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Abstract

Despite the important hydrological and ecological implications of the snowpack, its real time monitoring remains challenging.

This is particularly relevant in relation to the Snow Water Equivalent (SWE), as the available technologies which measure it,

exhibit a number of limitations that difficults their operational implementation. In this work, we explore the potential of a

new technology, Muon Scattering Radiography (MSR), to infer the SWE. We coupled snowpack simulations generated by the

SNOWPACK model, with a muon scattering simulation program based on GEANT4. The SWE is modelled as a function of the

muon scattering distributions. Predictions of the SWE along the year are provided showing a root-mean-square error (RMSE)

of 12 mm for 5 hour continuous measurements. We also performed laboratory measurements using ice samples, confirming the

SWE estimation capabilities and the potential of the technique to operate as a SWE monitoring tool.
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Key Points: 10 

● We test the suitability of Muon Scattering Radiography to infer the Snow Water 11 
Equivalent. 12 

● Numerical simulations show the technique can estimate the Snow Water Equivalent with 13 
a precision of around 1 cm. 14 

● Laboratory measurements confirm the results obtained with simulation. 15 
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Abstract 45 

 46 
Despite the important hydrological and ecological implications of the snowpack, its real time 47 
monitoring remains challenging. This is particularly relevant in relation to the Snow Water 48 
Equivalent (SWE), as the available technologies which measure it, exhibit a number of 49 
limitations that difficults their operational implementation. In this work, we explore the potential 50 
of a new technology, Muon Scattering Radiography (MSR), to infer the SWE. We coupled 51 
snowpack simulations generated by the SNOWPACK model, with a muon scattering simulation 52 
program based on GEANT4. The SWE is modelled as a function of the muon scattering 53 
distributions. Predictions of the SWE along the year are provided showing a root-mean-square 54 
error (RMSE) of 12 mm for 5 hour continuous measurements. We also performed laboratory 55 
measurements using ice samples, confirming the SWE estimation capabilities and the potential 56 
of the technique to operate as a SWE monitoring tool. 57 

 58 

Plain Language Summary 59 

 60 
The monitoring of the seasonal snowpack is important to understand and predict the dynamics of 61 
the hydrological and ecological processes, but its continuous monitoring is still a scientific 62 
challenge. Particularly in relation to the Snow Water Equivalent (SWE), which represents the 63 
depth of water that would result if the snow melted. The available technologies to monitor the 64 
SWE exhibit a number of limitations that prevent its use in many real world cases. Here we 65 
explore the potential of a new technology, Muon Scattering Radiography (MSR), to quantify the 66 
SWE. MSR is a technique based in the detection of the natural and innocuous radiation of muon 67 
particles. The technique consists in the measurement of muon deviations, which depend on the 68 
material they traverse. The larger or denser the material is, the bigger the deviations they 69 
undergo. This study begins with a detailed simulation. Firstly, we simulated the snowpack 70 
evolution itself, and secondly its measurement process. Thirdly, we determined the relation 71 
between muon deviations and SWE. And finally, we estimated the precision in the determination 72 
of SWE comparing the predictions to the ground truth in the simulations. The results yielded a 73 
precision of about 1 cm. We also performed laboratory measurements with ice samples, using a 4 74 
layer muon detector based on multiwire proportional chambers and confirming the potential of 75 
the technique to operate as a SWE monitoring tool. 76 
 77 

 78 

 79 

 80 

 81 

 82 
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1 Introduction 84 

The seasonal snowpack plays a key role in the hydrology of the areas where it is present and 85 
beyond (Barnett et al., 2005), but its real-time monitoring still represents a big challenge for the 86 
scientific community and water management agencies. Real-time monitoring systems strongly 87 
rely on remote sensing and numerical modelling. However, to date, there is still no effective 88 
approach to retrieving the snow water equivalent (SWE) from orbital sensors, especially over 89 
complex terrain (Luojus et al., 2021). In addition, even the most sophisticated physically based 90 
snowpack models suffer from the limitations of the quality of the forcing (Raleigh et al., 2016), 91 
its parametrizations (Günther et al., 2019), and the uncertainty caused by the wind and avalanche 92 
snow redistribution (Vionnet et al., 2021). 93 

