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Abstract

Single-model initial-condition large ensembles are powerful tools to quantify the forced response, internal climate variability,
and their evolution under global warming. Here, we present the CMIP6 version of the Max Planck Institute Grand Ensemble
(MPI-GE CMIP6) with 30 realisations for the historical period and five emission scenarios. The power of MPI-GE CMIP6 goes
beyond its predecessor ensemble MPI-GE by providing high-frequency output, the full range of emission scenarios including
the highly policy-relevant low emission scenarios SSP1-1.9 and SSP1-2.6, and the opportunity to compare the ensemble to
complementary high-resolution simulations. First, we describe MPI-GE CMIPG6, evaluate it with observations and reanalyses
and compare it to MPI-GE. Then, we demonstrate with six novel application examples how to use the power of the ensemble
to better quantify and understand present and future climate extremes, to inform about uncertainty in approaching Paris
Agreement global warming limits, and to combine large ensembles and artificial intelligence. For instance, MPI-GE CMIP6
allows us to show that the recently observed Siberian and Pacific North American heatwaves would only avoid reaching 1-2 year
return periods in 2071-2100 with low emission scenarios, that recently observed European precipitation extremes are captured
only by complementary high-resolution simulations, and that 3-hourly output projects a decreasing activity of storms in mid-
latitude oceans. Further, the ensemble is ideal for estimates of probabilities of crossing global warming limits and the irreducible
uncertainty introduced by internal variability, and is sufficiently large to be used for infilling surface temperature observations

with artificial intelligence.
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Key Points:

« MPI-GE CMIP6 is a 30-member initial-condition large ensemble with up to 3-hourly
model output and five emission scenarios

» The ensemble is specifically suited to investigate climate extremes and Paris Agree-
ment global warming limits

 MPI-GE CMIP6 adequately represents heat extremes, while precipitation extremes
are captured by complementary high-resolution simulations
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Abstract

Single-model initial-condition large ensembles are powerful tools to quantify the forced re-
sponse, internal climate variability, and their evolution under global warming. Here, we
present the CMIP6 version of the Max Planck Institute Grand Ensemble (MPI-GE CMIP6)
with 30 realisations for the historical period and five emission scenarios. The power of MPI-
GE CMIP6 goes beyond its predecessor ensemble MPI-GE by providing high-frequency
output, the full range of emission scenarios including the highly policy-relevant low emis-
sion scenarios SSP1-1.9 and SSP1-2.6, and the opportunity to compare the ensemble to
complementary high-resolution simulations. First, we describe MPI-GE CMIPG6, evaluate it
with observations and reanalyses and compare it to MPI-GE. Then, we demonstrate with
six novel application examples how to use the power of the ensemble to better quantify and
understand present and future climate extremes, to inform about uncertainty in approach-
ing Paris Agreement global warming limits, and to combine large ensembles and artificial
intelligence. For instance, MPI-GE CMIP6 allows us to show that the recently observed
Siberian and Pacific North American heatwaves would only avoid reaching 1-2 year return
periods in 2071-2100 with low emission scenarios, that recently observed European precipi-
tation extremes are captured only by complementary high-resolution simulations, and that
3-hourly output projects a decreasing activity of storms in mid-latitude oceans. Further,
the ensemble is ideal for estimates of probabilities of crossing global warming limits and the
irreducible uncertainty introduced by internal variability, and is sufficiently large to be used
for infilling surface temperature observations with artificial intelligence.

Plain Language Summary

Climate model simulations that start from different initial states and differ only due to
the chaos in the climate system are used extensively to quantify the forced climate response,
variability intrinsic to the climate system, and their change under global warming. Here,
we present a new version of the Max Planck Institute Grand Ensemble (MPI-GE CMIP6)
that is run as part of the latest generation of climate models. This single-model ensemble
consists of 30 realisations for the historical period 1850-2014 and for five scenarios of possible
future climates until 2100. The power of MPI-GE CMIP6 goes beyond its predecessor by
not only providing monthly mean but also 3-hourly to daily model output, the full range
of future scenarios including the two highly policy-relevant scenarios that were designed to
match the Paris Agreement global warming limits of 1.5°C and 2°C, and the opportunity to
compare the low-resolution ensemble to simulations of the same model version with higher
horizontal resolution. In this paper, we describe the new ensemble and demonstrate with
novel application examples how to use its power. For instance, the new ensemble allows us to
show that recently observed heatwaves are projected to occur every year at the end of the 215t
century if anthropogenic carbon emissions remain high, that recently observed precipitation
extremes are captured only by simulations with higher horizontal resolution than that of
MPI-GE CMIP6, and that the storminess in many ocean basins is projected to decrease.
Further, the ensemble is ideal for estimates of crossing probabilities of Paris Agreement
global warming limits, and is sufficiently large to be used to infill missing observations of
surface temperature with artificial intelligence.

1 Introduction

Single-model initial-condition large ensembles (SMILEs) have become increasingly impor-
tant to estimate the variability intrinsic to the climate system. A growing number of SMILEs
are now available, reasonably sampling both model uncertainty and internal variability due
to their ensemble size. SMILEs enabled substantial progress in understanding the Earth
system. For instance, SMILEs were used to separate forced signals from internal variability
to unprecedented precision (Maher et al., 2019), to quantify transient changes in the magni-
tude of climate variability (Olonscheck et al., 2021), and to evaluate how well climate models
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capture the variability and forced changes in the historical observational record (Suarez-
Gutierrez et al., 2021). SMILEs are also used to identify systematic differences between
simulated and observed patterns of sea-surface temperature and sea-level pressure change
that are very unlikely to occur due to internal variability (Olonscheck et al., 2020; Wills
et al., 2022). Furthermore, recent developments in compound event research highlight the
importance of sufficiently sampling internal variability to robustly capture tail-risks in mul-
tivariate extremes, which requires even larger ensemble sizes than conventional univariate
extremes (Bevacqua et al., 2023). The availability of SMILEs from multiple models further
allows us to better quantify and differentiate sources of uncertainty in climate projections,
especially uncertainties arising from internal variability and those from model differences
(Deser et al., 2020; Lehner et al., 2020). These recent major advances in better understand-
ing and quantifying climate variability and change show that SMILESs are increasingly useful
tools for climate science.

The Max Planck Institute for Meteorology was one of the first modelling centres that
produced a SMILE: the Max Planck Institute Grand Ensemble (MPI-GE, Maher et al.
(2019)), which is still the largest SMILE available. MPI-GE — from here on called MPI-GE
CMIP5 — is extremely successful and a powerful tool, but it is limited in various aspects:
MPI-GE CMIP5 provides monthly model output with some daily output added later for
one scenario only (e.g., Loughran et al., 2021; Raymond et al., 2022), it is run with CMIP5
forcing, and it provides three emission scenarios only. These limitations largely prevent the
analysis of climate extremes across different emission scenarios because of the lack of high-
frequency output, complicate direct comparisons of MPI-GE CMIP5 with SMILEs run with
CMIP6 forcing, and restrict its usability for highly policy-relevant science. MPI-GE CMIP6
goes beyond these limitations by specifically enabling (1) the analysis of climate extremes,
(2) comparisons to model versions with higher horizontal resolution, (3) comparisons to
other SMILEs with CMIP6 forcing, and (4) investigation of low-emission scenarios with
high policy relevance.

Several SMILEs with CMIP6 forcing have been recently run by a number of modelling
centres, including ensembles with high-frequency model output. Next to MPI-GE CMIP6,
currently available SMILEs with CMIP6 forcing and at least 30 realisations for both the
historical and future period are ACCESS-ESM1.5 (Ziehn et al., 2020), CanESM5 (Swart et
al., 2019), FGOALS (Lin et al., 2022), LENS2 (Rodgers et al., 2021), SMHI-LENS (Wyser
et al., 2021), SPEAR-MED (Delworth et al., 2020), and MIROC6 (Tatebe et al., 2019).
In comparison to the other CMIP6 SMILEs, MPI-GE CMIP6 provides the most extensive
high-frequency output for the historical period and five different emission scenarios (Table
1). This includes the two highly policy-relevant scenarios SSP1-1.9 and SSP1-2.6 that are
both otherwise only provided by CanESM5. In contrast to other SMILEs, MPI-GE CMIP6
has a climate sensitivity of 2.8°C which is close to the best estimate of 3°C of the Sixth As-
sessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6) (Forster
et al., 2021). Furthermore, its predecessor MPI-GE CMIP5, based on a closely comparable
model version, has shown to be one of the models that best represents the global and regional
internal variability and forced response in annual observed temperatures (Suarez-Gutierrez
et al., 2021) and precipitation (Wood et al., 2021). This good agreement with observa-
tions combined with the amount of high-frequency output for the full range of emission
scenarios makes MPI-GE CMIPG6 ideally suited for investigating future probabilities and
magnitudes of climate extremes. The suitability of MPI-GE CMIPG6 for studies on climate
extremes is further enhanced by the possibility to compare the low-resolution ensemble to
high-resolution ensembles or single simulations of the same model version that were run as
part of the High Resolution Model Intercomparison Project (HighResMIP, Haarsma et al.
(2016), compare Table 2). This unique combination of strengths makes MPI-GE CMIP6 a
useful contribution to the CMIP6 multi-model ensemble and a powerful tool to investigate
high-frequency climate variability and highly policy-relevant science questions.



Table 1:

at least 30 realisations

Characteristics of MPI-GE CMIP6 and other SMILEs with CMIP6 forcing and

SMILE Model Horizontal High-frequency Realisa- Time Scenarios ECS
name version resolution output tions period
MPI-GE MPI- 1.8°atm., daily for all para- 30 1850- SSP1-1.9, 2.80°C
CMIP6 ESM1.2- 1.5°0cean meters, 3-hr, 6-hr 2100 1-2.6, 2-4.5,
LR for some (see 3-7.0, 5-8.5
Tables 2 and S1)
ACCESS-  ACCESS-  1.88x1.25°atm.; daily for many 40 1850- SSP1-2.6, 3.87°C
ESM1.5 ESM1.5 1.0°0cean atm. parameters 2100 2-4.5, 3-7.0,
5-8.5
CanESM5  CanESM5 2.8°atm., daily for some 50 1850- SSP1-1.9, 5.62°C
1.0°0cean atm. parameters 2100 1-2.6, 2-4.5,
3-7.0, 5-8.5
FGOALS CAS 2.0°atm., daily for many 110 1850- SSP5-8.5 2.80°C
Super-large FGOALS- 1.0°0cean atm. parameters 2100
Ensemble g3 + tos, omldamax
LENS2 CESM2 1.0°atm., daily for all 100 1850- SSP3-7.0 5.16°C
1.0°0cean parameters, 3-hr, 2100
6-hr for some
SMHI- EC- 1.8%atm.; daily for many 50 1970- SSP1-1.9,  4.31°C
LENS Earth3.3.1 1.0°0cean atm. parameters 2100 3-3.4, 5-3.4
-0S, 5-8.5
SPEAR- GFDL 0.5°atm., daily for tas, 30 1921- SSP5-8.5 1.78°C
MED AM4-LM4  1.0° (tropical  tasmin, tasmax, 2100
refinement to pr, slp, uas, vas
0.3°) ocean
MIROCG6 MIROCG6 1.4°atm., 3-hr and daily for 50 1850- SSP1-2.6, 2.61°C
1.0°0cean ta, tas, pr 2100 2-4.5, 5-8.5

In this paper we present the new Max Planck Institute Grand Ensemble (MPI-GE

CMIP6), and demonstrate its power beyond its predecessor ensemble MPI-GE CMIP5
(Maher et al., 2019) with six application examples. In section 2, MPI-GE CMIP6 is pre-
sented, evaluated with observations and reanalyses, and compared to MPI-GE CMIP5. In
section 3, the power of MPI-GE CMIP6 is demonstrated with six application examples that
specifically use the high-frequency model output for an improved understanding of climate
extremes, the low-end emission scenarios for research on Paris Agreement global warming
limits, and the medium ensemble size for an efficient combination of SMILEs with artificial
intelligence. Section 4 summarises and concludes the paper.

2 MPI-GE CMIP6
2.1 Model description

MPI-GE CMIP6 is a 30-member ensemble simulated with the Max Planck Institute Earth
System Model version 1.2 (MPI-ESM1.2, Mauritsen et al. (2019)), in the low resolution (LR)
setup. In comparison to the MPI-GE CMIP5 simulations described in Maher et al. (2019),
Mauritsen et al. (2019) summarises the updates that were introduced to MPI-ESM1.2, most
importantly new radiation and aerosol parameterisations, and a nitrogen cycle for land
biogeochemistry. Further, a major difference arises from the update of the external forcing
from CMIP5 (Taylor et al., 2012) to CMIP6 (Eyring et al., 2016).



Table 2: Available simulations of MPI-ESM1.2 with different horizontal resolution. The
MPI-ESM1.2-HR and -XR simulations were run as part of HighResMIP.

Model version Horizontal Realisa- Time Scenarios
resolution tions period
MPI-ESM1.2-LR T63, 1.8°atm.; 30 1850-2100 SSP1-1.9, 1-2.6,
GR15, 1.5°0cean 2-4.5, 3-7.0, 5-8.5
MPI-ESM1.2-HR T127, 1.0°atm.; 10 (2) 1850-2100  SSP3-7.0 (SSP1-2.6,
TP04, 0.4°0cean 2-4.5, 5-8.5)
MPI-ESM1.2-XR T255, 0.5°tm.; 1 1950-2050 SSP5-8.5

TP04, 0.4°0cean

MPI-GE CMIP6 is run with MPI-ESM version 1.2.01p7, with the atmosphere com-
ponent ECHAMG6 (Stevens et al. 2013, echam-6.3.05p2), which is directly coupled to the
land component JSBACH (Reick et al. 2013, jsbach-3.20pl), and the ocean and sea-ice
component MPIOM (Jungclaus et al. 2013, mpiom-1.6.3p4). MPIOM includes the ocean
biogeochemistry module HAMOCC (Ilyina et al., 2013). The atmosphere/land and ocean
components are coupled once a day by OASIS-MCT (Craig et al. (2017), oasis3mct-2.0).
In MPI-ESM1.2-LR the atmosphere is resolved with spectral resolution T63 (equivalent to
approx. 1.8° grid resolution) and 47 vertical levels, the ocean is resolved with a GR15 grid,
nominal resolution 1.5°; at 40 vertical levels.

All simulations follow the CMIP6 protocol (Eyring et al., 2016) in terms of initialisation
and historical and future external forcing (i.e. atmospheric composition, solar cycle, volcanic
eruptions, land use). The 30-member ensemble of historical simulations covers the time
period 1850-2014 and each member is initialised from a different state, approximately 25
years apart, of a quasi-stationary one-member 1000-year long preindustrial simulation. This
macro initialisation from the preindustrial control state samples the full phase space of both
the ocean and atmosphere states (Marotzke, 2019). Five scenario simulations (SSP1-1.9,
SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, 30 realisations each) cover the time period 2015-
2100, and in each scenario the realisations are directly initialised from their corresponding
realisations of the historical ensemble.

2.2 Availability of high-frequency model output

In addition to standard CMIP6 monthly mean output, daily mean 3D fields of the state
of atmosphere and ocean as well as selected daily mean 2D fields, i.e. for sea ice and land
surface, are available for all simulations (Table S1 for details). Additionally, a number
of atmospheric and land surface parameters are available on the 3-hourly time scale as
listed in Table 3. Standard ocean biogeochemistry output from HAMMOC, 3D and 2D, is
available on a monthly mean basis, with additional daily means for selected surface 2D or
integrated 2D fields (see Table S1). Model output can be accessed via DKRZ’s ESGF server
at https://esgf-data.dkrz.de/search/cmip6-dkrz/.

2.3 Model evaluation and comparison to MPI-GE CMIP5

MPI-GE CMIP6 performs well in representing key climate quantities as derived from ob-
servations and reanalyses (Figure 1). The simulated range of global mean near-surface air
temperature (GSAT) anomaly captures the interannual variability and the warming rate of
HadCRUTS5 well (Morice et al. (2021), Figure 1la). The projected ensemble mean GSAT
warming at the end of the 215 century relative to the 1985-2014 reference period ranges
from 0.4K in SSP1-1.9 to 3.7K in SSP5-8.5.



