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Abstract

Single-model initial-condition large ensembles are powerful tools to quantify the forced response, internal climate variability,

and their evolution under global warming. Here, we present the CMIP6 version of the Max Planck Institute Grand Ensemble

(MPI-GE CMIP6) with 30 realisations for the historical period and five emission scenarios. The power of MPI-GE CMIP6 goes

beyond its predecessor ensemble MPI-GE by providing high-frequency output, the full range of emission scenarios including

the highly policy-relevant low emission scenarios SSP1-1.9 and SSP1-2.6, and the opportunity to compare the ensemble to

complementary high-resolution simulations. First, we describe MPI-GE CMIP6, evaluate it with observations and reanalyses

and compare it to MPI-GE. Then, we demonstrate with six novel application examples how to use the power of the ensemble

to better quantify and understand present and future climate extremes, to inform about uncertainty in approaching Paris

Agreement global warming limits, and to combine large ensembles and artificial intelligence. For instance, MPI-GE CMIP6

allows us to show that the recently observed Siberian and Pacific North American heatwaves would only avoid reaching 1-2 year

return periods in 2071-2100 with low emission scenarios, that recently observed European precipitation extremes are captured

only by complementary high-resolution simulations, and that 3-hourly output projects a decreasing activity of storms in mid-

latitude oceans. Further, the ensemble is ideal for estimates of probabilities of crossing global warming limits and the irreducible

uncertainty introduced by internal variability, and is sufficiently large to be used for infilling surface temperature observations

with artificial intelligence.
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Key Points:17

• MPI-GE CMIP6 is a 30-member initial-condition large ensemble with up to 3-hourly18
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• The ensemble is specifically suited to investigate climate extremes and Paris Agree-20

ment global warming limits21

• MPI-GE CMIP6 adequately represents heat extremes, while precipitation extremes22

are captured by complementary high-resolution simulations23
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Abstract24

Single-model initial-condition large ensembles are powerful tools to quantify the forced re-25

sponse, internal climate variability, and their evolution under global warming. Here, we26

present the CMIP6 version of the Max Planck Institute Grand Ensemble (MPI-GE CMIP6)27

with 30 realisations for the historical period and five emission scenarios. The power of MPI-28

GE CMIP6 goes beyond its predecessor ensemble MPI-GE by providing high-frequency29

output, the full range of emission scenarios including the highly policy-relevant low emis-30

sion scenarios SSP1-1.9 and SSP1-2.6, and the opportunity to compare the ensemble to31

complementary high-resolution simulations. First, we describe MPI-GE CMIP6, evaluate it32

with observations and reanalyses and compare it to MPI-GE. Then, we demonstrate with33

six novel application examples how to use the power of the ensemble to better quantify and34

understand present and future climate extremes, to inform about uncertainty in approach-35

ing Paris Agreement global warming limits, and to combine large ensembles and artificial36

intelligence. For instance, MPI-GE CMIP6 allows us to show that the recently observed37

Siberian and Pacific North American heatwaves would only avoid reaching 1-2 year return38

periods in 2071-2100 with low emission scenarios, that recently observed European precipi-39

tation extremes are captured only by complementary high-resolution simulations, and that40

3-hourly output projects a decreasing activity of storms in mid-latitude oceans. Further,41

the ensemble is ideal for estimates of probabilities of crossing global warming limits and the42

irreducible uncertainty introduced by internal variability, and is sufficiently large to be used43

for infilling surface temperature observations with artificial intelligence.44

Plain Language Summary45

Climate model simulations that start from different initial states and differ only due to46

the chaos in the climate system are used extensively to quantify the forced climate response,47

variability intrinsic to the climate system, and their change under global warming. Here,48

we present a new version of the Max Planck Institute Grand Ensemble (MPI-GE CMIP6)49

that is run as part of the latest generation of climate models. This single-model ensemble50

consists of 30 realisations for the historical period 1850-2014 and for five scenarios of possible51

future climates until 2100. The power of MPI-GE CMIP6 goes beyond its predecessor by52

not only providing monthly mean but also 3-hourly to daily model output, the full range53

of future scenarios including the two highly policy-relevant scenarios that were designed to54

match the Paris Agreement global warming limits of 1.5◦C and 2◦C, and the opportunity to55

compare the low-resolution ensemble to simulations of the same model version with higher56

horizontal resolution. In this paper, we describe the new ensemble and demonstrate with57

novel application examples how to use its power. For instance, the new ensemble allows us to58

show that recently observed heatwaves are projected to occur every year at the end of the 21st
59

century if anthropogenic carbon emissions remain high, that recently observed precipitation60

extremes are captured only by simulations with higher horizontal resolution than that of61

MPI-GE CMIP6, and that the storminess in many ocean basins is projected to decrease.62

Further, the ensemble is ideal for estimates of crossing probabilities of Paris Agreement63

global warming limits, and is sufficiently large to be used to infill missing observations of64

surface temperature with artificial intelligence.65

1 Introduction66

Single-model initial-condition large ensembles (SMILEs) have become increasingly impor-67

tant to estimate the variability intrinsic to the climate system. A growing number of SMILEs68

are now available, reasonably sampling both model uncertainty and internal variability due69

to their ensemble size. SMILEs enabled substantial progress in understanding the Earth70

system. For instance, SMILEs were used to separate forced signals from internal variability71

to unprecedented precision (Maher et al., 2019), to quantify transient changes in the magni-72

tude of climate variability (Olonscheck et al., 2021), and to evaluate how well climate models73
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capture the variability and forced changes in the historical observational record (Suarez-74

Gutierrez et al., 2021). SMILEs are also used to identify systematic differences between75

simulated and observed patterns of sea-surface temperature and sea-level pressure change76

that are very unlikely to occur due to internal variability (Olonscheck et al., 2020; Wills77

et al., 2022). Furthermore, recent developments in compound event research highlight the78

importance of sufficiently sampling internal variability to robustly capture tail-risks in mul-79

tivariate extremes, which requires even larger ensemble sizes than conventional univariate80

extremes (Bevacqua et al., 2023). The availability of SMILEs from multiple models further81

allows us to better quantify and differentiate sources of uncertainty in climate projections,82

especially uncertainties arising from internal variability and those from model differences83

(Deser et al., 2020; Lehner et al., 2020). These recent major advances in better understand-84

ing and quantifying climate variability and change show that SMILEs are increasingly useful85

tools for climate science.86

The Max Planck Institute for Meteorology was one of the first modelling centres that87

produced a SMILE: the Max Planck Institute Grand Ensemble (MPI-GE, Maher et al.88

(2019)), which is still the largest SMILE available. MPI-GE – from here on called MPI-GE89

CMIP5 – is extremely successful and a powerful tool, but it is limited in various aspects:90

MPI-GE CMIP5 provides monthly model output with some daily output added later for91

one scenario only (e.g., Loughran et al., 2021; Raymond et al., 2022), it is run with CMIP592

forcing, and it provides three emission scenarios only. These limitations largely prevent the93

analysis of climate extremes across different emission scenarios because of the lack of high-94

frequency output, complicate direct comparisons of MPI-GE CMIP5 with SMILEs run with95

CMIP6 forcing, and restrict its usability for highly policy-relevant science. MPI-GE CMIP696

goes beyond these limitations by specifically enabling (1) the analysis of climate extremes,97

(2) comparisons to model versions with higher horizontal resolution, (3) comparisons to98

other SMILEs with CMIP6 forcing, and (4) investigation of low-emission scenarios with99

high policy relevance.100

Several SMILEs with CMIP6 forcing have been recently run by a number of modelling101

centres, including ensembles with high-frequency model output. Next to MPI-GE CMIP6,102

currently available SMILEs with CMIP6 forcing and at least 30 realisations for both the103

historical and future period are ACCESS-ESM1.5 (Ziehn et al., 2020), CanESM5 (Swart et104

al., 2019), FGOALS (Lin et al., 2022), LENS2 (Rodgers et al., 2021), SMHI-LENS (Wyser105

et al., 2021), SPEAR-MED (Delworth et al., 2020), and MIROC6 (Tatebe et al., 2019).106

In comparison to the other CMIP6 SMILEs, MPI-GE CMIP6 provides the most extensive107

high-frequency output for the historical period and five different emission scenarios (Table108

1). This includes the two highly policy-relevant scenarios SSP1-1.9 and SSP1-2.6 that are109

both otherwise only provided by CanESM5. In contrast to other SMILEs, MPI-GE CMIP6110

has a climate sensitivity of 2.8◦C which is close to the best estimate of 3◦C of the Sixth As-111

sessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6) (Forster112

et al., 2021). Furthermore, its predecessor MPI-GE CMIP5, based on a closely comparable113

model version, has shown to be one of the models that best represents the global and regional114

internal variability and forced response in annual observed temperatures (Suarez-Gutierrez115

et al., 2021) and precipitation (Wood et al., 2021). This good agreement with observa-116

tions combined with the amount of high-frequency output for the full range of emission117

scenarios makes MPI-GE CMIP6 ideally suited for investigating future probabilities and118

magnitudes of climate extremes. The suitability of MPI-GE CMIP6 for studies on climate119

extremes is further enhanced by the possibility to compare the low-resolution ensemble to120

high-resolution ensembles or single simulations of the same model version that were run as121

part of the High Resolution Model Intercomparison Project (HighResMIP, Haarsma et al.122

(2016), compare Table 2). This unique combination of strengths makes MPI-GE CMIP6 a123

useful contribution to the CMIP6 multi-model ensemble and a powerful tool to investigate124

high-frequency climate variability and highly policy-relevant science questions.125
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Table 1: Characteristics of MPI-GE CMIP6 and other SMILEs with CMIP6 forcing and
at least 30 realisations

SMILE
name

Model
version

Horizontal
resolution

High-frequency
output

Realisa-
tions

Time
period

Scenarios ECS

MPI-GE
CMIP6

MPI-
ESM1.2-

LR

1.8◦atm.,
1.5◦ocean

daily for all para-
meters, 3-hr, 6-hr
for some (see

Tables 2 and S1)

30 1850-
2100

SSP1-1.9,
1-2.6, 2-4.5,
3-7.0, 5-8.5

2.80◦C

ACCESS-
ESM1.5

ACCESS-
ESM1.5

1.88x1.25◦atm.;
1.0◦ocean

daily for many
atm. parameters

40 1850-
2100

SSP1-2.6,
2-4.5, 3-7.0,

5-8.5

3.87◦C

CanESM5 CanESM5 2.8◦atm.,
1.0◦ocean

daily for some
atm. parameters

50 1850-
2100

SSP1-1.9,
1-2.6, 2-4.5,
3-7.0, 5-8.5

5.62◦C

FGOALS
Super-large
Ensemble

CAS
FGOALS-

g3

2.0◦atm.,
1.0◦ocean

daily for many
atm. parameters
+ tos, omldamax

110 1850-
2100

SSP5-8.5 2.80◦C

LENS2 CESM2 1.0◦atm.,
1.0◦ocean

daily for all
parameters, 3-hr,
6-hr for some

100 1850-
2100

SSP3-7.0 5.16◦C

SMHI-
LENS

EC-
Earth3.3.1

1.8◦atm.;
1.0◦ocean

daily for many
atm. parameters

50 1970-
2100

SSP1-1.9,
3-3.4, 5-3.4
-OS, 5-8.5

4.31◦C

SPEAR-
MED

GFDL
AM4-LM4

0.5◦atm.,
1.0◦ (tropical
refinement to
0.3◦) ocean

daily for tas,
tasmin, tasmax,
pr, slp, uas, vas

30 1921-
2100

SSP5-8.5 1.78◦C

MIROC6 MIROC6 1.4◦atm.,
1.0◦ocean

3-hr and daily for
ta, tas, pr

50 1850-
2100

SSP1-2.6,
2-4.5, 5-8.5

2.61◦C

In this paper we present the new Max Planck Institute Grand Ensemble (MPI-GE126

CMIP6), and demonstrate its power beyond its predecessor ensemble MPI-GE CMIP5127

(Maher et al., 2019) with six application examples. In section 2, MPI-GE CMIP6 is pre-128

sented, evaluated with observations and reanalyses, and compared to MPI-GE CMIP5. In129

section 3, the power of MPI-GE CMIP6 is demonstrated with six application examples that130

specifically use the high-frequency model output for an improved understanding of climate131

extremes, the low-end emission scenarios for research on Paris Agreement global warming132

limits, and the medium ensemble size for an efficient combination of SMILEs with artificial133

intelligence. Section 4 summarises and concludes the paper.134

2 MPI-GE CMIP6135

2.1 Model description136

MPI-GE CMIP6 is a 30-member ensemble simulated with the Max Planck Institute Earth137

System Model version 1.2 (MPI-ESM1.2, Mauritsen et al. (2019)), in the low resolution (LR)138

setup. In comparison to the MPI-GE CMIP5 simulations described in Maher et al. (2019),139

Mauritsen et al. (2019) summarises the updates that were introduced to MPI-ESM1.2, most140

importantly new radiation and aerosol parameterisations, and a nitrogen cycle for land141

biogeochemistry. Further, a major difference arises from the update of the external forcing142

from CMIP5 (Taylor et al., 2012) to CMIP6 (Eyring et al., 2016).143
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Table 2: Available simulations of MPI-ESM1.2 with different horizontal resolution. The
MPI-ESM1.2-HR and -XR simulations were run as part of HighResMIP.

Model version Horizontal
resolution

Realisa-
tions

Time
period

Scenarios

MPI-ESM1.2-LR T63, 1.8◦atm.;
GR15, 1.5◦ocean

30 1850-2100 SSP1-1.9, 1-2.6,
2-4.5, 3-7.0, 5-8.5

MPI-ESM1.2-HR T127, 1.0◦atm.;
TP04, 0.4◦ocean

10 (2) 1850-2100 SSP3-7.0 (SSP1-2.6,
2-4.5, 5-8.5)

MPI-ESM1.2-XR T255, 0.5◦atm.;
TP04, 0.4◦ocean

1 1950-2050 SSP5-8.5

MPI-GE CMIP6 is run with MPI-ESM version 1.2.01p7, with the atmosphere com-144

ponent ECHAM6 (Stevens et al. 2013, echam-6.3.05p2), which is directly coupled to the145

land component JSBACH (Reick et al. 2013, jsbach-3.20p1), and the ocean and sea-ice146

component MPIOM (Jungclaus et al. 2013, mpiom-1.6.3p4). MPIOM includes the ocean147

biogeochemistry module HAMOCC (Ilyina et al., 2013). The atmosphere/land and ocean148

components are coupled once a day by OASIS-MCT (Craig et al. (2017), oasis3mct-2.0).149

In MPI-ESM1.2-LR the atmosphere is resolved with spectral resolution T63 (equivalent to150

approx. 1.8° grid resolution) and 47 vertical levels, the ocean is resolved with a GR15 grid,151

nominal resolution 1.5°, at 40 vertical levels.152

All simulations follow the CMIP6 protocol (Eyring et al., 2016) in terms of initialisation153

and historical and future external forcing (i.e. atmospheric composition, solar cycle, volcanic154

eruptions, land use). The 30-member ensemble of historical simulations covers the time155

period 1850-2014 and each member is initialised from a different state, approximately 25156

years apart, of a quasi-stationary one-member 1000-year long preindustrial simulation. This157

macro initialisation from the preindustrial control state samples the full phase space of both158

the ocean and atmosphere states (Marotzke, 2019). Five scenario simulations (SSP1-1.9,159

SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, 30 realisations each) cover the time period 2015-160

2100, and in each scenario the realisations are directly initialised from their corresponding161

realisations of the historical ensemble.162

2.2 Availability of high-frequency model output163

In addition to standard CMIP6 monthly mean output, daily mean 3D fields of the state164

of atmosphere and ocean as well as selected daily mean 2D fields, i.e. for sea ice and land165

surface, are available for all simulations (Table S1 for details). Additionally, a number166

of atmospheric and land surface parameters are available on the 3-hourly time scale as167

listed in Table 3. Standard ocean biogeochemistry output from HAMMOC, 3D and 2D, is168

available on a monthly mean basis, with additional daily means for selected surface 2D or169

integrated 2D fields (see Table S1). Model output can be accessed via DKRZ’s ESGF server170

at https://esgf-data.dkrz.de/search/cmip6-dkrz/.171

2.3 Model evaluation and comparison to MPI-GE CMIP5172

MPI-GE CMIP6 performs well in representing key climate quantities as derived from ob-173

servations and reanalyses (Figure 1). The simulated range of global mean near-surface air174

temperature (GSAT) anomaly captures the interannual variability and the warming rate of175

HadCRUT5 well (Morice et al. (2021), Figure 1a). The projected ensemble mean GSAT176

warming at the end of the 21st century relative to the 1985-2014 reference period ranges177

from 0.4K in SSP1-1.9 to 3.7K in SSP5-8.5.178
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Table 3: Parameters with 3-hourly and 6-hourly output on ESGF available for all 30 reali-
sations. The parameters with daily output are listed in Table S1. A full list of parameters
subdivided for members r1-r10 and r11-r30 is given in Tables S2-S4.

name parameter long name unit level
3-hourly atmosphere / land

mrro Total Runoff kg m-2 s-1 1
psl Sea Level Pressure Pa 1

sfcWind Near-Surface Wind Speed m s-1 1
tas Near-Surface Air Temperature K 1
uas Eastward Near-Surface Wind m s-1 1
vas Northward Near-Surface Wind m s-1 1

6-hourly atmosphere / land
hurs Near-Surface Relative Humidity % 1
hus Specific Humidity 1 47
huss Near-Surface Specific Humidity 1 1
mrsol Total Water Content of Soil Layer kg m-2 5
mrsos Moisture in Upper Portion of Soil Column kg m-2 1
pr Precipitation kg m-2 s-1 1
ps Surface Air Pressure Pa 1
psl Sea Level Pressure Pa 1
ta Air Temperature K 47
tas Near-Surface Air Temperature K 1
tsl Temperature of Soil K 1
ua Eastward Wind m s-1 47
uas Eastward Near-Surface Wind m s-1 1
va Northward Wind m s-1 47
vas Northward Near-Surface Wind m s-1 1
wap Omega (=dp/dt) Pa s-1 4
zg Geopotential Height m 28

zg500 Geopotential Height at 500hPa m 1

For global mean precipitation, MPI-GE CMIP6 underestimates both the magnitude179

and the interannual variability estimated from the ERA5 reanalysis (Figure 1b), as well180

as that of ERA-Interim (Figure S1). However, when comparing global mean precipitation181

in MPI-GE CMIP6 to the observational product of the Global Precipitation Climatology182

