tion, optimized CO2 flux steadily increased over time.

• The timeseries of optimized fluxes followed sector-specific proxy data.
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Abstract
The concentration of carbon dioxide (CO2) in Earth’s atmosphere is increasing due to
human activities and the resulting effects on the global climate system have initiated sev-
eral policy-driven approaches to reduce emissions of this greenhouse gas. Quantifying
the effectiveness of such policies requires both bottom-up and top-down approaches to
estimate CO2 emissions. This work investigates, for the first time, the potential of us-
ing SAM observations from NASA’s OCO-3 instrument to disaggregate sector-specific
emissions from instrument observations. Optimized sector-specific timeseries were pro-
duced using Bayesian inversion techniques and compared to proxy activity data from the
transportation, commercial maritime, and industrial sectors. Results demonstrate that
dense space-based observations of atmospheric CO2 are capable of disentangling sector-
specific CO2 fluxes, paving the way for accurate monitoring of the effects of carbon-reduction
policies and operational carbon monitoring systems.

Plain Language Summary

Carbon dioxide (CO2) is a key greenhouse gas and several local-to-international
policies are in place to reduce the amount being emitted by human activities. This work
investigates the amount of CO2 emitted within the Los Angeles Basin during the period
between January 2020 and December 2021 using NASA’s Orbiting Carbon Observatory-
3. The observed emissions are broken down into contributions from specific sectors (on-
road transportation, industrial sources, commercial maritime activity, etc.) The results
of this work demonstrate that urban CO2 emissions observed from space-based instru-
mentation can be disaggregated to several socioeconomic sectors to study trends that
may be present in each one. Notable detected features include the sudden reduction of
on-road CO2 emissions due to the COVID-19 lockdown period and the steady increase
in off-shore emissions due to ship idling and delays. The effectiveness of current and fu-
ture policies regarding sector-specific reductions have the potential to be observed over
time using the framework presented here.

1 Introduction

Carbon dioxide from the combustion of fossil fuels (FFCO2) is among the most im-
portant greenhouse gases in the atmosphere (Zhong & Haigh, 2013). Anthropogenic ac-
tivities typically associated with cities are a significant source (Intergovernmental Panel
on Climate Change, 2015). Efforts to constrain estimates of these emissions use two meth-
ods: “bottom-up” inventory estimates and “top-down” atmospheric observations. Bottom-
up methods use a variety of activity data and statistical methods to construct approx-
imate distributions of FFCO2 fluxes across many geographic scales (Oda et al., 2018; Janssens-
Maenhout et al., 2019; Gurney et al., 2020; Gilfillan & Marland, 2021). However, this
reliance on multiple data streams often delays the release of updated inventories, as many
sources have coarse temporal resolution and/or take time to update (Roten, Marland,
et al., 2022). Furthermore, variations in construction methods create substantial differ-
ences between inventories (Hutchins et al., 2016). Some cities host ground-based (top-
down) CO2 observing networks that record atmospheric measurements at a high tem-
poral resolution. While these observations provide a means to constrain the “true” mag-
nitude of emissions from urban areas and validate inventories, these networks are lim-
ited to a handful of cities, have few instrument sites, and require sophisticated interpre-
tation to disentangle urban signals (Bares et al., 2019; Lauvaux et al., 2016; Shusterman
et al., 2016). Results from both methods are used to inform carbon cycle science and re-
duction policies at local, national, and international scales.

Space-based carbon-observing instruments are providing routine observations at
near-global coverage with revisit times ranging from three to 16 days (Janssens-Maenhout
et al., 2020). These increases in spatiotemporal coverage address the shortcomings of cur-
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rent bottom-up and top-down methodologies. As observations are collected over time,
spatial gradients and localized enhancements are revealed, driven by emissions from pop-
ulated areas (Hakkarainen et al., 2016). Although the signals detected by space-based
instruments are inherently attenuated due to column-averaging (Rayner & O'Brien, 2001;
Keppel-Aleks et al., 2011), these observations are capable of providing insights into lo-
calized urban emissions. Many studies show that transects obtained by NASA’s Orbit-
ing Carbon Observatory-2 (OCO-2) near urban areas are useful in constraining local CO2

emissions (Lu et al., 2018; Hedelius et al., 2018; Wu et al., 2018; Yang et al., 2020; Wu
et al., 2020) even though the original intent of this instrument was to inform carbon cy-
cle science at regional/global scale (Crisp et al., 2004).

The installation of OCO-3 on the International Space Station (ISS) in 2019 allows
for the collection of spatially dense soundings over targeted urban areas. This new type
of observation, referred to as “Snapshot Area Maps” (SAMs), covers a domain of roughly
80km × 80km with individual atmospheric soundings spaced roughly 2km apart (Eldering
et al., 2019). This increased density allows sub-city spatial features to be resolved in XCO2-
space and provides more emission information than other space-based instruments (Kiel
et al., 2021). Furthermore, the orbit of the ISS allows SAMs to be collected at varying
daytime hours as opposed to the narrow time window (around 1:30pm local time) that
previous instruments such as OCO-2 are restricted to (Crisp et al., 2004; Eldering et al.,
2019). Using Bayesian inversion techniques (Rodgers, 2000), these sub-city enhancements
can inform the construction of emission inventories that represent surface emissions in
flux-space (Roten, Lin, et al., 2022) (referred to hereafter as RL22). RL22 provides a “first
look” into the potential of using OCO-3 SAMs to optimize sector-specific urban flux es-
timates by constructing an observing system simulation experiment (OSSE). Their re-
sults suggest that individual SAMs provide minimal spatial optimization of prior inven-
tories while aggregating SAMs over time generated useful scaling factors for sector-specific
emission estimates.

Although Bayesian methods are frequently applied to ground-based CO2 networks
(Kunik et al., 2019; Mallia et al., 2020; Turner et al., 2020; Lauvaux et al., 2020), the
number of applications using XCO2 observations is growing (Ye et al., 2020; Shekhar et
al., 2020). For instance, Ye et al. (2020) used OCO-2 observations over the Los Ange-
les Basin to calculate optimized scaling factors for emissions estimates provided by the
ODIAC inventory (Oda et al., 2018) with factors ranging from 0.66 to 1.84. While pre-
vious studies focused on optimizing total emissions from a “whole-city” perspective, this
work demonstrates the potential of disaggregating sector-specific contributions to CO2

enhancements measured from a space-based instrument in near-real-time. Timeseries of
optimized emissions from sector-specific sources were compared with hourly roadway traf-
fic, monthly marine activity, and annual industry emission data and show good agree-
ment with expected trends. Decreases in emissions during LA’s COVID-19 lockdowns
(Laughner et al., 2021) were also detected by OCO-3. Results demonstrate that space-
based XCO2 observations are capable of optimizing multiple emission sectors within the
LA domain, highlighting the importance of regular high-resolution measurements for the
purposes of constraining sector-specific emissions and quantifying the short-term effec-
tiveness of sector-specific carbon reduction policies. Additionally, the techniques presented
in this work show potential to be applied broadly to multiple cities around the world,
providing a piece of the framework for a global near-real-time carbon monitoring sys-
tem.