Table 3: Parameters with 3-hourly and 6-hourly output on ESGF available for all 30 reali-
sations. The parameters with daily output are listed in Table S1. A full list of parameters
subdivided for members r1-r10 and r11-r30 is given in Tables S2-S4.

name parameter long name unit level
3-hourly atmosphere / land
mrro Total Runoff kg m-2 s-1 1
psl Sea Level Pressure Pa 1
sfcWind Near-Surface Wind Speed m s-1 1
tas Near-Surface Air Temperature K 1
uas Eastward Near-Surface Wind m s-1 1
vas Northward Near-Surface Wind m s-1 1
6-hourly atmosphere / land

hurs Near-Surface Relative Humidity % 1
hus Specific Humidity 1 47
huss Near-Surface Specific Humidity 1 1
mrsol Total Water Content of Soil Layer kg m-2 5
mrsos Moisture in Upper Portion of Soil Column kg m-2 1
pr Precipitation kg m-2 s-1 1
ps Surface Air Pressure Pa 1
psl Sea Level Pressure Pa 1
ta Air Temperature K 47
tas Near-Surface Air Temperature K 1
tsl Temperature of Soil K 1
ua Eastward Wind m s-1 47
uas Eastward Near-Surface Wind m s-1 1
va Northward Wind m s-1 47
vas Northward Near-Surface Wind m s-1 1
wap Omega (=dp/dt) Pa s-1 4
7g Geopotential Height m 28
zg500 Geopotential Height at 500hPa m 1

For global mean precipitation, MPI-GE CMIP6 underestimates both the magnitude
and the interannual variability estimated from the ERA5 reanalysis (Figure 1b), as well
as that of ERA-Interim (Figure S1). However, when comparing global mean precipitation
in MPI-GE CMIP6 to the observational product of the Global Precipitation Climatology
Project (GPCP, Adler et al. (2018)), we find that MPI-GE CMIP6 overestimates the ob-
served global mean precipitation, but still shows too little interannual variability (Figure
S1). The different estimates from observational and reanalyses products confirm previ-
ous findings that global mean precipitation products have large uncertainty of up to 40%
(Bosilovich et al., 2016; Bock et al., 2020). Thus, MPI-GE CMIP6 is well within the range
of observational uncertainty, but underestimates interannual variability. For the Septem-
ber Northern Hemisphere sea-ice area, the simulated range captures the observed evolution
as derived from the sea-ice index (Fetterer et al. (2017), Figure 1c). September Northern
Hemisphere sea-ice area is projected to shrink below the 1 million square kilometre threshold
in the second half of the 215 century in SSP2-4.5, SSP3-7.0 and SSP5-8.5, but remains in
both SSP1-1.9 and SSP1-2.6 until the end of the 215° century, similar to previous findings
on sea-ice decline in CMIP6 (Notz & Community, 2020; Lee et al., 2021). The simulated
range of the Atlantic meridional overturning circulation (AMOC) at 26° N is similar to the
observed strength and interannual variability of the RAPID observations (Frajka-Williams
et al. (2021), Figure 1d). However, the observations suggest that MPI-GE CMIPG6 slightly
overestimates the AMOC strength. The simulated range of the globally integrated COq
flux into the ocean and the net COs flux into the land agrees well with the magnitude as



reconstructed in the Global Carbon Project (Friedlingstein et al. (2022)), with simulated
estimates of the globally integrated net COy flux into the land exhibiting larger deviations
from the mean state than those observed (Figure le-f). The evaluation of MPI-GE CMIP6
with observations and reanalyses shows that the ensemble realistically simulates both the
long-term evolution and — except for precipitation — also the interannual variability of key
climate quantities.

We further compare MPI-GE CMIP6 to MPI-GE CMIP5 with respect to the response
of the key climate quantities to the various emission scenarios at the end of the 215 century.
We find that MPI-GE CMIP6 shows slightly higher global-mean warming by the end of the
215 century than MPI-GE CMIP5 especially for the respective highest-emission scenarios
(Figure 1a). In line with this, September Northern Hemisphere sea-ice area is projected to
decline more in the respective SSP than RCP scenarios in the ensemble mean (Figure 1c).
Similarly, the ensemble-mean decline in AMOC is substantially stronger in all SSP scenarios
than in their respective RCP scenarios (Figure 1d). The globally integrated CO5 flux into
the ocean is larger in the mid and high-end SSP than in the respective RCP scenarios
(Figure le). The projected change in net COy flux into the land is largely uncertain,
but shows a similar response at the end of the 215¢ century, except for SSP5-8.5 which
shows a substantially stronger ensemble-mean increase than RCP8.5 (Figure 1f). In contrast
to the stronger changes in MPI-GE CMIP6 compared to MPI-GE CMIP5, global mean
precipitation is projected to increase less in the respective SSP than RCP scenarios (Figure
1b). From comparing the global mean temperature response of both model versions to a
1%COs increase per year, i.e. the same forcing, we find a very similar warming rate and
variability (Figure S2). This implies that the stronger changes in most quantities can be
largely explained by the slightly stronger radiative forcing in the SSP compared to RCP
scenarios, as has been shown for other models too (Wyser et al., 2020; Fyfe et al., 2021).
We conclude that differences between MPI-GE CMIP6 and MPI-GE CMIP5 largely stem
from the updated forcing in CMIP6 compared to CMIP5 rather than from differences in the
model formulation.

3 Power of MPI-GE CMIP6 beyond MPI-GE CMIP5

MPI-GE CMIP5 (Maher et al., 2019) is extremely successful and a powerful tool to quantify
climate variability and its change under global warming. However, the applicability of MPI-
GE CMIP6 goes beyond MPI-GE CMIP5 in at least four critical aspects:

First, MPI-GE CMIP5 is run with CMIP5 forcing which limits direct comparisons to
the large number of SMILEs that were run with CMIP6 forcing. MPI-GE CMIP6 provides
the opportunity to compare MPI-ESM with other SMILEs run with CMIP6 forcing, and to
investigate the impact of different forcings between MPI-GE CMIP5 and MPI-GE CMIP6.

Second, MPI-GE CMIP5 does not provide high-frequency model output across different
emission scenarios, but only monthly mean output in most cases which strongly limits the
usefulness for investigating short-lived climate extremes and their drivers (Suarez-Gutierrez
et al., 2020a). In contrast, MPI-GE CMIP6 provides high-frequency output with 3-hourly
and 6-hourly output for some variables (see Table 3) and daily output for all variables (see
Table S1). This high-frequency output comes at the expense of a smaller ensemble size of
30 realisations instead of 100 realisations, but makes MPI-GE CMIP6 specifically suited for
the analysis of climate extremes.

Third, MPI-GE CMIP6 can be compared to higher-resolution simulations of the same
model version (see Table 2), for instance 10 realisations of MPI-ESM1.2-HR (1.0° atm.,
0.4° ocean, Miiller et al. (2018)) or a single realisation of MPI-ESM1.2-XR which provides
also higher horizontal resolution in the atmosphere (0.5° atm., 0.4° ocean, Gutjahr et al.
(2019)). This allows for the combination of high-frequency output in relatively low horizontal



resolution of MPI-GE CMIP6 with high-resolution simulations, which is not possible with
MPI-GE CMIP5.

Fourth, MPI-GE CMIP6 provides five instead of three emission scenarios. The five
scenarios with 30 realisations each span the full range of IPCC scenarios from the low-
emission scenario SSP1-1.9 to the high-emission scenario SSP5-8.5. With the scenarios
SSP1-1.9 and SSP1-2.6, MPI-GE CMIP6 provides ensembles of two scenarios that were
designed for projections of the Paris Agreement global warming limits of a 1.5°C and 2°C
warmer world by the end of this century. This makes MPI-GE CMIP6 one of the few models
that provide large ensembles for the two scenarios aligned with the Paris Agreement pledges,
which allows for timely and highly policy-relevant science.

In the following, we exemplify the power of MPI-GE CMIP6 with six application ex-
amples. These examples include the analysis of heat, precipitation, wind, and ocean acidity
extremes (Section 3.1), the probability of crossing Paris Agreement global warming limits
(Section 3.2), and the potential of combining SMILEs with artificial intelligence methods
for infilling observations (Section 3.3).

3.1 Analysing climate extremes

Climate extremes are among the most devastating and costly events, and their frequency and
intensity is projected to increase with global warming (Seneviratne et al., 2021). However,
climate models struggle to represent observed extremes because of large internal climate
variability and their limited horizontal and temporal resolution (e.g., Slingo et al., 2022).
Given the ensemble size and high-frequency output of MPI-GE CMIP6, we first investigate
projected changes in heat and precipitation extremes and evaluate whether the new ensem-
ble is capable of realistically simulating recently observed heat and precipitation extremes
(Section 3.1.1). We then test whether observed precipitation extremes are better captured
by model versions with higher horizontal resolution (Section 3.1.2). Finally, we investigate
projected changes in marine heatwaves and ocean acidity extremes (Section 3.1.3) as well as
in wind extremes (Section 3.1.4). For these analyses we choose a fixed baseline climatology
over the time period 1985-2014.

3.1.1 Continental heat and precipitation extremes

We first evaluate whether MPI-GE CMIP6 is capable of simulating heat and precipitation
extremes that were recently observed (Figure 2). We focus on the Siberian heatwave in
spring 2020 (Ciavarella et al., 2021), the Pacific North American heatwave in summer 2021
(Philip et al., 2022), the extreme precipitation event in western Europe in summer 2021
(Ibebuchi, 2022; Tuel et al., 2022), and the extreme precipitation event in northern Italy in
autumn 2020 (Davolio et al., 2023). To do so, we use daily surface maximum temperature
and daily precipitation from MPI-GE CMIP6, and use ERA5 (Hersbach et al., 2020) and
E-OBS (Klein Tank et al., 2002) as observational reference.

For continental heat extremes, we use the metric heat excess, which takes into account
both heatwave intensity and persistence into one single metric (Perkins-Kirkpatrick & Lewis,
2020). To calculate heat excess, we identify heatwaves on a grid-point level when daily
maximum near-surface air temperature exceeds the 90*" percentile based on a centred 15-
day running window of the historical period 1985-2014 for at least three consecutive days.
The cumulative heat is then calculated by seasonal integration of the exceeding heat above
the threshold during heatwave days. In addition, we weight the cumulative heat of each
grid point by the cosine of the latitude and spatially integrate it. For the 2020 Siberian
heatwave we integrate the cumulative heat over boreal spring (MAM) and 40° N-80° N and
60° E-130° E. For the 2021 Pacific North American heatwave we integrate the cumulative
heat over boreal summer (JJA) and 25° N-65° N and 90° W-130° W (see maps in Figure
2a,b). We scale the cumulative heat with respect to climatology (1985-2014). We compute



the return periods for historical climate (1850-1879), the current climate (1992-2021) and
the five SSP scenarios (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-5.8; 2071-2100), and
compare them to the two recent heatwaves in ERA5 (Figure 2a,b). The cumulative heat
estimated by ERA5 in spring 2020 and summer 2021 integrated over the respective domains
is 4.3 and 4.5.

These two record-shattering heat extremes led to devastating impacts. The Siberian
heatwave was linked to large wildfires that causes a release of 56 megatons of COz in June
2020, and to the melting of large permafrost areas which led to widespread infrastructure
and environmental damages (Ciavarella et al., 2021). The Pacific North American heatwave
also led to hundreds of attributable deaths, marine life mass-mortality events, reduced crop
and fruit yields, river flooding from rapid snow and glacier melt, and a substantial increase
in wildfires (White et al., 2023). In line with previous attribution studies (Ciavarella et
al., 2021; Philip et al., 2022), we find that both heatwaves were virtually impossible in
the preindustrial MPI-GE CMIP6 world, and have over 100-year return periods in current
climate conditions. However, under the moderate emission scenario SSP2-4.5, heat excess
levels as high as those during the 2020 Siberian heatwave could occur every four years
(Figure 2a), and more than every other year for the 2021 Pacific North American heatwave
(Figure 2b). In SSP5-8.5, MPI-GE CMIP6 projections show that a comparable 1-in-100-
years event by the end of the 215" century reaches heat excess levels 5 to 8 times higher
than the 2020 and 2021 levels, respectively. Only in the low emission scenarios SSP1-1.9 or
SSP1-2.6 return periods below 10 years for such heat extremes can be avoided.

For precipitation extremes, we focus on two recently observed record-shattering events:
the extreme precipitation event in western Europe on the 14*" of July 2021, and the one
in northern Italy on 2"¢ of October 2020. The extreme precipitation event in western
Europe caused unprecedented flooding of the rivers Ahr and Erft. A rapid attribution
study shows that observations over a larger region and different regional climate models
give high confidence that human-induced climate change has increased the likelihood and
intensity of events like the western European precipitation extreme (Kreienkamp et al.,
2021; Ibebuchi, 2022), in line with the intensification of observed extreme precipitation in
central Europe during the last century related to Northern Hemispheric warming (Zeder &
Fischer, 2020). When integrated over 49° N-52° N and 5° E-8° E, the daily precipitation as
observed by the E-OBS data set (Klein Tank et al., 2002) on 14" of July 2021 is 47.7 mm
which represents the maximum daily precipitation in summer in the 72-year long observed
record (see map in Figure 2c¢). The extreme precipitation event in northern Italy caused
devastating large-scale flooding and represents an unprecedented strong event in a region
that shows a high frequency of precipitation extremes (Davolio et al., 2023; Grazzini et
al., 2021). The event was caused by a superposition of an upper-level trough over the
western Mediterranean basin and moisture transport from the tropics by an atmospheric
river (Davolio et al., 2023). When integrated over 43° N-47°N and 6° E-10° E, the daily
precipitation observed by E-OBS on 2" of October 2020 is 72.9 mm.

We use daily precipitation from MPI-GE CMIP6 and E-OBS, and compare the ob-
served extreme precipitation events to the seasonal maximum daily precipitation simulated
for the historical climate (1850-1879), the current climate (1992-2021), and the five SSP
scenarios for the period 2071-2100. We find that MPI-GE CMIP6 does not simulate a sum-
mer and autumn daily precipitation event as intense as observed, not even until the end of
the 215 century (Figure 2c). This implies that in any of the climate conditions simulated
by MPI-GE CMIP6 an event as intense as the ones observed in 2020 and 2021 is virtually
impossible, with return periods exceeding 900 years for all scenarios. We further find that
simulated summer and autumn maximum daily precipitation is larger for higher emission
scenarios than for lower scenarios in 2071-2100 and for the historical and current climate,
in line with the fact that warmer air can hold more water leading to increased precipitation
(e.g., Pendergrass et al., 2017; Myhre et al., 2019). However, the spread from the emis-
sion scenarios largely overlaps, suggesting that the uncertainty due to internal variability
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dominates scenario uncertainty and thus events typical for higher emission scenarios could
also occur in a lower warming world due to internal variability. The results show that pre-
cipitation extremes as intense as the ones observed are not captured by MPI-GE CMIP6
possibly because the horizontal resolution of MPI-GE CMIP6 is too low to simulate real-
world mechanisms leading to such small-scale precipitation extremes (Slingo et al., 2022).
Given the increased probability of extremes that are unprecedented in the observed record
and the often substantial impacts (Fischer et al., 2021), a realistic representation of such
extreme events by climate models is highly needed.

3.1.2 Resolution dependence of representing precipitation extremes

Higher horizontal resolution of climate models improves the simulation of extreme precipita-
tion because higher-resolution models reflect smaller spatial scales of extreme precipitation
and key processes such as deep convection do not need to be parameterised (Wehner et
al., 2014; Tles et al., 2020; Kendon et al., 2021; Kahraman et al., 2021). To test whether
the inability of MPI-GE CMIP6 to represent the two observed precipitation extremes is
caused by the model’s coarse horizontal resolution, we investigate whether these events are
better captured in higher-resolution versions of the same model, namely 10 realisations of
MPI-ESM1.2-HR (Miiller et al., 2018) with 1.0° atmospheric horizontal resolution, and a
single realisation of MPI-ESM1.2-XR, (Gutjahr et al., 2019) with 0.5° atmospheric horizontal
resolution (see Table 2).

For the western European event, we find that MPI-ESM1.2-HR and MPI-ESM1.2-XR
show higher agreement with the observed distribution of summer maximum daily precipi-
tation over the period 1950-2021 than MPI-ESM1.2-LR, the low-resolution model version
used for MPI-GE CMIP6 (Figure 3a,b). Strikingly, the single realisation of MPI-ESM1.2-XR
simulates a single daily precipitation as intense as the one observed with a more widespread
but still similar pattern (compare Figure S3), while MPI-ESM1.2-LR and MPI-ESM1.2-HR
do not simulate such high daily precipitation amounts. Although the horizontal resolution
of MPI-ESM1.2-XR is still not sufficient to resolve important processes such as moist con-
vection (Hewitt et al., 2022; Slingo et al., 2022), our finding suggests that its resolution is
sufficient to represent the recently observed regional precipitation extreme. Alternatively,
MPI-ESM1.2-XR might overestimate the real-world precipitation intensity, which could also
explain why the single simulation captures an event as intense as observed.

For autumn precipitation in northern Italy, we find that MPI-ESM1.2-HR much bet-
ter represents the observed frequency of autumn maximum daily precipitation than MPI-
ESM1.2-LR (Figure 3c¢,d). MPI-ESM1.2-XR shows generally too high autumn maximum
precipitation, simulating precipitation amounts as large as observed with higher frequency.
This is in line with previous findings that in the Mediterranean coastal region autumn pre-
cipitation intensity is larger at convection-permitting resolution than at coarse resolution
because realistically representing deep convection is central for such events (Luu et al.,
2020; Pichelli et al., 2021). The comparison between the western European and northern
Italian events suggests that the model is able to simulate larger-scale autumn precipita-
tion at coarser horizontal resolution than convective summer precipitation (Feldmann et al.,
2008; Luu et al., 2020; Williams & O’Gorman, 2022). We conclude that while MPI-GE
CMIP6 fails to simulate the observed precipitation extremes in western Europe and north-
ern Italy, high-resolution simulations of the same model version are able to capture these
extreme events, highlighting the potential for investigating regional precipitation extremes
from comparing high-frequency model output of MPI-GE CMIP6 with simulations of higher
horizontal resolution.

3.1.3 Marine heatwaves and ocean acidity extremes

We analyse daily mean sea surface temperature (SST) and hydrogen ion concentration ([HT])
to identify marine heatwaves and ocean acidity extremes between 1850 and 2100 (Figure 4).
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We use a percentile-based threshold and the reference period 1985-2014 for both extremes
such that the probability of the occurrence of marine heatwaves and ocean acidity extremes
in a year is the same. SST and [H*] are defined as extreme, if they exceed the 99" percentile
for five consecutive days (Hobday et al., 2016; Burger et al., 2020). Although applying a
duration criterion for ocean acidity extremes is not common, here it ensures comparability
with marine heatwaves. The percentiles are calculated as the 20-member ensemble mean
(only members 11 to 30 contain daily mean output for [H+]) over the 99" multiyear daily
running percentile with a 5-day window length at every grid cell between 1985 and 2014.
Finally, we calculate the number of extreme days per year to characterise changes of both
extremes with time and across scenarios.

Before the reference period 1985-2014, almost no marine heatwaves are detected. Be-
tween 1985 and 2014, less than ten days per year are extreme with marine heatwaves being
more frequent in the subpolar North Atlantic and the Southern Ocean (Figure 4a). By
2030, between five and 70 days per year are extreme with substantial overlap among dif-
ferent scenarios. By 2100, the SSP5-8.5 scenario projects the most marine heatwaves, with
the entire ocean being in almost a constant state of extreme; while in the SSP1-1.9 scenario
the number of extreme days per year does not exceed 15 by 2100 (Figure 4b, Figure S4).
There is a much larger difference between the SSP1-1.9 and SSP5-8.5 scenarios in terms of
global marine heatwave days at the end of the 21st century when compared to the difference
in terms of global mean temperature between these scenarios (compare Figures la and 4b),
indicating an amplified impact of global warming on marine heatwaves.