Project (GPCP, Adler et al. (2018)), we find that MPI-GE CMIP6 overestimates the ob-183

served global mean precipitation, but still shows too little interannual variability (Figure184

S1). The different estimates from observational and reanalyses products confirm previ-185

ous findings that global mean precipitation products have large uncertainty of up to 40%186

(Bosilovich et al., 2016; Bock et al., 2020). Thus, MPI-GE CMIP6 is well within the range187

of observational uncertainty, but underestimates interannual variability. For the Septem-188

ber Northern Hemisphere sea-ice area, the simulated range captures the observed evolution189

as derived from the sea-ice index (Fetterer et al. (2017), Figure 1c). September Northern190

Hemisphere sea-ice area is projected to shrink below the 1 million square kilometre threshold191

in the second half of the 21st century in SSP2-4.5, SSP3-7.0 and SSP5-8.5, but remains in192

both SSP1-1.9 and SSP1-2.6 until the end of the 21st century, similar to previous findings193

on sea-ice decline in CMIP6 (Notz & Community, 2020; Lee et al., 2021). The simulated194

range of the Atlantic meridional overturning circulation (AMOC) at 26◦ N is similar to the195

observed strength and interannual variability of the RAPID observations (Frajka-Williams196

et al. (2021), Figure 1d). However, the observations suggest that MPI-GE CMIP6 slightly197

overestimates the AMOC strength. The simulated range of the globally integrated CO2198

flux into the ocean and the net CO2 flux into the land agrees well with the magnitude as199
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reconstructed in the Global Carbon Project (Friedlingstein et al. (2022)), with simulated200

estimates of the globally integrated net CO2 flux into the land exhibiting larger deviations201

from the mean state than those observed (Figure 1e-f). The evaluation of MPI-GE CMIP6202

with observations and reanalyses shows that the ensemble realistically simulates both the203

long-term evolution and – except for precipitation – also the interannual variability of key204

climate quantities.205

We further compare MPI-GE CMIP6 to MPI-GE CMIP5 with respect to the response206

of the key climate quantities to the various emission scenarios at the end of the 21st century.207

We find that MPI-GE CMIP6 shows slightly higher global-mean warming by the end of the208

21st century than MPI-GE CMIP5 especially for the respective highest-emission scenarios209

(Figure 1a). In line with this, September Northern Hemisphere sea-ice area is projected to210

decline more in the respective SSP than RCP scenarios in the ensemble mean (Figure 1c).211

Similarly, the ensemble-mean decline in AMOC is substantially stronger in all SSP scenarios212

than in their respective RCP scenarios (Figure 1d). The globally integrated CO2 flux into213

the ocean is larger in the mid and high-end SSP than in the respective RCP scenarios214

(Figure 1e). The projected change in net CO2 flux into the land is largely uncertain,215

but shows a similar response at the end of the 21st century, except for SSP5-8.5 which216

shows a substantially stronger ensemble-mean increase than RCP8.5 (Figure 1f). In contrast217

to the stronger changes in MPI-GE CMIP6 compared to MPI-GE CMIP5, global mean218

precipitation is projected to increase less in the respective SSP than RCP scenarios (Figure219

1b). From comparing the global mean temperature response of both model versions to a220

1%CO2 increase per year, i.e. the same forcing, we find a very similar warming rate and221

variability (Figure S2). This implies that the stronger changes in most quantities can be222

largely explained by the slightly stronger radiative forcing in the SSP compared to RCP223

scenarios, as has been shown for other models too (Wyser et al., 2020; Fyfe et al., 2021).224

We conclude that differences between MPI-GE CMIP6 and MPI-GE CMIP5 largely stem225

from the updated forcing in CMIP6 compared to CMIP5 rather than from differences in the226

model formulation.227

3 Power of MPI-GE CMIP6 beyond MPI-GE CMIP5228

MPI-GE CMIP5 (Maher et al., 2019) is extremely successful and a powerful tool to quantify229

climate variability and its change under global warming. However, the applicability of MPI-230

GE CMIP6 goes beyond MPI-GE CMIP5 in at least four critical aspects:231

First, MPI-GE CMIP5 is run with CMIP5 forcing which limits direct comparisons to232

the large number of SMILEs that were run with CMIP6 forcing. MPI-GE CMIP6 provides233

the opportunity to compare MPI-ESM with other SMILEs run with CMIP6 forcing, and to234

investigate the impact of different forcings between MPI-GE CMIP5 and MPI-GE CMIP6.235

Second, MPI-GE CMIP5 does not provide high-frequency model output across different236

emission scenarios, but only monthly mean output in most cases which strongly limits the237

usefulness for investigating short-lived climate extremes and their drivers (Suarez-Gutierrez238

et al., 2020a). In contrast, MPI-GE CMIP6 provides high-frequency output with 3-hourly239

and 6-hourly output for some variables (see Table 3) and daily output for all variables (see240

Table S1). This high-frequency output comes at the expense of a smaller ensemble size of241

30 realisations instead of 100 realisations, but makes MPI-GE CMIP6 specifically suited for242

the analysis of climate extremes.243

Third, MPI-GE CMIP6 can be compared to higher-resolution simulations of the same244

model version (see Table 2), for instance 10 realisations of MPI-ESM1.2-HR (1.0◦ atm.,245

0.4◦ ocean, Müller et al. (2018)) or a single realisation of MPI-ESM1.2-XR which provides246

also higher horizontal resolution in the atmosphere (0.5◦ atm., 0.4◦ ocean, Gutjahr et al.247

(2019)). This allows for the combination of high-frequency output in relatively low horizontal248

–7–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

resolution of MPI-GE CMIP6 with high-resolution simulations, which is not possible with249

MPI-GE CMIP5.250

Fourth, MPI-GE CMIP6 provides five instead of three emission scenarios. The five251

scenarios with 30 realisations each span the full range of IPCC scenarios from the low-252

emission scenario SSP1-1.9 to the high-emission scenario SSP5-8.5. With the scenarios253

SSP1-1.9 and SSP1-2.6, MPI-GE CMIP6 provides ensembles of two scenarios that were254

designed for projections of the Paris Agreement global warming limits of a 1.5◦C and 2◦C255

warmer world by the end of this century. This makes MPI-GE CMIP6 one of the few models256

that provide large ensembles for the two scenarios aligned with the Paris Agreement pledges,257

which allows for timely and highly policy-relevant science.258

In the following, we exemplify the power of MPI-GE CMIP6 with six application ex-259

amples. These examples include the analysis of heat, precipitation, wind, and ocean acidity260

extremes (Section 3.1), the probability of crossing Paris Agreement global warming limits261

(Section 3.2), and the potential of combining SMILEs with artificial intelligence methods262

for infilling observations (Section 3.3).263

3.1 Analysing climate extremes264

Climate extremes are among the most devastating and costly events, and their frequency and265

intensity is projected to increase with global warming (Seneviratne et al., 2021). However,266

climate models struggle to represent observed extremes because of large internal climate267

variability and their limited horizontal and temporal resolution (e.g., Slingo et al., 2022).268

Given the ensemble size and high-frequency output of MPI-GE CMIP6, we first investigate269

projected changes in heat and precipitation extremes and evaluate whether the new ensem-270

ble is capable of realistically simulating recently observed heat and precipitation extremes271

(Section 3.1.1). We then test whether observed precipitation extremes are better captured272

by model versions with higher horizontal resolution (Section 3.1.2). Finally, we investigate273

projected changes in marine heatwaves and ocean acidity extremes (Section 3.1.3) as well as274

in wind extremes (Section 3.1.4). For these analyses we choose a fixed baseline climatology275

over the time period 1985-2014.276

3.1.1 Continental heat and precipitation extremes277

We first evaluate whether MPI-GE CMIP6 is capable of simulating heat and precipitation278

extremes that were recently observed (Figure 2). We focus on the Siberian heatwave in279

spring 2020 (Ciavarella et al., 2021), the Pacific North American heatwave in summer 2021280

(Philip et al., 2022), the extreme precipitation event in western Europe in summer 2021281

(Ibebuchi, 2022; Tuel et al., 2022), and the extreme precipitation event in northern Italy in282

autumn 2020 (Davolio et al., 2023). To do so, we use daily surface maximum temperature283

and daily precipitation from MPI-GE CMIP6, and use ERA5 (Hersbach et al., 2020) and284

E-OBS (Klein Tank et al., 2002) as observational reference.285

For continental heat extremes, we use the metric heat excess, which takes into account286

both heatwave intensity and persistence into one single metric (Perkins-Kirkpatrick & Lewis,287

2020). To calculate heat excess, we identify heatwaves on a grid-point level when daily288

maximum near-surface air temperature exceeds the 90th percentile based on a centred 15-289

day running window of the historical period 1985-2014 for at least three consecutive days.290

The cumulative heat is then calculated by seasonal integration of the exceeding heat above291

the threshold during heatwave days. In addition, we weight the cumulative heat of each292

grid point by the cosine of the latitude and spatially integrate it. For the 2020 Siberian293

heatwave we integrate the cumulative heat over boreal spring (MAM) and 40◦ N-80◦ N and294

60◦ E-130◦ E. For the 2021 Pacific North American heatwave we integrate the cumulative295

heat over boreal summer (JJA) and 25◦ N-65◦ N and 90◦ W-130◦ W (see maps in Figure296

2a,b). We scale the cumulative heat with respect to climatology (1985-2014). We compute297

–8–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

the return periods for historical climate (1850-1879), the current climate (1992-2021) and298

the five SSP scenarios (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-5.8; 2071-2100), and299

compare them to the two recent heatwaves in ERA5 (Figure 2a,b). The cumulative heat300

estimated by ERA5 in spring 2020 and summer 2021 integrated over the respective domains301

is 4.3 and 4.5.302

These two record-shattering heat extremes led to devastating impacts. The Siberian303

heatwave was linked to large wildfires that causes a release of 56 megatons of CO2 in June304

2020, and to the melting of large permafrost areas which led to widespread infrastructure305

and environmental damages (Ciavarella et al., 2021). The Pacific North American heatwave306

also led to hundreds of attributable deaths, marine life mass-mortality events, reduced crop307

and fruit yields, river flooding from rapid snow and glacier melt, and a substantial increase308

in wildfires (White et al., 2023). In line with previous attribution studies (Ciavarella et309

al., 2021; Philip et al., 2022), we find that both heatwaves were virtually impossible in310

the preindustrial MPI-GE CMIP6 world, and have over 100-year return periods in current311

climate conditions. However, under the moderate emission scenario SSP2-4.5, heat excess312

levels as high as those during the 2020 Siberian heatwave could occur every four years313

(Figure 2a), and more than every other year for the 2021 Pacific North American heatwave314

(Figure 2b). In SSP5-8.5, MPI-GE CMIP6 projections show that a comparable 1-in-100-315

years event by the end of the 21st century reaches heat excess levels 5 to 8 times higher316

than the 2020 and 2021 levels, respectively. Only in the low emission scenarios SSP1-1.9 or317

SSP1-2.6 return periods below 10 years for such heat extremes can be avoided.318

For precipitation extremes, we focus on two recently observed record-shattering events:319

the extreme precipitation event in western Europe on the 14th of July 2021, and the one320

in northern Italy on 2nd of October 2020. The extreme precipitation event in western321

Europe caused unprecedented flooding of the rivers Ahr and Erft. A rapid attribution322

study shows that observations over a larger region and different regional climate models323

give high confidence that human-induced climate change has increased the likelihood and324

intensity of events like the western European precipitation extreme (Kreienkamp et al.,325

2021; Ibebuchi, 2022), in line with the intensification of observed extreme precipitation in326

central Europe during the last century related to Northern Hemispheric warming (Zeder &327

Fischer, 2020). When integrated over 49◦ N-52◦ N and 5◦ E-8◦ E, the daily precipitation as328

observed by the E-OBS data set (Klein Tank et al., 2002) on 14th of July 2021 is 47.7 mm329

which represents the maximum daily precipitation in summer in the 72-year long observed330

record (see map in Figure 2c). The extreme precipitation event in northern Italy caused331

devastating large-scale flooding and represents an unprecedented strong event in a region332

that shows a high frequency of precipitation extremes (Davolio et al., 2023; Grazzini et333

al., 2021). The event was caused by a superposition of an upper-level trough over the334

western Mediterranean basin and moisture transport from the tropics by an atmospheric335

river (Davolio et al., 2023). When integrated over 43◦ N-47◦ N and 6◦ E-10◦ E, the daily336

precipitation observed by E-OBS on 2nd of October 2020 is 72.9 mm.337

We use daily precipitation from MPI-GE CMIP6 and E-OBS, and compare the ob-338

served extreme precipitation events to the seasonal maximum daily precipitation simulated339

for the historical climate (1850-1879), the current climate (1992-2021), and the five SSP340

scenarios for the period 2071-2100. We find that MPI-GE CMIP6 does not simulate a sum-341

mer and autumn daily precipitation event as intense as observed, not even until the end of342

the 21st century (Figure 2c). This implies that in any of the climate conditions simulated343

by MPI-GE CMIP6 an event as intense as the ones observed in 2020 and 2021 is virtually344

impossible, with return periods exceeding 900 years for all scenarios. We further find that345

simulated summer and autumn maximum daily precipitation is larger for higher emission346

scenarios than for lower scenarios in 2071-2100 and for the historical and current climate,347

in line with the fact that warmer air can hold more water leading to increased precipitation348

(e.g., Pendergrass et al., 2017; Myhre et al., 2019). However, the spread from the emis-349

sion scenarios largely overlaps, suggesting that the uncertainty due to internal variability350
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dominates scenario uncertainty and thus events typical for higher emission scenarios could351

also occur in a lower warming world due to internal variability. The results show that pre-352

cipitation extremes as intense as the ones observed are not captured by MPI-GE CMIP6353

possibly because the horizontal resolution of MPI-GE CMIP6 is too low to simulate real-354

world mechanisms leading to such small-scale precipitation extremes (Slingo et al., 2022).355

Given the increased probability of extremes that are unprecedented in the observed record356

and the often substantial impacts (Fischer et al., 2021), a realistic representation of such357

extreme events by climate models is highly needed.358

3.1.2 Resolution dependence of representing precipitation extremes359

Higher horizontal resolution of climate models improves the simulation of extreme precipita-360

tion because higher-resolution models reflect smaller spatial scales of extreme precipitation361

and key processes such as deep convection do not need to be parameterised (Wehner et362

al., 2014; Iles et al., 2020; Kendon et al., 2021; Kahraman et al., 2021). To test whether363

the inability of MPI-GE CMIP6 to represent the two observed precipitation extremes is364

caused by the model’s coarse horizontal resolution, we investigate whether these events are365

better captured in higher-resolution versions of the same model, namely 10 realisations of366

MPI-ESM1.2-HR (Müller et al., 2018) with 1.0◦ atmospheric horizontal resolution, and a367

single realisation of MPI-ESM1.2-XR (Gutjahr et al., 2019) with 0.5◦ atmospheric horizontal368

resolution (see Table 2).369

For the western European event, we find that MPI-ESM1.2-HR and MPI-ESM1.2-XR370

show higher agreement with the observed distribution of summer maximum daily precipi-371

tation over the period 1950-2021 than MPI-ESM1.2-LR, the low-resolution model version372

used for MPI-GE CMIP6 (Figure 3a,b). Strikingly, the single realisation of MPI-ESM1.2-XR373

simulates a single daily precipitation as intense as the one observed with a more widespread374

but still similar pattern (compare Figure S3), while MPI-ESM1.2-LR and MPI-ESM1.2-HR375

do not simulate such high daily precipitation amounts. Although the horizontal resolution376

of MPI-ESM1.2-XR is still not sufficient to resolve important processes such as moist con-377

vection (Hewitt et al., 2022; Slingo et al., 2022), our finding suggests that its resolution is378

sufficient to represent the recently observed regional precipitation extreme. Alternatively,379

MPI-ESM1.2-XR might overestimate the real-world precipitation intensity, which could also380

explain why the single simulation captures an event as intense as observed.381

For autumn precipitation in northern Italy, we find that MPI-ESM1.2-HR much bet-382

ter represents the observed frequency of autumn maximum daily precipitation than MPI-383

ESM1.2-LR (Figure 3c,d). MPI-ESM1.2-XR shows generally too high autumn maximum384

precipitation, simulating precipitation amounts as large as observed with higher frequency.385

This is in line with previous findings that in the Mediterranean coastal region autumn pre-386

cipitation intensity is larger at convection-permitting resolution than at coarse resolution387

because realistically representing deep convection is central for such events (Luu et al.,388

2020; Pichelli et al., 2021). The comparison between the western European and northern389

Italian events suggests that the model is able to simulate larger-scale autumn precipita-390

tion at coarser horizontal resolution than convective summer precipitation (Feldmann et al.,391

2008; Luu et al., 2020; Williams & O’Gorman, 2022). We conclude that while MPI-GE392

CMIP6 fails to simulate the observed precipitation extremes in western Europe and north-393

ern Italy, high-resolution simulations of the same model version are able to capture these394

extreme events, highlighting the potential for investigating regional precipitation extremes395

from comparing high-frequency model output of MPI-GE CMIP6 with simulations of higher396

horizontal resolution.397

3.1.3 Marine heatwaves and ocean acidity extremes398

We analyse daily mean sea surface temperature (SST) and hydrogen ion concentration ([H+])399

to identify marine heatwaves and ocean acidity extremes between 1850 and 2100 (Figure 4).400
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We use a percentile-based threshold and the reference period 1985-2014 for both extremes401

such that the probability of the occurrence of marine heatwaves and ocean acidity extremes402

in a year is the same. SST and [H+] are defined as extreme, if they exceed the 99th percentile403

for five consecutive days (Hobday et al., 2016; Burger et al., 2020). Although applying a404

duration criterion for ocean acidity extremes is not common, here it ensures comparability405

with marine heatwaves. The percentiles are calculated as the 20-member ensemble mean406