2 Methods

2.1 Study Domain: The Los Angeles Basin

The United States Census Bureau reports that the Los Angeles metro area is home
to roughly 13 million people. This megacity sits along the southern California coast and
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has two active maritime ports, multiple international airports, and several traversing in-
terstate highways. This area hosts large coastal industrial complexes and sizable power
plants to the south. The CO2 emission domain considered in this work covers much of
the Basin area, including the San Fernando and San Bernardino Valleys (see Figure 1
(top)). OCO-3 has collected more than 50 target and SAM observations over this area
between 8:00am and 6:00pm local time. Each sounding making up these SAMs is treated
as an independent observation of column-averaged CO2 (XCO2,obs) and is assumed to
be the summation of three components:

XCO2,obs = XCO2,urban +XCO2,bkg +XCO2,bio:urban. (1)

XCO2,urban is the fossil contribution from the urban domain of interest, XCO2,bkg is the
contribution from residual sources (anthropogenic and biospheric) outside of the domain,
and XCO2,bio:urban is the biospheric impact on XCO2,urban. Isolating XCO2,urban of each
sounding and comparing it to modeled estimates provides the constraint on the emis-
sion estimate. Additionally, XCO2,bkg can be further broken down into two terms:

XCO2,bkg = XCO2,bkg:bio +XCO2,bkg:other. (2)

Here, XCO2,bkg:bio represents the influence that the biosphere has on the background es-
timation and XCO2,bkg:other represents the remainder.

Surface CO2 flux from the domain was represented by the Vulcan 3.0 emission in-
ventory (Gurney et al., 2020) using the latest available year (2015). This spatially ex-
plicit emission inventory contains 10 sectors that span residential, commercial, and in-
dustrial sources at a 1km × 1km resolution. The on-road transportation sector is re-
sponsible for almost half (42%) of the urban emissions from LA followed by the indus-
trial (26%). A weaker yet important source is the commercial maritime sector (2%), which
is confined along the coast of the LA and is not coincident with other significant emis-
sion sectors. The spatial distribution of the on-road, industrial, and marine sectors are
included in Figure 1 (bottom). (Spatial plots of emissions from other sectors are in-
cluded in the Supporting Information.)

Individual XCO2 soundings are irregularly gridded across the domain and are af-
fected by clouds, aerosols, and viewing geometry (Eldering et al., 2019). Using the column-
averaged Stochastic Time-Inverted Lagrangian Transport (X-STILT) model (Wu et al.,
2018), an influence footprint was generated for each good quality sounding across all SAMs
(see RL22 for further information regarding the setup of this model for LA). These X-
STILT footprints were convolved with the Vulcan 3.0 emission inventory to calculate mod-
eled XCO2,urban values at each sounding location. Soundings where the contribution from
LA was ≤ 0.01ppm, as calculated by X-STILT, identified “background” soundings for
each SAM. The average of these soundings was used as XCO2,bkg. Biospheric influences,
making up ∼20% of the variability in the LA region (Miller et al., 2020), were incorpo-
rated with the Solar-Induced Fluorescence for Modeling Urban Biogenic Fluxes (SMUrF)
model (Wu et al., 2021). Using observations of solar-induced fluorescence from space,
SMUrF generates a spatially explicit inventory of the hourly net ecosystem exchange of
CO2. Footprints were convolved with SMUrF output to remove per sounding biospheric
influences (XCO2,bio:urban and XCO2,bio:bkg).

2.2 Proxy Data and Uncertainty

Although estimated CO2 flux is provided at an hourly timescale, the Vulcan 3.0
emission inventory only provides spatially explicit high and low estimates (uncertainties)
of these fluxes at an annual scale (Gurney et al., 2020). For each cell, the maximum of
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Figure 1. A description of the domain of interest. The urban domain includes the Los An-

geles Basin, San Fernando Valley, and San Bernardino Valley (black rectangle, top). The spatial

distribution of selected sectoral emissions from Vulcan 3.0 are presented in the bottom panels

(emission estimates are from year 2015).

the absolute differences between these high/low estimates was used to assign an uncer-
tainty estimate. The sum of these per-cell values provided an overall uncertainty esti-
mate for each sector. While this methodology reflected typical uncertainty values, changes
in socioeconomic dynamics due to the COVID-19 pandemic influenced CO2 fluxes con-
siderably (Laughner et al., 2021). The initial uncertainties derived from annual Vulcan
3.0 estimates are averaged from a typical year of emissions. No sudden socioeconomic
changes were present in these estimates, suggesting that they were underestimates when
applied to the 2020/2021 time frame. To address this shortcoming, independent sources
of activity data were used to calculate alternative uncertainty values for several sectors.
These values specifically incorporated socioeconomic fluctuations from the COVID-19
pandemic and replaced previously calculated uncertainty estimates when possible. De-
scriptions of the available activity data relevant to the on-road, industrial, and marine
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sectors are presented below and summarized in Table 1. (Discussion of proxy data be-
yond the primary sectors featured here are included in the Supporting Information.)

2.2.1 On-road Transportation

There are efforts to record trends in several economic sectors in LA. A notable ex-
ample is the California Department of Transportation’s Performance Measurement Sys-
tem (PeMS) which uses an array of sensors to collect traffic data from the interstate high-
ways throughout the state. In this work, data from five highways traversing the basin
(10, 105, 210, 405, 605) were aggregated to produce daily total traffic counts for years
2015, 2020, and 2021. These values were then multiplied by average annual per-mile CO2

emissions factors from the EPA (EPA, 2021). The daily percent change from 2015 was
calculated by comparing each day of the 2020/2021 time period to its corresponding day
in 2015. Comparing weekdays and weekend days to corresponding days in 2015 elimi-
nated weekday/weekend mismatch. The maximum change in on-road activity during the
2020/2021 time period occurred during March 2020 with a reduction of roughly 50%.

2.2.2 Industry

The U.S. Environmental Protection Agency (US EPA) provides annual datasets
for large point source emitters. The dataset used in this work is from the Greenhouse
Gases Reporting Program (GHGRP). It includes voluntarily reported CO2 emissions from
point sources beyond power generation facilities (such as large industrial manufactur-
ers). Due to the voluntary nature of GHGRP reporting, point sources reported in 2015
are not guaranteed to be included in 2020/2021. Comparing annual totals between 2015
and 2020 revealed a 60% reduction from these point sources. In an alternative calcula-
tion, using only point sources present in both datasets, GHGRP revealed a reduction of
12%. Using annual totals, Vulcan 3.0 provides a maximum difference of 38%. This in-
termediate value was used as the uncertainty for the industrial sector.