Over the historical period, globally, no ocean acidity extreme is detectable prior to the
reference period. Within the reference period 1985-2014 (Figure 4e), the number of days
with extreme [H™] increases to approximately five days per year in 2010 and continues to
increase substantially to nearly 40 days per year in 2014. Locally, within the reference period,
only very weak spatial gradients in the ensemble-mean number of ocean acidity extremes
exist (Figure 4e). Until 2030, the entire ocean area moves rapidly to a near-permanent
extreme state with more than 300 extreme days per year for all five future scenarios. By
2100, almost all days of a year show ocean acidity extremes in the SSP2-4.5, SSP3-7.0, and
SSP5-8.5 scenarios, while in the SSP1-2.6 scenario, the number of ocean acidity extreme
days is projected to decline slightly by the end of the 215 century (Figure 4f, Figure S4).
Within the SSP1-1.9 scenario, ocean acidity extremes are projected to peak at approximately
330 days per year between 2025-2040 and decline thereafter to 140 days per year by 2100.
In this scenario, ocean acidity extremes occur less frequently in the Arctic Ocean and in
the Southern Ocean compared to the Tropics between 2071-2100 (Figure 4g,h). There is a
striking difference in the global occurrence of ocean acidity extremes between SSP1-1.9 and
SSP1-2.6 in the second half of the 21st century (Figure 4f), despite only small differences
in terms of global mean temperature in both scenarios (Figure 1a).

The CO; system in seawater and the mixing ratio of atmospheric COs are tightly
related, which leads to the smooth response in the mean surface ocean [HT|. Sea surface
temperature on the other hand is more variable across space and time than [H*], therefore
the number of marine heatwaves varies more than the number of ocean acidity extremes
across ensemble members. The number of detected extremes is sensitive to the definition,
affected by the choice of threshold and reference period (Gruber et al., 2021). While using the
same definition for both marine heatwaves and ocean acidity extremes is helpful to illustrate
the different internal variability structure of the underlying parameters, understanding the
governing processes may require a different extreme event definition that would ultimately
lead to a different number of detected events.

3.1.4 Wind extremes

Future changes in wind extremes are among the most uncertain impacts of anthropogenic
climate change (Seneviratne et al., 2021). We use the 3-hourly output of MPI-GE CMIP6
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to project global changes in wind extremes and their dependence on the emission scenario
(Figure 5a and Figure S5). To detect projected global changes in wind speed, we first derive
95" annual percentiles of near-surface wind speeds for each grid point from the entire 30-
member ensemble and then calculate the absolute difference between the 2071-2100 mean
and the 1985-2014 reference mean. Here, we focus on SSP5-8.5 because the projected
changes are most distinct: Over the ocean, we find a latitudinal contrasting pattern with
increasing wind extremes over high-latitude oceans and decreasing wind extremes in most
mid- and low-latitude ocean basins. Over land, increases in wind extremes are projected
for South America, Western and Eastern Africa and parts of the Northern mid- to high-
latitudes, whereas substantial decreases are projected for Alaska, Siberia, Central Asia and
the Western Sahara. Weaker changes but with the same pattern are found for lower-emission
scenarios (Figure S5).

We further analyse projected changes in storm activity in two regions that are known
for the frequent passage of mature hurricanes and typhoons with often devastating impacts
when they make landfall: north-west of Bermuda in the North Atlantic (Figure 5b) and
south-east of Japan in the North Pacific (Figure 5¢). For both regions, we select three grid
points that form a triangle spanning the area of interest (Table S5). We then use 3-hourly
mean sea-level pressure data from MPI-GE CMIP6 at the selected grid points and derive
geostrophic winds vy from the horizontal mean sea-level pressure gradients dp/dx and dp/dy
according to Krieger et al. (2020) via

vy = (02 + 02", (1)

with
__Lop d _1op
T T pray M W of b
where p is the density of air (set at 1.25 kg m~2) and f the average of the Coriolis parameter
at the three corners of the triangle. We chose the grid points so that the resulting triangle
is sufficiently close to an equilateral triangle. This requirement is necessary to avoid a large
error propagation of pressure uncertainties, which would cause a shift of the wind direction
towards the main axis of the triangle (Krieger et al., 2020). We then define storm activity as
the standardised annual 95" percentiles of 3-hourly geostrophic wind speeds. We therefore
first calculate annual 95" percentiles of geostrophic winds for each ensemble member. We
then standardise by subtracting the 1985-2014 ensemble mean from each ensemble member,
and divide by the 1985-2014 ensemble standard deviation.

(2)

For both north-west of Bermuda and south-east of Japan, we find a decreasing storm
activity with strongest decreases for high-emission scenarios, while we find no notable change
in scenario SSP1-1.9 (Figure 5b,c and Figure S5). This agrees with the projected change
in surface wind speed, where the marine subtropics around 30° N show a strong signal of
decreasing wind speeds in the SSP5-8.5 scenario (Figure 5a).

We further calculate the ensemble balance to characterise whether changes in the en-
semble mean are caused by a shift in the majority of the ensemble members or by a few
strong outliers. To do so, we first apply a moving Gaussian low-pass filter to the storm
activity time series of each ensemble member. We then define thresholds for high and low
activity periods at 0.5¢ and —0.5 o, and count for how many members the low-pass filtered
curve exceeds these thresholds in a certain year. The difference in the number of high-
activity and low-activity members is then regarded as the ensemble balance (crosses on the
secondary y-axis in Figure 5b,c). In the SSP1-1.9 and SSP1-2.6 scenarios, we find that the
ensemble balance does not significantly deviate from 0 towards the end of the 215 century
in both focus regions, confirming the rather small projected change in storm activity. In the
high-emission SSP5-8.5 scenario, the ensemble balance falls to near -30 at the end of the
215 century, which indicates that nearly all ensemble members agree on a decline in storm
activity both north-west of Bermuda and south-east of Japan.
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The proxy for storm activity is based on the hypothetical geostrophic wind and its
long-term statistics, as proposed originally by Schmidt and von Storch (1993). For high
latitudes, where the synoptic-scale wind in higher altitudes is close to geostrophic, it has
been shown that the statistics of the geostrophic wind closely resemble the statistics of the
near-surface wind (Krueger & von Storch, 2011). In latitudes closer to the equator this
assumption does not hold, as most of the wind extremes occur in or near tropical cyclones,
which are not fully in geostrophic balance. The proxy should therefore not be used as a
single tool to make conclusions about future changes in the intensity or frequency of tropical
cyclones. However, the decreasing storm activity for mid-latitude hurricanes and typhoons
is in line with recent findings of a decreasing frequency of tropical cyclones (Chand et al.,
2022). As the proxy only describes storm activity with one quantity, it cannot distinguish
between changes in the frequency and changes in the intensity of storms. A change in storm
activity can thus be interpreted as a change in either number or intensity of cyclones, or a
combined change thereof. Also, changes connected to smaller-scale features such as fronts
or convective wind gusts within cyclones cannot be detected by the proxy, as the derived
geostrophic wind acts as an area mean over the entire triangle.

Overall, MPI-GE CMIP6 projects increasing wind extremes over high-latitude oceans
and decreasing wind extremes in most mid- and low-latitude oceans, in line with current
understanding of observed changes in wind extremes caused by a poleward shift of extra-
tropical storm tracks over both hemispheres (Seneviratne et al., 2021). We conclude that
MPI-GE CMIP6 with its 3-hourly model output is a powerful tool to understand changes
in the frequency and intensity of wind extremes for different emission scenarios.

3.2 Investigating crossing probabilities of 1.5°C and 2°C global warming

The Paris Agreement in 2015 states the goal to keep global warming well below 2°C, and to
pursue efforts to limit global warming to 1.5°C above preindustrial levels to avoid devastating
and unmanageable consequences of climate change. MPI-GE CMIP6 is suited to investigate
the uncertainty in crossing these global warming limits because one can account for internal
climate variability with ensemble simulations for five different emission scenarios, including
the scenarios SSP1-1.9 and SSP1-2.6 that project a global warming of 1.5°C and 2°C,
respectively.

To investigate the crossing probability of 1.5°C and 2°C of global warming in MPI-GE
CMIP6, we use annual mean, global mean near-surface air temperature (GSAT) to compute
for every year and each of the five scenarios the fraction of realisations (x / 30 realisations)
that crosses these temperature thresholds in a single year relative to the 1850-1900 reference
period (Figure 6a,b). We find that in all emission scenarios, there is a non-zero chance of
observing individual years above 1.5°C within the next decades, including the SSP1-1.9
scenario that represents the strongest mitigation efforts. However, this finding does not
imply that every scenario crosses the Paris agreement 1.5°C global warming limit because
whether a temperature threshold will be crossed or not is commonly evaluated for 20-year
mean temperatures (Lee et al., 2021). To account for this definition, we also compute the
20-year running mean GSAT time series for each realisation and show for each 20-year
window the fraction of realisations that crosses 1.5°C or 2°C (Figure 6¢,d). We find that
MPI-GE CMIP6 with the SSP1-1.9 scenario is consistent with the 1.5°C warming limit,
whereas all other scenarios cross this threshold. We stress that when 1.5°C are crossed for
20-year means is still affected by internal variability: for SSP1-2.6, 1.5°C may be crossed
around the 20-year mean of the period starting in 2030, but only 10 years later it is virtually
certain that 1.5°C is crossed in the 20-year mean of any realisation. Further, the SSP1-1.9
and SSP1-2.6 scenarios will not cross 2°C neither in single years nor for 20-year means while
all other scenarios will cross this threshold between 20-year means starting in 2035 to 2050.
These estimates are at the upper range of the IPCC ARG central estimate of crossing the
1.5°C threshold which lies in the early 2030s for all scenarios except SSP5-8.5 (Marotzke et
al., 2022; Lee et al., 2021).
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We note that the IPCC AR6 uncertainty range includes uncertainties in historical
warming, climate sensitivity and internal variability (Lee et al., 2021), whereas MPI-GE
CMIP6 has a fixed climate sensitivity and the uncertainty range is only due to internal
variability. However, the observed internal variability in GSAT is well simulated by the
model (Suarez-Gutierrez et al., 2021) and its equilibrium climate sensitivity of 2.8°C is close
to the central estimate of the IPCC ARG assessment of 3°C. Comparing the central estimates
of crossing times for 1.5°C between MPI-GE CMIP6 and the IPCC ARG assessment shows
that the MPI-GE CMIP6 estimates are systematically later than in AR6 (Table S6). Most
notably, SSP1-1.9 does not cross 1.5°C in the model, the crossing in SSP1-2.6 occurs a decade
later, and the crossing in all other scenarios about five years later than in IPCC AR6. This
shows that the MPI-GE CMIP6 estimates are broadly consistent with but slightly more
conservative than the IPCC AR6 assessment.

We conclude that with its good representation of internal variability in GSAT and its
equilibrium climate sensitivity close to the central estimate of the IPCC ARG assessment,
MPI-GE CMIP6 offers a unique framework to investigate timing and local impacts of cross-
ing temperature thresholds such as 1.5°C.

3.3 Combining SMILEs and artificial intelligence

SMILEs and artificial intelligence can be combined powerfully because the multiple reali-
sations of a same model provide testing, validation and training data sets to infill gaps in
observational data. We provide one example by using a method that is based on an in-
painting technique developed by Liu et al. (2018) to repair corrupted images. It makes use
of a U-Net neural network made of partial convolutional layers and a state-of-the-art loss
function designed to produce semantically meaningful predictions. As shown in Kadow et
al. (2020), the method can infill large and irregular regions of missing climate data and is
able to reconstruct specific climate patterns that are not captured by standard interpolation
techniques such as the Kriging method (Cowtan & Way, 2014).

We here test whether the ensemble size of MPI-GE CMIP6 is sufficiently large to be
used for infilling the HadCRUT5 data set with similar capability than the 100-member MPI-
GE CMIP5. The models used to infill the HadCRUTS5 data set (Dunn et al., 2020) have
been trained using gridded global historical surface temperature anomalies from three large
ensembles: 1) MPI-GE CMIP6, containing 30 realisations and spanning the 1850-2014 time
period; 2) MPI-GE CMIP5, containing 100 realisations and spanning the 1850-2005 time
period; and 3) a subset of MPI-GE CMIP5 containing the first 30 ensemble members, here
called MPI-GE CMIP5(30). Before the training, one ensemble member was excluded from
each ensemble to create three testing data sets. Three validation data sets were created
from the remaining ensemble members of each data set by pulling out the data every 8
timesteps for MPI-GE CMIP6 and MPI-GE CMIP5(30), and every 7 timesteps for MPI-GE
CMIP5. The remaining data were used to create the training data sets which contain 50.242
samples for MPI-GE CMIP6, 47.502 samples for MPI-GE CMIP5(30) and 162.162 samples
for MPI-GE CMIP5. For this work, additional features have been implemented to the
original version of the code (Kadow et al., 2020) to improve the computational performance
and the quality of the reconstruction. In particular, a custom padding operation accounting
for the boundary conditions of the global data is now applied before each partial convolution,
to account for the sphere of the Earth.

The annual global mean temperature time series reconstructed using the 100 member
and the 30 member models are very similar, especially when compared to the original Had-
CRUTS5 data (Figure 7). For all three ensembles, we detect an overall warming signal also
on a regional scale around the globe by comparing the climatologies 2020-1991 and 1920-
1891 with a century apart (insets in Figure 7 and Figure S6). In particular, the warming
patterns reconstructed from the three ensembles show a strong century warming signal in
northern polar regions, where the original HadCRUT5 data set has missing data. Large
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areas in the Pacific also consistently show a warming between the two climatologies, de-
spite the fact that the region is affected by strong ENSO variability. The infilled data in
the sparsely observed Antarctica show a less strong, but more mixed warming signal as
observed when reconstructed with the different ensembles. From the striking similarity in
the reconstructed pattern, we conclude that MPI-GE CMIPG6 allowed us to train a model
with equivalent capabilities to MPI-GE CMIP5 but at a lower computational cost.

4 Summary and Conclusions

MPI-GE CMIP6 is a new 30-member single-model initial-condition large ensemble which
power goes beyond its predecessor MPI-GE CMIP5 (Maher et al., 2019) in several aspects
and allows for novel analyses with broad societal relevance:

First, MPI-GE CMIP6 provides 3-hourly, 6-hourly and daily model output that is
together with its ensemble size well suited to investigate present and future changes in
climate extremes, their drivers, and their changing characteristics across different emission
scenarios. While several studies used MPI-GE CMIP5 to study present and future changes
in climate extremes (e.g., Suarez-Gutierrez et al., 2020a, 2020b; Landrum & Holland, 2020),
the high-frequency output of MPI-GE CMIP6 now allows one to also investigate the drivers
and causal links of these changes which can be compared across different emission scenarios.
For instance, we find from daily output that the recently observed Siberian and Pacific
North American heatwaves will occur every year in 2071-2100 in high-emission scenarios
but substantially less frequent in the low-emission scenarios. We further find from the
3-hourly output that the frequency of wind extremes is projected to decrease in tropical
to mid-latitude oceans in all five emission scenarios. These findings illustrate that MPI-
GE CMIPG is specifically suited to investigate climate extremes and can be used to study
high-impact events.

Second, MPI-GE CMIP6 provides the opportunity to compare the ensemble to high-
resolution simulations of the same model version, including a 10-member ensemble of MPI-
ESM-HR (1.0° atmosphere, 0.4° ocean), and a single member of MPI-ESM-XR (0.5° at-
mosphere, 0.4° ocean). While MPI-GE CMIP6 is not able to represent the unprecedented
precipitation extreme in western Europe observed on 14* of July 2021 and in northern Italy
observed on 2°¢ of October 2020, we find that these events are captured by high-resolution
simulations of the same model version. This finding illustrates the benefit of comparing low-
resolution SMILEs with high-frequency output to high-resolution simulations of the same
model version for investigating regional climate extremes.

Third, MPI-GE CMIP6 provides historical simulations and the five emission scenarios
SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 which enable the investigation of
different climate futures and the quantification of uncertainty from internal variability. We
find that the frequencies of marine heatwaves and ocean acidity extremes are projected
to substantially increase in all emissions scenarios, with substantial recovery by 2100 only
under SSP1-1.9. Moreover, the ensemble simulations of the scenarios SSP1-1.9 and SSP1-2.6
specifically allow for quantifying irreducible uncertainty when aiming to limit global mean
warming to 1.5°C or 2°C. We find that in MPI-GE CMIP6, even for the lowest emission
scenario SSP1-1.9, which is consistent with the Paris Agreement pledges in this model, there
is a non-zero chance to observe individual years above 1.5°C. With its good representation
of internal variability in GSAT and its equilibrium climate sensitivity close to the central
estimate of the AR6 assessment, MPI-GE CMIPG6 as a single-model ensemble provides new
opportunities to quantify uncertainty in when global warming thresholds might be crossed.
Such analyses on irreducible uncertainty from internal variability are highly relevant for
investigating transition pathways to carbon-neutral economies to meet the Paris Agreement
pledges.
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Fourth, MPI-GE CMIP6 is run with CMIP6 forcing and provides the opportunity to
compare the ensemble to other SMILEs with CMIP6 forcing. This facilitates comparisons
to the growing number of SMILEs. From comparing the respective scenarios from MPI-GE
CMIP6 to the ones from its predecessor MPI-GE CMIP5, we find that the change from
CMIP5 to CMIP6 forcing causes a slightly stronger climate response, in line with findings
from other SMILEs (Wyser et al., 2020; Fyfe et al., 2021), primarily caused by the updated
forcing in CMIP6. From combining MPI-GE CMIP6 with artificial intelligence, we find
that 30 realisations have equivalent capabilities as the 100-member MPI-GE CMIP5 when
training a model to infill surface temperature observations.