Direct observations of the snowpack are very appreciated for water management purposes, long-94 
term climatological studies, as well as for model and remote sensing product validation or data 95 
assimilation. However, as a consequence of the difficulties of snowpack monitoring and 96 
increased costs, the available SWE time series are often scarce, incomplete, or just inexistent 97 
(Alonso-González et al., 2018). In addition, despite nowadays it is possible to retrieve the snow 98 
depth using relatively cost-effective techniques (Revuelto et al., 2021), the monitoring of the 99 
SWE remains elusive. 100 

Traditional SWE monitoring techniques including snow pillows exhibit a number of limitations 101 
that prevents their usage for many applications and environmental conditions. Their installation 102 
requires very complex logistics and additionally, these devices often require manual re-103 
calibrations (Moreno et al., 2010). Moreover, their accuracy is very limited in ephemeral or 104 
shallow snowpacks. In this context, the use of cosmic-ray neutron-based sensors is not 105 
uncommon, being the solution chosen by several water agencies for their operational networks. It 106 
is possible to deploy neutron-based monitoring networks, even in mountainous or remote regions 107 
(Jitnikovitch et al., 2021). However, its precision is still limited and requires a proper in-situ 108 
calibration. Despite the relative success of neutron-based techniques, there is still a need for 109 
scientific innovation in the field of SWE sensors. 110 

Muons are leptons, elementary particles similar to electrons but with a mass about 207 times 111 
greater. Cosmic rays, very high-energy particles and nuclei that constantly reach the earth from 112 
deep space, collide with the upper layers of the atmosphere producing a shower of several types 113 
of secondary particles. Some of them manage to reach the sea level, indeed, muons are the most 114 
numerous charged particles at this atmospheric depth (Workman et al. (Particle Data Group), 115 
2022). 116 

Thus, cosmic muon production is a very common natural phenomenon.  Muons exhibit high 117 
penetrating capabilities, being interesting candidates for the development of SWE sensors. 118 
Although they have great potential, their option as a resource to measure the SWE is largely 119 
underexplored yet. Consequently, there is a lot of room for research and development in this 120 
field. 121 

There are two different types of muography:  Muon Absorption Radiography (MAR), a 122 
technique that uses muon counts to extract information, and Muon Scattering Radiography 123 
(MSR), which utilises muon deviations. Recently, Gugerli et al. (2021), applied MAR and 124 
proved the potential of muon counters to infer the SWE in the field, comparing the decreasing 125 
muon count rate with in situ SWE measurements.  126 
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The objectives of this study are: (1) to infer SWE by conducting a detailed study using snowpack 127 
and a detailed muon numerical simulation and (2) to test the capabilities of a real-world 128 
hardware designed by us to measure SWE contained in artificial snow samples. 129 

2 Materials and Methods 130 

2.1 Physical principle 131 

Muons, being a charged particle, suffer many small-angle scatters when traversing matter. Most 132 
of this deflection is due to Coulomb scattering with nuclei of matter, as described by the 133 
Rutherford cross section. The multiple scattering phenomenon can be described through the 134 
theory of Molière. Although large scatters produce a non-Gaussian tail in the probability 135 
distribution of the total deviation of muons when traversing a certain material, it can be 136 
approximated by a Gaussian distribution with a RMS width (�0) of (Workman et al., 2022; see 137 
also Bethe, 1953; Highland, 1975; Lynch et al., 1991): 138 
 139 𝜃 = .  ( )   1 + 0.038 𝑙𝑛( )       (1) 140 

 141 
Where 𝑝 and βc are the momentum and velocity of the incident particle. 𝑥 is the distance 142 
traversed by the particle inside the material and X0 is the radiation length of the material. β 143 
represents the ratio between the particle velocity and the speed of light. The constant 13.6, is 144 
measured in millions of electronvolts (MeV) and �0 represents the RMS value of muon 145 
deviations projected in a plane. 146 
 147 
2.2 Experimental setup 148 
 149 
Muon data used in this work has been collected with our muon detection system (Figure 2, b).  150 
This muon monitoring system is currently in use for both scientific and industrial purposes 151 
(Martínez-Ruiz del Árbol et al., 2022). The particle detectors are composed of four Multi-Wire 152 
Proportional Chambers (MWPC) and each chamber has two layers with 224 detection wires, all 153 
of them separated by 4 mm. The two layers form a two-dimensional grid of wires which covers 154 
an area of 89.6 x 89.6 cm and detects the positions where muons cross it.  155 