2.2.3 Marine

The Ports of Los Angeles and Long Beach maintain monthly records of port ac-
tivity through container movement. Monthly trends in passenger and cargo totals in 2020/2021
were compared to base values from 2015. During the span of 2020, a steady increase in
passenger and cargo activity at both ports is evident.

2.3 Errors in XCO2-space

The Bayesian inversion scheme requires uncertainties in both prior fluxes and ob-
servations. Both of which are used in the construction of posterior scaling factors for each
sector. Mismatches in modeled and observed XCO2 values stem from the stochastic na-
ture of the X-STILT model, improper characterization of the boundary layer height, er-
rors in the horizontal wind speed/direction, instrument limitations, and uncertainty from
the biospheric model. Wu et al. (2018) quantified transport uncertainties in the X-STILT
model using global, low-resolution meteorological data while the meteorological fields used
in this study were provided by the 3km High Resolution Rapid Refresh (HRRR) dataset
(Benjamin et al., 2016). The uncertainties from the lower resolution meteorological fields
from Wu et al. (2018) are included in Table 2 and are assumed to be overestimates of
HRRR uncertainties. Additionally, multiple studies have characterized OCO-3’s retrieval
error at both the local (LA) and global levels (Kiel et al., 2021; Taylor et al., 2020) where
values range from 0.23 to 2ppm. A mid-range value of 1ppm was selected to represent
the instrument error over LA area. Uncertainty in the net ecosystem exchange (NEE)
in LA was determined to be 0.16ppm by RL22.
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Table 1. A subset of the Vulcan 3.0 emission sectors used in this work is presented here. An

uncertainty for each sector was determined by proxy data (indicated by “Source”). The temporal

resolution of the proxy data and the determined uncertainty are also included in the rightmost

columns.

Sector Source Resolution Uncertainty

On-Road
CalTrans
Performance Measurement System (PeMS)
pems.dot.ca.gov

Daily Average 50.00%

Industry

US EPA
Greenhouse Gas Reporting Program (GHGRP)
epa.gov/ghgreporting

Annual Total 38.00%

Marine

Ports of Los Angeles and Long Beach
Usage Statistics
portoflosangeles.org/business/statistics/facts-and-figures

polb.com/business/port-statistics/#latest-statistics

Monthly 25.00%

Table 2. A list of errors considered in CO2 space.

Source of Uncertainty ε (ppm) Source

Stochastic Model 0.06 Wu et al., 2018
Boundary Layer Height 0.20 ”
Horizontal Wind 1.00 ”
Instrument 1.00 Taylor et al., 2020; Kiel et al., 2021
Background 1.00 ”
NEE (Bio) 0.16 Wu et al., 2021; Roten, Lin, et al., 2022

2.4 Inversion Method

This work applied an iterative Bayesian inversion to the collection of target/SAM
data provided by the OCO-3 instrument. The goal of the optimization process is to min-
imize a cost function. Here, the cost function is defined such that

Ls =
1

2
(z⃗ −Hspλ⃗)

TR−1(z⃗ −Hspλ⃗) +
1

2
(λ⃗− λ⃗p)

TQp
−1(λ⃗− λ⃗p). (3)

Each XCO2,urban value determined from OCO-3 SAMs is contained in the vector z⃗. Each
corresponding X-STILT footprint is represented as a row in H. The matrix sp contains
the 10 sector-specific Vulcan fluxes as vectors, with each column representing a differ-
ent sector. The vector λ⃗ contains “unknown” scaling factors for each sector represented
by the columns of sp. Similarly, λ⃗p contains the initial estimate (prior) of scaling fac-
tor values. The spatial correlation of errors in XCO2-space is represented by the R ma-
trix which has row/column length equal to the number of observations in z⃗. Following
the construction of R from RL22, elements are defined such that:

Rij =
∑
n

ε2n · e
−Xij

l . (4)
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Here, εn represents the errors in Table 2, X represents a spatial correlation matrix of
the model/observation mismatch for each SAM, and l is a correlation length scale de-
termined by an exponential semi-variogram fitting of the differences. Finally, Qp is a di-

agonal matrix containing the uncertainties corresponding to the elements of λ⃗p (see Ta-
ble 1).

The iterative inversion process used in this work applied the cost function to the
first SAM in the time series. Updated scaling factors (λ⃗) can be determined by calcu-
lating the vector that minimizes the cost function such that

λ̂n = λ⃗n−1 +Qλ,n−1K
T
n (KnQλ,n−1K

T
n +Rn)

−1(z⃗n −Knλ⃗n−1). (5)

Here, K = Hsp is used as a simplification. The iterative notation demonstrates that

optimized values determined in λ̂ were used as λ⃗p in the inversion process applied to the

next SAM in the series (the initial values in λ⃗p were all one). Likewise, updated covari-
ance matrices (Qp) are calculated by

Qn = (KT
nR

−1
n Kn +Q−1

n−1)
−1. (6)

3 Results & Discussion

Results from the iterative Bayesian inversion process (Equations 5 and 6) are pre-
sented for a subset of sectors in Figure 2. Posterior scaling factors derived from each
SAM are represented by the black points along the time series. The associated uncer-
tainty is represented by the gray bands. Trends in three aforementioned emission sec-
tors show sensitivity to the observations provided by the OCO-3 instrument. Two of these
sectors, Industry and On-road, contribute significantly to the total emissions of LA (26%
and 42% respectively). Since these sectors are superimposed on several other area sources
in the basin, the stronger components will receive priority in the inversion scheme. (Re-
sults from all sectors are discussed in the Supporting Information.)

Results suggest that the Industry sector was significantly affected by lockdown pro-
tocols. Reductions in emissions from this sector were near instantaneous, as effects from
local pandemic lockdowns became obvious in early 2020 (Laughner et al., 2021). Given
the low temporal resolution of the proxy industrial data, it is unclear if the optimized
reductions were a result of the pandemic or a reflection of gradual reductions in CO2 emis-
sions since 2015 (Figure 2, Industry). However, emissions dropped (relative to 2015
levels) shortly after the initial lockdown period. A key characteristic of the industrial
sector is that it is made up of both point and area emissions (see Figure 1, Industry).
Several of the large point sources are situated along the coast and are an order of mag-
nitude larger than the surrounding area sources. Since the proxy data from the GHGRP
are point sources only, it is unclear how the inclusion of area sources is affecting the op-
timized values from the inversion scheme. It is likely that emissions from large point sources
are driving the optimized scaling factor for the entire sector (as discussed in RL22). Fu-
ture work should include provisions in the inversion scheme such that large point sources
are treated independently of area sources.

The commercial maritime transportation (Marine) sector shows strong sensitivity
to satellite observations provided in the Bayesian inversion scheme. The steady increase
in emissions from the marine sector correlates well with the activity reported at two large
ports within LA. Although this sector is not a strong contributor to overall emissions
from the domain, commercial maritime transportation is the predominant sector just off
the coast, with the only other sectors in those gridcells (small-scale maritime vessels) be-
longing to the non-road sector. Thus the inversion allocates any emission increase to the
dominant commercial maritime sector, which has emission hotspots at the port locations.
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Figure 2. Selected results from a Bayesian inversion assimilation scheme are presented here.