Overall, MPI-GE CMIP6 beneficially complements the number of available SMILEs by
a unique combination of a moderate ensemble size, high-frequency model output, the full
range of emission scenarios including the lower end, and the availability of high-resolution
simulations of the same model version. Consequently, MPI-GE CMIP6 allows a better
understanding of changes in climate variability and extremes, and to quantify related un-
certainties. This improved quantification will help to better inform society on the likelihood
of plausible changes in the climate system to occur, including climate extremes.
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Figure 1: Comparison of key climate quantities of MPI-GE CMIP6 to observa-
tions or reanalyses and MPI-GE CMIP5. Ensemble spread (shading) and ensemble
mean (thick lines) for the historical simulations (grey), and the five emission scenarios
SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. Right hand-side panels show the
projected mean and range in year 2099 for the different scenarios of MPI-GE CMIPG6 (30
realisations) and MPI-GE CMIP5 (100 realisations). Shown for a) global mean near-
surface air temperature (GSAT) anomalies (relative to 1985-2014), b) global mean pre-
cipitation, ¢) Northern Hemisphere sea-ice area in September, d) Atlantic Meridional
Overturning Circulation (AMOC), e) globally integrated CO4 flux into the ocean and

f) globally integrated net CO2 flux into the land. Thick black lines show observations or
reanalyses, specifically in a) HadCRUT5 (Morice et al., 2021), b) ERA5 (Hersbach et al.,
2020), c) Sea-Ice Index (Fetterer et al., 2017), d) RAPID (Frajka-Williams et al., 2021),
e,f) Global Carbon Project (Global Carbon Project, 2021; Friedlingstein et al., 2022).
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Figure 2: Return periods from MPI-GE CMIP6 for recently observed heat and
precipitation extremes for different emission scenarios. Return periods for a-b)
cumulative heat scaled with respect to climatology for a) spring (MAM) 2020 Siberian
heatwave and b) summer (JJA) 2021 Pacific North American heatwave, and c-d) seasonal
maximum daily precipitation for ¢) western Europe in summer (JJA) and d) northern
Italy in autumn for the historical climate (1850-1879, grey), the current climate (1992-
2021, black), and the five SSP scenarios for the period 2071-2100 (coloured). Shading
denotes 95% confidence intervals calculated by bootstrapping with re-sampling. The hor-
izontal dashed line in a) and b) marks the maximum cumulative heat as calculated from
ERAS5, and in ¢) and d) the observed maximum daily precipitation of the respective sea-
son from E-OBS (Klein Tank et al., 2002). The observed spatial pattern of these events

is shown as maps in a) and b) for cumulative heat for spring 2020 and summer 2021,
respectively, and in c¢) and d) for precipitation on 14" of July 2021 and 2"¢ of October
2020, respectively. Black boxes mark the regions of interest used for averaging.
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Figure 3: Representation of precipitation extremes dependent on model reso-
lution. a-b) Comparison of summer (JJA) maximum daily precipitation averaged across
the western European box shown in Fig. 2¢ from 1950-2021 in three model resolutions
from MPI-ESM1.2 and in observations shown as a) return periods and b) probability
density functions. c-d) Comparison of autumn (SON) maximum daily precipitation av-
eraged across the northern Italy box shown in Fig. 2d from 1950-2021 in three model
resolutions from MPI-ESM1.2 and in observations shown as c) return periods and d)
probability density functions. Note that the return periods are calculated empirically.
Values of all summers or autumns, respectively, and all realisations are merged for each
ensemble. Further note that MPI-ESM-LR is based on 30 realisations, MPI-ESM-HR on
10 realisations and MPI-ESM-XR and the observed record on only a single realisation.
The sample size of MPI-ESM-HR and MPI-ESM-XR might be insufficient to determine
return levels above a few years robustly. The domain-averaged maximum daily precipita-
tion of the western European extreme event on 14" of July 2021 is 47.7 mm, and that of
the event in northern Italy on 2" of October 2020 is 72.9 mm.
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Figure 4: Present and future frequency of marine heatwaves and ocean acid-
ity extremes. Maps of a) the ensemble mean number of marine heatwave (MHW) days
per year and e) the number of ocean acidity extreme event (OAX) days per year in the
reference period 1985-2014, based on the 99*" percentile of daily mean sea surface temper-
ature, and of daily mean surface hydrogen ion concentration, respectively. b-d) Globally
and regionally averaged number of MHW days per year (global, extratropics: outside of

30°N/30°S, tropics: within 30°N/30°S) for the historical period 1850-2014 (grey), and

scenarios SSP1-1.9 (green), SSP1-2.6 (blue), SSP2-4.5 (yellow), SSP3-7.0 (red), SSP5-8.5

(purple) for the period 2015-2100. The shadings cover the ensemble spread, thick lines
show the 20-member ensemble mean. f-h) Globally and regionally averaged number of

OAX days per year and region, similar to b-d).

—26—



a) Wind speed extremes

90°W 0° 90°E 180°

-2 -1 0 1 2
Change between 1985-2014 and 2071-2100 [m/s]

b) Storm activity north-west of Bermuda

o0
1 ; 10 ¥¢
2 2g
£ W\W/\/W\/\MW/WW\WWV(W Lt wlo wE
5 0 MW mo
© | N @3
€ 1 -102~
s~ X E 4
A a5
LA “053
X 30
1850 1900 1950 2000 2050 2100 -
Year
c) Storm activity south-east of Japan
o=
> 1 i 10 & §
> o A 0 ®E
5 0 A Ay mo
® m @8
€_1 — -108
£ -1 £ 4
& a5
Y jf;; 5y % _20,5 Q
] X 30
1850 1900 1950 2000 2050 2100 B

Year

Figure 5: Projected changes in near-surface wind speed and storm activity. a)
Absolute change in ensemble mean 95" annual percentiles of surface wind speed between
1985-2014 and 2071-2100, based on SSP5-8.5 forcing. Black circles mark regions for which
storm activity has been calculated. Maps for the other four SSP scenarios are shown

in Figure S5. b-c) Ensemble mean storm activity (thick lines) and interquartile range
(shading) for the historical simulations (grey) and the five scenarios (coloured) over b)
the Atlantic Ocean north-west of Bermuda and ¢) the Pacific Ocean south-east of Japan.
Coloured dots and bars indicate the 2071-2100 average and range of the ensemble mean
for each scenario, and crosses show the 2071-2100 mean ensemble balance.

27—



3)100% Probability of crossing 1.5 °C in 1-year periods bg Probability of crossing 2 °C in 1-year periods
> 80% 80%
%
a 60% 60%
o
Q
2 a0% 40%
w
wv
o
Y o20% 20%
0% 0%
-101’0 101’0 'LQD‘Q 1050 1060 1_010 10%0 'LQ()Q 'LQ’LQ 104,0 'LQD‘Q 1030 1060 1_010 'LQ%Q 'LQqQ
c) Probability of crossing 1.5 °C in 20-year periods d) Probability of crossing 2 ° C in 20-year periods
100% <~ 100%
> 80% 80%
E
a 60% 60%
S
Q
g\ 40% ——— SSP1-1.9 40%
A —— SSP1-2.6
g 20% —— SSP2-4.5 0%
—— SSP3-7.0
—— SSP5-8.5
0% 0% ” ” ”
1%‘;3»,'* 1%1:&' 1“11’;,“ 1%%’5“ 1°;’:1°~ 1“1";’0 1011;3;*« 1“7'\:3“ 1“,}:’0 1‘22{},“ 1“1'“:5'* 10;’;31“ 1“{2:’9 1“:;:;“

Figure 6: Probability of crossing Paris Agreement global warming limits. Prob-
ability of crossing a) 1.5°C and b) 2°C in a single year, and ¢) 1.5°C and d) 2°C in
20-year averages for the different emission scenarios until 2100. The crossing probability is
defined as the fraction of the 30 realisations that cross the temperature threshold relative
to the reference period 1850-1900. In c,d), the 20-year mean GSAT is plotted against the
central year of that 20-year period.
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Figure 7: Comparison of MPI-GE CMIP6 vs MPI-GE CMIPS5 for infilling
observations of surface temperature with artificial intelligence. Annual global
mean anomaly temperature with respect to the 1961-1990 climatology obtained by us-
ing: the gridded original “non-infilled" HadCRUT5 data set (black curve), the partially
reconstructed HadCRUTS5 data set from the Met Office (Morice et al., 2021), the fully
reconstructed HadCRUTS5 data set obtained with the AT 100 members model (blue curve,
using MPI-GE CMIP5 (Maher et al., 2019)), the fully reconstructed HadCRUT5 obtained
with our AT 30 members model (red curve, using MPI-GE CMIP6). Insets: 2020-1991
climatology referenced to the 1920-1891 climatology. Left inset: Original HadCRUTS5 data
set where gray pixels indicate missing values. Mean values have been computed only for
grid points containing at least 70% of valid values for the considered time period. Right
inset: Spatial reconstruction of the HadCRUT5 data set using the AI 30 members model.
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Key Points:

« MPI-GE CMIP6 is a 30-member initial-condition large ensemble with up to 3-hourly
model output and five emission scenarios

» The ensemble is specifically suited to investigate climate extremes and Paris Agree-
ment global warming limits

 MPI-GE CMIP6 adequately represents heat extremes, while precipitation extremes
are captured by complementary high-resolution simulations
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Abstract

Single-model initial-condition large ensembles are powerful tools to quantify the forced re-
sponse, internal climate variability, and their evolution under global warming. Here, we
present the CMIP6 version of the Max Planck Institute Grand Ensemble (MPI-GE CMIP6)
with 30 realisations for the historical period and five emission scenarios. The power of MPI-
GE CMIP6 goes beyond its predecessor ensemble MPI-GE by providing high-frequency
output, the full range of emission scenarios including the highly policy-relevant low emis-
sion scenarios SSP1-1.9 and SSP1-2.6, and the opportunity to compare the ensemble to
complementary high-resolution simulations. First, we describe MPI-GE CMIPG6, evaluate it
with observations and reanalyses and compare it to MPI-GE. Then, we demonstrate with
six novel application examples how to use the power of the ensemble to better quantify and
understand present and future climate extremes, to inform about uncertainty in approach-
ing Paris Agreement global warming limits, and to combine large ensembles and artificial
intelligence. For instance, MPI-GE CMIP6 allows us to show that the recently observed
Siberian and Pacific North American heatwaves would only avoid reaching 1-2 year return
periods in 2071-2100 with low emission scenarios, that recently observed European precipi-
tation extremes are captured only by complementary high-resolution simulations, and that
3-hourly output projects a decreasing activity of storms in mid-latitude oceans. Further,
the ensemble is ideal for estimates of probabilities of crossing global warming limits and the
irreducible uncertainty introduced by internal variability, and is sufficiently large to be used
for infilling surface temperature observations with artificial intelligence.

Plain Language Summary

Climate model simulations that start from different initial states and differ only due to
the chaos in the climate system are used extensively to quantify the forced climate response,
variability intrinsic to the climate system, and their change under global warming. Here,
we present a new version of the Max Planck Institute Grand Ensemble (MPI-GE CMIP6)
that is run as part of the latest generation of climate models. This single-model ensemble
consists of 30 realisations for the historical period 1850-2014 and for five scenarios of possible
future climates until 2100. The power of MPI-GE CMIP6 goes beyond its predecessor by
not only providing monthly mean but also 3-hourly to daily model output, the full range
of future scenarios including the two highly policy-relevant scenarios that were designed to
match the Paris Agreement global warming limits of 1.5°C and 2°C, and the opportunity to
compare the low-resolution ensemble to simulations of the same model version with higher
horizontal resolution. In this paper, we describe the new ensemble and demonstrate with
novel application examples how to use its power. For instance, the new ensemble allows us to
show that recently observed heatwaves are projected to occur every year at the end of the 215t
century if anthropogenic carbon emissions remain high, that recently observed precipitation
extremes are captured only by simulations with higher horizontal resolution than that of
MPI-GE CMIP6, and that the storminess in many ocean basins is projected to decrease.
Further, the ensemble is ideal for estimates of crossing probabilities of Paris Agreement
global warming limits, and is sufficiently large to be used to infill missing observations of
surface temperature with artificial intelligence.

1 Introduction

Single-model initial-condition large ensembles (SMILEs) have become increasingly impor-
tant to estimate the variability intrinsic to the climate system. A growing number of SMILEs
are now available, reasonably sampling both model uncertainty and internal variability due
to their ensemble size. SMILEs enabled substantial progress in understanding the Earth
system. For instance, SMILEs were used to separate forced signals from internal variability
to unprecedented precision (Maher et al., 2019), to quantify transient changes in the magni-
tude of climate variability (Olonscheck et al., 2021), and to evaluate how well climate models
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capture the variability and forced changes in the historical observational record (Suarez-
Gutierrez et al., 2021). SMILEs are also used to identify systematic differences between
simulated and observed patterns of sea-surface temperature and sea-level pressure change
that are very unlikely to occur due to internal variability (Olonscheck et al., 2020; Wills
et al., 2022). Furthermore, recent developments in compound event research highlight the
importance of sufficiently sampling internal variability to robustly capture tail-risks in mul-
tivariate extremes, which requires even larger ensemble sizes than conventional univariate
extremes (Bevacqua et al., 2023). The availability of SMILEs from multiple models further
allows us to better quantify and differentiate sources of uncertainty in climate projections,
especially uncertainties arising from internal variability and those from model differences
(Deser et al., 2020; Lehner et al., 2020). These recent major advances in better understand-
ing and quantifying climate variability and change show that SMILESs are increasingly useful
tools for climate science.

The Max Planck Institute for Meteorology was one of the first modelling centres that
produced a SMILE: the Max Planck Institute Grand Ensemble (MPI-GE, Maher et al.
(2019)), which is still the largest SMILE available. MPI-GE — from here on called MPI-GE
CMIP5 — is extremely successful and a powerful tool, but it is limited in various aspects:
MPI-GE CMIP5 provides monthly model output with some daily output added later for
one scenario only (e.g., Loughran et al., 2021; Raymond et al., 2022), it is run with CMIP5
forcing, and it provides three emission scenarios only. These limitations largely prevent the
analysis of climate extremes across different emission scenarios because of the lack of high-
frequency output, complicate direct comparisons of MPI-GE CMIP5 with SMILEs run with
CMIP6 forcing, and restrict its usability for highly policy-relevant science. MPI-GE CMIP6
goes beyond these limitations by specifically enabling (1) the analysis of climate extremes,
(2) comparisons to model versions with higher horizontal resolution, (3) comparisons to
other SMILEs with CMIP6 forcing, and (4) investigation of low-emission scenarios with
high policy relevance.

Several SMILEs with CMIP6 forcing have been recently run by a number of modelling
centres, including ensembles with high-frequency model output. Next to MPI-GE CMIP6,
currently available SMILEs with CMIP6 forcing and at least 30 realisations for both the
historical and future period are ACCESS-ESM1.5 (Ziehn et al., 2020), CanESM5 (Swart et
al., 2019), FGOALS (Lin et al., 2022), LENS2 (Rodgers et al., 2021), SMHI-LENS (Wyser
et al., 2021), SPEAR-MED (Delworth et al., 2020), and MIROC6 (Tatebe et al., 2019).
In comparison to the other CMIP6 SMILEs, MPI-GE CMIP6 provides the most extensive
high-frequency output for the historical period and five different emission scenarios (Table
1). This includes the two highly policy-relevant scenarios SSP1-1.9 and SSP1-2.6 that are
both otherwise only provided by CanESM5. In contrast to other SMILEs, MPI-GE CMIP6
has a climate sensitivity of 2.8°C which is close to the best estimate of 3°C of the Sixth As-
sessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6) (Forster
et al., 2021). Furthermore, its predecessor MPI-GE CMIP5, based on a closely comparable
model version, has shown to be one of the models that best represents the global and regional
internal variability and forced response in annual observed temperatures (Suarez-Gutierrez
et al., 2021) and precipitation (Wood et al., 2021). This good agreement with observa-
tions combined with the amount of high-frequency output for the full range of emission
scenarios makes MPI-GE CMIPG6 ideally suited for investigating future probabilities and
magnitudes of climate extremes. The suitability of MPI-GE CMIPG6 for studies on climate
extremes is further enhanced by the possibility to compare the low-resolution ensemble to
high-resolution ensembles or single simulations of the same model version that were run as
part of the High Resolution Model Intercomparison Project (HighResMIP, Haarsma et al.
(2016), compare Table 2). This unique combination of strengths makes MPI-GE CMIP6 a
useful contribution to the CMIP6 multi-model ensemble and a powerful tool to investigate
high-frequency climate variability and highly policy-relevant science questions.