(only members 11 to 30 contain daily mean output for [H+]) over the 99th multiyear daily407

running percentile with a 5-day window length at every grid cell between 1985 and 2014.408

Finally, we calculate the number of extreme days per year to characterise changes of both409

extremes with time and across scenarios.410

Before the reference period 1985-2014, almost no marine heatwaves are detected. Be-411

tween 1985 and 2014, less than ten days per year are extreme with marine heatwaves being412

more frequent in the subpolar North Atlantic and the Southern Ocean (Figure 4a). By413

2030, between five and 70 days per year are extreme with substantial overlap among dif-414

ferent scenarios. By 2100, the SSP5-8.5 scenario projects the most marine heatwaves, with415

the entire ocean being in almost a constant state of extreme; while in the SSP1-1.9 scenario416

the number of extreme days per year does not exceed 15 by 2100 (Figure 4b, Figure S4).417

There is a much larger difference between the SSP1-1.9 and SSP5-8.5 scenarios in terms of418

global marine heatwave days at the end of the 21st century when compared to the difference419

in terms of global mean temperature between these scenarios (compare Figures 1a and 4b),420

indicating an amplified impact of global warming on marine heatwaves.421

Over the historical period, globally, no ocean acidity extreme is detectable prior to the422

reference period. Within the reference period 1985-2014 (Figure 4e), the number of days423

with extreme [H+] increases to approximately five days per year in 2010 and continues to424

increase substantially to nearly 40 days per year in 2014. Locally, within the reference period,425

only very weak spatial gradients in the ensemble-mean number of ocean acidity extremes426

exist (Figure 4e). Until 2030, the entire ocean area moves rapidly to a near-permanent427

extreme state with more than 300 extreme days per year for all five future scenarios. By428

2100, almost all days of a year show ocean acidity extremes in the SSP2-4.5, SSP3-7.0, and429

SSP5-8.5 scenarios, while in the SSP1-2.6 scenario, the number of ocean acidity extreme430

days is projected to decline slightly by the end of the 21st century (Figure 4f, Figure S4).431

Within the SSP1-1.9 scenario, ocean acidity extremes are projected to peak at approximately432

330 days per year between 2025-2040 and decline thereafter to 140 days per year by 2100.433

In this scenario, ocean acidity extremes occur less frequently in the Arctic Ocean and in434

the Southern Ocean compared to the Tropics between 2071-2100 (Figure 4g,h). There is a435

striking difference in the global occurrence of ocean acidity extremes between SSP1-1.9 and436

SSP1-2.6 in the second half of the 21st century (Figure 4f), despite only small differences437

in terms of global mean temperature in both scenarios (Figure 1a).438

The CO2 system in seawater and the mixing ratio of atmospheric CO2 are tightly439

related, which leads to the smooth response in the mean surface ocean [H+]. Sea surface440

temperature on the other hand is more variable across space and time than [H+], therefore441

the number of marine heatwaves varies more than the number of ocean acidity extremes442

across ensemble members. The number of detected extremes is sensitive to the definition,443

affected by the choice of threshold and reference period (Gruber et al., 2021). While using the444

same definition for both marine heatwaves and ocean acidity extremes is helpful to illustrate445

the different internal variability structure of the underlying parameters, understanding the446

governing processes may require a different extreme event definition that would ultimately447

lead to a different number of detected events.448

3.1.4 Wind extremes449

Future changes in wind extremes are among the most uncertain impacts of anthropogenic450

climate change (Seneviratne et al., 2021). We use the 3-hourly output of MPI-GE CMIP6451
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to project global changes in wind extremes and their dependence on the emission scenario452

(Figure 5a and Figure S5). To detect projected global changes in wind speed, we first derive453

95th annual percentiles of near-surface wind speeds for each grid point from the entire 30-454

member ensemble and then calculate the absolute difference between the 2071-2100 mean455

and the 1985-2014 reference mean. Here, we focus on SSP5-8.5 because the projected456

changes are most distinct: Over the ocean, we find a latitudinal contrasting pattern with457

increasing wind extremes over high-latitude oceans and decreasing wind extremes in most458

mid- and low-latitude ocean basins. Over land, increases in wind extremes are projected459

for South America, Western and Eastern Africa and parts of the Northern mid- to high-460

latitudes, whereas substantial decreases are projected for Alaska, Siberia, Central Asia and461

the Western Sahara. Weaker changes but with the same pattern are found for lower-emission462

scenarios (Figure S5).463

We further analyse projected changes in storm activity in two regions that are known
for the frequent passage of mature hurricanes and typhoons with often devastating impacts
when they make landfall: north-west of Bermuda in the North Atlantic (Figure 5b) and
south-east of Japan in the North Pacific (Figure 5c). For both regions, we select three grid
points that form a triangle spanning the area of interest (Table S5). We then use 3-hourly
mean sea-level pressure data from MPI-GE CMIP6 at the selected grid points and derive
geostrophic winds vg from the horizontal mean sea-level pressure gradients ∂p/∂x and ∂p/∂y
according to Krieger et al. (2020) via

vg = (v2x + v2y)
1/2
, (1)

with

vx = − 1

ρf

∂p

∂y
and vy =

1

ρf

∂p

∂x
, (2)

where ρ is the density of air (set at 1.25 kg m−3) and f the average of the Coriolis parameter464

at the three corners of the triangle. We chose the grid points so that the resulting triangle465

is sufficiently close to an equilateral triangle. This requirement is necessary to avoid a large466

error propagation of pressure uncertainties, which would cause a shift of the wind direction467

towards the main axis of the triangle (Krieger et al., 2020). We then define storm activity as468

the standardised annual 95th percentiles of 3-hourly geostrophic wind speeds. We therefore469

first calculate annual 95th percentiles of geostrophic winds for each ensemble member. We470

then standardise by subtracting the 1985-2014 ensemble mean from each ensemble member,471

and divide by the 1985-2014 ensemble standard deviation.472

For both north-west of Bermuda and south-east of Japan, we find a decreasing storm473

activity with strongest decreases for high-emission scenarios, while we find no notable change474

in scenario SSP1-1.9 (Figure 5b,c and Figure S5). This agrees with the projected change475

in surface wind speed, where the marine subtropics around 30◦ N show a strong signal of476

decreasing wind speeds in the SSP5-8.5 scenario (Figure 5a).477

We further calculate the ensemble balance to characterise whether changes in the en-478

semble mean are caused by a shift in the majority of the ensemble members or by a few479

strong outliers. To do so, we first apply a moving Gaussian low-pass filter to the storm480

activity time series of each ensemble member. We then define thresholds for high and low481

activity periods at 0.5σ and −0.5σ, and count for how many members the low-pass filtered482

curve exceeds these thresholds in a certain year. The difference in the number of high-483

activity and low-activity members is then regarded as the ensemble balance (crosses on the484

secondary y-axis in Figure 5b,c). In the SSP1-1.9 and SSP1-2.6 scenarios, we find that the485

ensemble balance does not significantly deviate from 0 towards the end of the 21st century486

in both focus regions, confirming the rather small projected change in storm activity. In the487

high-emission SSP5-8.5 scenario, the ensemble balance falls to near -30 at the end of the488

21st century, which indicates that nearly all ensemble members agree on a decline in storm489

activity both north-west of Bermuda and south-east of Japan.490
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The proxy for storm activity is based on the hypothetical geostrophic wind and its491

long-term statistics, as proposed originally by Schmidt and von Storch (1993). For high492

latitudes, where the synoptic-scale wind in higher altitudes is close to geostrophic, it has493

been shown that the statistics of the geostrophic wind closely resemble the statistics of the494

near-surface wind (Krueger & von Storch, 2011). In latitudes closer to the equator this495

assumption does not hold, as most of the wind extremes occur in or near tropical cyclones,496

which are not fully in geostrophic balance. The proxy should therefore not be used as a497

single tool to make conclusions about future changes in the intensity or frequency of tropical498

cyclones. However, the decreasing storm activity for mid-latitude hurricanes and typhoons499

is in line with recent findings of a decreasing frequency of tropical cyclones (Chand et al.,500

2022). As the proxy only describes storm activity with one quantity, it cannot distinguish501

between changes in the frequency and changes in the intensity of storms. A change in storm502

activity can thus be interpreted as a change in either number or intensity of cyclones, or a503

combined change thereof. Also, changes connected to smaller-scale features such as fronts504

or convective wind gusts within cyclones cannot be detected by the proxy, as the derived505

geostrophic wind acts as an area mean over the entire triangle.506

Overall, MPI-GE CMIP6 projects increasing wind extremes over high-latitude oceans507

and decreasing wind extremes in most mid- and low-latitude oceans, in line with current508

understanding of observed changes in wind extremes caused by a poleward shift of extra-509

tropical storm tracks over both hemispheres (Seneviratne et al., 2021). We conclude that510

MPI-GE CMIP6 with its 3-hourly model output is a powerful tool to understand changes511

in the frequency and intensity of wind extremes for different emission scenarios.512

3.2 Investigating crossing probabilities of 1.5◦C and 2◦C global warming513

The Paris Agreement in 2015 states the goal to keep global warming well below 2◦C, and to514

pursue efforts to limit global warming to 1.5◦C above preindustrial levels to avoid devastating515

and unmanageable consequences of climate change. MPI-GE CMIP6 is suited to investigate516

the uncertainty in crossing these global warming limits because one can account for internal517

climate variability with ensemble simulations for five different emission scenarios, including518

the scenarios SSP1-1.9 and SSP1-2.6 that project a global warming of 1.5◦C and 2◦C,519

respectively.520

To investigate the crossing probability of 1.5◦C and 2◦C of global warming in MPI-GE521

CMIP6, we use annual mean, global mean near-surface air temperature (GSAT) to compute522

for every year and each of the five scenarios the fraction of realisations (x / 30 realisations)523

that crosses these temperature thresholds in a single year relative to the 1850-1900 reference524

period (Figure 6a,b). We find that in all emission scenarios, there is a non-zero chance of525

observing individual years above 1.5◦C within the next decades, including the SSP1-1.9526

scenario that represents the strongest mitigation efforts. However, this finding does not527

imply that every scenario crosses the Paris agreement 1.5◦C global warming limit because528

whether a temperature threshold will be crossed or not is commonly evaluated for 20-year529

mean temperatures (Lee et al., 2021). To account for this definition, we also compute the530

20-year running mean GSAT time series for each realisation and show for each 20-year531

window the fraction of realisations that crosses 1.5◦C or 2◦C (Figure 6c,d). We find that532

MPI-GE CMIP6 with the SSP1-1.9 scenario is consistent with the 1.5◦C warming limit,533

whereas all other scenarios cross this threshold. We stress that when 1.5◦C are crossed for534

20-year means is still affected by internal variability: for SSP1-2.6, 1.5◦C may be crossed535

around the 20-year mean of the period starting in 2030, but only 10 years later it is virtually536

certain that 1.5◦C is crossed in the 20-year mean of any realisation. Further, the SSP1-1.9537

and SSP1-2.6 scenarios will not cross 2◦C neither in single years nor for 20-year means while538

all other scenarios will cross this threshold between 20-year means starting in 2035 to 2050.539

These estimates are at the upper range of the IPCC AR6 central estimate of crossing the540

1.5◦C threshold which lies in the early 2030s for all scenarios except SSP5-8.5 (Marotzke et541

al., 2022; Lee et al., 2021).542
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We note that the IPCC AR6 uncertainty range includes uncertainties in historical543

warming, climate sensitivity and internal variability (Lee et al., 2021), whereas MPI-GE544

CMIP6 has a fixed climate sensitivity and the uncertainty range is only due to internal545

variability. However, the observed internal variability in GSAT is well simulated by the546

model (Suarez-Gutierrez et al., 2021) and its equilibrium climate sensitivity of 2.8◦C is close547

to the central estimate of the IPCC AR6 assessment of 3◦C. Comparing the central estimates548

of crossing times for 1.5◦C between MPI-GE CMIP6 and the IPCC AR6 assessment shows549

that the MPI-GE CMIP6 estimates are systematically later than in AR6 (Table S6). Most550

notably, SSP1-1.9 does not cross 1.5◦C in the model, the crossing in SSP1-2.6 occurs a decade551

later, and the crossing in all other scenarios about five years later than in IPCC AR6. This552

shows that the MPI-GE CMIP6 estimates are broadly consistent with but slightly more553

conservative than the IPCC AR6 assessment.554

We conclude that with its good representation of internal variability in GSAT and its555

equilibrium climate sensitivity close to the central estimate of the IPCC AR6 assessment,556

MPI-GE CMIP6 offers a unique framework to investigate timing and local impacts of cross-557

ing temperature thresholds such as 1.5◦C.558

3.3 Combining SMILEs and artificial intelligence559

SMILEs and artificial intelligence can be combined powerfully because the multiple reali-560

sations of a same model provide testing, validation and training data sets to infill gaps in561

observational data. We provide one example by using a method that is based on an in-562

painting technique developed by Liu et al. (2018) to repair corrupted images. It makes use563

of a U-Net neural network made of partial convolutional layers and a state-of-the-art loss564

function designed to produce semantically meaningful predictions. As shown in Kadow et565

al. (2020), the method can infill large and irregular regions of missing climate data and is566

able to reconstruct specific climate patterns that are not captured by standard interpolation567

techniques such as the Kriging method (Cowtan & Way, 2014).568

We here test whether the ensemble size of MPI-GE CMIP6 is sufficiently large to be569

used for infilling the HadCRUT5 data set with similar capability than the 100-member MPI-570

GE CMIP5. The models used to infill the HadCRUT5 data set (Dunn et al., 2020) have571

been trained using gridded global historical surface temperature anomalies from three large572

ensembles: 1) MPI-GE CMIP6, containing 30 realisations and spanning the 1850-2014 time573

period; 2) MPI-GE CMIP5, containing 100 realisations and spanning the 1850-2005 time574

period; and 3) a subset of MPI-GE CMIP5 containing the first 30 ensemble members, here575

called MPI-GE CMIP5(30). Before the training, one ensemble member was excluded from576

each ensemble to create three testing data sets. Three validation data sets were created577

from the remaining ensemble members of each data set by pulling out the data every 8578

timesteps for MPI-GE CMIP6 and MPI-GE CMIP5(30), and every 7 timesteps for MPI-GE579

CMIP5. The remaining data were used to create the training data sets which contain 50.242580

samples for MPI-GE CMIP6, 47.502 samples for MPI-GE CMIP5(30) and 162.162 samples581

for MPI-GE CMIP5. For this work, additional features have been implemented to the582

original version of the code (Kadow et al., 2020) to improve the computational performance583

and the quality of the reconstruction. In particular, a custom padding operation accounting584

for the boundary conditions of the global data is now applied before each partial convolution,585

to account for the sphere of the Earth.586

The annual global mean temperature time series reconstructed using the 100 member587

and the 30 member models are very similar, especially when compared to the original Had-588

CRUT5 data (Figure 7). For all three ensembles, we detect an overall warming signal also589

on a regional scale around the globe by comparing the climatologies 2020-1991 and 1920-590

1891 with a century apart (insets in Figure 7 and Figure S6). In particular, the warming591

patterns reconstructed from the three ensembles show a strong century warming signal in592

northern polar regions, where the original HadCRUT5 data set has missing data. Large593
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areas in the Pacific also consistently show a warming between the two climatologies, de-594

spite the fact that the region is affected by strong ENSO variability. The infilled data in595

the sparsely observed Antarctica show a less strong, but more mixed warming signal as596

observed when reconstructed with the different ensembles. From the striking similarity in597

the reconstructed pattern, we conclude that MPI-GE CMIP6 allowed us to train a model598

with equivalent capabilities to MPI-GE CMIP5 but at a lower computational cost.599

4 Summary and Conclusions600

MPI-GE CMIP6 is a new 30-member single-model initial-condition large ensemble which601

power goes beyond its predecessor MPI-GE CMIP5 (Maher et al., 2019) in several aspects602

and allows for novel analyses with broad societal relevance:603

First, MPI-GE CMIP6 provides 3-hourly, 6-hourly and daily model output that is604

together with its ensemble size well suited to investigate present and future changes in605

climate extremes, their drivers, and their changing characteristics across different emission606

scenarios. While several studies used MPI-GE CMIP5 to study present and future changes607

in climate extremes (e.g., Suarez-Gutierrez et al., 2020a, 2020b; Landrum & Holland, 2020),608

the high-frequency output of MPI-GE CMIP6 now allows one to also investigate the drivers609

and causal links of these changes which can be compared across different emission scenarios.610

For instance, we find from daily output that the recently observed Siberian and Pacific611

North American heatwaves will occur every year in 2071-2100 in high-emission scenarios612

but substantially less frequent in the low-emission scenarios. We further find from the613

3-hourly output that the frequency of wind extremes is projected to decrease in tropical614

to mid-latitude oceans in all five emission scenarios. These findings illustrate that MPI-615

GE CMIP6 is specifically suited to investigate climate extremes and can be used to study616

high-impact events.617

Second, MPI-GE CMIP6 provides the opportunity to compare the ensemble to high-618

resolution simulations of the same model version, including a 10-member ensemble of MPI-619

ESM-HR (1.0◦ atmosphere, 0.4◦ ocean), and a single member of MPI-ESM-XR (0.5◦ at-620

mosphere, 0.4◦ ocean). While MPI-GE CMIP6 is not able to represent the unprecedented621

precipitation extreme in western Europe observed on 14th of July 2021 and in northern Italy622

observed on 2nd of October 2020, we find that these events are captured by high-resolution623

simulations of the same model version. This finding illustrates the benefit of comparing low-624

resolution SMILEs with high-frequency output to high-resolution simulations of the same625

model version for investigating regional climate extremes.626

Third, MPI-GE CMIP6 provides historical simulations and the five emission scenarios627

SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 which enable the investigation of628

different climate futures and the quantification of uncertainty from internal variability. We629

find that the frequencies of marine heatwaves and ocean acidity extremes are projected630

to substantially increase in all emissions scenarios, with substantial recovery by 2100 only631

under SSP1-1.9. Moreover, the ensemble simulations of the scenarios SSP1-1.9 and SSP1-2.6632

specifically allow for quantifying irreducible uncertainty when aiming to limit global mean633

warming to 1.5◦C or 2◦C. We find that in MPI-GE CMIP6, even for the lowest emission634

scenario SSP1-1.9, which is consistent with the Paris Agreement pledges in this model, there635

is a non-zero chance to observe individual years above 1.5◦C. With its good representation636

of internal variability in GSAT and its equilibrium climate sensitivity close to the central637

estimate of the AR6 assessment, MPI-GE CMIP6 as a single-model ensemble provides new638

opportunities to quantify uncertainty in when global warming thresholds might be crossed.639

Such analyses on irreducible uncertainty from internal variability are highly relevant for640

investigating transition pathways to carbon-neutral economies to meet the Paris Agreement641

pledges.642
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Fourth, MPI-GE CMIP6 is run with CMIP6 forcing and provides the opportunity to643

compare the ensemble to other SMILEs with CMIP6 forcing. This facilitates comparisons644

to the growing number of SMILEs. From comparing the respective scenarios from MPI-GE645

CMIP6 to the ones from its predecessor MPI-GE CMIP5, we find that the change from646

CMIP5 to CMIP6 forcing causes a slightly stronger climate response, in line with findings647

from other SMILEs (Wyser et al., 2020; Fyfe et al., 2021), primarily caused by the updated648

forcing in CMIP6. From combining MPI-GE CMIP6 with artificial intelligence, we find649

that 30 realisations have equivalent capabilities as the 100-member MPI-GE CMIP5 when650

training a model to infill surface temperature observations.651

Overall, MPI-GE CMIP6 beneficially complements the number of available SMILEs by652

a unique combination of a moderate ensemble size, high-frequency model output, the full653

range of emission scenarios including the lower end, and the availability of high-resolution654

simulations of the same model version. Consequently, MPI-GE CMIP6 allows a better655

understanding of changes in climate variability and extremes, and to quantify related un-656

certainties. This improved quantification will help to better inform society on the likelihood657

of plausible changes in the climate system to occur, including climate extremes.658
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Figure 1: Comparison of key climate quantities of MPI-GE CMIP6 to observa-
tions or reanalyses and MPI-GE CMIP5. Ensemble spread (shading) and ensemble
mean (thick lines) for the historical simulations (grey), and the five emission scenarios
SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. Right hand-side panels show the
projected mean and range in year 2099 for the different scenarios of MPI-GE CMIP6 (30
realisations) and MPI-GE CMIP5 (100 realisations). Shown for a) global mean near-
surface air temperature (GSAT) anomalies (relative to 1985–2014), b) global mean pre-
cipitation, c) Northern Hemisphere sea-ice area in September, d) Atlantic Meridional
Overturning Circulation (AMOC), e) globally integrated CO2 flux into the ocean and
f) globally integrated net CO2 flux into the land. Thick black lines show observations or
reanalyses, specifically in a) HadCRUT5 (Morice et al., 2021), b) ERA5 (Hersbach et al.,
2020), c) Sea-Ice Index (Fetterer et al., 2017), d) RAPID (Frajka-Williams et al., 2021),
e,f) Global Carbon Project (Global Carbon Project, 2021; Friedlingstein et al., 2022).
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Figure 2: Return periods from MPI-GE CMIP6 for recently observed heat and
precipitation extremes for different emission scenarios. Return periods for a-b)
cumulative heat scaled with respect to climatology for a) spring (MAM) 2020 Siberian
heatwave and b) summer (JJA) 2021 Pacific North American heatwave, and c-d) seasonal
maximum daily precipitation for c) western Europe in summer (JJA) and d) northern
Italy in autumn for the historical climate (1850-1879, grey), the current climate (1992-
2021, black), and the five SSP scenarios for the period 2071-2100 (coloured). Shading
denotes 95% confidence intervals calculated by bootstrapping with re-sampling. The hor-
izontal dashed line in a) and b) marks the maximum cumulative heat as calculated from
ERA5, and in c) and d) the observed maximum daily precipitation of the respective sea-
son from E-OBS (Klein Tank et al., 2002). The observed spatial pattern of these events
is shown as maps in a) and b) for cumulative heat for spring 2020 and summer 2021,
respectively, and in c) and d) for precipitation on 14th of July 2021 and 2nd of October
2020, respectively. Black boxes mark the regions of interest used for averaging.
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Figure 3: Representation of precipitation extremes dependent on model reso-
lution. a-b) Comparison of summer (JJA) maximum daily precipitation averaged across
the western European box shown in Fig. 2c from 1950-2021 in three model resolutions
from MPI-ESM1.2 and in observations shown as a) return periods and b) probability
density functions. c-d) Comparison of autumn (SON) maximum daily precipitation av-
eraged across the northern Italy box shown in Fig. 2d from 1950-2021 in three model
resolutions from MPI-ESM1.2 and in observations shown as c) return periods and d)
probability density functions. Note that the return periods are calculated empirically.
Values of all summers or autumns, respectively, and all realisations are merged for each
ensemble. Further note that MPI-ESM-LR is based on 30 realisations, MPI-ESM-HR on
10 realisations and MPI-ESM-XR and the observed record on only a single realisation.
The sample size of MPI-ESM-HR and MPI-ESM-XR might be insufficient to determine
return levels above a few years robustly. The domain-averaged maximum daily precipita-
tion of the western European extreme event on 14th of July 2021 is 47.7 mm, and that of
the event in northern Italy on 2nd of October 2020 is 72.9 mm.
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a)

b)

c)

d)

e)

f)

g)

h)

Figure 4: Present and future frequency of marine heatwaves and ocean acid-
ity extremes. Maps of a) the ensemble mean number of marine heatwave (MHW) days
per year and e) the number of ocean acidity extreme event (OAX) days per year in the
reference period 1985-2014, based on the 99th percentile of daily mean sea surface temper-
ature, and of daily mean surface hydrogen ion concentration, respectively. b-d) Globally
and regionally averaged number of MHW days per year (global, extratropics: outside of
30◦N/30◦S, tropics: within 30◦N/30◦S) for the historical period 1850-2014 (grey), and
scenarios SSP1-1.9 (green), SSP1-2.6 (blue), SSP2-4.5 (yellow), SSP3-7.0 (red), SSP5-8.5
(purple) for the period 2015-2100. The shadings cover the ensemble spread, thick lines
show the 20-member ensemble mean. f-h) Globally and regionally averaged number of
OAX days per year and region, similar to b-d).
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Figure 5: Projected changes in near-surface wind speed and storm activity. a)
Absolute change in ensemble mean 95th annual percentiles of surface wind speed between
1985-2014 and 2071-2100, based on SSP5-8.5 forcing. Black circles mark regions for which
storm activity has been calculated. Maps for the other four SSP scenarios are shown
in Figure S5. b-c) Ensemble mean storm activity (thick lines) and interquartile range
(shading) for the historical simulations (grey) and the five scenarios (coloured) over b)
the Atlantic Ocean north-west of Bermuda and c) the Pacific Ocean south-east of Japan.
Coloured dots and bars indicate the 2071-2100 average and range of the ensemble mean
for each scenario, and crosses show the 2071-2100 mean ensemble balance.
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Figure 6: Probability of crossing Paris Agreement global warming limits. Prob-
ability of crossing a) 1.5◦C and b) 2◦C in a single year, and c) 1.5◦C and d) 2◦C in
20-year averages for the different emission scenarios until 2100. The crossing probability is
defined as the fraction of the 30 realisations that cross the temperature threshold relative
to the reference period 1850-1900. In c,d), the 20-year mean GSAT is plotted against the
central year of that 20-year period.
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Figure 7: Comparison of MPI-GE CMIP6 vs MPI-GE CMIP5 for infilling
observations of surface temperature with artificial intelligence. Annual global
mean anomaly temperature with respect to the 1961–1990 climatology obtained by us-
ing: the gridded original “non-infilled" HadCRUT5 data set (black curve), the partially
reconstructed HadCRUT5 data set from the Met Office (Morice et al., 2021), the fully
reconstructed HadCRUT5 data set obtained with the AI 100 members model (blue curve,
using MPI-GE CMIP5 (Maher et al., 2019)), the fully reconstructed HadCRUT5 obtained
with our AI 30 members model (red curve, using MPI-GE CMIP6). Insets: 2020-1991
climatology referenced to the 1920-1891 climatology. Left inset: Original HadCRUT5 data
set where gray pixels indicate missing values. Mean values have been computed only for
grid points containing at least 70% of valid values for the considered time period. Right
inset: Spatial reconstruction of the HadCRUT5 data set using the AI 30 members model.
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Abstract24

Single-model initial-condition large ensembles are powerful tools to quantify the forced re-25

sponse, internal climate variability, and their evolution under global warming. Here, we26

present the CMIP6 version of the Max Planck Institute Grand Ensemble (MPI-GE CMIP6)27

with 30 realisations for the historical period and five emission scenarios. The power of MPI-28

GE CMIP6 goes beyond its predecessor ensemble MPI-GE by providing high-frequency29

output, the full range of emission scenarios including the highly policy-relevant low emis-30

sion scenarios SSP1-1.9 and SSP1-2.6, and the opportunity to compare the ensemble to31

complementary high-resolution simulations. First, we describe MPI-GE CMIP6, evaluate it32

with observations and reanalyses and compare it to MPI-GE. Then, we demonstrate with33

six novel application examples how to use the power of the ensemble to better quantify and34

understand present and future climate extremes, to inform about uncertainty in approach-35

ing Paris Agreement global warming limits, and to combine large ensembles and artificial36

intelligence. For instance, MPI-GE CMIP6 allows us to show that the recently observed37

Siberian and Pacific North American heatwaves would only avoid reaching 1-2 year return38

periods in 2071-2100 with low emission scenarios, that recently observed European precipi-39

tation extremes are captured only by complementary high-resolution simulations, and that40

3-hourly output projects a decreasing activity of storms in mid-latitude oceans. Further,41

the ensemble is ideal for estimates of probabilities of crossing global warming limits and the42

irreducible uncertainty introduced by internal variability, and is sufficiently large to be used43

for infilling surface temperature observations with artificial intelligence.44

Plain Language Summary45

Climate model simulations that start from different initial states and differ only due to46

the chaos in the climate system are used extensively to quantify the forced climate response,47

variability intrinsic to the climate system, and their change under global warming. Here,48

we present a new version of the Max Planck Institute Grand Ensemble (MPI-GE CMIP6)49

that is run as part of the latest generation of climate models. This single-model ensemble50

consists of 30 realisations for the historical period 1850-2014 and for five scenarios of possible51

future climates until 2100. The power of MPI-GE CMIP6 goes beyond its predecessor by52

not only providing monthly mean but also 3-hourly to daily model output, the full range53

of future scenarios including the two highly policy-relevant scenarios that were designed to54

match the Paris Agreement global warming limits of 1.5◦C and 2◦C, and the opportunity to55

compare the low-resolution ensemble to simulations of the same model version with higher56

horizontal resolution. In this paper, we describe the new ensemble and demonstrate with57

novel application examples how to use its power. For instance, the new ensemble allows us to58

show that recently observed heatwaves are projected to occur every year at the end of the 21st
59

century if anthropogenic carbon emissions remain high, that recently observed precipitation60

extremes are captured only by simulations with higher horizontal resolution than that of61

MPI-GE CMIP6, and that the storminess in many ocean basins is projected to decrease.62

Further, the ensemble is ideal for estimates of crossing probabilities of Paris Agreement63

global warming limits, and is sufficiently large to be used to infill missing observations of64

surface temperature with artificial intelligence.65

1 Introduction66

Single-model initial-condition large ensembles (SMILEs) have become increasingly impor-67

tant to estimate the variability intrinsic to the climate system. A growing number of SMILEs68

are now available, reasonably sampling both model uncertainty and internal variability due69

to their ensemble size. SMILEs enabled substantial progress in understanding the Earth70

system. For instance, SMILEs were used to separate forced signals from internal variability71

to unprecedented precision (Maher et al., 2019), to quantify transient changes in the magni-72

tude of climate variability (Olonscheck et al., 2021), and to evaluate how well climate models73
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capture the variability and forced changes in the historical observational record (Suarez-74

Gutierrez et al., 2021). SMILEs are also used to identify systematic differences between75

simulated and observed patterns of sea-surface temperature and sea-level pressure change76

that are very unlikely to occur due to internal variability (Olonscheck et al., 2020; Wills77

et al., 2022). Furthermore, recent developments in compound event research highlight the78

importance of sufficiently sampling internal variability to robustly capture tail-risks in mul-79

tivariate extremes, which requires even larger ensemble sizes than conventional univariate80

extremes (Bevacqua et al., 2023). The availability of SMILEs from multiple models further81

allows us to better quantify and differentiate sources of uncertainty in climate projections,82

especially uncertainties arising from internal variability and those from model differences83

(Deser et al., 2020; Lehner et al., 2020). These recent major advances in better understand-84

ing and quantifying climate variability and change show that SMILEs are increasingly useful85

tools for climate science.86

The Max Planck Institute for Meteorology was one of the first modelling centres that87

produced a SMILE: the Max Planck Institute Grand Ensemble (MPI-GE, Maher et al.88

(2019)), which is still the largest SMILE available. MPI-GE – from here on called MPI-GE89

CMIP5 – is extremely successful and a powerful tool, but it is limited in various aspects:90

MPI-GE CMIP5 provides monthly model output with some daily output added later for91

one scenario only (e.g., Loughran et al., 2021; Raymond et al., 2022), it is run with CMIP592

forcing, and it provides three emission scenarios only. These limitations largely prevent the93

analysis of climate extremes across different emission scenarios because of the lack of high-94

frequency output, complicate direct comparisons of MPI-GE CMIP5 with SMILEs run with95

CMIP6 forcing, and restrict its usability for highly policy-relevant science. MPI-GE CMIP696

goes beyond these limitations by specifically enabling (1) the analysis of climate extremes,97

(2) comparisons to model versions with higher horizontal resolution, (3) comparisons to98

other SMILEs with CMIP6 forcing, and (4) investigation of low-emission scenarios with99

high policy relevance.100

Several SMILEs with CMIP6 forcing have been recently run by a number of modelling101

centres, including ensembles with high-frequency model output. Next to MPI-GE CMIP6,102

currently available SMILEs with CMIP6 forcing and at least 30 realisations for both the103

historical and future period are ACCESS-ESM1.5 (Ziehn et al., 2020), CanESM5 (Swart et104

al., 2019), FGOALS (Lin et al., 2022), LENS2 (Rodgers et al., 2021), SMHI-LENS (Wyser105

et al., 2021), SPEAR-MED (Delworth et al., 2020), and MIROC6 (Tatebe et al., 2019).106

In comparison to the other CMIP6 SMILEs, MPI-GE CMIP6 provides the most extensive107

high-frequency output for the historical period and five different emission scenarios (Table108

1). This includes the two highly policy-relevant scenarios SSP1-1.9 and SSP1-2.6 that are109

both otherwise only provided by CanESM5. In contrast to other SMILEs, MPI-GE CMIP6110

has a climate sensitivity of 2.8◦C which is close to the best estimate of 3◦C of the Sixth As-111

sessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6) (Forster112

et al., 2021). Furthermore, its predecessor MPI-GE CMIP5, based on a closely comparable113

model version, has shown to be one of the models that best represents the global and regional114

internal variability and forced response in annual observed temperatures (Suarez-Gutierrez115

et al., 2021) and precipitation (Wood et al., 2021). This good agreement with observa-116

tions combined with the amount of high-frequency output for the full range of emission117

scenarios makes MPI-GE CMIP6 ideally suited for investigating future probabilities and118

magnitudes of climate extremes. The suitability of MPI-GE CMIP6 for studies on climate119

extremes is further enhanced by the possibility to compare the low-resolution ensemble to120

high-resolution ensembles or single simulations of the same model version that were run as121

part of the High Resolution Model Intercomparison Project (HighResMIP, Haarsma et al.122

(2016), compare Table 2). This unique combination of strengths makes MPI-GE CMIP6 a123

useful contribution to the CMIP6 multi-model ensemble and a powerful tool to investigate124

high-frequency climate variability and highly policy-relevant science questions.125
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Table 1: Characteristics of MPI-GE CMIP6 and other SMILEs with CMIP6 forcing and
at least 30 realisations

SMILE
name

Model
version

Horizontal
resolution

High-frequency
output

Realisa-
tions

Time
period

Scenarios ECS

MPI-GE
CMIP6

MPI-
ESM1.2-

LR

1.8◦atm.,
1.5◦ocean

daily for all para-
meters, 3-hr, 6-hr
for some (see

Tables 2 and S1)

30 1850-
2100

SSP1-1.9,
1-2.6, 2-4.5,
3-7.0, 5-8.5

2.80◦C

ACCESS-
ESM1.5

ACCESS-
ESM1.5

1.88x1.25◦atm.;
1.0◦ocean

daily for many
atm. parameters

40 1850-
2100

SSP1-2.6,
2-4.5, 3-7.0,

5-8.5

3.87◦C

CanESM5 CanESM5 2.8◦atm.,
1.0◦ocean

daily for some
atm. parameters

50 1850-
2100

SSP1-1.9,
1-2.6, 2-4.5,
3-7.0, 5-8.5

5.62◦C

FGOALS
Super-large
Ensemble

CAS
FGOALS-

g3

2.0◦atm.,
1.0◦ocean

daily for many
atm. parameters
+ tos, omldamax

110 1850-
2100

SSP5-8.5 2.80◦C

LENS2 CESM2 1.0◦atm.,
1.0◦ocean

daily for all
parameters, 3-hr,
6-hr for some

100 1850-
2100

SSP3-7.0 5.16◦C

SMHI-
LENS

EC-
Earth3.3.1

1.8◦atm.;
1.0◦ocean

daily for many
atm. parameters

50 1970-
2100

SSP1-1.9,
3-3.4, 5-3.4
-OS, 5-8.5

4.31◦C

SPEAR-
MED

GFDL
AM4-LM4

0.5◦atm.,
1.0◦ (tropical
refinement to
0.3◦) ocean

daily for tas,
tasmin, tasmax,
pr, slp, uas, vas

30 1921-
2100

SSP5-8.5 1.78◦C

MIROC6 MIROC6 1.4◦atm.,
1.0◦ocean

3-hr and daily for
ta, tas, pr

50 1850-
2100

SSP1-2.6,
2-4.5, 5-8.5

2.61◦C

In this paper we present the new Max Planck Institute Grand Ensemble (MPI-GE126

CMIP6), and demonstrate its power beyond its predecessor ensemble MPI-GE CMIP5127

(Maher et al., 2019) with six application examples. In section 2, MPI-GE CMIP6 is pre-128

sented, evaluated with observations and reanalyses, and compared to MPI-GE CMIP5. In129

section 3, the power of MPI-GE CMIP6 is demonstrated with six application examples that130

specifically use the high-frequency model output for an improved understanding of climate131

extremes, the low-end emission scenarios for research on Paris Agreement global warming132

limits, and the medium ensemble size for an efficient combination of SMILEs with artificial133

intelligence. Section 4 summarises and concludes the paper.134

2 MPI-GE CMIP6135

2.1 Model description136

MPI-GE CMIP6 is a 30-member ensemble simulated with the Max Planck Institute Earth137

System Model version 1.2 (MPI-ESM1.2, Mauritsen et al. (2019)), in the low resolution (LR)138

setup. In comparison to the MPI-GE CMIP5 simulations described in Maher et al. (2019),139

Mauritsen et al. (2019) summarises the updates that were introduced to MPI-ESM1.2, most140

importantly new radiation and aerosol parameterisations, and a nitrogen cycle for land141

biogeochemistry. Further, a major difference arises from the update of the external forcing142

from CMIP5 (Taylor et al., 2012) to CMIP6 (Eyring et al., 2016).143
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Table 2: Available simulations of MPI-ESM1.2 with different horizontal resolution. The
MPI-ESM1.2-HR and -XR simulations were run as part of HighResMIP.