SAMs are represented by black points, the temporal trend in the optimized scaling factors is indi-

cated by the black line, and the uncertainty in the optimization is represented by the gray band.

Two methods were used to estimate the annual emissions from industrial sectors: (1) the relative

change in total emissions from 2015 to 2020 (blue) in point sources in both annual datasets and

(2) the total CO2 reduction from 2015 to 2020 (red). Monthly container totals in the Ports of

Los Angeles and Long Beach (relative to 2015 totals) are presented in the marine sector (dashed

lines). Daily total vehicle miles traveled were scaled by EPA emission factors to determine the

relative difference in CO2 emissions from the transportation sector (bottom panel, red time-

series). Each panel demonstrates that sector-specific trends can be disentangled from space-based

XCO2 observations at a sub-annual scale.

During the months after the onset of the COVID-19 pandemic, commercial maritime traf-
fic experienced longer wait times outside of international ports (Huang et al., 2022; Carter
et al., 2022). Emissions from off-shore idling were likely a contributor to this increasing
trend.

The effect of the lockdown period is most apparent in the proxy traffic data (Figure
2, OnRoad). The on-road sector is the largest contributor within the domain (∼40%
of total emissions), making the on-road sector most sensitive to corrections during the
inversion process. Daily traffic totals (relative to 2015) demonstrate a clear drop near
the beginning of the lockdown period (March, 2022), and optimized emissions follow closely.
Furthermore, the increase back to normal traffic levels after spring 2020 is closely tracked
by the optimized scaling factors. Although the trends are in good agreement, the sys-
tem’s ability to optimize this sector may be city dependent since denser cities have dif-
ferent transportation dynamics (Wu et al., 2020). While such limitations need to be in-
vestigated, this work demonstrates that there is potential for space-based instruments
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to detect fluctuations in specific CO2 sources around the world, making it possible to
investigate at the sub-city level in near-real-time.

Although the inversion process doesn’t effectively optimize all sectors, the results
in Figure 2 demonstrate that changes in dense space-based XCO2 observations are ca-
pable of being disaggregated into sector-specific contributions. There appear to be two
key criteria as to which sectors will be best optimized: (1) the relative strength of the
sectors within the domain and (2) the number of sectors that are superimposed within
an emission domain of interest. The two highest contributing sectors (On-road and In-
dustry) received the most optimization from the inversion scheme, with the on-road sec-
tor tracking the daily proxy data closely. Additionally, one of the minor emission sec-
tors (Marine) was responsive to the inversion scheme due to its predominance along the
shore. Any heightened XCO2 enhancements allocated to this region by X-STILT would
be allocated to emissions from the commercial maritime sector.

Previous space-based instruments such as OCO-2 collect soundings in narrow tran-
sects during orbit that, when coincident with an urban CO2 plume, can be used to cal-
culate an enhancement (Wu et al., 2018; Yang et al., 2020). The broad coverage by OCO-
3’s SAM observations (roughly 80km × 80km) over urban areas reduces the amount of
atmospheric mixing that occurs during transport between the source and observation
points (soundings), allowing intra-city features to be resolved, thus improving the inver-
sion’s ability to optimize specific sectors. Furthermore, OCO-3’s ability to collect SAMs
at varying times of the day assists in disaggregating sectors with strong diurnal trends.

The results of this work highlight the potential of space-based observations to re-
solve sector-specific trends in carbon emissions within cities. Developing a global oper-
ational framework capable of assimilating data from current and future satellites has the
potential to update worldwide emission inventories in near-real-time. Optimized high-
resolution emission inventories can potentially reflect the effectiveness of carbon reduc-
tion policies at sub-annual time scales. However, shortcomings must be addressed. It is
unclear as to how effective this inversion scheme will be when smaller cities are consid-
ered. Additionally, potential issues arise when point and area sources are mixed. Pos-
terior scaling factors derived from a collection of independently varying point sources may
not accurately scale emissions for all of the considered sources. Therefore, future work
should address this shortcoming by assigning each point source a dedicated scaling fac-
tor in λ⃗. Obtaining high-resolution proxy data for the industry and/or power genera-
tion sectors could provide further insights into the dynamics exhibited by the optimized
scaling factors.

4 Conclusions

As the level of atmospheric CO2 increases, the implementation of local-to-international
carbon reduction policies becomes more urgent. Monitoring and reporting emissions from
urban areas is difficult with in-situ networks due to their high cost and maintenance, mak-
ing global coverage unfeasible. Conversely, “bottom-up” accounting approaches (emis-
sion inventories) have the potential to provide global estimates of CO2 emissions but these
products can have large uncertainties and often lag several years behind. To remedy these
shortcomings, space-based CO2 observing systems provide near-global coverage of ur-
ban areas around the globe. The results of this work demonstrated that observations from
such instruments have the potential to optimize sector-specific flux estimates provided
by the Vulcan 3.0 emission inventory. In a Bayesian inversion scheme, sectors making
up large fractions of the total emissions from the Los Angeles Basin were optimized and
posterior values were compared with proxy data. Notably, the strongest two sectors in
the basin (on-road transportation and industry) exhibited the most sensitivity to the op-
timization process. One of the smaller sectors (commercial maritime) also exhibited strong
sensitivity. This was due to the lack of coincident sectors. Although several sectors were
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optimized and correlated with proxy data, future work should move away from optimiz-
ing sectoral scaling factors and expand the inversion scheme to generate posterior per-
cell corrections.

Open Research

All data used to support the conclusions of this work are open source. The locations of
all proxy datasets are included in Table 2.2.3. The Vulcan 3.0 emission inventory is de-
scribed by Gurney et al. (2020) and is freely available at https://daac.ornl.gov/cgi
-bin/dsviewer.pl?ds id=1741. SMUrF data is described in Wu et al. (2021) and can
be found at https://daac.ornl.gov/NACP/guides/Biogenic CO2flux SIF SMUrF.html.
The X-STILT model used in this work (freely available) is described in Wu et al. (2018)
and was driven by the High Resolution Rapid Refresh (HRRR) meteorology data pro-
vided by the Air Resources Laboratory (https://www.ready.noaa.gov/READYmetdata
.php). Data from the OCO-3 instrument can be downloaded from NASA’s GES DISC
repository (https://disc.gsfc.nasa.gov/datasets/OCO3 L2 Lite FP 10.4r/summary)
after registering for a (free) account. All maps were generated using the ggmap pack-
age (Kahle & Wickham, 2013).
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Key Points:

• NASA’s OCO-3 instrument provides the densest spatial coverage of urban XCO2

from space, which includes information on spatially variant surface fluxes. We show
this spatial coverage makes it possible to disaggregate sectoral emissions informa-
tion from observations.