Table 1:

at least 30 realisations

Characteristics of MPI-GE CMIP6 and other SMILEs with CMIP6 forcing and

SMILE Model Horizontal High-frequency Realisa- Time Scenarios ECS
name version resolution output tions period
MPI-GE MPI- 1.8°atm., daily for all para- 30 1850- SSP1-1.9, 2.80°C
CMIP6 ESM1.2- 1.5°0cean meters, 3-hr, 6-hr 2100 1-2.6, 2-4.5,
LR for some (see 3-7.0, 5-8.5
Tables 2 and S1)
ACCESS-  ACCESS-  1.88x1.25°atm.; daily for many 40 1850- SSP1-2.6, 3.87°C
ESM1.5 ESM1.5 1.0°0cean atm. parameters 2100 2-4.5, 3-7.0,
5-8.5
CanESM5  CanESM5 2.8°atm., daily for some 50 1850- SSP1-1.9, 5.62°C
1.0°0cean atm. parameters 2100 1-2.6, 2-4.5,
3-7.0, 5-8.5
FGOALS CAS 2.0°atm., daily for many 110 1850- SSP5-8.5 2.80°C
Super-large FGOALS- 1.0°0cean atm. parameters 2100
Ensemble g3 + tos, omldamax
LENS2 CESM2 1.0°atm., daily for all 100 1850- SSP3-7.0 5.16°C
1.0°0cean parameters, 3-hr, 2100
6-hr for some
SMHI- EC- 1.8%atm.; daily for many 50 1970- SSP1-1.9,  4.31°C
LENS Earth3.3.1 1.0°0cean atm. parameters 2100 3-3.4, 5-3.4
-0S, 5-8.5
SPEAR- GFDL 0.5°atm., daily for tas, 30 1921- SSP5-8.5 1.78°C
MED AM4-LM4  1.0° (tropical  tasmin, tasmax, 2100
refinement to pr, slp, uas, vas
0.3°) ocean
MIROCG6 MIROCG6 1.4°atm., 3-hr and daily for 50 1850- SSP1-2.6, 2.61°C
1.0°0cean ta, tas, pr 2100 2-4.5, 5-8.5

In this paper we present the new Max Planck Institute Grand Ensemble (MPI-GE

CMIP6), and demonstrate its power beyond its predecessor ensemble MPI-GE CMIP5
(Maher et al., 2019) with six application examples. In section 2, MPI-GE CMIP6 is pre-
sented, evaluated with observations and reanalyses, and compared to MPI-GE CMIP5. In
section 3, the power of MPI-GE CMIP6 is demonstrated with six application examples that
specifically use the high-frequency model output for an improved understanding of climate
extremes, the low-end emission scenarios for research on Paris Agreement global warming
limits, and the medium ensemble size for an efficient combination of SMILEs with artificial
intelligence. Section 4 summarises and concludes the paper.

2 MPI-GE CMIP6
2.1 Model description

MPI-GE CMIP6 is a 30-member ensemble simulated with the Max Planck Institute Earth
System Model version 1.2 (MPI-ESM1.2, Mauritsen et al. (2019)), in the low resolution (LR)
setup. In comparison to the MPI-GE CMIP5 simulations described in Maher et al. (2019),
Mauritsen et al. (2019) summarises the updates that were introduced to MPI-ESM1.2, most
importantly new radiation and aerosol parameterisations, and a nitrogen cycle for land
biogeochemistry. Further, a major difference arises from the update of the external forcing
from CMIP5 (Taylor et al., 2012) to CMIP6 (Eyring et al., 2016).



Table 2: Available simulations of MPI-ESM1.2 with different horizontal resolution. The
MPI-ESM1.2-HR and -XR simulations were run as part of HighResMIP.

Model version Horizontal Realisa- Time Scenarios
resolution tions period
MPI-ESM1.2-LR T63, 1.8°atm.; 30 1850-2100 SSP1-1.9, 1-2.6,
GR15, 1.5°0cean 2-4.5, 3-7.0, 5-8.5
MPI-ESM1.2-HR T127, 1.0°atm.; 10 (2) 1850-2100  SSP3-7.0 (SSP1-2.6,
TP04, 0.4°0cean 2-4.5, 5-8.5)
MPI-ESM1.2-XR T255, 0.5°tm.; 1 1950-2050 SSP5-8.5

TP04, 0.4°0cean

MPI-GE CMIP6 is run with MPI-ESM version 1.2.01p7, with the atmosphere com-
ponent ECHAMG6 (Stevens et al. 2013, echam-6.3.05p2), which is directly coupled to the
land component JSBACH (Reick et al. 2013, jsbach-3.20pl), and the ocean and sea-ice
component MPIOM (Jungclaus et al. 2013, mpiom-1.6.3p4). MPIOM includes the ocean
biogeochemistry module HAMOCC (Ilyina et al., 2013). The atmosphere/land and ocean
components are coupled once a day by OASIS-MCT (Craig et al. (2017), oasis3mct-2.0).
In MPI-ESM1.2-LR the atmosphere is resolved with spectral resolution T63 (equivalent to
approx. 1.8° grid resolution) and 47 vertical levels, the ocean is resolved with a GR15 grid,
nominal resolution 1.5°; at 40 vertical levels.

All simulations follow the CMIP6 protocol (Eyring et al., 2016) in terms of initialisation
and historical and future external forcing (i.e. atmospheric composition, solar cycle, volcanic
eruptions, land use). The 30-member ensemble of historical simulations covers the time
period 1850-2014 and each member is initialised from a different state, approximately 25
years apart, of a quasi-stationary one-member 1000-year long preindustrial simulation. This
macro initialisation from the preindustrial control state samples the full phase space of both
the ocean and atmosphere states (Marotzke, 2019). Five scenario simulations (SSP1-1.9,
SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, 30 realisations each) cover the time period 2015-
2100, and in each scenario the realisations are directly initialised from their corresponding
realisations of the historical ensemble.

2.2 Availability of high-frequency model output

In addition to standard CMIP6 monthly mean output, daily mean 3D fields of the state
of atmosphere and ocean as well as selected daily mean 2D fields, i.e. for sea ice and land
surface, are available for all simulations (Table S1 for details). Additionally, a number
of atmospheric and land surface parameters are available on the 3-hourly time scale as
listed in Table 3. Standard ocean biogeochemistry output from HAMMOC, 3D and 2D, is
available on a monthly mean basis, with additional daily means for selected surface 2D or
integrated 2D fields (see Table S1). Model output can be accessed via DKRZ’s ESGF server
at https://esgf-data.dkrz.de/search/cmip6-dkrz/.

2.3 Model evaluation and comparison to MPI-GE CMIP5

MPI-GE CMIP6 performs well in representing key climate quantities as derived from ob-
servations and reanalyses (Figure 1). The simulated range of global mean near-surface air
temperature (GSAT) anomaly captures the interannual variability and the warming rate of
HadCRUTS5 well (Morice et al. (2021), Figure 1la). The projected ensemble mean GSAT
warming at the end of the 215 century relative to the 1985-2014 reference period ranges
from 0.4K in SSP1-1.9 to 3.7K in SSP5-8.5.



Table 3: Parameters with 3-hourly and 6-hourly output on ESGF available for all 30 reali-
sations. The parameters with daily output are listed in Table S1. A full list of parameters
subdivided for members r1-r10 and r11-r30 is given in Tables S2-S4.

name parameter long name unit level
3-hourly atmosphere / land
mrro Total Runoff kg m-2 s-1 1
psl Sea Level Pressure Pa 1
sfcWind Near-Surface Wind Speed m s-1 1
tas Near-Surface Air Temperature K 1
uas Eastward Near-Surface Wind m s-1 1
vas Northward Near-Surface Wind m s-1 1
6-hourly atmosphere / land

hurs Near-Surface Relative Humidity % 1
hus Specific Humidity 1 47
huss Near-Surface Specific Humidity 1 1
mrsol Total Water Content of Soil Layer kg m-2 5
mrsos Moisture in Upper Portion of Soil Column kg m-2 1
pr Precipitation kg m-2 s-1 1
ps Surface Air Pressure Pa 1
psl Sea Level Pressure Pa 1
ta Air Temperature K 47
tas Near-Surface Air Temperature K 1
tsl Temperature of Soil K 1
ua Eastward Wind m s-1 47
uas Eastward Near-Surface Wind m s-1 1
va Northward Wind m s-1 47
vas Northward Near-Surface Wind m s-1 1
wap Omega (=dp/dt) Pa s-1 4
7g Geopotential Height m 28
zg500 Geopotential Height at 500hPa m 1

For global mean precipitation, MPI-GE CMIP6 underestimates both the magnitude
and the interannual variability estimated from the ERA5 reanalysis (Figure 1b), as well
as that of ERA-Interim (Figure S1). However, when comparing global mean precipitation
in MPI-GE CMIP6 to the observational product of the Global Precipitation Climatology
Project (GPCP, Adler et al. (2018)), we find that MPI-GE CMIP6 overestimates the ob-
served global mean precipitation, but still shows too little interannual variability (Figure
S1). The different estimates from observational and reanalyses products confirm previ-
ous findings that global mean precipitation products have large uncertainty of up to 40%
(Bosilovich et al., 2016; Bock et al., 2020). Thus, MPI-GE CMIP6 is well within the range
of observational uncertainty, but underestimates interannual variability. For the Septem-
ber Northern Hemisphere sea-ice area, the simulated range captures the observed evolution
as derived from the sea-ice index (Fetterer et al. (2017), Figure 1c). September Northern
Hemisphere sea-ice area is projected to shrink below the 1 million square kilometre threshold
in the second half of the 215 century in SSP2-4.5, SSP3-7.0 and SSP5-8.5, but remains in
both SSP1-1.9 and SSP1-2.6 until the end of the 215° century, similar to previous findings
on sea-ice decline in CMIP6 (Notz & Community, 2020; Lee et al., 2021). The simulated
range of the Atlantic meridional overturning circulation (AMOC) at 26° N is similar to the
observed strength and interannual variability of the RAPID observations (Frajka-Williams
et al. (2021), Figure 1d). However, the observations suggest that MPI-GE CMIPG6 slightly
overestimates the AMOC strength. The simulated range of the globally integrated COq
flux into the ocean and the net COs flux into the land agrees well with the magnitude as



reconstructed in the Global Carbon Project (Friedlingstein et al. (2022)), with simulated
estimates of the globally integrated net COy flux into the land exhibiting larger deviations
from the mean state than those observed (Figure le-f). The evaluation of MPI-GE CMIP6
with observations and reanalyses shows that the ensemble realistically simulates both the
long-term evolution and — except for precipitation — also the interannual variability of key
climate quantities.

We further compare MPI-GE CMIP6 to MPI-GE CMIP5 with respect to the response
of the key climate quantities to the various emission scenarios at the end of the 215 century.
We find that MPI-GE CMIP6 shows slightly higher global-mean warming by the end of the
215 century than MPI-GE CMIP5 especially for the respective highest-emission scenarios
(Figure 1a). In line with this, September Northern Hemisphere sea-ice area is projected to
decline more in the respective SSP than RCP scenarios in the ensemble mean (Figure 1c).
Similarly, the ensemble-mean decline in AMOC is substantially stronger in all SSP scenarios
than in their respective RCP scenarios (Figure 1d). The globally integrated CO5 flux into
the ocean is larger in the mid and high-end SSP than in the respective RCP scenarios
(Figure le). The projected change in net COy flux into the land is largely uncertain,
but shows a similar response at the end of the 215¢ century, except for SSP5-8.5 which
shows a substantially stronger ensemble-mean increase than RCP8.5 (Figure 1f). In contrast
to the stronger changes in MPI-GE CMIP6 compared to MPI-GE CMIP5, global mean
precipitation is projected to increase less in the respective SSP than RCP scenarios (Figure
1b). From comparing the global mean temperature response of both model versions to a
1%COs increase per year, i.e. the same forcing, we find a very similar warming rate and
variability (Figure S2). This implies that the stronger changes in most quantities can be
largely explained by the slightly stronger radiative forcing in the SSP compared to RCP
scenarios, as has been shown for other models too (Wyser et al., 2020; Fyfe et al., 2021).
We conclude that differences between MPI-GE CMIP6 and MPI-GE CMIP5 largely stem
from the updated forcing in CMIP6 compared to CMIP5 rather than from differences in the
model formulation.

3 Power of MPI-GE CMIP6 beyond MPI-GE CMIP5

MPI-GE CMIP5 (Maher et al., 2019) is extremely successful and a powerful tool to quantify
climate variability and its change under global warming. However, the applicability of MPI-
GE CMIP6 goes beyond MPI-GE CMIP5 in at least four critical aspects:

First, MPI-GE CMIP5 is run with CMIP5 forcing which limits direct comparisons to
the large number of SMILEs that were run with CMIP6 forcing. MPI-GE CMIP6 provides
the opportunity to compare MPI-ESM with other SMILEs run with CMIP6 forcing, and to
investigate the impact of different forcings between MPI-GE CMIP5 and MPI-GE CMIP6.

Second, MPI-GE CMIP5 does not provide high-frequency model output across different
emission scenarios, but only monthly mean output in most cases which strongly limits the
usefulness for investigating short-lived climate extremes and their drivers (Suarez-Gutierrez
et al., 2020a). In contrast, MPI-GE CMIP6 provides high-frequency output with 3-hourly
and 6-hourly output for some variables (see Table 3) and daily output for all variables (see
Table S1). This high-frequency output comes at the expense of a smaller ensemble size of
30 realisations instead of 100 realisations, but makes MPI-GE CMIP6 specifically suited for
the analysis of climate extremes.

Third, MPI-GE CMIP6 can be compared to higher-resolution simulations of the same
model version (see Table 2), for instance 10 realisations of MPI-ESM1.2-HR (1.0° atm.,
0.4° ocean, Miiller et al. (2018)) or a single realisation of MPI-ESM1.2-XR which provides
also higher horizontal resolution in the atmosphere (0.5° atm., 0.4° ocean, Gutjahr et al.
(2019)). This allows for the combination of high-frequency output in relatively low horizontal



resolution of MPI-GE CMIP6 with high-resolution simulations, which is not possible with
MPI-GE CMIP5.

Fourth, MPI-GE CMIP6 provides five instead of three emission scenarios. The five
scenarios with 30 realisations each span the full range of IPCC scenarios from the low-
emission scenario SSP1-1.9 to the high-emission scenario SSP5-8.5. With the scenarios
SSP1-1.9 and SSP1-2.6, MPI-GE CMIP6 provides ensembles of two scenarios that were
designed for projections of the Paris Agreement global warming limits of a 1.5°C and 2°C
warmer world by the end of this century. This makes MPI-GE CMIP6 one of the few models
that provide large ensembles for the two scenarios aligned with the Paris Agreement pledges,
which allows for timely and highly policy-relevant science.

In the following, we exemplify the power of MPI-GE CMIP6 with six application ex-
amples. These examples include the analysis of heat, precipitation, wind, and ocean acidity
extremes (Section 3.1), the probability of crossing Paris Agreement global warming limits
(Section 3.2), and the potential of combining SMILEs with artificial intelligence methods
for infilling observations (Section 3.3).

3.1 Analysing climate extremes

Climate extremes are among the most devastating and costly events, and their frequency and
intensity is projected to increase with global warming (Seneviratne et al., 2021). However,
climate models struggle to represent observed extremes because of large internal climate
variability and their limited horizontal and temporal resolution (e.g., Slingo et al., 2022).
Given the ensemble size and high-frequency output of MPI-GE CMIP6, we first investigate
projected changes in heat and precipitation extremes and evaluate whether the new ensem-
ble is capable of realistically simulating recently observed heat and precipitation extremes
(Section 3.1.1). We then test whether observed precipitation extremes are better captured
by model versions with higher horizontal resolution (Section 3.1.2). Finally, we investigate
projected changes in marine heatwaves and ocean acidity extremes (Section 3.1.3) as well as
in wind extremes (Section 3.1.4). For these analyses we choose a fixed baseline climatology
over the time period 1985-2014.

3.1.1 Continental heat and precipitation extremes

We first evaluate whether MPI-GE CMIP6 is capable of simulating heat and precipitation
extremes that were recently observed (Figure 2). We focus on the Siberian heatwave in
spring 2020 (Ciavarella et al., 2021), the Pacific North American heatwave in summer 2021
(Philip et al., 2022), the extreme precipitation event in western Europe in summer 2021
(Ibebuchi, 2022; Tuel et al., 2022), and the extreme precipitation event in northern Italy in
autumn 2020 (Davolio et al., 2023). To do so, we use daily surface maximum temperature
and daily precipitation from MPI-GE CMIP6, and use ERA5 (Hersbach et al., 2020) and
E-OBS (Klein Tank et al., 2002) as observational reference.

For continental heat extremes, we use the metric heat excess, which takes into account
both heatwave intensity and persistence into one single metric (Perkins-Kirkpatrick & Lewis,
2020). To calculate heat excess, we identify heatwaves on a grid-point level when daily
maximum near-surface air temperature exceeds the 90*" percentile based on a centred 15-
day running window of the historical period 1985-2014 for at least three consecutive days.
The cumulative heat is then calculated by seasonal integration of the exceeding heat above
the threshold during heatwave days. In addition, we weight the cumulative heat of each
grid point by the cosine of the latitude and spatially integrate it. For the 2020 Siberian
heatwave we integrate the cumulative heat over boreal spring (MAM) and 40° N-80° N and
60° E-130° E. For the 2021 Pacific North American heatwave we integrate the cumulative
heat over boreal summer (JJA) and 25° N-65° N and 90° W-130° W (see maps in Figure
2a,b). We scale the cumulative heat with respect to climatology (1985-2014). We compute



the return periods for historical climate (1850-1879), the current climate (1992-2021) and
the five SSP scenarios (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-5.8; 2071-2100), and
compare them to the two recent heatwaves in ERA5 (Figure 2a,b). The cumulative heat
estimated by ERA5 in spring 2020 and summer 2021 integrated over the respective domains
is 4.3 and 4.5.

These two record-shattering heat extremes led to devastating impacts. The Siberian
heatwave was linked to large wildfires that causes a release of 56 megatons of COz in June
2020, and to the melting of large permafrost areas which led to widespread infrastructure
and environmental damages (Ciavarella et al., 2021). The Pacific North American heatwave
also led to hundreds of attributable deaths, marine life mass-mortality events, reduced crop
and fruit yields, river flooding from rapid snow and glacier melt, and a substantial increase
in wildfires (White et al., 2023). In line with previous attribution studies (Ciavarella et
al., 2021; Philip et al., 2022), we find that both heatwaves were virtually impossible in
the preindustrial MPI-GE CMIP6 world, and have over 100-year return periods in current
climate conditions. However, under the moderate emission scenario SSP2-4.5, heat excess
levels as high as those during the 2020 Siberian heatwave could occur every four years
(Figure 2a), and more than every other year for the 2021 Pacific North American heatwave
(Figure 2b). In SSP5-8.5, MPI-GE CMIP6 projections show that a comparable 1-in-100-
years event by the end of the 215" century reaches heat excess levels 5 to 8 times higher
than the 2020 and 2021 levels, respectively. Only in the low emission scenarios SSP1-1.9 or
SSP1-2.6 return periods below 10 years for such heat extremes can be avoided.