Model version Horizontal
resolution

Realisa-
tions

Time
period

Scenarios

MPI-ESM1.2-LR T63, 1.8◦atm.;
GR15, 1.5◦ocean

30 1850-2100 SSP1-1.9, 1-2.6,
2-4.5, 3-7.0, 5-8.5

MPI-ESM1.2-HR T127, 1.0◦atm.;
TP04, 0.4◦ocean

10 (2) 1850-2100 SSP3-7.0 (SSP1-2.6,
2-4.5, 5-8.5)

MPI-ESM1.2-XR T255, 0.5◦atm.;
TP04, 0.4◦ocean

1 1950-2050 SSP5-8.5

MPI-GE CMIP6 is run with MPI-ESM version 1.2.01p7, with the atmosphere com-144

ponent ECHAM6 (Stevens et al. 2013, echam-6.3.05p2), which is directly coupled to the145

land component JSBACH (Reick et al. 2013, jsbach-3.20p1), and the ocean and sea-ice146

component MPIOM (Jungclaus et al. 2013, mpiom-1.6.3p4). MPIOM includes the ocean147

biogeochemistry module HAMOCC (Ilyina et al., 2013). The atmosphere/land and ocean148

components are coupled once a day by OASIS-MCT (Craig et al. (2017), oasis3mct-2.0).149

In MPI-ESM1.2-LR the atmosphere is resolved with spectral resolution T63 (equivalent to150

approx. 1.8° grid resolution) and 47 vertical levels, the ocean is resolved with a GR15 grid,151

nominal resolution 1.5°, at 40 vertical levels.152

All simulations follow the CMIP6 protocol (Eyring et al., 2016) in terms of initialisation153

and historical and future external forcing (i.e. atmospheric composition, solar cycle, volcanic154

eruptions, land use). The 30-member ensemble of historical simulations covers the time155

period 1850-2014 and each member is initialised from a different state, approximately 25156

years apart, of a quasi-stationary one-member 1000-year long preindustrial simulation. This157

macro initialisation from the preindustrial control state samples the full phase space of both158

the ocean and atmosphere states (Marotzke, 2019). Five scenario simulations (SSP1-1.9,159

SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, 30 realisations each) cover the time period 2015-160

2100, and in each scenario the realisations are directly initialised from their corresponding161

realisations of the historical ensemble.162

2.2 Availability of high-frequency model output163

In addition to standard CMIP6 monthly mean output, daily mean 3D fields of the state164

of atmosphere and ocean as well as selected daily mean 2D fields, i.e. for sea ice and land165

surface, are available for all simulations (Table S1 for details). Additionally, a number166

of atmospheric and land surface parameters are available on the 3-hourly time scale as167

listed in Table 3. Standard ocean biogeochemistry output from HAMMOC, 3D and 2D, is168

available on a monthly mean basis, with additional daily means for selected surface 2D or169

integrated 2D fields (see Table S1). Model output can be accessed via DKRZ’s ESGF server170

at https://esgf-data.dkrz.de/search/cmip6-dkrz/.171

2.3 Model evaluation and comparison to MPI-GE CMIP5172

MPI-GE CMIP6 performs well in representing key climate quantities as derived from ob-173

servations and reanalyses (Figure 1). The simulated range of global mean near-surface air174

temperature (GSAT) anomaly captures the interannual variability and the warming rate of175

HadCRUT5 well (Morice et al. (2021), Figure 1a). The projected ensemble mean GSAT176

warming at the end of the 21st century relative to the 1985-2014 reference period ranges177

from 0.4K in SSP1-1.9 to 3.7K in SSP5-8.5.178
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Table 3: Parameters with 3-hourly and 6-hourly output on ESGF available for all 30 reali-
sations. The parameters with daily output are listed in Table S1. A full list of parameters
subdivided for members r1-r10 and r11-r30 is given in Tables S2-S4.

name parameter long name unit level
3-hourly atmosphere / land

mrro Total Runoff kg m-2 s-1 1
psl Sea Level Pressure Pa 1

sfcWind Near-Surface Wind Speed m s-1 1
tas Near-Surface Air Temperature K 1
uas Eastward Near-Surface Wind m s-1 1
vas Northward Near-Surface Wind m s-1 1

6-hourly atmosphere / land
hurs Near-Surface Relative Humidity % 1
hus Specific Humidity 1 47
huss Near-Surface Specific Humidity 1 1
mrsol Total Water Content of Soil Layer kg m-2 5
mrsos Moisture in Upper Portion of Soil Column kg m-2 1
pr Precipitation kg m-2 s-1 1
ps Surface Air Pressure Pa 1
psl Sea Level Pressure Pa 1
ta Air Temperature K 47
tas Near-Surface Air Temperature K 1
tsl Temperature of Soil K 1
ua Eastward Wind m s-1 47
uas Eastward Near-Surface Wind m s-1 1
va Northward Wind m s-1 47
vas Northward Near-Surface Wind m s-1 1
wap Omega (=dp/dt) Pa s-1 4
zg Geopotential Height m 28

zg500 Geopotential Height at 500hPa m 1

For global mean precipitation, MPI-GE CMIP6 underestimates both the magnitude179

and the interannual variability estimated from the ERA5 reanalysis (Figure 1b), as well180

as that of ERA-Interim (Figure S1). However, when comparing global mean precipitation181

in MPI-GE CMIP6 to the observational product of the Global Precipitation Climatology182

Project (GPCP, Adler et al. (2018)), we find that MPI-GE CMIP6 overestimates the ob-183

served global mean precipitation, but still shows too little interannual variability (Figure184

S1). The different estimates from observational and reanalyses products confirm previ-185

ous findings that global mean precipitation products have large uncertainty of up to 40%186

(Bosilovich et al., 2016; Bock et al., 2020). Thus, MPI-GE CMIP6 is well within the range187

of observational uncertainty, but underestimates interannual variability. For the Septem-188

ber Northern Hemisphere sea-ice area, the simulated range captures the observed evolution189

as derived from the sea-ice index (Fetterer et al. (2017), Figure 1c). September Northern190

Hemisphere sea-ice area is projected to shrink below the 1 million square kilometre threshold191

in the second half of the 21st century in SSP2-4.5, SSP3-7.0 and SSP5-8.5, but remains in192

both SSP1-1.9 and SSP1-2.6 until the end of the 21st century, similar to previous findings193

on sea-ice decline in CMIP6 (Notz & Community, 2020; Lee et al., 2021). The simulated194

range of the Atlantic meridional overturning circulation (AMOC) at 26◦ N is similar to the195

observed strength and interannual variability of the RAPID observations (Frajka-Williams196

et al. (2021), Figure 1d). However, the observations suggest that MPI-GE CMIP6 slightly197

overestimates the AMOC strength. The simulated range of the globally integrated CO2198

flux into the ocean and the net CO2 flux into the land agrees well with the magnitude as199
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reconstructed in the Global Carbon Project (Friedlingstein et al. (2022)), with simulated200

estimates of the globally integrated net CO2 flux into the land exhibiting larger deviations201

from the mean state than those observed (Figure 1e-f). The evaluation of MPI-GE CMIP6202

with observations and reanalyses shows that the ensemble realistically simulates both the203

long-term evolution and – except for precipitation – also the interannual variability of key204

climate quantities.205

We further compare MPI-GE CMIP6 to MPI-GE CMIP5 with respect to the response206

of the key climate quantities to the various emission scenarios at the end of the 21st century.207

We find that MPI-GE CMIP6 shows slightly higher global-mean warming by the end of the208

21st century than MPI-GE CMIP5 especially for the respective highest-emission scenarios209

(Figure 1a). In line with this, September Northern Hemisphere sea-ice area is projected to210

decline more in the respective SSP than RCP scenarios in the ensemble mean (Figure 1c).211

Similarly, the ensemble-mean decline in AMOC is substantially stronger in all SSP scenarios212

than in their respective RCP scenarios (Figure 1d). The globally integrated CO2 flux into213

the ocean is larger in the mid and high-end SSP than in the respective RCP scenarios214

(Figure 1e). The projected change in net CO2 flux into the land is largely uncertain,215

but shows a similar response at the end of the 21st century, except for SSP5-8.5 which216

shows a substantially stronger ensemble-mean increase than RCP8.5 (Figure 1f). In contrast217

to the stronger changes in MPI-GE CMIP6 compared to MPI-GE CMIP5, global mean218

precipitation is projected to increase less in the respective SSP than RCP scenarios (Figure219

1b). From comparing the global mean temperature response of both model versions to a220

1%CO2 increase per year, i.e. the same forcing, we find a very similar warming rate and221

variability (Figure S2). This implies that the stronger changes in most quantities can be222

largely explained by the slightly stronger radiative forcing in the SSP compared to RCP223

scenarios, as has been shown for other models too (Wyser et al., 2020; Fyfe et al., 2021).224

We conclude that differences between MPI-GE CMIP6 and MPI-GE CMIP5 largely stem225

from the updated forcing in CMIP6 compared to CMIP5 rather than from differences in the226

model formulation.227

3 Power of MPI-GE CMIP6 beyond MPI-GE CMIP5228

MPI-GE CMIP5 (Maher et al., 2019) is extremely successful and a powerful tool to quantify229

climate variability and its change under global warming. However, the applicability of MPI-230

GE CMIP6 goes beyond MPI-GE CMIP5 in at least four critical aspects:231

First, MPI-GE CMIP5 is run with CMIP5 forcing which limits direct comparisons to232

the large number of SMILEs that were run with CMIP6 forcing. MPI-GE CMIP6 provides233

the opportunity to compare MPI-ESM with other SMILEs run with CMIP6 forcing, and to234

investigate the impact of different forcings between MPI-GE CMIP5 and MPI-GE CMIP6.235

Second, MPI-GE CMIP5 does not provide high-frequency model output across different236

emission scenarios, but only monthly mean output in most cases which strongly limits the237

usefulness for investigating short-lived climate extremes and their drivers (Suarez-Gutierrez238

et al., 2020a). In contrast, MPI-GE CMIP6 provides high-frequency output with 3-hourly239

and 6-hourly output for some variables (see Table 3) and daily output for all variables (see240

Table S1). This high-frequency output comes at the expense of a smaller ensemble size of241

30 realisations instead of 100 realisations, but makes MPI-GE CMIP6 specifically suited for242

the analysis of climate extremes.243

Third, MPI-GE CMIP6 can be compared to higher-resolution simulations of the same244

model version (see Table 2), for instance 10 realisations of MPI-ESM1.2-HR (1.0◦ atm.,245

0.4◦ ocean, Müller et al. (2018)) or a single realisation of MPI-ESM1.2-XR which provides246

also higher horizontal resolution in the atmosphere (0.5◦ atm., 0.4◦ ocean, Gutjahr et al.247

(2019)). This allows for the combination of high-frequency output in relatively low horizontal248
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resolution of MPI-GE CMIP6 with high-resolution simulations, which is not possible with249

MPI-GE CMIP5.250

Fourth, MPI-GE CMIP6 provides five instead of three emission scenarios. The five251

scenarios with 30 realisations each span the full range of IPCC scenarios from the low-252

emission scenario SSP1-1.9 to the high-emission scenario SSP5-8.5. With the scenarios253

SSP1-1.9 and SSP1-2.6, MPI-GE CMIP6 provides ensembles of two scenarios that were254

designed for projections of the Paris Agreement global warming limits of a 1.5◦C and 2◦C255

warmer world by the end of this century. This makes MPI-GE CMIP6 one of the few models256

that provide large ensembles for the two scenarios aligned with the Paris Agreement pledges,257

which allows for timely and highly policy-relevant science.258

In the following, we exemplify the power of MPI-GE CMIP6 with six application ex-259

amples. These examples include the analysis of heat, precipitation, wind, and ocean acidity260

extremes (Section 3.1), the probability of crossing Paris Agreement global warming limits261

(Section 3.2), and the potential of combining SMILEs with artificial intelligence methods262

for infilling observations (Section 3.3).263

3.1 Analysing climate extremes264

Climate extremes are among the most devastating and costly events, and their frequency and265

intensity is projected to increase with global warming (Seneviratne et al., 2021). However,266

climate models struggle to represent observed extremes because of large internal climate267

variability and their limited horizontal and temporal resolution (e.g., Slingo et al., 2022).268

Given the ensemble size and high-frequency output of MPI-GE CMIP6, we first investigate269

projected changes in heat and precipitation extremes and evaluate whether the new ensem-270

ble is capable of realistically simulating recently observed heat and precipitation extremes271

(Section 3.1.1). We then test whether observed precipitation extremes are better captured272

by model versions with higher horizontal resolution (Section 3.1.2). Finally, we investigate273

projected changes in marine heatwaves and ocean acidity extremes (Section 3.1.3) as well as274

in wind extremes (Section 3.1.4). For these analyses we choose a fixed baseline climatology275

over the time period 1985-2014.276

3.1.1 Continental heat and precipitation extremes277

We first evaluate whether MPI-GE CMIP6 is capable of simulating heat and precipitation278

extremes that were recently observed (Figure 2). We focus on the Siberian heatwave in279

spring 2020 (Ciavarella et al., 2021), the Pacific North American heatwave in summer 2021280

(Philip et al., 2022), the extreme precipitation event in western Europe in summer 2021281

(Ibebuchi, 2022; Tuel et al., 2022), and the extreme precipitation event in northern Italy in282

autumn 2020 (Davolio et al., 2023). To do so, we use daily surface maximum temperature283

and daily precipitation from MPI-GE CMIP6, and use ERA5 (Hersbach et al., 2020) and284

E-OBS (Klein Tank et al., 2002) as observational reference.285

For continental heat extremes, we use the metric heat excess, which takes into account286

both heatwave intensity and persistence into one single metric (Perkins-Kirkpatrick & Lewis,287

2020). To calculate heat excess, we identify heatwaves on a grid-point level when daily288

maximum near-surface air temperature exceeds the 90th percentile based on a centred 15-289

day running window of the historical period 1985-2014 for at least three consecutive days.290

The cumulative heat is then calculated by seasonal integration of the exceeding heat above291

the threshold during heatwave days. In addition, we weight the cumulative heat of each292

grid point by the cosine of the latitude and spatially integrate it. For the 2020 Siberian293

heatwave we integrate the cumulative heat over boreal spring (MAM) and 40◦ N-80◦ N and294

60◦ E-130◦ E. For the 2021 Pacific North American heatwave we integrate the cumulative295

heat over boreal summer (JJA) and 25◦ N-65◦ N and 90◦ W-130◦ W (see maps in Figure296

2a,b). We scale the cumulative heat with respect to climatology (1985-2014). We compute297
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the return periods for historical climate (1850-1879), the current climate (1992-2021) and298

the five SSP scenarios (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-5.8; 2071-2100), and299

compare them to the two recent heatwaves in ERA5 (Figure 2a,b). The cumulative heat300

estimated by ERA5 in spring 2020 and summer 2021 integrated over the respective domains301

is 4.3 and 4.5.302

These two record-shattering heat extremes led to devastating impacts. The Siberian303

heatwave was linked to large wildfires that causes a release of 56 megatons of CO2 in June304

2020, and to the melting of large permafrost areas which led to widespread infrastructure305

and environmental damages (Ciavarella et al., 2021). The Pacific North American heatwave306

also led to hundreds of attributable deaths, marine life mass-mortality events, reduced crop307

and fruit yields, river flooding from rapid snow and glacier melt, and a substantial increase308

in wildfires (White et al., 2023). In line with previous attribution studies (Ciavarella et309

al., 2021; Philip et al., 2022), we find that both heatwaves were virtually impossible in310

the preindustrial MPI-GE CMIP6 world, and have over 100-year return periods in current311

climate conditions. However, under the moderate emission scenario SSP2-4.5, heat excess312

levels as high as those during the 2020 Siberian heatwave could occur every four years313

(Figure 2a), and more than every other year for the 2021 Pacific North American heatwave314

(Figure 2b). In SSP5-8.5, MPI-GE CMIP6 projections show that a comparable 1-in-100-315

years event by the end of the 21st century reaches heat excess levels 5 to 8 times higher316

than the 2020 and 2021 levels, respectively. Only in the low emission scenarios SSP1-1.9 or317