• Using OCO-3 and the Los Angeles Basin as a case study, three emission sectors
from an emission inventory are optimized to include effects from COVID-19 lock-
downs. In two contributing sectors, On-road Transportation and Industry, opti-
mized CO2 flux decreased considerably around the time COVID-19 lockdowns were
implemented in the Los Angeles area. In the third sector, Maritime Transporta-
tion, optimized CO2 flux steadily increased over time.

• The timeseries of optimized fluxes followed sector-specific proxy data.
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Abstract
The concentration of carbon dioxide (CO2) in Earth’s atmosphere is increasing due to
human activities and the resulting effects on the global climate system have initiated sev-
eral policy-driven approaches to reduce emissions of this greenhouse gas. Quantifying
the effectiveness of such policies requires both bottom-up and top-down approaches to
estimate CO2 emissions. This work investigates, for the first time, the potential of us-
ing SAM observations from NASA’s OCO-3 instrument to disaggregate sector-specific
emissions from instrument observations. Optimized sector-specific timeseries were pro-
duced using Bayesian inversion techniques and compared to proxy activity data from the
transportation, commercial maritime, and industrial sectors. Results demonstrate that
dense space-based observations of atmospheric CO2 are capable of disentangling sector-
specific CO2 fluxes, paving the way for accurate monitoring of the effects of carbon-reduction
policies and operational carbon monitoring systems.

Plain Language Summary

Carbon dioxide (CO2) is a key greenhouse gas and several local-to-international
policies are in place to reduce the amount being emitted by human activities. This work
investigates the amount of CO2 emitted within the Los Angeles Basin during the period
between January 2020 and December 2021 using NASA’s Orbiting Carbon Observatory-
3. The observed emissions are broken down into contributions from specific sectors (on-
road transportation, industrial sources, commercial maritime activity, etc.) The results
of this work demonstrate that urban CO2 emissions observed from space-based instru-
mentation can be disaggregated to several socioeconomic sectors to study trends that
may be present in each one. Notable detected features include the sudden reduction of
on-road CO2 emissions due to the COVID-19 lockdown period and the steady increase
in off-shore emissions due to ship idling and delays. The effectiveness of current and fu-
ture policies regarding sector-specific reductions have the potential to be observed over
time using the framework presented here.

1 Introduction

Carbon dioxide from the combustion of fossil fuels (FFCO2) is among the most im-
portant greenhouse gases in the atmosphere (Zhong & Haigh, 2013). Anthropogenic ac-
tivities typically associated with cities are a significant source (Intergovernmental Panel
on Climate Change, 2015). Efforts to constrain estimates of these emissions use two meth-
ods: “bottom-up” inventory estimates and “top-down” atmospheric observations. Bottom-
up methods use a variety of activity data and statistical methods to construct approx-
imate distributions of FFCO2 fluxes across many geographic scales (Oda et al., 2018; Janssens-
Maenhout et al., 2019; Gurney et al., 2020; Gilfillan & Marland, 2021). However, this
reliance on multiple data streams often delays the release of updated inventories, as many
sources have coarse temporal resolution and/or take time to update (Roten, Marland,
et al., 2022). Furthermore, variations in construction methods create substantial differ-
ences between inventories (Hutchins et al., 2016). Some cities host ground-based (top-
down) CO2 observing networks that record atmospheric measurements at a high tem-
poral resolution. While these observations provide a means to constrain the “true” mag-
nitude of emissions from urban areas and validate inventories, these networks are lim-
ited to a handful of cities, have few instrument sites, and require sophisticated interpre-
tation to disentangle urban signals (Bares et al., 2019; Lauvaux et al., 2016; Shusterman
et al., 2016). Results from both methods are used to inform carbon cycle science and re-
duction policies at local, national, and international scales.

Space-based carbon-observing instruments are providing routine observations at
near-global coverage with revisit times ranging from three to 16 days (Janssens-Maenhout
et al., 2020). These increases in spatiotemporal coverage address the shortcomings of cur-
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rent bottom-up and top-down methodologies. As observations are collected over time,
spatial gradients and localized enhancements are revealed, driven by emissions from pop-
ulated areas (Hakkarainen et al., 2016). Although the signals detected by space-based
instruments are inherently attenuated due to column-averaging (Rayner & O'Brien, 2001;
Keppel-Aleks et al., 2011), these observations are capable of providing insights into lo-
calized urban emissions. Many studies show that transects obtained by NASA’s Orbit-
ing Carbon Observatory-2 (OCO-2) near urban areas are useful in constraining local CO2

emissions (Lu et al., 2018; Hedelius et al., 2018; Wu et al., 2018; Yang et al., 2020; Wu
et al., 2020) even though the original intent of this instrument was to inform carbon cy-
cle science at regional/global scale (Crisp et al., 2004).

The installation of OCO-3 on the International Space Station (ISS) in 2019 allows
for the collection of spatially dense soundings over targeted urban areas. This new type
of observation, referred to as “Snapshot Area Maps” (SAMs), covers a domain of roughly
80km × 80km with individual atmospheric soundings spaced roughly 2km apart (Eldering
et al., 2019). This increased density allows sub-city spatial features to be resolved in XCO2-
space and provides more emission information than other space-based instruments (Kiel
et al., 2021). Furthermore, the orbit of the ISS allows SAMs to be collected at varying
daytime hours as opposed to the narrow time window (around 1:30pm local time) that
previous instruments such as OCO-2 are restricted to (Crisp et al., 2004; Eldering et al.,
2019). Using Bayesian inversion techniques (Rodgers, 2000), these sub-city enhancements
can inform the construction of emission inventories that represent surface emissions in
flux-space (Roten, Lin, et al., 2022) (referred to hereafter as RL22). RL22 provides a “first
look” into the potential of using OCO-3 SAMs to optimize sector-specific urban flux es-
timates by constructing an observing system simulation experiment (OSSE). Their re-
sults suggest that individual SAMs provide minimal spatial optimization of prior inven-
tories while aggregating SAMs over time generated useful scaling factors for sector-specific
emission estimates.

Although Bayesian methods are frequently applied to ground-based CO2 networks
(Kunik et al., 2019; Mallia et al., 2020; Turner et al., 2020; Lauvaux et al., 2020), the
number of applications using XCO2 observations is growing (Ye et al., 2020; Shekhar et
al., 2020). For instance, Ye et al. (2020) used OCO-2 observations over the Los Ange-
les Basin to calculate optimized scaling factors for emissions estimates provided by the
ODIAC inventory (Oda et al., 2018) with factors ranging from 0.66 to 1.84. While pre-
vious studies focused on optimizing total emissions from a “whole-city” perspective, this
work demonstrates the potential of disaggregating sector-specific contributions to CO2

enhancements measured from a space-based instrument in near-real-time. Timeseries of
optimized emissions from sector-specific sources were compared with hourly roadway traf-
fic, monthly marine activity, and annual industry emission data and show good agree-
ment with expected trends. Decreases in emissions during LA’s COVID-19 lockdowns
(Laughner et al., 2021) were also detected by OCO-3. Results demonstrate that space-
based XCO2 observations are capable of optimizing multiple emission sectors within the
LA domain, highlighting the importance of regular high-resolution measurements for the
purposes of constraining sector-specific emissions and quantifying the short-term effec-
tiveness of sector-specific carbon reduction policies. Additionally, the techniques presented
in this work show potential to be applied broadly to multiple cities around the world,
providing a piece of the framework for a global near-real-time carbon monitoring sys-
tem.