The synchronisation electronics identify a muon when signals are obtained in a space of time on 156 
the order of hundreds of microseconds in all the chambers, in both the upper and lower detector.  157 
This condition distinguishes signals produced by muons from signals produced by other charged 158 
particles which could activate detection wires, since this kind of simultaneous activations on the 159 
earth's surface are practically only produced by muons. However, various sources of noise 160 
should be considered, such as charged hadrons, electrons, and positrons (“fake muons”), and also 161 
muons with relatively low momentum (“soft muons”) (Bonechi et al., 2020).  162 

When a muon event is identified, our system detects four points located in the horizontal two-163 
dimensional grids, two points before the particle goes through the target and another two points 164 
after the particle traverses it. With this data, way-in and way-out trajectories can be 165 
reconstructed, and muon deviations calculated. Specifically, in the numerical analysis of this 166 
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 189 

We coupled the SNOWPACK simulations with a full MSR simulation setup that uses the 190 
Cosmic RaY generator (Hagmann et al., 2012) to reproduce the atmosphere muon flux and 191 
GEANT4 (Agostinelli et al., 2003) to simulate the muon scattering caused by the snowpack 192 
(Figure 2, a). GEANT4 is a state-of-the-art software designed and maintained at CERN to 193 
simulate the interactions of particles and matter in high-energy and nuclear physics. Our 194 
simulation framework contains a model of our experimental setup including the muon detectors 195 
and their response. This framework has been successfully applied to multiple industrial 196 
problems, for instance, to steel-made pipe wear (Martínez-Ruiz del Árbol et al., 2018). Similar 197 
simulation frameworks are typically used to research applications of muography (Mori et al., 198 
2017). 199 

Once the numerical SNOWPACK simulations were developed, we expanded the one-200 
dimensional snowpack geometry to a 1m² snow column, assuming homogeneous snow layers in 201 
the longitude and latitude dimensions. Then, we propagated and measured muons penetrating the 202 
whole snow column, virtually reproducing the detection process using GEANT4 and collecting 203 
�0 for different accumulations of snow during the two simulated seasons. 204 

2.4 Measurements and analysis strategy: 205 

 206 
The detection angular resolution is a key parameter in MSR application. This resolution refers to 207 
the smallest muon angular deviation measurable by the detectors, and it is determined by the 208 
separation of the wires within detection layers, the separation of the chambers of each trajectory 209 
detector (in this case, upper detector, and lower detector) and the materials of the detectors 210 
themselves, which inevitably produce an intrinsic angular deviation of the muons. The resolution 211 
strongly impacts the final performance of the technique and it is of great importance for this 212 
work, where the target object is composed of a low density material such as snow.  213 
 214 
To demonstrate the capability to infer the SWE and to explore the previously commented 215 
influence of detector resolution and of their material itself, we analysed MSR data produced in 216 
different scenarios. We built 4 simulation scenarios to study in detail the changes induced by the 217 
factors affecting the resolution. The first scenario considers muon detectors with a perfect spatial 218 
resolution and neglecting the effect of the detector materials. In the second scenario, the effect of 219 
the detector materials is simulated but still assuming a perfect spatial resolution. In the third 220 
scenario, detector materials are considered and the spatial resolution is degraded by setting the 221 
wire separation to 4 mm. All these scenarios assume a detector layer separation of 257 mm. The 222 
forth scenario is similar to the previous but assuming a detector layer separation of 130 mm, 223 
coincident with the experimental setup. In each of these scenarios we quantify the correlation 224 
between measured muon deviations and SWE. Finally, we made laboratory measurements on 225 
blocks of ice of different heights, to test the performance of our hardware and confirm the 226 
simulation results. 227 
 228 
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 253 
A simple mathematical model has been developed in order to connect the SWE with the standard 254 
deviation of the muon angular deviations. This model considers a constant term to account for 255 
the intrinsic resolution due to all the instrumental effects, and a term proportional to the square 256 
root of the SWE. The second term assumes that the SWE is proportional to the number of 257 
radiation lengths of the target, according to equation 2.  258 
 259 𝜃 = 𝑝0 +  𝑝1 √𝑆𝑊𝐸           (2) 260 