SSP1-2.6 return periods below 10 years for such heat extremes can be avoided.318

For precipitation extremes, we focus on two recently observed record-shattering events:319

the extreme precipitation event in western Europe on the 14th of July 2021, and the one320

in northern Italy on 2nd of October 2020. The extreme precipitation event in western321

Europe caused unprecedented flooding of the rivers Ahr and Erft. A rapid attribution322

study shows that observations over a larger region and different regional climate models323

give high confidence that human-induced climate change has increased the likelihood and324

intensity of events like the western European precipitation extreme (Kreienkamp et al.,325

2021; Ibebuchi, 2022), in line with the intensification of observed extreme precipitation in326

central Europe during the last century related to Northern Hemispheric warming (Zeder &327

Fischer, 2020). When integrated over 49◦ N-52◦ N and 5◦ E-8◦ E, the daily precipitation as328

observed by the E-OBS data set (Klein Tank et al., 2002) on 14th of July 2021 is 47.7 mm329

which represents the maximum daily precipitation in summer in the 72-year long observed330

record (see map in Figure 2c). The extreme precipitation event in northern Italy caused331

devastating large-scale flooding and represents an unprecedented strong event in a region332

that shows a high frequency of precipitation extremes (Davolio et al., 2023; Grazzini et333

al., 2021). The event was caused by a superposition of an upper-level trough over the334

western Mediterranean basin and moisture transport from the tropics by an atmospheric335

river (Davolio et al., 2023). When integrated over 43◦ N-47◦ N and 6◦ E-10◦ E, the daily336

precipitation observed by E-OBS on 2nd of October 2020 is 72.9 mm.337

We use daily precipitation from MPI-GE CMIP6 and E-OBS, and compare the ob-338

served extreme precipitation events to the seasonal maximum daily precipitation simulated339

for the historical climate (1850-1879), the current climate (1992-2021), and the five SSP340

scenarios for the period 2071-2100. We find that MPI-GE CMIP6 does not simulate a sum-341

mer and autumn daily precipitation event as intense as observed, not even until the end of342

the 21st century (Figure 2c). This implies that in any of the climate conditions simulated343

by MPI-GE CMIP6 an event as intense as the ones observed in 2020 and 2021 is virtually344

impossible, with return periods exceeding 900 years for all scenarios. We further find that345

simulated summer and autumn maximum daily precipitation is larger for higher emission346

scenarios than for lower scenarios in 2071-2100 and for the historical and current climate,347

in line with the fact that warmer air can hold more water leading to increased precipitation348

(e.g., Pendergrass et al., 2017; Myhre et al., 2019). However, the spread from the emis-349

sion scenarios largely overlaps, suggesting that the uncertainty due to internal variability350

–9–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

dominates scenario uncertainty and thus events typical for higher emission scenarios could351

also occur in a lower warming world due to internal variability. The results show that pre-352

cipitation extremes as intense as the ones observed are not captured by MPI-GE CMIP6353

possibly because the horizontal resolution of MPI-GE CMIP6 is too low to simulate real-354

world mechanisms leading to such small-scale precipitation extremes (Slingo et al., 2022).355

Given the increased probability of extremes that are unprecedented in the observed record356

and the often substantial impacts (Fischer et al., 2021), a realistic representation of such357

extreme events by climate models is highly needed.358

3.1.2 Resolution dependence of representing precipitation extremes359

Higher horizontal resolution of climate models improves the simulation of extreme precipita-360

tion because higher-resolution models reflect smaller spatial scales of extreme precipitation361

and key processes such as deep convection do not need to be parameterised (Wehner et362

al., 2014; Iles et al., 2020; Kendon et al., 2021; Kahraman et al., 2021). To test whether363

the inability of MPI-GE CMIP6 to represent the two observed precipitation extremes is364

caused by the model’s coarse horizontal resolution, we investigate whether these events are365

better captured in higher-resolution versions of the same model, namely 10 realisations of366

MPI-ESM1.2-HR (Müller et al., 2018) with 1.0◦ atmospheric horizontal resolution, and a367

single realisation of MPI-ESM1.2-XR (Gutjahr et al., 2019) with 0.5◦ atmospheric horizontal368

resolution (see Table 2).369

For the western European event, we find that MPI-ESM1.2-HR and MPI-ESM1.2-XR370

show higher agreement with the observed distribution of summer maximum daily precipi-371

tation over the period 1950-2021 than MPI-ESM1.2-LR, the low-resolution model version372

used for MPI-GE CMIP6 (Figure 3a,b). Strikingly, the single realisation of MPI-ESM1.2-XR373

simulates a single daily precipitation as intense as the one observed with a more widespread374

but still similar pattern (compare Figure S3), while MPI-ESM1.2-LR and MPI-ESM1.2-HR375

do not simulate such high daily precipitation amounts. Although the horizontal resolution376

of MPI-ESM1.2-XR is still not sufficient to resolve important processes such as moist con-377

vection (Hewitt et al., 2022; Slingo et al., 2022), our finding suggests that its resolution is378

sufficient to represent the recently observed regional precipitation extreme. Alternatively,379

MPI-ESM1.2-XR might overestimate the real-world precipitation intensity, which could also380

explain why the single simulation captures an event as intense as observed.381

For autumn precipitation in northern Italy, we find that MPI-ESM1.2-HR much bet-382

ter represents the observed frequency of autumn maximum daily precipitation than MPI-383

ESM1.2-LR (Figure 3c,d). MPI-ESM1.2-XR shows generally too high autumn maximum384

precipitation, simulating precipitation amounts as large as observed with higher frequency.385

This is in line with previous findings that in the Mediterranean coastal region autumn pre-386

cipitation intensity is larger at convection-permitting resolution than at coarse resolution387

because realistically representing deep convection is central for such events (Luu et al.,388

2020; Pichelli et al., 2021). The comparison between the western European and northern389

Italian events suggests that the model is able to simulate larger-scale autumn precipita-390

tion at coarser horizontal resolution than convective summer precipitation (Feldmann et al.,391

2008; Luu et al., 2020; Williams & O’Gorman, 2022). We conclude that while MPI-GE392

CMIP6 fails to simulate the observed precipitation extremes in western Europe and north-393

ern Italy, high-resolution simulations of the same model version are able to capture these394

extreme events, highlighting the potential for investigating regional precipitation extremes395

from comparing high-frequency model output of MPI-GE CMIP6 with simulations of higher396

horizontal resolution.397

3.1.3 Marine heatwaves and ocean acidity extremes398

We analyse daily mean sea surface temperature (SST) and hydrogen ion concentration ([H+])399

to identify marine heatwaves and ocean acidity extremes between 1850 and 2100 (Figure 4).400
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We use a percentile-based threshold and the reference period 1985-2014 for both extremes401

such that the probability of the occurrence of marine heatwaves and ocean acidity extremes402

in a year is the same. SST and [H+] are defined as extreme, if they exceed the 99th percentile403

for five consecutive days (Hobday et al., 2016; Burger et al., 2020). Although applying a404

duration criterion for ocean acidity extremes is not common, here it ensures comparability405

with marine heatwaves. The percentiles are calculated as the 20-member ensemble mean406

(only members 11 to 30 contain daily mean output for [H+]) over the 99th multiyear daily407

running percentile with a 5-day window length at every grid cell between 1985 and 2014.408

Finally, we calculate the number of extreme days per year to characterise changes of both409

extremes with time and across scenarios.410

Before the reference period 1985-2014, almost no marine heatwaves are detected. Be-411

tween 1985 and 2014, less than ten days per year are extreme with marine heatwaves being412

more frequent in the subpolar North Atlantic and the Southern Ocean (Figure 4a). By413

2030, between five and 70 days per year are extreme with substantial overlap among dif-414

ferent scenarios. By 2100, the SSP5-8.5 scenario projects the most marine heatwaves, with415

the entire ocean being in almost a constant state of extreme; while in the SSP1-1.9 scenario416

the number of extreme days per year does not exceed 15 by 2100 (Figure 4b, Figure S4).417

There is a much larger difference between the SSP1-1.9 and SSP5-8.5 scenarios in terms of418

global marine heatwave days at the end of the 21st century when compared to the difference419

in terms of global mean temperature between these scenarios (compare Figures 1a and 4b),420

indicating an amplified impact of global warming on marine heatwaves.421

Over the historical period, globally, no ocean acidity extreme is detectable prior to the422

reference period. Within the reference period 1985-2014 (Figure 4e), the number of days423

with extreme [H+] increases to approximately five days per year in 2010 and continues to424

increase substantially to nearly 40 days per year in 2014. Locally, within the reference period,425

only very weak spatial gradients in the ensemble-mean number of ocean acidity extremes426

exist (Figure 4e). Until 2030, the entire ocean area moves rapidly to a near-permanent427

extreme state with more than 300 extreme days per year for all five future scenarios. By428

2100, almost all days of a year show ocean acidity extremes in the SSP2-4.5, SSP3-7.0, and429

SSP5-8.5 scenarios, while in the SSP1-2.6 scenario, the number of ocean acidity extreme430

days is projected to decline slightly by the end of the 21st century (Figure 4f, Figure S4).431

Within the SSP1-1.9 scenario, ocean acidity extremes are projected to peak at approximately432

330 days per year between 2025-2040 and decline thereafter to 140 days per year by 2100.433

In this scenario, ocean acidity extremes occur less frequently in the Arctic Ocean and in434

the Southern Ocean compared to the Tropics between 2071-2100 (Figure 4g,h). There is a435

striking difference in the global occurrence of ocean acidity extremes between SSP1-1.9 and436

SSP1-2.6 in the second half of the 21st century (Figure 4f), despite only small differences437

in terms of global mean temperature in both scenarios (Figure 1a).438

The CO2 system in seawater and the mixing ratio of atmospheric CO2 are tightly439

related, which leads to the smooth response in the mean surface ocean [H+]. Sea surface440

temperature on the other hand is more variable across space and time than [H+], therefore441

the number of marine heatwaves varies more than the number of ocean acidity extremes442

across ensemble members. The number of detected extremes is sensitive to the definition,443

affected by the choice of threshold and reference period (Gruber et al., 2021). While using the444

same definition for both marine heatwaves and ocean acidity extremes is helpful to illustrate445

the different internal variability structure of the underlying parameters, understanding the446

governing processes may require a different extreme event definition that would ultimately447

lead to a different number of detected events.448

3.1.4 Wind extremes449

Future changes in wind extremes are among the most uncertain impacts of anthropogenic450

climate change (Seneviratne et al., 2021). We use the 3-hourly output of MPI-GE CMIP6451
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to project global changes in wind extremes and their dependence on the emission scenario452

(Figure 5a and Figure S5). To detect projected global changes in wind speed, we first derive453

95th annual percentiles of near-surface wind speeds for each grid point from the entire 30-454

member ensemble and then calculate the absolute difference between the 2071-2100 mean455

and the 1985-2014 reference mean. Here, we focus on SSP5-8.5 because the projected456

changes are most distinct: Over the ocean, we find a latitudinal contrasting pattern with457

increasing wind extremes over high-latitude oceans and decreasing wind extremes in most458

mid- and low-latitude ocean basins. Over land, increases in wind extremes are projected459

for South America, Western and Eastern Africa and parts of the Northern mid- to high-460

latitudes, whereas substantial decreases are projected for Alaska, Siberia, Central Asia and461

the Western Sahara. Weaker changes but with the same pattern are found for lower-emission462

scenarios (Figure S5).463

We further analyse projected changes in storm activity in two regions that are known
for the frequent passage of mature hurricanes and typhoons with often devastating impacts
when they make landfall: north-west of Bermuda in the North Atlantic (Figure 5b) and
south-east of Japan in the North Pacific (Figure 5c). For both regions, we select three grid
points that form a triangle spanning the area of interest (Table S5). We then use 3-hourly
mean sea-level pressure data from MPI-GE CMIP6 at the selected grid points and derive
geostrophic winds vg from the horizontal mean sea-level pressure gradients ∂p/∂x and ∂p/∂y
according to Krieger et al. (2020) via

vg = (v2x + v2y)
1/2
, (1)

with

vx = − 1

ρf

∂p

∂y
and vy =

1

ρf

∂p

∂x
, (2)

where ρ is the density of air (set at 1.25 kg m−3) and f the average of the Coriolis parameter464

at the three corners of the triangle. We chose the grid points so that the resulting triangle465

is sufficiently close to an equilateral triangle. This requirement is necessary to avoid a large466

error propagation of pressure uncertainties, which would cause a shift of the wind direction467

towards the main axis of the triangle (Krieger et al., 2020). We then define storm activity as468

the standardised annual 95th percentiles of 3-hourly geostrophic wind speeds. We therefore469

first calculate annual 95th percentiles of geostrophic winds for each ensemble member. We470

then standardise by subtracting the 1985-2014 ensemble mean from each ensemble member,471

and divide by the 1985-2014 ensemble standard deviation.472

For both north-west of Bermuda and south-east of Japan, we find a decreasing storm473

activity with strongest decreases for high-emission scenarios, while we find no notable change474

in scenario SSP1-1.9 (Figure 5b,c and Figure S5). This agrees with the projected change475

in surface wind speed, where the marine subtropics around 30◦ N show a strong signal of476

decreasing wind speeds in the SSP5-8.5 scenario (Figure 5a).477

We further calculate the ensemble balance to characterise whether changes in the en-478

semble mean are caused by a shift in the majority of the ensemble members or by a few479

strong outliers. To do so, we first apply a moving Gaussian low-pass filter to the storm480

activity time series of each ensemble member. We then define thresholds for high and low481

activity periods at 0.5σ and −0.5σ, and count for how many members the low-pass filtered482

curve exceeds these thresholds in a certain year. The difference in the number of high-483

activity and low-activity members is then regarded as the ensemble balance (crosses on the484

secondary y-axis in Figure 5b,c). In the SSP1-1.9 and SSP1-2.6 scenarios, we find that the485

ensemble balance does not significantly deviate from 0 towards the end of the 21st century486

in both focus regions, confirming the rather small projected change in storm activity. In the487

high-emission SSP5-8.5 scenario, the ensemble balance falls to near -30 at the end of the488

21st century, which indicates that nearly all ensemble members agree on a decline in storm489

activity both north-west of Bermuda and south-east of Japan.490
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The proxy for storm activity is based on the hypothetical geostrophic wind and its491

long-term statistics, as proposed originally by Schmidt and von Storch (1993). For high492

latitudes, where the synoptic-scale wind in higher altitudes is close to geostrophic, it has493

been shown that the statistics of the geostrophic wind closely resemble the statistics of the494

near-surface wind (Krueger & von Storch, 2011). In latitudes closer to the equator this495

assumption does not hold, as most of the wind extremes occur in or near tropical cyclones,496

which are not fully in geostrophic balance. The proxy should therefore not be used as a497

single tool to make conclusions about future changes in the intensity or frequency of tropical498

cyclones. However, the decreasing storm activity for mid-latitude hurricanes and typhoons499

is in line with recent findings of a decreasing frequency of tropical cyclones (Chand et al.,500

2022). As the proxy only describes storm activity with one quantity, it cannot distinguish501

between changes in the frequency and changes in the intensity of storms. A change in storm502

activity can thus be interpreted as a change in either number or intensity of cyclones, or a503

combined change thereof. Also, changes connected to smaller-scale features such as fronts504

or convective wind gusts within cyclones cannot be detected by the proxy, as the derived505

geostrophic wind acts as an area mean over the entire triangle.506

Overall, MPI-GE CMIP6 projects increasing wind extremes over high-latitude oceans507

and decreasing wind extremes in most mid- and low-latitude oceans, in line with current508

understanding of observed changes in wind extremes caused by a poleward shift of extra-509

tropical storm tracks over both hemispheres (Seneviratne et al., 2021). We conclude that510

MPI-GE CMIP6 with its 3-hourly model output is a powerful tool to understand changes511

in the frequency and intensity of wind extremes for different emission scenarios.512

3.2 Investigating crossing probabilities of 1.5◦C and 2◦C global warming513

The Paris Agreement in 2015 states the goal to keep global warming well below 2◦C, and to514

pursue efforts to limit global warming to 1.5◦C above preindustrial levels to avoid devastating515

and unmanageable consequences of climate change. MPI-GE CMIP6 is suited to investigate516

the uncertainty in crossing these global warming limits because one can account for internal517

climate variability with ensemble simulations for five different emission scenarios, including518

the scenarios SSP1-1.9 and SSP1-2.6 that project a global warming of 1.5◦C and 2◦C,519

respectively.520

To investigate the crossing probability of 1.5◦C and 2◦C of global warming in MPI-GE521

CMIP6, we use annual mean, global mean near-surface air temperature (GSAT) to compute522

for every year and each of the five scenarios the fraction of realisations (x / 30 realisations)523

that crosses these temperature thresholds in a single year relative to the 1850-1900 reference524

period (Figure 6a,b). We find that in all emission scenarios, there is a non-zero chance of525

observing individual years above 1.5◦C within the next decades, including the SSP1-1.9526

scenario that represents the strongest mitigation efforts. However, this finding does not527

imply that every scenario crosses the Paris agreement 1.5◦C global warming limit because528

whether a temperature threshold will be crossed or not is commonly evaluated for 20-year529

mean temperatures (Lee et al., 2021). To account for this definition, we also compute the530

20-year running mean GSAT time series for each realisation and show for each 20-year531

window the fraction of realisations that crosses 1.5◦C or 2◦C (Figure 6c,d). We find that532

MPI-GE CMIP6 with the SSP1-1.9 scenario is consistent with the 1.5◦C warming limit,533

whereas all other scenarios cross this threshold. We stress that when 1.5◦C are crossed for534

20-year means is still affected by internal variability: for SSP1-2.6, 1.5◦C may be crossed535

around the 20-year mean of the period starting in 2030, but only 10 years later it is virtually536

certain that 1.5◦C is crossed in the 20-year mean of any realisation. Further, the SSP1-1.9537

and SSP1-2.6 scenarios will not cross 2◦C neither in single years nor for 20-year means while538

all other scenarios will cross this threshold between 20-year means starting in 2035 to 2050.539

These estimates are at the upper range of the IPCC AR6 central estimate of crossing the540