2 Methods

2.1 Study Domain: The Los Angeles Basin

The United States Census Bureau reports that the Los Angeles metro area is home
to roughly 13 million people. This megacity sits along the southern California coast and
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has two active maritime ports, multiple international airports, and several traversing in-
terstate highways. This area hosts large coastal industrial complexes and sizable power
plants to the south. The CO2 emission domain considered in this work covers much of
the Basin area, including the San Fernando and San Bernardino Valleys (see Figure 1
(top)). OCO-3 has collected more than 50 target and SAM observations over this area
between 8:00am and 6:00pm local time. Each sounding making up these SAMs is treated
as an independent observation of column-averaged CO2 (XCO2,obs) and is assumed to
be the summation of three components:

XCO2,obs = XCO2,urban +XCO2,bkg +XCO2,bio:urban. (1)

XCO2,urban is the fossil contribution from the urban domain of interest, XCO2,bkg is the
contribution from residual sources (anthropogenic and biospheric) outside of the domain,
and XCO2,bio:urban is the biospheric impact on XCO2,urban. Isolating XCO2,urban of each
sounding and comparing it to modeled estimates provides the constraint on the emis-
sion estimate. Additionally, XCO2,bkg can be further broken down into two terms:

XCO2,bkg = XCO2,bkg:bio +XCO2,bkg:other. (2)

Here, XCO2,bkg:bio represents the influence that the biosphere has on the background es-
timation and XCO2,bkg:other represents the remainder.

Surface CO2 flux from the domain was represented by the Vulcan 3.0 emission in-
ventory (Gurney et al., 2020) using the latest available year (2015). This spatially ex-
plicit emission inventory contains 10 sectors that span residential, commercial, and in-
dustrial sources at a 1km × 1km resolution. The on-road transportation sector is re-
sponsible for almost half (42%) of the urban emissions from LA followed by the indus-
trial (26%). A weaker yet important source is the commercial maritime sector (2%), which
is confined along the coast of the LA and is not coincident with other significant emis-
sion sectors. The spatial distribution of the on-road, industrial, and marine sectors are
included in Figure 1 (bottom). (Spatial plots of emissions from other sectors are in-
cluded in the Supporting Information.)

Individual XCO2 soundings are irregularly gridded across the domain and are af-
fected by clouds, aerosols, and viewing geometry (Eldering et al., 2019). Using the column-
averaged Stochastic Time-Inverted Lagrangian Transport (X-STILT) model (Wu et al.,
2018), an influence footprint was generated for each good quality sounding across all SAMs
(see RL22 for further information regarding the setup of this model for LA). These X-
STILT footprints were convolved with the Vulcan 3.0 emission inventory to calculate mod-
eled XCO2,urban values at each sounding location. Soundings where the contribution from
LA was ≤ 0.01ppm, as calculated by X-STILT, identified “background” soundings for
each SAM. The average of these soundings was used as XCO2,bkg. Biospheric influences,
making up ∼20% of the variability in the LA region (Miller et al., 2020), were incorpo-
rated with the Solar-Induced Fluorescence for Modeling Urban Biogenic Fluxes (SMUrF)
model (Wu et al., 2021). Using observations of solar-induced fluorescence from space,
SMUrF generates a spatially explicit inventory of the hourly net ecosystem exchange of
CO2. Footprints were convolved with SMUrF output to remove per sounding biospheric
influences (XCO2,bio:urban and XCO2,bio:bkg).

2.2 Proxy Data and Uncertainty

Although estimated CO2 flux is provided at an hourly timescale, the Vulcan 3.0
emission inventory only provides spatially explicit high and low estimates (uncertainties)
of these fluxes at an annual scale (Gurney et al., 2020). For each cell, the maximum of
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Figure 1. A description of the domain of interest. The urban domain includes the Los An-

geles Basin, San Fernando Valley, and San Bernardino Valley (black rectangle, top). The spatial

distribution of selected sectoral emissions from Vulcan 3.0 are presented in the bottom panels

(emission estimates are from year 2015).

the absolute differences between these high/low estimates was used to assign an uncer-
tainty estimate. The sum of these per-cell values provided an overall uncertainty esti-
mate for each sector. While this methodology reflected typical uncertainty values, changes
in socioeconomic dynamics due to the COVID-19 pandemic influenced CO2 fluxes con-
siderably (Laughner et al., 2021). The initial uncertainties derived from annual Vulcan
3.0 estimates are averaged from a typical year of emissions. No sudden socioeconomic
changes were present in these estimates, suggesting that they were underestimates when
applied to the 2020/2021 time frame. To address this shortcoming, independent sources
of activity data were used to calculate alternative uncertainty values for several sectors.
These values specifically incorporated socioeconomic fluctuations from the COVID-19
pandemic and replaced previously calculated uncertainty estimates when possible. De-
scriptions of the available activity data relevant to the on-road, industrial, and marine
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sectors are presented below and summarized in Table 1. (Discussion of proxy data be-
yond the primary sectors featured here are included in the Supporting Information.)

2.2.1 On-road Transportation

There are efforts to record trends in several economic sectors in LA. A notable ex-
ample is the California Department of Transportation’s Performance Measurement Sys-
tem (PeMS) which uses an array of sensors to collect traffic data from the interstate high-
ways throughout the state. In this work, data from five highways traversing the basin
(10, 105, 210, 405, 605) were aggregated to produce daily total traffic counts for years
2015, 2020, and 2021. These values were then multiplied by average annual per-mile CO2

emissions factors from the EPA (EPA, 2021). The daily percent change from 2015 was
calculated by comparing each day of the 2020/2021 time period to its corresponding day
in 2015. Comparing weekdays and weekend days to corresponding days in 2015 elimi-
nated weekday/weekend mismatch. The maximum change in on-road activity during the
2020/2021 time period occurred during March 2020 with a reduction of roughly 50%.

2.2.2 Industry

The U.S. Environmental Protection Agency (US EPA) provides annual datasets
for large point source emitters. The dataset used in this work is from the Greenhouse
Gases Reporting Program (GHGRP). It includes voluntarily reported CO2 emissions from
point sources beyond power generation facilities (such as large industrial manufactur-
ers). Due to the voluntary nature of GHGRP reporting, point sources reported in 2015
are not guaranteed to be included in 2020/2021. Comparing annual totals between 2015
and 2020 revealed a 60% reduction from these point sources. In an alternative calcula-
tion, using only point sources present in both datasets, GHGRP revealed a reduction of
12%. Using annual totals, Vulcan 3.0 provides a maximum difference of 38%. This in-
termediate value was used as the uncertainty for the industrial sector.