 261 
We fitted Equation 2 to all scenarios, expecting to obtain different fit parameters 𝑝0 and 𝑝1 for 262 
each of them, since different detector conditions are being considered. 263 
 264 

3 Results 265 

 266 
We modelled θ0 for different scenarios of simulated and real snow samples as a function of the 267 
SWE using Equation 2. Figure 3 shows the results for all the scenarios including its fitted 268 
function. For this analysis, we rejected muons with projected deviations higher than 100 mrad, 269 
with the aim of reducing the previously mentioned sources of noise, namely, “fake muons” and 270 
“soft muons”. As expected, the observed data is compatible with a root square function. In all the 271 
scenarios the coefficient of determination between the two variables is around 0.98. Only a slight 272 
decrease is noticed in the case of scenario 2, the one with 4 mm wire separation and 13 cm 273 
chamber separation. All the models fit to the expected square root relation, but each one has 274 
different fit parameters 𝑝0, and 𝑝1. There is a bias at 0 mm of SWE (𝑝0 variation), and also 275 
different intensity in the increment of the measured variable in relation to the SWE (𝑝1 276 
variation) depending on the scenario. These preliminary results clearly show the increase 277 
produced in θ0 when detector material is considered, and when detector resolution is diminished. 278 
The θ0 increase due to detector material significantly decreases in agreement with the SWE 279 
increment, while the θ0 increase produced by the detector resolution is present in all the 280 
simulated SWE range.  281 
 282 
In the results obtained with the two setups with perfect resolution (scenarios 1 and 2), an increase 283 
of θ0 due to detector material can be observed, which is more noticeable at lower SWE 284 
measurements. The scenarios 2 and 3 show a θ0 increase produced by the limited resolution of 285 
the detection wires. Furthermore, between the scenarios 3 and 4, a θ0 increase produced by the 286 
change of detector separation appears. And finally, the laboratory measurements show higher θ0 287 
values. The main differences between our laboratory setup and the simulation scenario 4 are the 288 
precision of the alignment of the detectors, the presence of an additional steel-made structure, 289 
noise and effects not considered in simulation, and the snow samples themselves. Some of these 290 
factors are probably responsible of the higher θ0 values obtained in our laboratory. It also has to 291 
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be mentioned that the laboratory measurements were performed inside a building which was not 292 
included in simulation. 293 

 294 
Figure 3. RMS of the muon scattering angles as a function of SWE for different scenarios. The 295 
laboratory setup or scenario 5, and the simulated cases: scenarios 4, 3, 2, and 1. 296 
 297 
In order to calculate the SWE of additional and independent snowpack samples, we extracted a 298 
SWE estimation function for the scenario 3 from its fitted model (Figure 3): 299 
     300 𝑆𝑊𝐸 =    ( .  ± . )( .  ± . )          (3) 301 

 302 
Where SWEμ is the SWE estimation made by means of MSR for an individual measurement, and 303 
θ0 is the RMS value of the measured muon deviations during the same measurement. To validate 304 
the defined function, we applied the SWE estimation formula to independent measurements of 305 
snow samples. For that purpose, we used the second season data (hydrologic year 2016/2017), 306 
obtaining results that show a RMSE of 11.5 mm, tending to underestimate (overestimate) the 307 
SWE during the minimum (maximum) accumulation periods (Figure 4). We obtained an average 308 
underestimation of 9.4% (14.3 mm SWE) for the month of december, while average 309 
overestimation during april was 3.3% (15.7 mm SWE). 310 
 311 
 312 
 313 
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 314 
Figure 4. Validation of the SWE estimation function with data of the season 2016/2017 315 
(scenario 3). The green dots are the results of the SWE estimation function (𝑆𝑊𝐸 ), while the 316 

blue line indicates the actual SWE. The black bars represent the uncertainty of the model, based 317 
on the propagation of the fitted parameter variance. In the horizontal axis, the beginning of each 318 
month is signalled. 319 