1.5◦C threshold which lies in the early 2030s for all scenarios except SSP5-8.5 (Marotzke et541

al., 2022; Lee et al., 2021).542
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We note that the IPCC AR6 uncertainty range includes uncertainties in historical543

warming, climate sensitivity and internal variability (Lee et al., 2021), whereas MPI-GE544

CMIP6 has a fixed climate sensitivity and the uncertainty range is only due to internal545

variability. However, the observed internal variability in GSAT is well simulated by the546

model (Suarez-Gutierrez et al., 2021) and its equilibrium climate sensitivity of 2.8◦C is close547

to the central estimate of the IPCC AR6 assessment of 3◦C. Comparing the central estimates548

of crossing times for 1.5◦C between MPI-GE CMIP6 and the IPCC AR6 assessment shows549

that the MPI-GE CMIP6 estimates are systematically later than in AR6 (Table S6). Most550

notably, SSP1-1.9 does not cross 1.5◦C in the model, the crossing in SSP1-2.6 occurs a decade551

later, and the crossing in all other scenarios about five years later than in IPCC AR6. This552

shows that the MPI-GE CMIP6 estimates are broadly consistent with but slightly more553

conservative than the IPCC AR6 assessment.554

We conclude that with its good representation of internal variability in GSAT and its555

equilibrium climate sensitivity close to the central estimate of the IPCC AR6 assessment,556

MPI-GE CMIP6 offers a unique framework to investigate timing and local impacts of cross-557

ing temperature thresholds such as 1.5◦C.558

3.3 Combining SMILEs and artificial intelligence559

SMILEs and artificial intelligence can be combined powerfully because the multiple reali-560

sations of a same model provide testing, validation and training data sets to infill gaps in561

observational data. We provide one example by using a method that is based on an in-562

painting technique developed by Liu et al. (2018) to repair corrupted images. It makes use563

of a U-Net neural network made of partial convolutional layers and a state-of-the-art loss564

function designed to produce semantically meaningful predictions. As shown in Kadow et565

al. (2020), the method can infill large and irregular regions of missing climate data and is566

able to reconstruct specific climate patterns that are not captured by standard interpolation567

techniques such as the Kriging method (Cowtan & Way, 2014).568

We here test whether the ensemble size of MPI-GE CMIP6 is sufficiently large to be569

used for infilling the HadCRUT5 data set with similar capability than the 100-member MPI-570

GE CMIP5. The models used to infill the HadCRUT5 data set (Dunn et al., 2020) have571

been trained using gridded global historical surface temperature anomalies from three large572

ensembles: 1) MPI-GE CMIP6, containing 30 realisations and spanning the 1850-2014 time573

period; 2) MPI-GE CMIP5, containing 100 realisations and spanning the 1850-2005 time574

period; and 3) a subset of MPI-GE CMIP5 containing the first 30 ensemble members, here575

called MPI-GE CMIP5(30). Before the training, one ensemble member was excluded from576

each ensemble to create three testing data sets. Three validation data sets were created577

from the remaining ensemble members of each data set by pulling out the data every 8578

timesteps for MPI-GE CMIP6 and MPI-GE CMIP5(30), and every 7 timesteps for MPI-GE579

CMIP5. The remaining data were used to create the training data sets which contain 50.242580

samples for MPI-GE CMIP6, 47.502 samples for MPI-GE CMIP5(30) and 162.162 samples581

for MPI-GE CMIP5. For this work, additional features have been implemented to the582

original version of the code (Kadow et al., 2020) to improve the computational performance583

and the quality of the reconstruction. In particular, a custom padding operation accounting584

for the boundary conditions of the global data is now applied before each partial convolution,585

to account for the sphere of the Earth.586

The annual global mean temperature time series reconstructed using the 100 member587

and the 30 member models are very similar, especially when compared to the original Had-588

CRUT5 data (Figure 7). For all three ensembles, we detect an overall warming signal also589

on a regional scale around the globe by comparing the climatologies 2020-1991 and 1920-590

1891 with a century apart (insets in Figure 7 and Figure S6). In particular, the warming591

patterns reconstructed from the three ensembles show a strong century warming signal in592

northern polar regions, where the original HadCRUT5 data set has missing data. Large593
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areas in the Pacific also consistently show a warming between the two climatologies, de-594

spite the fact that the region is affected by strong ENSO variability. The infilled data in595

the sparsely observed Antarctica show a less strong, but more mixed warming signal as596

observed when reconstructed with the different ensembles. From the striking similarity in597

the reconstructed pattern, we conclude that MPI-GE CMIP6 allowed us to train a model598

with equivalent capabilities to MPI-GE CMIP5 but at a lower computational cost.599

4 Summary and Conclusions600

MPI-GE CMIP6 is a new 30-member single-model initial-condition large ensemble which601

power goes beyond its predecessor MPI-GE CMIP5 (Maher et al., 2019) in several aspects602

and allows for novel analyses with broad societal relevance:603

First, MPI-GE CMIP6 provides 3-hourly, 6-hourly and daily model output that is604

together with its ensemble size well suited to investigate present and future changes in605

climate extremes, their drivers, and their changing characteristics across different emission606

scenarios. While several studies used MPI-GE CMIP5 to study present and future changes607

in climate extremes (e.g., Suarez-Gutierrez et al., 2020a, 2020b; Landrum & Holland, 2020),608

the high-frequency output of MPI-GE CMIP6 now allows one to also investigate the drivers609

and causal links of these changes which can be compared across different emission scenarios.610

For instance, we find from daily output that the recently observed Siberian and Pacific611

North American heatwaves will occur every year in 2071-2100 in high-emission scenarios612

but substantially less frequent in the low-emission scenarios. We further find from the613

3-hourly output that the frequency of wind extremes is projected to decrease in tropical614

to mid-latitude oceans in all five emission scenarios. These findings illustrate that MPI-615

GE CMIP6 is specifically suited to investigate climate extremes and can be used to study616

high-impact events.617

Second, MPI-GE CMIP6 provides the opportunity to compare the ensemble to high-618

resolution simulations of the same model version, including a 10-member ensemble of MPI-619

ESM-HR (1.0◦ atmosphere, 0.4◦ ocean), and a single member of MPI-ESM-XR (0.5◦ at-620

mosphere, 0.4◦ ocean). While MPI-GE CMIP6 is not able to represent the unprecedented621

precipitation extreme in western Europe observed on 14th of July 2021 and in northern Italy622

observed on 2nd of October 2020, we find that these events are captured by high-resolution623

simulations of the same model version. This finding illustrates the benefit of comparing low-624

resolution SMILEs with high-frequency output to high-resolution simulations of the same625

model version for investigating regional climate extremes.626

Third, MPI-GE CMIP6 provides historical simulations and the five emission scenarios627

SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 which enable the investigation of628

different climate futures and the quantification of uncertainty from internal variability. We629

find that the frequencies of marine heatwaves and ocean acidity extremes are projected630

to substantially increase in all emissions scenarios, with substantial recovery by 2100 only631

under SSP1-1.9. Moreover, the ensemble simulations of the scenarios SSP1-1.9 and SSP1-2.6632

specifically allow for quantifying irreducible uncertainty when aiming to limit global mean633

warming to 1.5◦C or 2◦C. We find that in MPI-GE CMIP6, even for the lowest emission634

scenario SSP1-1.9, which is consistent with the Paris Agreement pledges in this model, there635

is a non-zero chance to observe individual years above 1.5◦C. With its good representation636

of internal variability in GSAT and its equilibrium climate sensitivity close to the central637

estimate of the AR6 assessment, MPI-GE CMIP6 as a single-model ensemble provides new638

opportunities to quantify uncertainty in when global warming thresholds might be crossed.639

Such analyses on irreducible uncertainty from internal variability are highly relevant for640

investigating transition pathways to carbon-neutral economies to meet the Paris Agreement641

pledges.642
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Fourth, MPI-GE CMIP6 is run with CMIP6 forcing and provides the opportunity to643

compare the ensemble to other SMILEs with CMIP6 forcing. This facilitates comparisons644

to the growing number of SMILEs. From comparing the respective scenarios from MPI-GE645

CMIP6 to the ones from its predecessor MPI-GE CMIP5, we find that the change from646

CMIP5 to CMIP6 forcing causes a slightly stronger climate response, in line with findings647

from other SMILEs (Wyser et al., 2020; Fyfe et al., 2021), primarily caused by the updated648

forcing in CMIP6. From combining MPI-GE CMIP6 with artificial intelligence, we find649

that 30 realisations have equivalent capabilities as the 100-member MPI-GE CMIP5 when650

training a model to infill surface temperature observations.651

Overall, MPI-GE CMIP6 beneficially complements the number of available SMILEs by652

a unique combination of a moderate ensemble size, high-frequency model output, the full653

range of emission scenarios including the lower end, and the availability of high-resolution654

simulations of the same model version. Consequently, MPI-GE CMIP6 allows a better655

understanding of changes in climate variability and extremes, and to quantify related un-656

certainties. This improved quantification will help to better inform society on the likelihood657

of plausible changes in the climate system to occur, including climate extremes.658
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Figure 1: Comparison of key climate quantities of MPI-GE CMIP6 to observa-
tions or reanalyses and MPI-GE CMIP5. Ensemble spread (shading) and ensemble
mean (thick lines) for the historical simulations (grey), and the five emission scenarios
SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. Right hand-side panels show the
projected mean and range in year 2099 for the different scenarios of MPI-GE CMIP6 (30
realisations) and MPI-GE CMIP5 (100 realisations). Shown for a) global mean near-
surface air temperature (GSAT) anomalies (relative to 1985–2014), b) global mean pre-
cipitation, c) Northern Hemisphere sea-ice area in September, d) Atlantic Meridional
Overturning Circulation (AMOC), e) globally integrated CO2 flux into the ocean and
f) globally integrated net CO2 flux into the land. Thick black lines show observations or
reanalyses, specifically in a) HadCRUT5 (Morice et al., 2021), b) ERA5 (Hersbach et al.,
2020), c) Sea-Ice Index (Fetterer et al., 2017), d) RAPID (Frajka-Williams et al., 2021),
e,f) Global Carbon Project (Global Carbon Project, 2021; Friedlingstein et al., 2022).
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Figure 2: Return periods from MPI-GE CMIP6 for recently observed heat and
precipitation extremes for different emission scenarios. Return periods for a-b)
cumulative heat scaled with respect to climatology for a) spring (MAM) 2020 Siberian
heatwave and b) summer (JJA) 2021 Pacific North American heatwave, and c-d) seasonal
maximum daily precipitation for c) western Europe in summer (JJA) and d) northern
Italy in autumn for the historical climate (1850-1879, grey), the current climate (1992-
2021, black), and the five SSP scenarios for the period 2071-2100 (coloured). Shading
denotes 95% confidence intervals calculated by bootstrapping with re-sampling. The hor-
izontal dashed line in a) and b) marks the maximum cumulative heat as calculated from
ERA5, and in c) and d) the observed maximum daily precipitation of the respective sea-
son from E-OBS (Klein Tank et al., 2002). The observed spatial pattern of these events
is shown as maps in a) and b) for cumulative heat for spring 2020 and summer 2021,
respectively, and in c) and d) for precipitation on 14th of July 2021 and 2nd of October
2020, respectively. Black boxes mark the regions of interest used for averaging.

–24–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 3: Representation of precipitation extremes dependent on model reso-
lution. a-b) Comparison of summer (JJA) maximum daily precipitation averaged across
the western European box shown in Fig. 2c from 1950-2021 in three model resolutions
from MPI-ESM1.2 and in observations shown as a) return periods and b) probability
density functions. c-d) Comparison of autumn (SON) maximum daily precipitation av-
eraged across the northern Italy box shown in Fig. 2d from 1950-2021 in three model
resolutions from MPI-ESM1.2 and in observations shown as c) return periods and d)
probability density functions. Note that the return periods are calculated empirically.
Values of all summers or autumns, respectively, and all realisations are merged for each
ensemble. Further note that MPI-ESM-LR is based on 30 realisations, MPI-ESM-HR on
10 realisations and MPI-ESM-XR and the observed record on only a single realisation.
The sample size of MPI-ESM-HR and MPI-ESM-XR might be insufficient to determine
return levels above a few years robustly. The domain-averaged maximum daily precipita-
tion of the western European extreme event on 14th of July 2021 is 47.7 mm, and that of
the event in northern Italy on 2nd of October 2020 is 72.9 mm.
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a)

b)

c)

d)

e)

f)

g)

h)

Figure 4: Present and future frequency of marine heatwaves and ocean acid-
ity extremes. Maps of a) the ensemble mean number of marine heatwave (MHW) days
per year and e) the number of ocean acidity extreme event (OAX) days per year in the
reference period 1985-2014, based on the 99th percentile of daily mean sea surface temper-
ature, and of daily mean surface hydrogen ion concentration, respectively. b-d) Globally
and regionally averaged number of MHW days per year (global, extratropics: outside of
30◦N/30◦S, tropics: within 30◦N/30◦S) for the historical period 1850-2014 (grey), and
scenarios SSP1-1.9 (green), SSP1-2.6 (blue), SSP2-4.5 (yellow), SSP3-7.0 (red), SSP5-8.5
(purple) for the period 2015-2100. The shadings cover the ensemble spread, thick lines
show the 20-member ensemble mean. f-h) Globally and regionally averaged number of
OAX days per year and region, similar to b-d).
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Figure 5: Projected changes in near-surface wind speed and storm activity. a)
Absolute change in ensemble mean 95th annual percentiles of surface wind speed between
1985-2014 and 2071-2100, based on SSP5-8.5 forcing. Black circles mark regions for which
storm activity has been calculated. Maps for the other four SSP scenarios are shown
in Figure S5. b-c) Ensemble mean storm activity (thick lines) and interquartile range
(shading) for the historical simulations (grey) and the five scenarios (coloured) over b)
the Atlantic Ocean north-west of Bermuda and c) the Pacific Ocean south-east of Japan.
Coloured dots and bars indicate the 2071-2100 average and range of the ensemble mean
for each scenario, and crosses show the 2071-2100 mean ensemble balance.
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Figure 6: Probability of crossing Paris Agreement global warming limits. Prob-
ability of crossing a) 1.5◦C and b) 2◦C in a single year, and c) 1.5◦C and d) 2◦C in
20-year averages for the different emission scenarios until 2100. The crossing probability is
defined as the fraction of the 30 realisations that cross the temperature threshold relative
to the reference period 1850-1900. In c,d), the 20-year mean GSAT is plotted against the
central year of that 20-year period.
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Figure 7: Comparison of MPI-GE CMIP6 vs MPI-GE CMIP5 for infilling
observations of surface temperature with artificial intelligence. Annual global
mean anomaly temperature with respect to the 1961–1990 climatology obtained by us-
ing: the gridded original “non-infilled" HadCRUT5 data set (black curve), the partially
reconstructed HadCRUT5 data set from the Met Office (Morice et al., 2021), the fully
reconstructed HadCRUT5 data set obtained with the AI 100 members model (blue curve,
using MPI-GE CMIP5 (Maher et al., 2019)), the fully reconstructed HadCRUT5 obtained
with our AI 30 members model (red curve, using MPI-GE CMIP6). Insets: 2020-1991
climatology referenced to the 1920-1891 climatology. Left inset: Original HadCRUT5 data
set where gray pixels indicate missing values. Mean values have been computed only for
grid points containing at least 70% of valid values for the considered time period. Right
inset: Spatial reconstruction of the HadCRUT5 data set using the AI 30 members model.
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ERA5

ERA-Interim

GPCP

Figure S1. Global mean precipitation in MPI-GE CMIP6 compared to different

reanalyses and observations. Same as Figure 1b) but showing both ERA5, ERA-Interim and

the observational product of the Global Precipitation Climatology Project (GPCP) version 2.3.
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Figure S2. Comparison of the global mean temperature response of MPI-GE

CMIP5 and MPI-GE CMIP6 to a 1%CO2 increase per year relative to 1850-1899.

The 100 realisations of MPI-GE CMIP5 are shown in light grey and the ensemble mean in dark

grey. A single realisation of MPI-GE CMIP6 is shown in red. Note that the 100 realisations for

the historical period of MPI-GE CMIP5 end in year 2005.
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mm/day

MPI-ESM-XR 1950-2021 maximum summer daily precipitation

Figure S3. Spatial pattern of the maximum daily summer precipitation in western

Europe between 1950-2021 as simulated by MPI-ESM-XR. The black box marks the

region of interest averaged for Figure 2 and 3.
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Figure S4. Spatial distribution of marine heat waves (MHW) and ocean acidity

extremes (OAX) for different emission scenarios. Ensemble mean number of MHW days

per year (left panels) and number of OAX days per year (right panels) during 2071-2100 under

the emission scenarios SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. The MHW and

OAX are defined based on the 99th percentile of daily mean sea surface temperature and of daily

mean surface hydrogen ion concentration, respectively.
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Figure S5. Projected changes in near-surface wind speed for lower-emission scenar-

ios. Absolute change in ensemble mean 95th annual percentiles of surface wind speed between

1985-2014 and 2071-2100, based on a) SSP1-1.9, b) SSP1-2.6, c) SSP2-4.5, d) SSP3-7.0 forcing.