2.2.3 Marine

The Ports of Los Angeles and Long Beach maintain monthly records of port ac-
tivity through container movement. Monthly trends in passenger and cargo totals in 2020/2021
were compared to base values from 2015. During the span of 2020, a steady increase in
passenger and cargo activity at both ports is evident.

2.3 Errors in XCO2-space

The Bayesian inversion scheme requires uncertainties in both prior fluxes and ob-
servations. Both of which are used in the construction of posterior scaling factors for each
sector. Mismatches in modeled and observed XCO2 values stem from the stochastic na-
ture of the X-STILT model, improper characterization of the boundary layer height, er-
rors in the horizontal wind speed/direction, instrument limitations, and uncertainty from
the biospheric model. Wu et al. (2018) quantified transport uncertainties in the X-STILT
model using global, low-resolution meteorological data while the meteorological fields used
in this study were provided by the 3km High Resolution Rapid Refresh (HRRR) dataset
(Benjamin et al., 2016). The uncertainties from the lower resolution meteorological fields
from Wu et al. (2018) are included in Table 2 and are assumed to be overestimates of
HRRR uncertainties. Additionally, multiple studies have characterized OCO-3’s retrieval
error at both the local (LA) and global levels (Kiel et al., 2021; Taylor et al., 2020) where
values range from 0.23 to 2ppm. A mid-range value of 1ppm was selected to represent
the instrument error over LA area. Uncertainty in the net ecosystem exchange (NEE)
in LA was determined to be 0.16ppm by RL22.
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Table 1. A subset of the Vulcan 3.0 emission sectors used in this work is presented here. An

uncertainty for each sector was determined by proxy data (indicated by “Source”). The temporal

resolution of the proxy data and the determined uncertainty are also included in the rightmost

columns.

Sector Source Resolution Uncertainty

On-Road
CalTrans
Performance Measurement System (PeMS)
pems.dot.ca.gov

Daily Average 50.00%

Industry

US EPA
Greenhouse Gas Reporting Program (GHGRP)
epa.gov/ghgreporting

Annual Total 38.00%

Marine

Ports of Los Angeles and Long Beach
Usage Statistics
portoflosangeles.org/business/statistics/facts-and-figures

polb.com/business/port-statistics/#latest-statistics

Monthly 25.00%

Table 2. A list of errors considered in CO2 space.

Source of Uncertainty ε (ppm) Source

Stochastic Model 0.06 Wu et al., 2018
Boundary Layer Height 0.20 ”
Horizontal Wind 1.00 ”
Instrument 1.00 Taylor et al., 2020; Kiel et al., 2021
Background 1.00 ”
NEE (Bio) 0.16 Wu et al., 2021; Roten, Lin, et al., 2022

2.4 Inversion Method

This work applied an iterative Bayesian inversion to the collection of target/SAM
data provided by the OCO-3 instrument. The goal of the optimization process is to min-
imize a cost function. Here, the cost function is defined such that

Ls =
1

2
(z⃗ −Hspλ⃗)

TR−1(z⃗ −Hspλ⃗) +
1

2
(λ⃗− λ⃗p)

TQp
−1(λ⃗− λ⃗p). (3)

Each XCO2,urban value determined from OCO-3 SAMs is contained in the vector z⃗. Each
corresponding X-STILT footprint is represented as a row in H. The matrix sp contains
the 10 sector-specific Vulcan fluxes as vectors, with each column representing a differ-
ent sector. The vector λ⃗ contains “unknown” scaling factors for each sector represented
by the columns of sp. Similarly, λ⃗p contains the initial estimate (prior) of scaling fac-
tor values. The spatial correlation of errors in XCO2-space is represented by the R ma-
trix which has row/column length equal to the number of observations in z⃗. Following
the construction of R from RL22, elements are defined such that:

Rij =
∑
n

ε2n · e
−Xij

l . (4)
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Here, εn represents the errors in Table 2, X represents a spatial correlation matrix of
the model/observation mismatch for each SAM, and l is a correlation length scale de-
termined by an exponential semi-variogram fitting of the differences. Finally, Qp is a di-

agonal matrix containing the uncertainties corresponding to the elements of λ⃗p (see Ta-
ble 1).

The iterative inversion process used in this work applied the cost function to the
first SAM in the time series. Updated scaling factors (λ⃗) can be determined by calcu-
lating the vector that minimizes the cost function such that

λ̂n = λ⃗n−1 +Qλ,n−1K
T
n (KnQλ,n−1K

T
n +Rn)

−1(z⃗n −Knλ⃗n−1). (5)

Here, K = Hsp is used as a simplification. The iterative notation demonstrates that

optimized values determined in λ̂ were used as λ⃗p in the inversion process applied to the

next SAM in the series (the initial values in λ⃗p were all one). Likewise, updated covari-
ance matrices (Qp) are calculated by

Qn = (KT
nR

−1
n Kn +Q−1

n−1)
−1. (6)

3 Results & Discussion

Results from the iterative Bayesian inversion process (Equations 5 and 6) are pre-
sented for a subset of sectors in Figure 2. Posterior scaling factors derived from each
SAM are represented by the black points along the time series. The associated uncer-
tainty is represented by the gray bands. Trends in three aforementioned emission sec-
tors show sensitivity to the observations provided by the OCO-3 instrument. Two of these
sectors, Industry and On-road, contribute significantly to the total emissions of LA (26%
and 42% respectively). Since these sectors are superimposed on several other area sources
in the basin, the stronger components will receive priority in the inversion scheme. (Re-
sults from all sectors are discussed in the Supporting Information.)

Results suggest that the Industry sector was significantly affected by lockdown pro-
tocols. Reductions in emissions from this sector were near instantaneous, as effects from
local pandemic lockdowns became obvious in early 2020 (Laughner et al., 2021). Given
the low temporal resolution of the proxy industrial data, it is unclear if the optimized
reductions were a result of the pandemic or a reflection of gradual reductions in CO2 emis-
sions since 2015 (Figure 2, Industry). However, emissions dropped (relative to 2015
levels) shortly after the initial lockdown period. A key characteristic of the industrial
sector is that it is made up of both point and area emissions (see Figure 1, Industry).
Several of the large point sources are situated along the coast and are an order of mag-
nitude larger than the surrounding area sources. Since the proxy data from the GHGRP
are point sources only, it is unclear how the inclusion of area sources is affecting the op-
timized values from the inversion scheme. It is likely that emissions from large point sources
are driving the optimized scaling factor for the entire sector (as discussed in RL22). Fu-
ture work should include provisions in the inversion scheme such that large point sources
are treated independently of area sources.