For precipitation extremes, we focus on two recently observed record-shattering events:
the extreme precipitation event in western Europe on the 14*" of July 2021, and the one
in northern Italy on 2"¢ of October 2020. The extreme precipitation event in western
Europe caused unprecedented flooding of the rivers Ahr and Erft. A rapid attribution
study shows that observations over a larger region and different regional climate models
give high confidence that human-induced climate change has increased the likelihood and
intensity of events like the western European precipitation extreme (Kreienkamp et al.,
2021; Ibebuchi, 2022), in line with the intensification of observed extreme precipitation in
central Europe during the last century related to Northern Hemispheric warming (Zeder &
Fischer, 2020). When integrated over 49° N-52° N and 5° E-8° E, the daily precipitation as
observed by the E-OBS data set (Klein Tank et al., 2002) on 14" of July 2021 is 47.7 mm
which represents the maximum daily precipitation in summer in the 72-year long observed
record (see map in Figure 2c¢). The extreme precipitation event in northern Italy caused
devastating large-scale flooding and represents an unprecedented strong event in a region
that shows a high frequency of precipitation extremes (Davolio et al., 2023; Grazzini et
al., 2021). The event was caused by a superposition of an upper-level trough over the
western Mediterranean basin and moisture transport from the tropics by an atmospheric
river (Davolio et al., 2023). When integrated over 43° N-47°N and 6° E-10° E, the daily
precipitation observed by E-OBS on 2" of October 2020 is 72.9 mm.

We use daily precipitation from MPI-GE CMIP6 and E-OBS, and compare the ob-
served extreme precipitation events to the seasonal maximum daily precipitation simulated
for the historical climate (1850-1879), the current climate (1992-2021), and the five SSP
scenarios for the period 2071-2100. We find that MPI-GE CMIP6 does not simulate a sum-
mer and autumn daily precipitation event as intense as observed, not even until the end of
the 215 century (Figure 2c). This implies that in any of the climate conditions simulated
by MPI-GE CMIP6 an event as intense as the ones observed in 2020 and 2021 is virtually
impossible, with return periods exceeding 900 years for all scenarios. We further find that
simulated summer and autumn maximum daily precipitation is larger for higher emission
scenarios than for lower scenarios in 2071-2100 and for the historical and current climate,
in line with the fact that warmer air can hold more water leading to increased precipitation
(e.g., Pendergrass et al., 2017; Myhre et al., 2019). However, the spread from the emis-
sion scenarios largely overlaps, suggesting that the uncertainty due to internal variability
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dominates scenario uncertainty and thus events typical for higher emission scenarios could
also occur in a lower warming world due to internal variability. The results show that pre-
cipitation extremes as intense as the ones observed are not captured by MPI-GE CMIP6
possibly because the horizontal resolution of MPI-GE CMIP6 is too low to simulate real-
world mechanisms leading to such small-scale precipitation extremes (Slingo et al., 2022).
Given the increased probability of extremes that are unprecedented in the observed record
and the often substantial impacts (Fischer et al., 2021), a realistic representation of such
extreme events by climate models is highly needed.

3.1.2 Resolution dependence of representing precipitation extremes

Higher horizontal resolution of climate models improves the simulation of extreme precipita-
tion because higher-resolution models reflect smaller spatial scales of extreme precipitation
and key processes such as deep convection do not need to be parameterised (Wehner et
al., 2014; Tles et al., 2020; Kendon et al., 2021; Kahraman et al., 2021). To test whether
the inability of MPI-GE CMIP6 to represent the two observed precipitation extremes is
caused by the model’s coarse horizontal resolution, we investigate whether these events are
better captured in higher-resolution versions of the same model, namely 10 realisations of
MPI-ESM1.2-HR (Miiller et al., 2018) with 1.0° atmospheric horizontal resolution, and a
single realisation of MPI-ESM1.2-XR, (Gutjahr et al., 2019) with 0.5° atmospheric horizontal
resolution (see Table 2).

For the western European event, we find that MPI-ESM1.2-HR and MPI-ESM1.2-XR
show higher agreement with the observed distribution of summer maximum daily precipi-
tation over the period 1950-2021 than MPI-ESM1.2-LR, the low-resolution model version
used for MPI-GE CMIP6 (Figure 3a,b). Strikingly, the single realisation of MPI-ESM1.2-XR
simulates a single daily precipitation as intense as the one observed with a more widespread
but still similar pattern (compare Figure S3), while MPI-ESM1.2-LR and MPI-ESM1.2-HR
do not simulate such high daily precipitation amounts. Although the horizontal resolution
of MPI-ESM1.2-XR is still not sufficient to resolve important processes such as moist con-
vection (Hewitt et al., 2022; Slingo et al., 2022), our finding suggests that its resolution is
sufficient to represent the recently observed regional precipitation extreme. Alternatively,
MPI-ESM1.2-XR might overestimate the real-world precipitation intensity, which could also
explain why the single simulation captures an event as intense as observed.

For autumn precipitation in northern Italy, we find that MPI-ESM1.2-HR much bet-
ter represents the observed frequency of autumn maximum daily precipitation than MPI-
ESM1.2-LR (Figure 3c¢,d). MPI-ESM1.2-XR shows generally too high autumn maximum
precipitation, simulating precipitation amounts as large as observed with higher frequency.
This is in line with previous findings that in the Mediterranean coastal region autumn pre-
cipitation intensity is larger at convection-permitting resolution than at coarse resolution
because realistically representing deep convection is central for such events (Luu et al.,
2020; Pichelli et al., 2021). The comparison between the western European and northern
Italian events suggests that the model is able to simulate larger-scale autumn precipita-
tion at coarser horizontal resolution than convective summer precipitation (Feldmann et al.,
2008; Luu et al., 2020; Williams & O’Gorman, 2022). We conclude that while MPI-GE
CMIP6 fails to simulate the observed precipitation extremes in western Europe and north-
ern Italy, high-resolution simulations of the same model version are able to capture these
extreme events, highlighting the potential for investigating regional precipitation extremes
from comparing high-frequency model output of MPI-GE CMIP6 with simulations of higher
horizontal resolution.

3.1.3 Marine heatwaves and ocean acidity extremes

We analyse daily mean sea surface temperature (SST) and hydrogen ion concentration ([HT])
to identify marine heatwaves and ocean acidity extremes between 1850 and 2100 (Figure 4).
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We use a percentile-based threshold and the reference period 1985-2014 for both extremes
such that the probability of the occurrence of marine heatwaves and ocean acidity extremes
in a year is the same. SST and [H*] are defined as extreme, if they exceed the 99" percentile
for five consecutive days (Hobday et al., 2016; Burger et al., 2020). Although applying a
duration criterion for ocean acidity extremes is not common, here it ensures comparability
with marine heatwaves. The percentiles are calculated as the 20-member ensemble mean
(only members 11 to 30 contain daily mean output for [H+]) over the 99" multiyear daily
running percentile with a 5-day window length at every grid cell between 1985 and 2014.
Finally, we calculate the number of extreme days per year to characterise changes of both
extremes with time and across scenarios.

Before the reference period 1985-2014, almost no marine heatwaves are detected. Be-
tween 1985 and 2014, less than ten days per year are extreme with marine heatwaves being
more frequent in the subpolar North Atlantic and the Southern Ocean (Figure 4a). By
2030, between five and 70 days per year are extreme with substantial overlap among dif-
ferent scenarios. By 2100, the SSP5-8.5 scenario projects the most marine heatwaves, with
the entire ocean being in almost a constant state of extreme; while in the SSP1-1.9 scenario
the number of extreme days per year does not exceed 15 by 2100 (Figure 4b, Figure S4).
There is a much larger difference between the SSP1-1.9 and SSP5-8.5 scenarios in terms of
global marine heatwave days at the end of the 21st century when compared to the difference
in terms of global mean temperature between these scenarios (compare Figures la and 4b),
indicating an amplified impact of global warming on marine heatwaves.

Over the historical period, globally, no ocean acidity extreme is detectable prior to the
reference period. Within the reference period 1985-2014 (Figure 4e), the number of days
with extreme [H™] increases to approximately five days per year in 2010 and continues to
increase substantially to nearly 40 days per year in 2014. Locally, within the reference period,
only very weak spatial gradients in the ensemble-mean number of ocean acidity extremes
exist (Figure 4e). Until 2030, the entire ocean area moves rapidly to a near-permanent
extreme state with more than 300 extreme days per year for all five future scenarios. By
2100, almost all days of a year show ocean acidity extremes in the SSP2-4.5, SSP3-7.0, and
SSP5-8.5 scenarios, while in the SSP1-2.6 scenario, the number of ocean acidity extreme
days is projected to decline slightly by the end of the 215 century (Figure 4f, Figure S4).
Within the SSP1-1.9 scenario, ocean acidity extremes are projected to peak at approximately
330 days per year between 2025-2040 and decline thereafter to 140 days per year by 2100.
In this scenario, ocean acidity extremes occur less frequently in the Arctic Ocean and in
the Southern Ocean compared to the Tropics between 2071-2100 (Figure 4g,h). There is a
striking difference in the global occurrence of ocean acidity extremes between SSP1-1.9 and
SSP1-2.6 in the second half of the 21st century (Figure 4f), despite only small differences
in terms of global mean temperature in both scenarios (Figure 1a).

The CO; system in seawater and the mixing ratio of atmospheric COs are tightly
related, which leads to the smooth response in the mean surface ocean [HT|. Sea surface
temperature on the other hand is more variable across space and time than [H*], therefore
the number of marine heatwaves varies more than the number of ocean acidity extremes
across ensemble members. The number of detected extremes is sensitive to the definition,
affected by the choice of threshold and reference period (Gruber et al., 2021). While using the
same definition for both marine heatwaves and ocean acidity extremes is helpful to illustrate
the different internal variability structure of the underlying parameters, understanding the
governing processes may require a different extreme event definition that would ultimately
lead to a different number of detected events.

3.1.4 Wind extremes

Future changes in wind extremes are among the most uncertain impacts of anthropogenic
climate change (Seneviratne et al., 2021). We use the 3-hourly output of MPI-GE CMIP6
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to project global changes in wind extremes and their dependence on the emission scenario
(Figure 5a and Figure S5). To detect projected global changes in wind speed, we first derive
95" annual percentiles of near-surface wind speeds for each grid point from the entire 30-
member ensemble and then calculate the absolute difference between the 2071-2100 mean
and the 1985-2014 reference mean. Here, we focus on SSP5-8.5 because the projected
changes are most distinct: Over the ocean, we find a latitudinal contrasting pattern with
increasing wind extremes over high-latitude oceans and decreasing wind extremes in most
mid- and low-latitude ocean basins. Over land, increases in wind extremes are projected
for South America, Western and Eastern Africa and parts of the Northern mid- to high-
latitudes, whereas substantial decreases are projected for Alaska, Siberia, Central Asia and
the Western Sahara. Weaker changes but with the same pattern are found for lower-emission
scenarios (Figure S5).

We further analyse projected changes in storm activity in two regions that are known
for the frequent passage of mature hurricanes and typhoons with often devastating impacts
when they make landfall: north-west of Bermuda in the North Atlantic (Figure 5b) and
south-east of Japan in the North Pacific (Figure 5¢). For both regions, we select three grid
points that form a triangle spanning the area of interest (Table S5). We then use 3-hourly
mean sea-level pressure data from MPI-GE CMIP6 at the selected grid points and derive
geostrophic winds vy from the horizontal mean sea-level pressure gradients dp/dx and dp/dy
according to Krieger et al. (2020) via

vy = (02 + 02", (1)

with
__Lop d _1op
T T pray M W of b
where p is the density of air (set at 1.25 kg m~2) and f the average of the Coriolis parameter
at the three corners of the triangle. We chose the grid points so that the resulting triangle
is sufficiently close to an equilateral triangle. This requirement is necessary to avoid a large
error propagation of pressure uncertainties, which would cause a shift of the wind direction
towards the main axis of the triangle (Krieger et al., 2020). We then define storm activity as
the standardised annual 95" percentiles of 3-hourly geostrophic wind speeds. We therefore
first calculate annual 95" percentiles of geostrophic winds for each ensemble member. We
then standardise by subtracting the 1985-2014 ensemble mean from each ensemble member,
and divide by the 1985-2014 ensemble standard deviation.

(2)

For both north-west of Bermuda and south-east of Japan, we find a decreasing storm
activity with strongest decreases for high-emission scenarios, while we find no notable change
in scenario SSP1-1.9 (Figure 5b,c and Figure S5). This agrees with the projected change
in surface wind speed, where the marine subtropics around 30° N show a strong signal of
decreasing wind speeds in the SSP5-8.5 scenario (Figure 5a).

We further calculate the ensemble balance to characterise whether changes in the en-
semble mean are caused by a shift in the majority of the ensemble members or by a few
strong outliers. To do so, we first apply a moving Gaussian low-pass filter to the storm
activity time series of each ensemble member. We then define thresholds for high and low
activity periods at 0.5¢ and —0.5 o, and count for how many members the low-pass filtered
curve exceeds these thresholds in a certain year. The difference in the number of high-
activity and low-activity members is then regarded as the ensemble balance (crosses on the
secondary y-axis in Figure 5b,c). In the SSP1-1.9 and SSP1-2.6 scenarios, we find that the
ensemble balance does not significantly deviate from 0 towards the end of the 215 century
in both focus regions, confirming the rather small projected change in storm activity. In the
high-emission SSP5-8.5 scenario, the ensemble balance falls to near -30 at the end of the
215 century, which indicates that nearly all ensemble members agree on a decline in storm
activity both north-west of Bermuda and south-east of Japan.
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The proxy for storm activity is based on the hypothetical geostrophic wind and its
long-term statistics, as proposed originally by Schmidt and von Storch (1993). For high
latitudes, where the synoptic-scale wind in higher altitudes is close to geostrophic, it has
been shown that the statistics of the geostrophic wind closely resemble the statistics of the
near-surface wind (Krueger & von Storch, 2011). In latitudes closer to the equator this
assumption does not hold, as most of the wind extremes occur in or near tropical cyclones,
which are not fully in geostrophic balance. The proxy should therefore not be used as a
single tool to make conclusions about future changes in the intensity or frequency of tropical
cyclones. However, the decreasing storm activity for mid-latitude hurricanes and typhoons
is in line with recent findings of a decreasing frequency of tropical cyclones (Chand et al.,
2022). As the proxy only describes storm activity with one quantity, it cannot distinguish
between changes in the frequency and changes in the intensity of storms. A change in storm
activity can thus be interpreted as a change in either number or intensity of cyclones, or a
combined change thereof. Also, changes connected to smaller-scale features such as fronts
or convective wind gusts within cyclones cannot be detected by the proxy, as the derived
geostrophic wind acts as an area mean over the entire triangle.

Overall, MPI-GE CMIP6 projects increasing wind extremes over high-latitude oceans
and decreasing wind extremes in most mid- and low-latitude oceans, in line with current
understanding of observed changes in wind extremes caused by a poleward shift of extra-
tropical storm tracks over both hemispheres (Seneviratne et al., 2021). We conclude that
MPI-GE CMIP6 with its 3-hourly model output is a powerful tool to understand changes
in the frequency and intensity of wind extremes for different emission scenarios.

3.2 Investigating crossing probabilities of 1.5°C and 2°C global warming

The Paris Agreement in 2015 states the goal to keep global warming well below 2°C, and to
pursue efforts to limit global warming to 1.5°C above preindustrial levels to avoid devastating
and unmanageable consequences of climate change. MPI-GE CMIP6 is suited to investigate
the uncertainty in crossing these global warming limits because one can account for internal
climate variability with ensemble simulations for five different emission scenarios, including
the scenarios SSP1-1.9 and SSP1-2.6 that project a global warming of 1.5°C and 2°C,
respectively.

To investigate the crossing probability of 1.5°C and 2°C of global warming in MPI-GE
CMIP6, we use annual mean, global mean near-surface air temperature (GSAT) to compute
for every year and each of the five scenarios the fraction of realisations (x / 30 realisations)
that crosses these temperature thresholds in a single year relative to the 1850-1900 reference
period (Figure 6a,b). We find that in all emission scenarios, there is a non-zero chance of
observing individual years above 1.5°C within the next decades, including the SSP1-1.9
scenario that represents the strongest mitigation efforts. However, this finding does not
imply that every scenario crosses the Paris agreement 1.5°C global warming limit because
whether a temperature threshold will be crossed or not is commonly evaluated for 20-year
mean temperatures (Lee et al., 2021). To account for this definition, we also compute the
20-year running mean GSAT time series for each realisation and show for each 20-year
window the fraction of realisations that crosses 1.5°C or 2°C (Figure 6¢,d). We find that
MPI-GE CMIP6 with the SSP1-1.9 scenario is consistent with the 1.5°C warming limit,
whereas all other scenarios cross this threshold. We stress that when 1.5°C are crossed for
20-year means is still affected by internal variability: for SSP1-2.6, 1.5°C may be crossed
around the 20-year mean of the period starting in 2030, but only 10 years later it is virtually
certain that 1.5°C is crossed in the 20-year mean of any realisation. Further, the SSP1-1.9
and SSP1-2.6 scenarios will not cross 2°C neither in single years nor for 20-year means while
all other scenarios will cross this threshold between 20-year means starting in 2035 to 2050.
These estimates are at the upper range of the IPCC ARG central estimate of crossing the
1.5°C threshold which lies in the early 2030s for all scenarios except SSP5-8.5 (Marotzke et
al., 2022; Lee et al., 2021).
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We note that the IPCC AR6 uncertainty range includes uncertainties in historical
warming, climate sensitivity and internal variability (Lee et al., 2021), whereas MPI-GE
CMIP6 has a fixed climate sensitivity and the uncertainty range is only due to internal
variability. However, the observed internal variability in GSAT is well simulated by the
model (Suarez-Gutierrez et al., 2021) and its equilibrium climate sensitivity of 2.8°C is close
to the central estimate of the IPCC ARG assessment of 3°C. Comparing the central estimates
of crossing times for 1.5°C between MPI-GE CMIP6 and the IPCC ARG assessment shows
that the MPI-GE CMIP6 estimates are systematically later than in AR6 (Table S6). Most
notably, SSP1-1.9 does not cross 1.5°C in the model, the crossing in SSP1-2.6 occurs a decade
later, and the crossing in all other scenarios about five years later than in IPCC AR6. This
shows that the MPI-GE CMIP6 estimates are broadly consistent with but slightly more
conservative than the IPCC AR6 assessment.