4 Discussion and Conclusions 320 

 321 
In this work we demonstrated that MSR can be used to determine the SWE, and therefore, it 322 
could be a viable technology to help solve the existing challenges in the real time monitoring of 323 
the snowpack.  324 
 325 
We have developed snowpack simulations and built and validated a simulation numerical model 326 
which identifies the relation between muon deviations and SWE. The theoretical reference 327 
represented by the Equation 1, and also previous studies analysing similar relations (Zeng et al., 328 
2020) agree with our results. In addition, the simulation model is compatible with the three 329 
snowpack measurements performed in the laboratory, proving the agreement of our simulations 330 
with reality. The higher θ0 obtained in the laboratory measurements, can be explained by the 331 
presence of the steel-made detection structure (Figure 2, b), and by millimetre scale 332 
misalignments of the detector chambers, noise and other effects of the detection process that 333 
could be minimised in specific designs. The mentioned factors are not included in the 334 
simulations, and they make the muons undergo higher deviations. The uncertainty created by the 335 
probable differences between simulation and laboratory muon flux and momentum spectrum, 336 
should be also considered. The laboratory measurements were performed inside a building, and 337 
this fact could produce significant changes on muon flux and momentum compared to the 338 
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simulations, which do not include the building effect. The different characteristics of the 339 
artificial snow sample and the simulated snow, such as the analysed surface and their material, 340 
are a source of uncertainty as well. But in spite of the mentioned subtle disagreements and 341 
uncertainties, the achieved compatibility is a very promising point regarding the possibility of 342 
using simulation data for SWE detection modelling, calibration and testing.  343 
 344 
Although the agreement of data extracted from different scenarios matched our expectations, we 345 
performed additional studies about the influence of different factors that affect our SWE 346 
modelling procedure, such as detector resolution and their own material. The resolution modifies 347 
how we detect muon deviations, and as in these experiments the majority of muons undergo 348 
deviations on the order of tens of milliradians, when the resolution gets worse, the measured 349 
deviations increase significantly. On the other hand, the detector material increases the actual 350 
scattering that muons undergo. And both, detector resolution and material, influence the relation 351 
between the measured deviations and the SWE. Therefore, a specific modelling is required 352 
depending on the detection setup. But above all, it is remarkable that in all the measurement 353 
scenarios the coefficient of determination between the two variables is 0.98 or higher. In relation 354 
to the measurements performed in the laboratory with our hardware, it is desirable to continue 355 
exploring the potential of MSR and to test the technique in the field. 356 
 357 
We also validated the simulation numerical model evaluating its estimates for additional and 358 
independent continuous measurements during the hydrologic year (2016/2017). The evaluation 359 
yielded successful SWE estimations, with an average RMSE of 11.5 mm for the whole year. This 360 
last validation demonstrates the ability of the technique to continuously monitor the SWE using a 361 
model built with weekly measurements made during a unique season.  362 
 363 
Gugerli et al. (2021) already demonstrated the SWE monitoring capability of MAR, measuring 364 
in the field the muon attenuation and linking it to the SWE variation. Their muon measurements 365 
agree with neutronic detector measurements and also with manual observations. We exploited 366 
the simulation potential and the control of laboratory samples to identify the actual SWE, and 367 
quantify its correlation with muon deviations. The fact of measuring deviation (MSR) instead of 368 
absorption (MAR), gave us additional information of the physical phenomenons that muons 369 
undergo, adding information about the multiple scattering they suffer when traversing snow 370 
samples. 371 
 372 
The application and testing of our technique in the field, together with further research and 373 
innovation of muon detection systems and reconstruction algorithms can lead to the 374 
implementation of an industrialised MSR method for SWE determination. Characteristics of 375 
muon radiation such as the penetrating power and innocuousness make MSR an appropriate 376 
technology for the real time SWE monitoring. This technique also provides information about 377 
the density and composition of the target, allowing to identify material properties (Åström et al., 378 
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2016), as well as internal density distributions (Vanini et al., 2019). These potentialities could 379 
eventually lead to retrieval of the internal layered structure of the snowpack. Locating and 380 
estimating the characteristics of the produced muon deviations through their trajectories and 381 
applicating advanced muography algorithms (Schultz et al., 2007) (Sehgal et al., 2020) the 382 
snowpack density distribution could be estimated and voids or weak layers identified. The results 383 
of our proof of concept will be useful for the development of new sensors and detection 384 
algorithms, providing the necessary background for the future operational design of muon 385 
scattering based SWE monitoring networks.  386 
 387 
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