The commercial maritime transportation (Marine) sector shows strong sensitivity
to satellite observations provided in the Bayesian inversion scheme. The steady increase
in emissions from the marine sector correlates well with the activity reported at two large
ports within LA. Although this sector is not a strong contributor to overall emissions
from the domain, commercial maritime transportation is the predominant sector just off
the coast, with the only other sectors in those gridcells (small-scale maritime vessels) be-
longing to the non-road sector. Thus the inversion allocates any emission increase to the
dominant commercial maritime sector, which has emission hotspots at the port locations.
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Figure 2. Selected results from a Bayesian inversion assimilation scheme are presented here.

SAMs are represented by black points, the temporal trend in the optimized scaling factors is indi-

cated by the black line, and the uncertainty in the optimization is represented by the gray band.

Two methods were used to estimate the annual emissions from industrial sectors: (1) the relative

change in total emissions from 2015 to 2020 (blue) in point sources in both annual datasets and

(2) the total CO2 reduction from 2015 to 2020 (red). Monthly container totals in the Ports of

Los Angeles and Long Beach (relative to 2015 totals) are presented in the marine sector (dashed

lines). Daily total vehicle miles traveled were scaled by EPA emission factors to determine the

relative difference in CO2 emissions from the transportation sector (bottom panel, red time-

series). Each panel demonstrates that sector-specific trends can be disentangled from space-based

XCO2 observations at a sub-annual scale.

During the months after the onset of the COVID-19 pandemic, commercial maritime traf-
fic experienced longer wait times outside of international ports (Huang et al., 2022; Carter
et al., 2022). Emissions from off-shore idling were likely a contributor to this increasing
trend.

The effect of the lockdown period is most apparent in the proxy traffic data (Figure
2, OnRoad). The on-road sector is the largest contributor within the domain (∼40%
of total emissions), making the on-road sector most sensitive to corrections during the
inversion process. Daily traffic totals (relative to 2015) demonstrate a clear drop near
the beginning of the lockdown period (March, 2022), and optimized emissions follow closely.
Furthermore, the increase back to normal traffic levels after spring 2020 is closely tracked
by the optimized scaling factors. Although the trends are in good agreement, the sys-
tem’s ability to optimize this sector may be city dependent since denser cities have dif-
ferent transportation dynamics (Wu et al., 2020). While such limitations need to be in-
vestigated, this work demonstrates that there is potential for space-based instruments
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to detect fluctuations in specific CO2 sources around the world, making it possible to
investigate at the sub-city level in near-real-time.

Although the inversion process doesn’t effectively optimize all sectors, the results
in Figure 2 demonstrate that changes in dense space-based XCO2 observations are ca-
pable of being disaggregated into sector-specific contributions. There appear to be two
key criteria as to which sectors will be best optimized: (1) the relative strength of the
sectors within the domain and (2) the number of sectors that are superimposed within
an emission domain of interest. The two highest contributing sectors (On-road and In-
dustry) received the most optimization from the inversion scheme, with the on-road sec-
tor tracking the daily proxy data closely. Additionally, one of the minor emission sec-
tors (Marine) was responsive to the inversion scheme due to its predominance along the
shore. Any heightened XCO2 enhancements allocated to this region by X-STILT would
be allocated to emissions from the commercial maritime sector.

Previous space-based instruments such as OCO-2 collect soundings in narrow tran-
sects during orbit that, when coincident with an urban CO2 plume, can be used to cal-
culate an enhancement (Wu et al., 2018; Yang et al., 2020). The broad coverage by OCO-
3’s SAM observations (roughly 80km × 80km) over urban areas reduces the amount of
atmospheric mixing that occurs during transport between the source and observation
points (soundings), allowing intra-city features to be resolved, thus improving the inver-
sion’s ability to optimize specific sectors. Furthermore, OCO-3’s ability to collect SAMs
at varying times of the day assists in disaggregating sectors with strong diurnal trends.

The results of this work highlight the potential of space-based observations to re-
solve sector-specific trends in carbon emissions within cities. Developing a global oper-
ational framework capable of assimilating data from current and future satellites has the
potential to update worldwide emission inventories in near-real-time. Optimized high-
resolution emission inventories can potentially reflect the effectiveness of carbon reduc-
tion policies at sub-annual time scales. However, shortcomings must be addressed. It is
unclear as to how effective this inversion scheme will be when smaller cities are consid-
ered. Additionally, potential issues arise when point and area sources are mixed. Pos-
terior scaling factors derived from a collection of independently varying point sources may
not accurately scale emissions for all of the considered sources. Therefore, future work
should address this shortcoming by assigning each point source a dedicated scaling fac-
tor in λ⃗. Obtaining high-resolution proxy data for the industry and/or power genera-
tion sectors could provide further insights into the dynamics exhibited by the optimized
scaling factors.

4 Conclusions

As the level of atmospheric CO2 increases, the implementation of local-to-international
carbon reduction policies becomes more urgent. Monitoring and reporting emissions from
urban areas is difficult with in-situ networks due to their high cost and maintenance, mak-
ing global coverage unfeasible. Conversely, “bottom-up” accounting approaches (emis-
sion inventories) have the potential to provide global estimates of CO2 emissions but these
products can have large uncertainties and often lag several years behind. To remedy these
shortcomings, space-based CO2 observing systems provide near-global coverage of ur-
ban areas around the globe. The results of this work demonstrated that observations from
such instruments have the potential to optimize sector-specific flux estimates provided
by the Vulcan 3.0 emission inventory. In a Bayesian inversion scheme, sectors making
up large fractions of the total emissions from the Los Angeles Basin were optimized and
posterior values were compared with proxy data. Notably, the strongest two sectors in
the basin (on-road transportation and industry) exhibited the most sensitivity to the op-
timization process. One of the smaller sectors (commercial maritime) also exhibited strong
sensitivity. This was due to the lack of coincident sectors. Although several sectors were
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optimized and correlated with proxy data, future work should move away from optimiz-
ing sectoral scaling factors and expand the inversion scheme to generate posterior per-
cell corrections.

Open Research

All data used to support the conclusions of this work are open source. The locations of
all proxy datasets are included in Table 2.2.3. The Vulcan 3.0 emission inventory is de-
scribed by Gurney et al. (2020) and is freely available at https://daac.ornl.gov/cgi
-bin/dsviewer.pl?ds id=1741. SMUrF data is described in Wu et al. (2021) and can
be found at https://daac.ornl.gov/NACP/guides/Biogenic CO2flux SIF SMUrF.html.
The X-STILT model used in this work (freely available) is described in Wu et al. (2018)
and was driven by the High Resolution Rapid Refresh (HRRR) meteorology data pro-
vided by the Air Resources Laboratory (https://www.ready.noaa.gov/READYmetdata
.php). Data from the OCO-3 instrument can be downloaded from NASA’s GES DISC
repository (https://disc.gsfc.nasa.gov/datasets/OCO3 L2 Lite FP 10.4r/summary)
after registering for a (free) account. All maps were generated using the ggmap pack-
age (Kahle & Wickham, 2013).
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