We conclude that with its good representation of internal variability in GSAT and its
equilibrium climate sensitivity close to the central estimate of the IPCC ARG assessment,
MPI-GE CMIP6 offers a unique framework to investigate timing and local impacts of cross-
ing temperature thresholds such as 1.5°C.

3.3 Combining SMILEs and artificial intelligence

SMILEs and artificial intelligence can be combined powerfully because the multiple reali-
sations of a same model provide testing, validation and training data sets to infill gaps in
observational data. We provide one example by using a method that is based on an in-
painting technique developed by Liu et al. (2018) to repair corrupted images. It makes use
of a U-Net neural network made of partial convolutional layers and a state-of-the-art loss
function designed to produce semantically meaningful predictions. As shown in Kadow et
al. (2020), the method can infill large and irregular regions of missing climate data and is
able to reconstruct specific climate patterns that are not captured by standard interpolation
techniques such as the Kriging method (Cowtan & Way, 2014).

We here test whether the ensemble size of MPI-GE CMIP6 is sufficiently large to be
used for infilling the HadCRUT5 data set with similar capability than the 100-member MPI-
GE CMIP5. The models used to infill the HadCRUTS5 data set (Dunn et al., 2020) have
been trained using gridded global historical surface temperature anomalies from three large
ensembles: 1) MPI-GE CMIP6, containing 30 realisations and spanning the 1850-2014 time
period; 2) MPI-GE CMIP5, containing 100 realisations and spanning the 1850-2005 time
period; and 3) a subset of MPI-GE CMIP5 containing the first 30 ensemble members, here
called MPI-GE CMIP5(30). Before the training, one ensemble member was excluded from
each ensemble to create three testing data sets. Three validation data sets were created
from the remaining ensemble members of each data set by pulling out the data every 8
timesteps for MPI-GE CMIP6 and MPI-GE CMIP5(30), and every 7 timesteps for MPI-GE
CMIP5. The remaining data were used to create the training data sets which contain 50.242
samples for MPI-GE CMIP6, 47.502 samples for MPI-GE CMIP5(30) and 162.162 samples
for MPI-GE CMIP5. For this work, additional features have been implemented to the
original version of the code (Kadow et al., 2020) to improve the computational performance
and the quality of the reconstruction. In particular, a custom padding operation accounting
for the boundary conditions of the global data is now applied before each partial convolution,
to account for the sphere of the Earth.

The annual global mean temperature time series reconstructed using the 100 member
and the 30 member models are very similar, especially when compared to the original Had-
CRUTS5 data (Figure 7). For all three ensembles, we detect an overall warming signal also
on a regional scale around the globe by comparing the climatologies 2020-1991 and 1920-
1891 with a century apart (insets in Figure 7 and Figure S6). In particular, the warming
patterns reconstructed from the three ensembles show a strong century warming signal in
northern polar regions, where the original HadCRUT5 data set has missing data. Large
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areas in the Pacific also consistently show a warming between the two climatologies, de-
spite the fact that the region is affected by strong ENSO variability. The infilled data in
the sparsely observed Antarctica show a less strong, but more mixed warming signal as
observed when reconstructed with the different ensembles. From the striking similarity in
the reconstructed pattern, we conclude that MPI-GE CMIPG6 allowed us to train a model
with equivalent capabilities to MPI-GE CMIP5 but at a lower computational cost.

4 Summary and Conclusions

MPI-GE CMIP6 is a new 30-member single-model initial-condition large ensemble which
power goes beyond its predecessor MPI-GE CMIP5 (Maher et al., 2019) in several aspects
and allows for novel analyses with broad societal relevance:

First, MPI-GE CMIP6 provides 3-hourly, 6-hourly and daily model output that is
together with its ensemble size well suited to investigate present and future changes in
climate extremes, their drivers, and their changing characteristics across different emission
scenarios. While several studies used MPI-GE CMIP5 to study present and future changes
in climate extremes (e.g., Suarez-Gutierrez et al., 2020a, 2020b; Landrum & Holland, 2020),
the high-frequency output of MPI-GE CMIP6 now allows one to also investigate the drivers
and causal links of these changes which can be compared across different emission scenarios.
For instance, we find from daily output that the recently observed Siberian and Pacific
North American heatwaves will occur every year in 2071-2100 in high-emission scenarios
but substantially less frequent in the low-emission scenarios. We further find from the
3-hourly output that the frequency of wind extremes is projected to decrease in tropical
to mid-latitude oceans in all five emission scenarios. These findings illustrate that MPI-
GE CMIPG is specifically suited to investigate climate extremes and can be used to study
high-impact events.

Second, MPI-GE CMIP6 provides the opportunity to compare the ensemble to high-
resolution simulations of the same model version, including a 10-member ensemble of MPI-
ESM-HR (1.0° atmosphere, 0.4° ocean), and a single member of MPI-ESM-XR (0.5° at-
mosphere, 0.4° ocean). While MPI-GE CMIP6 is not able to represent the unprecedented
precipitation extreme in western Europe observed on 14* of July 2021 and in northern Italy
observed on 2°¢ of October 2020, we find that these events are captured by high-resolution
simulations of the same model version. This finding illustrates the benefit of comparing low-
resolution SMILEs with high-frequency output to high-resolution simulations of the same
model version for investigating regional climate extremes.

Third, MPI-GE CMIP6 provides historical simulations and the five emission scenarios
SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 which enable the investigation of
different climate futures and the quantification of uncertainty from internal variability. We
find that the frequencies of marine heatwaves and ocean acidity extremes are projected
to substantially increase in all emissions scenarios, with substantial recovery by 2100 only
under SSP1-1.9. Moreover, the ensemble simulations of the scenarios SSP1-1.9 and SSP1-2.6
specifically allow for quantifying irreducible uncertainty when aiming to limit global mean
warming to 1.5°C or 2°C. We find that in MPI-GE CMIP6, even for the lowest emission
scenario SSP1-1.9, which is consistent with the Paris Agreement pledges in this model, there
is a non-zero chance to observe individual years above 1.5°C. With its good representation
of internal variability in GSAT and its equilibrium climate sensitivity close to the central
estimate of the AR6 assessment, MPI-GE CMIPG6 as a single-model ensemble provides new
opportunities to quantify uncertainty in when global warming thresholds might be crossed.
Such analyses on irreducible uncertainty from internal variability are highly relevant for
investigating transition pathways to carbon-neutral economies to meet the Paris Agreement
pledges.
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Fourth, MPI-GE CMIP6 is run with CMIP6 forcing and provides the opportunity to
compare the ensemble to other SMILEs with CMIP6 forcing. This facilitates comparisons
to the growing number of SMILEs. From comparing the respective scenarios from MPI-GE
CMIP6 to the ones from its predecessor MPI-GE CMIP5, we find that the change from
CMIP5 to CMIP6 forcing causes a slightly stronger climate response, in line with findings
from other SMILEs (Wyser et al., 2020; Fyfe et al., 2021), primarily caused by the updated
forcing in CMIP6. From combining MPI-GE CMIP6 with artificial intelligence, we find
that 30 realisations have equivalent capabilities as the 100-member MPI-GE CMIP5 when
training a model to infill surface temperature observations.

Overall, MPI-GE CMIP6 beneficially complements the number of available SMILEs by
a unique combination of a moderate ensemble size, high-frequency model output, the full
range of emission scenarios including the lower end, and the availability of high-resolution
simulations of the same model version. Consequently, MPI-GE CMIP6 allows a better
understanding of changes in climate variability and extremes, and to quantify related un-
certainties. This improved quantification will help to better inform society on the likelihood
of plausible changes in the climate system to occur, including climate extremes.
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Figure 1: Comparison of key climate quantities of MPI-GE CMIP6 to observa-
tions or reanalyses and MPI-GE CMIP5. Ensemble spread (shading) and ensemble
mean (thick lines) for the historical simulations (grey), and the five emission scenarios
SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. Right hand-side panels show the
projected mean and range in year 2099 for the different scenarios of MPI-GE CMIPG6 (30
realisations) and MPI-GE CMIP5 (100 realisations). Shown for a) global mean near-
surface air temperature (GSAT) anomalies (relative to 1985-2014), b) global mean pre-
cipitation, ¢) Northern Hemisphere sea-ice area in September, d) Atlantic Meridional
Overturning Circulation (AMOC), e) globally integrated CO4 flux into the ocean and

f) globally integrated net CO2 flux into the land. Thick black lines show observations or
reanalyses, specifically in a) HadCRUT5 (Morice et al., 2021), b) ERA5 (Hersbach et al.,
2020), c) Sea-Ice Index (Fetterer et al., 2017), d) RAPID (Frajka-Williams et al., 2021),
e,f) Global Carbon Project (Global Carbon Project, 2021; Friedlingstein et al., 2022).
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Figure 2: Return periods from MPI-GE CMIP6 for recently observed heat and
precipitation extremes for different emission scenarios. Return periods for a-b)
cumulative heat scaled with respect to climatology for a) spring (MAM) 2020 Siberian
heatwave and b) summer (JJA) 2021 Pacific North American heatwave, and c-d) seasonal
maximum daily precipitation for ¢) western Europe in summer (JJA) and d) northern
Italy in autumn for the historical climate (1850-1879, grey), the current climate (1992-
2021, black), and the five SSP scenarios for the period 2071-2100 (coloured). Shading
denotes 95% confidence intervals calculated by bootstrapping with re-sampling. The hor-
izontal dashed line in a) and b) marks the maximum cumulative heat as calculated from
ERAS5, and in ¢) and d) the observed maximum daily precipitation of the respective sea-
son from E-OBS (Klein Tank et al., 2002). The observed spatial pattern of these events

is shown as maps in a) and b) for cumulative heat for spring 2020 and summer 2021,
respectively, and in c¢) and d) for precipitation on 14" of July 2021 and 2"¢ of October
2020, respectively. Black boxes mark the regions of interest used for averaging.
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Figure 3: Representation of precipitation extremes dependent on model reso-
lution. a-b) Comparison of summer (JJA) maximum daily precipitation averaged across
the western European box shown in Fig. 2¢ from 1950-2021 in three model resolutions
from MPI-ESM1.2 and in observations shown as a) return periods and b) probability
density functions. c-d) Comparison of autumn (SON) maximum daily precipitation av-
eraged across the northern Italy box shown in Fig. 2d from 1950-2021 in three model
resolutions from MPI-ESM1.2 and in observations shown as c) return periods and d)
probability density functions. Note that the return periods are calculated empirically.
Values of all summers or autumns, respectively, and all realisations are merged for each
ensemble. Further note that MPI-ESM-LR is based on 30 realisations, MPI-ESM-HR on
10 realisations and MPI-ESM-XR and the observed record on only a single realisation.
The sample size of MPI-ESM-HR and MPI-ESM-XR might be insufficient to determine
return levels above a few years robustly. The domain-averaged maximum daily precipita-
tion of the western European extreme event on 14" of July 2021 is 47.7 mm, and that of
the event in northern Italy on 2" of October 2020 is 72.9 mm.
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Figure 4: Present and future frequency of marine heatwaves and ocean acid-
ity extremes. Maps of a) the ensemble mean number of marine heatwave (MHW) days
per year and e) the number of ocean acidity extreme event (OAX) days per year in the
reference period 1985-2014, based on the 99*" percentile of daily mean sea surface temper-
ature, and of daily mean surface hydrogen ion concentration, respectively. b-d) Globally
and regionally averaged number of MHW days per year (global, extratropics: outside of

30°N/30°S, tropics: within 30°N/30°S) for the historical period 1850-2014 (grey), and

scenarios SSP1-1.9 (green), SSP1-2.6 (blue), SSP2-4.5 (yellow), SSP3-7.0 (red), SSP5-8.5

(purple) for the period 2015-2100. The shadings cover the ensemble spread, thick lines
show the 20-member ensemble mean. f-h) Globally and regionally averaged number of

OAX days per year and region, similar to b-d).

—26—



a) Wind speed extremes

90°W 0° 90°E 180°

-2 -1 0 1 2
Change between 1985-2014 and 2071-2100 [m/s]

b) Storm activity north-west of Bermuda

o0
1 ; 10 ¥¢
2 2g
£ W\W/\/W\/\MW/WW\WWV(W Lt wlo wE
5 0 MW mo
© | N @3
€ 1 -102~
s~ X E 4
A a5
LA “053
X 30
1850 1900 1950 2000 2050 2100 -
Year
c) Storm activity south-east of Japan
o=
> 1 i 10 & §
> o A 0 ®E
5 0 A Ay mo
® m @8
€_1 — -108
£ -1 £ 4
& a5
Y jf;; 5y % _20,5 Q
] X 30
1850 1900 1950 2000 2050 2100 B

Year

Figure 5: Projected changes in near-surface wind speed and storm activity. a)
Absolute change in ensemble mean 95" annual percentiles of surface wind speed between
1985-2014 and 2071-2100, based on SSP5-8.5 forcing. Black circles mark regions for which
storm activity has been calculated. Maps for the other four SSP scenarios are shown

in Figure S5. b-c) Ensemble mean storm activity (thick lines) and interquartile range
(shading) for the historical simulations (grey) and the five scenarios (coloured) over b)
the Atlantic Ocean north-west of Bermuda and ¢) the Pacific Ocean south-east of Japan.
Coloured dots and bars indicate the 2071-2100 average and range of the ensemble mean
for each scenario, and crosses show the 2071-2100 mean ensemble balance.
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Figure 6: Probability of crossing Paris Agreement global warming limits. Prob-
ability of crossing a) 1.5°C and b) 2°C in a single year, and ¢) 1.5°C and d) 2°C in
20-year averages for the different emission scenarios until 2100. The crossing probability is
defined as the fraction of the 30 realisations that cross the temperature threshold relative
to the reference period 1850-1900. In c,d), the 20-year mean GSAT is plotted against the
central year of that 20-year period.
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Figure 7: Comparison of MPI-GE CMIP6 vs MPI-GE CMIPS5 for infilling
observations of surface temperature with artificial intelligence. Annual global
mean anomaly temperature with respect to the 1961-1990 climatology obtained by us-
ing: the gridded original “non-infilled" HadCRUT5 data set (black curve), the partially
reconstructed HadCRUTS5 data set from the Met Office (Morice et al., 2021), the fully
reconstructed HadCRUTS5 data set obtained with the AT 100 members model (blue curve,
using MPI-GE CMIP5 (Maher et al., 2019)), the fully reconstructed HadCRUT5 obtained
with our AT 30 members model (red curve, using MPI-GE CMIP6). Insets: 2020-1991
climatology referenced to the 1920-1891 climatology. Left inset: Original HadCRUTS5 data
set where gray pixels indicate missing values. Mean values have been computed only for
grid points containing at least 70% of valid values for the considered time period. Right
inset: Spatial reconstruction of the HadCRUT5 data set using the AI 30 members model.
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Figure S1. Global mean precipitation in MPI-GE CMIP6 compared to different

reanalyses and observations. Same as Figure 1b) but showing both ERA5, ERA-Interim and

the observational product of the Global Precipitation Climatology Project (GPCP) version 2.3.
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Figure S2. Comparison of the global mean temperature response of MPI-GE

CMIP5 and MPI-GE CMIP6 to a 1%CO, increase per year relative to 1850-1899.
The 100 realisations of MPI-GE CMIP5 are shown in light grey and the ensemble mean in dark
grey. A single realisation of MPI-GE CMIP6 is shown in red. Note that the 100 realisations for

the historical period of MPI-GE CMIP5 end in year 2005.
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Figure S3. Spatial pattern of the maximum daily summer precipitation in western
Europe between 1950-2021 as simulated by MPI-ESM-XR. The black box marks the

region of interest averaged for Figure 2 and 3.
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Figure S4. Spatial distribution of marine heat waves (MHW) and ocean acidity
extremes (OAX) for different emission scenarios. Ensemble mean number of MHW days
per year (left panels) and number of OAX days per year (right panels) during 2071-2100 under
the emission scenarios SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. The MHW and
OAX are defined based on the 99*" percentile of daily mean sea surface temperature and of daily

mean surface hydrogen ion concentration, respectively.
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a) Wind speed extremes (SSP1-1.9)
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c) Wind speed extremes (SSP2-4.5) d) Wind speed extremes (SSP3-7.0)
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Figure S5. Projected changes in near-surface wind speed for lower-emission scenar-
ios. Absolute change in ensemble mean 95" annual percentiles of surface wind speed between
1985-2014 and 2071-2100, based on a) SSP1-1.9, b) SSP1-2.6, ¢c) SSP2-4.5, d) SSP3-7.0 forcing.