Black rectangles mark regions for which storm activity has been calculated.
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a) Reconstructed with MPI-GE CMIP6 (30)

b) Reconstructed with MPI-GE CMIP5 (100)

c) Reconstructed with MPI-GE CMIP5 (30)

Figure S6. Comparison of using MPI-GE CMIP6 and MPI-GE CMIP5 to infill

observations of surface temperature with artificial intelligence. Spatial reconstruction

of the HadCRUT5 data set using a) the AI 30 members model based on MPI-GE CMIP6, b)

the AI 100 members model based on MPI-GE CMIP5, and c) the AI 30 members model based

on a first 30 members of MPI-GE CMIP5.
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Data as listed in the following tables can be accessed either via DKRZ ESGF server or DKRZ

WDCC long term archive (DKRZ LTA):

• ESGF: https://esgf-data.dkrz.de/search/cmip6-dkrz/

• DKRZ LTA 3hourly: http://hdl.handle.net/21.14106/5bb56765ffe486031cd6600a3d34ba3ad99c7f20

• DKRZ LTA 6hourly: http://hdl.handle.net/21.14106/b61690b4d0080648815e2ceba91f5a764a3addc3

• DKRZ LTA daily: http://hdl.handle.net/21.14106/1ce9699e340e6c46f4b34626bae2b65714696c56
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Table S1: Parameters with daily output on ESGF avail-
able for all 30 realisations.

name parameter long name unit level
daily atmosphere / land

clt Total Cloud Cover Percentage % 1
cnc Canopy Covered Area Percentage % 1
es Bare Soil Evaporation kg m-2 s-1 1

hfls Surface Upward Latent Heat Flux W m-2 1
hfss Surface Upward Sensible Heat Flux W m-2 1
hur Relative Humidity % 47
hurs Near-Surface Relative Humidity % 1

hursmax Daily Maximum Near-Surface Relative Humidity % 1
hursmin Daily Minimum Near-Surface Relative Humidity % 1

hus Specific Humidity 1 47
hus850 Specific Humidity at 850hPa 1 1
huss Near-Surface Specific Humidity 1 1
lai Leaf Area Index 1 1

mlotst Ocean Mixed Layer Thickness Defined by Sigma T m 1
mrro Total Runoff kg m-2 s-1 1
mrso Total Soil Moisture Content kg m-2 1
mrsol Total Water Content of Soil Layer kg m-2 1
mrsos Moisture in Upper Portion of Soil Column kg m-2 1

od550aer Ambient Aerosol Optical Thickness at 550nm 1 1
pr Precipitation kg m-2 s-1 1
prc Convective Precipitation kg m-2 s-1 1
prsn Snowfall Flux kg m-2 s-1 1
ps Surface Air Pressure Pa 1
psl Sea Level Pressure Pa 1
rlds Surface Downwelling Longwave Radiation W m-2 1

rldscs Surface Downwelling Clear-Sky Longwave Radiation W m-2 1
rlus Surface Upwelling Longwave Radiation W m-2 1
rlut TOA Outgoing Longwave Radiation W m-2 1

rlutcs TOA Outgoing Clear-Sky Longwave Radiation W m-2 1
rsds Surface Downwelling Shortwave Radiation W m-2 1

rsdscs Surface Downwelling Clear-Sky Shortwave Radiation W m-2 1
rsdt TOA Incident Shortwave Radiation W m-2 1
rsus Surface Upwelling Shortwave Radiation W m-2 1

rsuscs Surface Upwelling Clear-Sky Shortwave Radiation W m-2 1
rsut TOA Outgoing Shortwave Radiation W m-2 1

rsutcs TOA Outgoing Clear-Sky Shortwave Radiation W m-2 1
rzwc Root Zone Soil Moisture kg m-2 1
sbl Surface Snow and Ice Sublimation Flux kg m-2 s-1 1

sfcWind Daily-Mean Near-Surface Wind Speed m s-1 1
sfcWindmax Daily Maximum Near-Surface Wind Speed m s-1 1

snc Snow Area Percentage % 1
snw Surface Snow Amount kg m-2 1

Continued on next page
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Table S1 – continued from previous page
name parameter long name unit level
snwc Snow water equivalent intercepted by the vegetation kg m-2 1

ta Air Temperature K 47
ta500 Air Temperature at 500hPa K 1
ta700 Air Temperature at 700hPa K 1
ta850 Air Temperature at 850hPa K 1
tas Near-Surface Air Temperature K 1

tasmax Daily Maximum Near-Surface Air Temperature K 1
tasmin Daily Minimum Near-Surface Air Temperature K 1
tauu Surface Downward Eastward Wind Stress Pa 1
tauv Surface Downward Northward Wind Stress Pa 1
tdps 2m Dewpoint Temperature K 1

tr Surface Radiative Temperature K 1
ts Surface Temperature K 1
tsl Temperature of Soil K 1
ua Eastward Wind m s-1 47

ua10 Eastward Wind at 10hPa m s-1 1
uas Eastward Near-Surface Wind m s-1 1
va Northward Wind m s-1 47
vas Northward Near-Surface Wind m s-1 1
wap Omega (=dp/dt) Pa s-1 47

wap500 Pressure Tendency Pa s-1 1
zg Geopotential Height m 47

zg10 Geopotential Height at 10hPa m 1
zg100 Geopotential Height at 100hPa m 1
zg1000 Geopotential Height at 1000hPa m 1
zg500 Geopotential Height at 500hPa m 1

daily ocean / sea ice / biogeochem
chlos Surface Mass Concentration of Total Phytoplankton

Expressed as Chlorophyll in Sea Water
kg m-3 1

omldamax Mean Daily Maximum Ocean Mixed Layer Thickness
Defined by Mixing Scheme

m 1

phycos Sea Surface Phytoplankton Carbon Concentration mol m-3 1
siconc Sea-Ice Area Percentage (Ocean Grid) % 1

sisnthick Snow Thickness m 1
sispeed Sea-Ice Speed m s-1 1
sithick Sea Ice Thickness m 1

sitimefrac Fraction of Time Steps with Sea Ice 1 1
siu X-Component of Sea-Ice Velocity m s-1 1
siv Y-Component of Sea-Ice Velocity m s-1 1
sos Sea Surface Salinity 0.001 1

sossq Square of Sea Surface Salinity 1.00E-06 1
t20d Depth of 20 degree Celsius Isotherm m 1
tos Sea Surface Temperature degC 1

tossq Square of Sea Surface Temperature degC2 1
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Table S2: Parameters with 3-hourly output on either
ESGF or DKRZ LTA (*) for any of the 30 realisations.

name parameter long name unit level r1-
r10

r11-
r30

atmosphere / land
clt Total Cloud Cover Percentage % 1 x
hfls Surface Upward Latent Heat Flux W m-2 1 x
hfss Surface Upward Sensible Heat Flux W m-2 1 x
hus Specific Humidity 1 47 x
huss Near-Surface Specific Humidity 1 1 x
mrro Total Runoff kg m-2 s-1 1 x x
mrsos Moisture in Upper Portion of Soil Column kg m-2 1 x

pr Precipitation kg m-2 s-1 1 x
prc Convective Precipitation kg m-2 s-1 1 x
prra Rainfall Flux kg m-2 s-1 1 x
prsn Snowfall Flux kg m-2 s-1 1 x
ps Surface Air Pressure Pa 1 x
psl Sea Level Pressure Pa 1 x x
rlds Surface Downwelling Longwave Radiation W m-2 1 x

rldscs Surface Downwelling Clear-Sky Longwave
Radiation

W m-2 1 x

rlus Surface Upwelling Longwave Radiation W m-2 1 x
rlut TOA Outgoing Longwave Radiation W m-2 1 x

rlutcs TOA Outgoing Clear-Sky Longwave Radiation W m-2 1 x
rsds Surface Downwelling Shortwave Radiation W m-2 1 x

rsdscs Surface Downwelling Clear-Sky Shortwave
Radiation

W m-2 1 x

rsdt TOA Incident Shortwave Radiation W m-2 1 x
rsucs Upwelling Clear-Sky Shortwave Radiation W m-2 48 x
rsus Surface Upwelling Shortwave Radiation W m-2 1 x

rsuscs Surface Upwelling Clear-Sky Shortwave Radiation W m-2 1 x
rsut TOA Outgoing Shortwave Radiation W m-2 1 x

rsutcs TOA Outgoing Clear-Sky Shortwave Radiation W m-2 1 x
sfcWind Near-Surface Wind Speed m s-1 1 x x

ta Air Temperature K 47 x
tas Near-Surface Air Temperature K 1 x x*
ua Eastward Wind m s-1 7 x
uas Eastward Near-Surface Wind m s-1 1 x x
va Northward Wind m s-1 7 x
vas Northward Near-Surface Wind m s-1 1 x x
wap Omega (=dp/dt) Pa s-1 7 x

ocean / sea ice / biogeochem
tos Sea Surface Temperature degC 1 x

April 27, 2023, 2:50pm



X - 12 :

Table S3: Parameters with 6-hourly output on either
ESGF or DKRZ LTA (*) for any of the 30 realisations.

name parameter long name unit level r1-
r10

r11-
r30

atmosphere / land
hur* Relative Humidity* 1* 47* r11*
hurs Near-Surface Relative Humidity % 1 x x
hus Specific Humidity 1 47 x x
huss Near-Surface Specific Humidity 1 1 x x
mrsol Total Water Content of Soil Layer kg m-2 5 x x
mrsos Moisture in Upper Portion of Soil Column kg m-2 1 x x

pr Precipitation kg m-2 s-1 1 x x
ps Surface Air Pressure Pa 1 x x
psl Sea Level Pressure Pa 1 x x

sfcWind Near-Surface Wind Speed m s-1 1 x
snw Surface Snow Amount kg m-2 1 x
ta Air Temperature K 47 x x
tas Near-Surface Air Temperature K 1 x x
ts Surface Temperature K 1 x
tsl Temperature of Soil K 1 x x
ua Eastward Wind m s-1 47 x x
uas Eastward Near-Surface Wind m s-1 1 x x
va Northward Wind m s-1 47 x x
vas Northward Near-Surface Wind m s-1 1 x x
wap Omega (=dp/dt) Pa s-1 4 x x
zg Geopotential Height m 28 x x

zg500 Geopotential Height at 500hPa m 1 x x

April 27, 2023, 2:50pm



: X - 13

Table S4: Parameters with daily output on either ESGF
or DKRZ LTA (*) for any of the 30 realisations.

name parameter long name unit level r1-
r10

r11-
r30

atmosphere / land
ares Aerodynamic Resistance s m-1 1 x
cct Air Pressure at Convective Cloud Top Pa 1 x
cl Percentage Cloud Cover % 47 x
cli Mass Fraction of Cloud Ice kg kg-1 47 x

clivi Ice Water Path kg m-2 1 x
clt Total Cloud Cover Percentage % 1 x x
clw Mass Fraction of Cloud Liquid Water kg kg-1 47 x

clwvi Condensed Water Path kg m-2 1 x
cnc Canopy Covered Area Percentage % 1 x x
es Bare Soil Evaporation kg m-2 s-1 1 x x

hfls Surface Upward Latent Heat Flux W m-2 1 x x
hfss Surface Upward Sensible Heat Flux W m-2 1 x x
hur Relative Humidity % 47 x x
hurs Near-Surface Relative Humidity % 1 x x

hursmax Daily Maximum Near-Surface Relative Humidity % 1 x x
hursmin Daily Minimum Near-Surface Relative Humidity % 1 x x

hus Specific Humidity 1 47 x x
hus850 Specific Humidity at 850hPa 1 1 x x
huss Near-Surface Specific Humidity 1 1 x x
lai Leaf Area Index 1 1 x x
mc Convective Mass Flux kg m-2 s-1 48 x

mlotst Ocean Mixed Layer Thickness Defined by Sigma
T

m 1 x x

mrro Total Runoff kg m-2 s-1 1 x x
mrrob Subsurface Runoff kg m-2 s-1 1 x
mrros Surface Runoff kg m-2 s-1 1 x
mrso Total Soil Moisture Content kg m-2 1 x x
mrsol Total Water Content of Soil Layer kg m-2 1 x x
mrsos Moisture in Upper Portion of Soil Column kg m-2 1 x x

od550aer Ambient Aerosol Optical Thickness at 550nm 1 1 x x
pr Precipitation kg m-2 s-1 1 x x
prc Convective Precipitation kg m-2 s-1 1 x x
prra Rainfall Flux over Land kg m-2 s-1 1 x
prsn Snowfall Flux kg m-2 s-1 1 x x
prw Water Vapor Path kg m-2 1 x
ps Surface Air Pressure Pa 1 x x
psl Sea Level Pressure Pa 1 x x
rlds Surface Downwelling Longwave Radiation W m-2 1 x x

rldscs Surface Downwelling Clear-Sky Longwave
Radiation

W m-2 1 x x

rlus Surface Upwelling Longwave Radiation W m-2 1 x x
Continued on next page
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Table S4 – continued from previous page
name parameter long name unit level r1-

r10
r11-
r30

rlut TOA Outgoing Longwave Radiation W m-2 1 x x
rlutcs TOA Outgoing Clear-Sky Longwave Radiation W m-2 1 x x
rsds Surface Downwelling Shortwave Radiation W m-2 1 x x

rsdscs Surface Downwelling Clear-Sky Shortwave
Radiation

W m-2 1 x x

rsdt TOA Incident Shortwave Radiation W m-2 1 x x
rsus Surface Upwelling Shortwave Radiation W m-2 1 x x

rsuscs Surface Upwelling Clear-Sky Shortwave Radiation W m-2 1 x x
rsut TOA Outgoing Shortwave Radiation W m-2 1 x x

rsutcs TOA Outgoing Clear-Sky Shortwave Radiation W m-2 1 x x
rzwc Root Zone Soil Moisture kg m-2 1 x x
sbl Surface Snow and Ice Sublimation Flux kg m-2 s-1 1 x x

sfcWind Daily-Mean Near-Surface Wind Speed m s-1 1 x x
sfcWindmax Daily Maximum Near-Surface Wind Speed m s-1 1 x x

snc Snow Area Percentage % 1 x x
snm Surface Snow Melt kg m-2 s-1 1 x
snw Surface Snow Amount kg m-2 1 x x
snwc snow water equivalent intercepted by the

vegetation
kg m-2 1 x x

ta Air Temperature K 47 x x
ta500 Air Temperature at 500hPa K 1 x x
ta700 Air Temperature at 700hPa K 1 x x
ta850 Air Temperature at 850hPa K 1 x x
tas Near-Surface Air Temperature K 1 x x

tasmax Daily Maximum Near-Surface Air Temperature K 1 x x
tasmin Daily Minimum Near-Surface Air Temperature K 1 x x
tauu Surface Downward Eastward Wind Stress Pa 1 x x
tauv Surface Downward Northward Wind Stress Pa 1 x x
tdps 2m Dewpoint Temperature K 1 x x

tr Surface Radiative Temperature K 1 x x
tran Transpiration kg m-2 s-1 1 x
ts Surface Temperature K 1 x x
tsl Temperature of Soil K 1 x x
ua Eastward Wind m s-1 47 x x

ua10 Eastward Wind at 10hPa m s-1 1 x x
uas Eastward Near-Surface Wind m s-1 1 x x

utendnogw Eastward Acceleration Due to Non-Orographic
Gravity Wave Drag

m s-2 39 x

utendogw Eastward Acceleration Due to Orographic
Gravity Wave Drag

m s-2 39 x

va Northward Wind m s-1 47 x x
vas Northward Near-Surface Wind m s-1 1 x x
wap Omega (=dp/dt) Pa s-1 47 x x

wap500 Pressure Tendency Pa s-1 1 x x
Continued on next page
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Table S4 – continued from previous page
name parameter long name unit level r1-

r10
r11-
r30

zg Geopotential Height m 47 x x
zg10 Geopotential Height at 10hPa m 1 x x
zg100 Geopotential Height at 100hPa m 1 x x
zg1000 Geopotential Height at 1000hPa m 1 x x
zg500 Geopotential Height at 500hPa m 1 x x

ocean / sea ice / biogeochem
chlos Surface Mass Concentration of Total

Phytoplankton Expressed as Chlorophyll in Sea
Water

kg m-3 1 x x

fgco2* Surface Downward Mass Flux of Carbon Dioxide
Expressed as Carbon*

kg m-2
s-1*

1* x*

intpp* Integrated Primary Production* mol C m-2
s-1*

1* x*

omldamax Mean Daily Maximum Ocean Mixed Layer
Thickness Defined by Mixing Scheme

m 1 x x

mlotst* Ocean Mixed Layer Thickness Defined by Sigma
T*

m* 1* x*

ph* Surface Hydrogen Ion Concentration* kmol m-3* 1* x*
phycos Sea Surface Phytoplankton Carbon

Concentration
mol m-3 1 x x

siconc Sea-Ice Area Percentage (Ocean Grid) % 1 x x
sisnthick Snow Thickness m 1 x x
sispeed Sea-Ice Speed m s-1 1 x x

sitemptop Surface Temperature of Sea Ice K 1 x
sithick Sea Ice Thickness m 1 x x

sitimefrac Fraction of Time Steps with Sea Ice 1 1 x x
siu X-Component of Sea-Ice Velocity m s-1 1 x x
siv Y-Component of Sea-Ice Velocity m s-1 1 x x
sos Sea Surface Salinity 0.001 1 x x

sossq Square of Sea Surface Salinity 1.00E-06 1 x x
spco2* Surface Partial Pressure of Carbon Dioxide in

Sea Water*
Pa* 1* x*

t20d Depth of 20 degree Celsius Isotherm m 1 x x
tos Sea Surface Temperature degC 1 x x

tossq Square of Sea Surface Temperature degC2 1 x x
zos* Sea Surface Height above Geoid* m* 1* x*
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Table S5. Coordinates of the grid points used for calculating storm activity in the model.

Grid point Latitude Longitude
NW of Bermuda - North 36.372◦ N 69.375◦ W
NW of Bermuda - West 32.642◦ N 73.125◦ W
NW of Bermuda - East 32.642◦ N 65.625◦ W
SE of Japan - North 36.372◦ N 142.500◦ E
SE of Japan - West 32.642◦ N 138.750◦ E
SE of Japan - East 32.642◦ N 146.250◦ E
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Table S6. Comparison of central estimates of 20-year mean crossing times of the 1.5◦ C

global warming threshold for MPI-GE CMIP6, IPCC AR6, and MPI-GE CMIP6 when using

the historical warming of IPCC AR6 instead of the model’s own historical warming. The time

ranges for MPI-GE CMIP6 only stem from internal variability whereas those for AR6 include

uncertainties in historical warming, climate sensitivity and internal variability.

Scenario MPI-GE CMIP6 AR6 Difference With AR6 historical warming
SSP1-1.9 NA 2025-2044 NA NA
SSP1-2.6 2034-2053 2023-2042 11 2042-2061
SSP2-4.5 2027-2046 2021-2040 6 2030-2049
SSP3-7.0 2025-2044 2021-2040 4 2027-2046
SSP5-8.5 2024-2043 2018-2037 6 2027-2046
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