Black rectangles mark regions for which storm activity has been calculated.
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a) Reconstructed with MPI-GE CMIP6 (30)
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Figure S6. Comparison of using MPI-GE CMIP6 and MPI-GE CMIP5 to infill
observations of surface temperature with artificial intelligence. Spatial reconstruction
of the HadCRUTS5 data set using a) the AI 30 members model based on MPI-GE CMIP6, b)
the AI 100 members model based on MPI-GE CMIP5, and c) the Al 30 members model based

on a first 30 members of MPI-GE CMIP5.
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X-8
Data as listed in the following tables can be accessed either via DKRZ ESGF server or DKRZ
WDCC long term archive (DKRZ LTA):

e ESGF: https://esgf-data.dkrz.de/search/cmip6-dkrz/

e DKRZ LTA 3hourly: http://hdl.handle.net/21.14106/5bb56765fe486031cd6600a3d34ba3ad99c¢720

e DKRZ LTA 6hourly: http://hdl.handle.net/21.14106/b61690b4d0080648815e2ceba9lfbar64adaddc3

e DKRZ LTA daily: http://hdl.handle.net/21.14106/1ce9699e340e6c¢46{4b34626bae2b65714696¢56

April 27, 2023, 2:50pm



Table S1: Parameters with daily output on ESGF avail-
able for all 30 realisations.

name | parameter long name | unit [ level
daily atmosphere / land

clt Total Cloud Cover Percentage % 1
cne Canopy Covered Area Percentage % 1
es Bare Soil Evaporation kg m-2 s-1 1
hfls Surface Upward Latent Heat Flux W m-2 1
hfss Surface Upward Sensible Heat Flux W m-2 1
hur Relative Humidity % 47
hurs Near-Surface Relative Humidity % 1
hursmax Daily Maximum Near-Surface Relative Humidity % 1
hursmin Daily Minimum Near-Surface Relative Humidity % 1
hus Specific Humidity 1 47
hus850 Specific Humidity at 850hPa 1 1
huss Near-Surface Specific Humidity 1 1
lai Leaf Area Index 1 1
mlotst Ocean Mixed Layer Thickness Defined by Sigma T m 1
mrro Total Runoff kg m-2 s-1 1
mrso Total Soil Moisture Content kg m-2 1
mrsol Total Water Content of Soil Layer kg m-2 1
mrsos Moisture in Upper Portion of Soil Column kg m-2 1
odb50aer Ambient Aerosol Optical Thickness at 550nm 1 1
pr Precipitation kg m-2 s-1 1
prc Convective Precipitation kg m-2 s-1 1
prsn Snowfall Flux kg m-2 s-1 1
ps Surface Air Pressure Pa 1
psl Sea Level Pressure Pa 1
rlds Surface Downwelling Longwave Radiation W m-2 1
rldscs Surface Downwelling Clear-Sky Longwave Radiation W m-2 1
rlus Surface Upwelling Longwave Radiation W m-2 1
rlut TOA Outgoing Longwave Radiation W m-2 1
rlutcs TOA Outgoing Clear-Sky Longwave Radiation W m-2 1
rsds Surface Downwelling Shortwave Radiation W m-2 1
rsdscs Surface Downwelling Clear-Sky Shortwave Radiation W m-2 1
rsdt TOA Incident Shortwave Radiation W m-2 1
rsus Surface Upwelling Shortwave Radiation W m-2 1
TSuscs Surface Upwelling Clear-Sky Shortwave Radiation W m-2 1
rsut TOA Outgoing Shortwave Radiation W m-2 1
rsutcs TOA Outgoing Clear-Sky Shortwave Radiation W m-2 1
rZwe Root Zone Soil Moisture kg m-2 1
sbl Surface Snow and Ice Sublimation Flux kg m-2 s-1 1
sfcWind Daily-Mean Near-Surface Wind Speed m s-1 1
sfcWindmax Daily Maximum Near-Surface Wind Speed m s-1 1
snc Snow Area Percentage % 1
snw Surface Snow Amount kg m-2 1

Continued on next page
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Table S1 — continued from previous page

name parameter long name unit level
snwc Snow water equivalent intercepted by the vegetation kg m-2 1
ta Air Temperature K 47
tab00 Air Temperature at 500hPa K 1
ta700 Air Temperature at 700hPa K 1
ta850 Air Temperature at 850hPa K 1
tas Near-Surface Air Temperature K 1
tasmax Daily Maximum Near-Surface Air Temperature K 1
tasmin Daily Minimum Near-Surface Air Temperature K 1
tauu Surface Downward Eastward Wind Stress Pa 1
tauv Surface Downward Northward Wind Stress Pa 1
tdps 2m Dewpoint Temperature K 1
tr Surface Radiative Temperature K 1
ts Surface Temperature K 1
tsl Temperature of Soil K 1
ua Eastward Wind m s-1 47
uall Eastward Wind at 10hPa m s-1 1
uas Eastward Near-Surface Wind m s-1 1
va Northward Wind m s-1 47
vas Northward Near-Surface Wind m s-1 1
wap Omega (=dp/dt) Pa s-1 47
wapb00 Pressure Tendency Pa s-1 1
7g Geopotential Height m 47
zgl10 Geopotential Height at 10hPa m 1
zg100 Geopotential Height at 100hPa m 1
zg1000 Geopotential Height at 1000hPa m 1
zgb00 Geopotential Height at 500hPa m 1

daily ocean / sea ice / biogeochem
chlos Surface Mass Concentration of Total Phytoplankton kg m-3 1
Expressed as Chlorophyll in Sea Water
omldamax Mean Daily Maximum Ocean Mixed Layer Thickness m 1
Defined by Mixing Scheme

phycos Sea Surface Phytoplankton Carbon Concentration mol m-3 1
siconc Sea-Ice Area Percentage (Ocean Grid) % 1
sisnthick Snow Thickness m 1
sispeed Sea-Ice Speed m s-1 1
sithick Sea Ice Thickness m 1
sitimefrac Fraction of Time Steps with Sea Ice 1 1
siu X-Component of Sea-Ice Velocity m s-1 1
siv Y-Component of Sea-Ice Velocity m s-1 1
SOs Sea Surface Salinity 0.001 1
S0Ss( Square of Sea Surface Salinity 1.00E-06 1
t20d Depth of 20 degree Celsius Isotherm m 1
tos Sea Surface Temperature degC 1
tossq Square of Sea Surface Temperature degC2 1
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Table S2: Parameters with 3-hourly output on either
ESGF or DKRZ LTA (*) for any of the 30 realisations.

name parameter long name unit level | r1- [r11-
r10 | r30
atmosphere / land
clt Total Cloud Cover Percentage % 1 X
hfls Surface Upward Latent Heat Flux W m-2 1 X
hfss Surface Upward Sensible Heat Flux W m-2 1 X
hus Specific Humidity 1 47 X
huss Near-Surface Specific Humidity 1 1 X
mrro Total Runoft kg m-2 s-1 1 X X
mrsos Moisture in Upper Portion of Soil Column kg m-2 1 X
pr Precipitation kg m-2 s-1 1 X
prc Convective Precipitation kg m-2 s-1 1 X
prra Rainfall Flux kg m-2 s-1 1 X
prsn Snowfall Flux kg m-2 s-1 1 X
ps Surface Air Pressure Pa 1 X
psl Sea Level Pressure Pa 1 X X
rlds Surface Downwelling Longwave Radiation W m-2 1 X
rldscs Surface Downwelling Clear-Sky Longwave W m-2 1 X
Radiation
rlus Surface Upwelling Longwave Radiation W m-2 1 X
rlut TOA Outgoing Longwave Radiation W m-2 1 X
rlutces TOA Outgoing Clear-Sky Longwave Radiation W m-2 1 X
rsds Surface Downwelling Shortwave Radiation W m-2 1 X
rsdscs Surface Downwelling Clear-Sky Shortwave W m-2 1 X
Radiation
rsdt TOA Incident Shortwave Radiation W m-2 1 X
rSucs Upwelling Clear-Sky Shortwave Radiation W m-2 48 X
rsus Surface Upwelling Shortwave Radiation W m-2 1 X
TSuscs Surface Upwelling Clear-Sky Shortwave Radiation | W m-2 1 X
rsut TOA Outgoing Shortwave Radiation W m-2 1 X
rsutcs TOA Outgoing Clear-Sky Shortwave Radiation W m-2 1 X
sfcWind Near-Surface Wind Speed m s-1 1 X X
ta Air Temperature K 47 X
tas Near-Surface Air Temperature K 1 x | z*
ua Eastward Wind m s-1 7 X
uas Eastward Near-Surface Wind m s-1 1 X X
va Northward Wind m s-1 7 X
vas Northward Near-Surface Wind m s-1 1 X X
wap Omega (=dp/dt) Pa s-1 7 X
ocean / sea ice / biogeochem
tos | Sea Surface Temperature degC 1 X
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Table S3: Parameters with 6-hourly output on either
ESGF or DKRZ LTA (*) for any of the 30 realisations.

name parameter long name unit level | r1- [r11-
r10 [ r30
atmosphere / land

hur* Relative Humidity™ 1* 47* ri1*
hurs Near-Surface Relative Humidity % 1 X X
hus Specific Humidity 1 47 X X
huss Near-Surface Specific Humidity 1 1 X X
mrsol Total Water Content of Soil Layer kg m-2 5 X X
mrsos Moisture in Upper Portion of Soil Column kg m-2 1 X X
pr Precipitation kg m-2 s-1 1 X X
ps Surface Air Pressure Pa 1 X X
psl Sea Level Pressure Pa 1 X X
sfcWind Near-Surface Wind Speed m s-1 1 X
snw Surface Snow Amount kg m-2 1 X
ta Air Temperature K 47 X X
tas Near-Surface Air Temperature K 1 X X
ts Surface Temperature K 1 X
tsl Temperature of Soil K 1 X X
ua Eastward Wind m s-1 47 X X
uas Eastward Near-Surface Wind m s-1 1 X X
va Northward Wind m s-1 47 X X
vas Northward Near-Surface Wind m s-1 1 X X
wap Omega (=dp/dt) Pa s-1 4 X | x
78 Geopotential Height m 28 X X
zg500 Geopotential Height at 500hPa m 1 X X
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Table S4: Parameters with daily output on either ESGF
or DKRZ LTA (*) for any of the 30 realisations.

name parameter long name unit level | r1- [r11-
r10 | r30
atmosphere / land
ares Aerodynamic Resistance s m-1 1 X
cct Air Pressure at Convective Cloud Top Pa 1 X
cl Percentage Cloud Cover % 47 X
cli Mass Fraction of Cloud Ice kg kg-1 47 X
clivi Ice Water Path kg m-2 1 X
clt Total Cloud Cover Percentage % 1 x | x
clw Mass Fraction of Cloud Liquid Water kg kg-1 47 X
clwvi Condensed Water Path kg m-2 1 X
cne Canopy Covered Area Percentage % 1 X X
es Bare Soil Evaporation kg m-2 s-1 1 X X
hfls Surface Upward Latent Heat Flux W m-2 1 X X
hfss Surface Upward Sensible Heat Flux W m-2 1 X X
hur Relative Humidity % 47 X X
hurs Near-Surface Relative Humidity % 1 X X
hursmax | Daily Maximum Near-Surface Relative Humidity % 1 X X
hursmin Daily Minimum Near-Surface Relative Humidity % 1 X X
hus Specific Humidity 1 47 X X
hus850 Specific Humidity at 850hPa 1 1 X X
huss Near-Surface Specific Humidity 1 1 X X
lai Leaf Area Index 1 1 X X
me Convective Mass Flux kg m-2 s-1 | 48 X
mlotst Ocean Mixed Layer Thickness Defined by Sigma m 1 X X
T
mrro Total Runoff kg m-2 s-1 1 X X
mrrob Subsurface Runoff kg m-2 s-1 1 X
mrros Surface Runoff kg m-2 s-1 1 X
mrso Total Soil Moisture Content kg m-2 1 X X
mrsol Total Water Content of Soil Layer kg m-2 1 X X
mrsos Moisture in Upper Portion of Soil Column kg m-2 1 X X
od550aer Ambient Aerosol Optical Thickness at 550nm 1 1 X X
pr Precipitation kg m-2 s-1 1 X b
prc Convective Precipitation kg m-2 s-1 1 X b
prra Rainfall Flux over Land kg m-2 s-1 1 X
prsn Snowfall Flux kg m-2 s-1 1 X X
prw Water Vapor Path kg m-2 1 X
ps Surface Air Pressure Pa 1 X X
psl Sea Level Pressure Pa 1 X X
rlds Surface Downwelling Longwave Radiation W m-2 1 X X
rldscs Surface Downwelling Clear-Sky Longwave W m-2 1 X X
Radiation
rlus Surface Upwelling Longwave Radiation W m-2 1 X X

Continued on next page
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Table S4 — continued from previous page

name parameter long name unit level | r1- |rl11-

r10 | r30
rlut TOA Outgoing Longwave Radiation W m-2 1 X X
rlutes TOA Outgoing Clear-Sky Longwave Radiation W m-2 1 X X
rsds Surface Downwelling Shortwave Radiation W m-2 1 X X
rsdscs Surface Downwelling Clear-Sky Shortwave W m-2 1 X X

Radiation
rsdt TOA Incident Shortwave Radiation W m-2 1 X X
rsus Surface Upwelling Shortwave Radiation W m-2 1 X X
rSuscs Surface Upwelling Clear-Sky Shortwave Radiation| W m-2 1 X X
rsut TOA Outgoing Shortwave Radiation W m-2 1 X X
rsutcs TOA Outgoing Clear-Sky Shortwave Radiation W m-2 1 X X
IZWC Root Zone Soil Moisture kg m-2 1 X X
sbl Surface Snow and Ice Sublimation Flux kg m-2 s-1 1 X X
sfcWind Daily-Mean Near-Surface Wind Speed m s-1 1 X X
sfcWindmax Daily Maximum Near-Surface Wind Speed m s-1 1 X X
snc Snow Area Percentage % 1 X X
snm Surface Snow Melt kg m-2 s-1 1 X
snw Surface Snow Amount kg m-2 1 X X
snwc snow water equivalent intercepted by the kg m-2 1 X X
vegetation
ta Air Temperature K 47 X X
ta500 Air Temperature at 500hPa K 1 X X
ta700 Air Temperature at 700hPa K 1 X X
ta850 Air Temperature at 850hPa K 1 X X
tas Near-Surface Air Temperature K 1 X X
tasmax Daily Maximum Near-Surface Air Temperature K 1 X X
tasmin Daily Minimum Near-Surface Air Temperature K 1 X X
tauu Surface Downward Eastward Wind Stress Pa 1 X X
tauv Surface Downward Northward Wind Stress Pa 1 X X
tdps 2m Dewpoint Temperature K 1 X X
tr Surface Radiative Temperature K 1 X X
tran Transpiration kg m-2 s-1 1 X
ts Surface Temperature K 1 X X
tsl Temperature of Soil K 1 X X
ua Eastward Wind m s-1 47 X X
ual0 Eastward Wind at 10hPa m s-1 1 X X
uas Eastward Near-Surface Wind m s-1 1 X X
utendnogw | FEastward Acceleration Due to Non-Orographic m s-2 39 X
Gravity Wave Drag
utendogw Eastward Acceleration Due to Orographic m s-2 39 X
Gravity Wave Drag

va Northward Wind m s-1 47 X X
vas Northward Near-Surface Wind m s-1 1 X X
wap Omega (=dp/dt) Pa s-1 47 X | x
wapbH00 Pressure Tendency Pa s-1 1 X X

Continued on next page
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Table S4 — continued from previous page

name parameter long name unit level | r1- |rl11-
r10 | r30
7g Geopotential Height m 47 X X
zg10 Geopotential Height at 10hPa m 1 X X
zg100 Geopotential Height at 100hPa m 1 X X
zg1000 Geopotential Height at 1000hPa m 1 X X
zgb00 Geopotential Height at 500hPa m 1 X X

ocean / sea ice / biogeochem
chlos Surface Mass Concentration of Total kg m-3 1 X X
Phytoplankton Expressed as Chlorophyll in Sea
Water
fgco2* Surface Downward Mass Flux of Carbon Dioxide kg m-2 1* T*
Expressed as Carbon™ s-1*
intpp* Integrated Primary Production™® mol C m-2| 1% z*
s-1*
omldamax Mean Daily Maximum Ocean Mixed Layer m 1 X X
Thickness Defined by Mixing Scheme
milotst™ Ocean Mixed Layer Thickness Defined by Sigma m* 1* x*
T
ph* Surface Hydrogen Ion Concentration™ kmol m-8* | 1* x*
phycos Sea Surface Phytoplankton Carbon mol m-3 1 X X
Concentration
siconc Sea-Ice Area Percentage (Ocean Grid) % 1 X X
sisnthick Snow Thickness m 1 X X
sispeed Sea-Ice Speed m s-1 1 X X
sitemptop Surface Temperature of Sea Ice K 1 X
sithick Sea Ice Thickness m 1 X X
sitimefrac Fraction of Time Steps with Sea Ice 1 1 X X
siu X-Component of Sea-Ice Velocity m s-1 1 X X
siv Y-Component of Sea-Ice Velocity m s-1 1 X X
SOS Sea Surface Salinity 0.001 1 X X
S0ssq Square of Sea Surface Salinity 1.00E-06 1 X X
spco2* Surface Partial Pressure of Carbon Diozide in Pa* 1* z*
Sea Water*

t20d Depth of 20 degree Celsius Isotherm m 1 X X
tos Sea Surface Temperature degC 1 X X
tossq Square of Sea Surface Temperature degC2 1 X X
208* Sea Surface Height above Geoid* m* 1* T*
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Table S5. Coordinates of the grid points used for calculating storm activity in the model.
Grid point Latitude Longitude
NW of Bermuda - North 36.372° N 69.375° W
NW of Bermuda - West  32.642° N 73.125° W
NW of Bermuda - East  32.642°N  65.625° W
SE of Japan - North 36.372° N 142.500° E
SE of Japan - West 32.642° N 138.750° E
SE of Japan - East 32.642° N 146.250° E
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Table S6. Comparison of central estimates of 20-year mean crossing times of the 1.5°C
global warming threshold for MPI-GE CMIP6, IPCC AR6, and MPI-GE CMIP6 when using
the historical warming of IPCC ARG instead of the model’s own historical warming. The time
ranges for MPI-GE CMIP6 only stem from internal variability whereas those for AR6 include

uncertainties in historical warming, climate sensitivity and internal variability.

Scenario MPI-GE CMIP6 AR6  Difference With ARG6 historical warming

SSP1-1.9 NA 2025-2044 NA NA

SSP1-2.6 2034-2053 2023-2042 11 2042-2061
SSP2-4.5 2027-2046 2021-2040 6 2030-2049
SSP3-7.0 2025-2044 2021-2040 4 2027-2046
SSP5-8.5 2024-2043 2018-2037 6 2027-2046
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