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Abstract

Rapid provision of Earth Orientation Parameters (EOPs, here polar motion and dUT1) is indispensable in many geodetic

applications and also for spacecraft navigation. There are, however, discrepancies between the rapid EOPs and the final EOPs

that have a higher latency, but the highest accuracy. To reduce these discrepancies, we focus on a data-driven approach,

present a novel method named ResLearner, and use it in the context of deep ensemble learning. Furthermore, we introduce

a geophysically-constrained approach for ResLearner. We show that the most important geophysical information to improve

the rapid EOPs is the effective angular momentum functions of atmosphere, ocean, land hydrology, and sea level. In addition,

semi-diurnal, diurnal, and long-period tides coupled with prograde and retrograde tidal excitations are important features. The

influence of some climatic indices on the prediction accuracy of dUT1 is discussed and El Ni\˜{n}o Southern Oscillation is found

to be influential. We developed an operational framework, providing the improved EOPs on a daily basis with a prediction

window of 63 days to fully cover the latency of final EOPs. We show that under the operational conditions and using the rapid

EOPs of the International Earth Rotation and Reference Systems Service (IERS) we achieve improvements as high as 60\%,

thus significantly reducing the differences between rapid and final EOPs. Furthermore, we discuss how the new final series

IERS 20 C04 is preferred over 14 C04. Finally, we compare against EOP hindcast experiments of European Space Agency, on

which ResLearner presents comparable improvements.
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Abstract18

Rapid provision of Earth Orientation Parameters (EOPs, here polar motion and dUT1)19

is indispensable in many geodetic applications and also for spacecraft navigation. There20

are, however, discrepancies between the rapid EOPs and the final EOPs that have a higher21

latency, but the highest accuracy. To reduce these discrepancies, we focus on a data-driven22

approach, present a novel method named ResLearner, and use it in the context of deep23

ensemble learning. Furthermore, we introduce a geophysically-constrained approach for24

ResLearner. We show that the most important geophysical information to improve the25

rapid EOPs is the effective angular momentum functions of atmosphere, ocean, land hy-26

drology, and sea level. In addition, semi-diurnal, diurnal, and long-period tides coupled27

with prograde and retrograde tidal excitations are important features. The influence of28

some climatic indices on the prediction accuracy of dUT1 is discussed and El Niño South-29

ern Oscillation is found to be influential. We developed an operational framework, pro-30

viding the improved EOPs on a daily basis with a prediction window of 63 days to fully31

cover the latency of final EOPs. We show that under the operational conditions and us-32

ing the rapid EOPs of the International Earth Rotation and Reference Systems Service33

(IERS) we achieve improvements as high as 60%, thus significantly reducing the differ-34

ences between rapid and final EOPs. Furthermore, we discuss how the new final series35

IERS 20 C04 is preferred over 14 C04. Finally, we compare against EOP hindcast ex-36

periments of European Space Agency, on which ResLearner presents comparable improve-37

ments.38

Plain Language Summary39

The International Earth Rotation and Reference Systems Service (IERS) provides40

rapid Earth Orientation Parameters (EOPs) using different space geodetic techniques41

to bridge the latency of the final, most accurate EOPs solution. However, these rapid42

EOPs are not in full agreement with the final EOPs. In order to reduce the differences43

between the rapid and final EOPs, we focus on the application of machine learning and44

present a novel method named ResLearner, which is based on geodetic data and geophys-45

ical constraints. We present the method in the context of deep ensemble learning, focus-46

ing on a prediction window of 63 days. We also attempt to link informative geophysi-47

cal effects to these discrepancies. We show that they are linked to a mixture of atmo-48

spheric, oceanic, hydrological, and sea level effective angular momentum functions, dom-49

inance of the GNSS-derived polar motion, and various short- and long-term tidal exci-50

tations. El Niño Southern Oscillation is also relevant for dUT1 prediction. The method-51

ology can provide significant improvements of up to 60% in operational settings with re-52

spect to rapid EOPs provided by IERS. Additional validation is done by using the data53

of Jet Propulsion Laboratory final EOP series and also EOP series provided by the Eu-54

ropean Space Agency.55

1 Introduction56

Earth Orientation Parameters (EOPs) represent variations of Earth’s rotation axis57

in time (Lambeck, 1980; Gross, 1997). Among these parameters, polar motion compo-58

nents, (xp, yp), and the difference between universal time and coordinated universal time,59

dUT1, are of great interest, because of their importance for applications such as satel-60

lite and spacecraft navigation and orientation of deep-space telescopes (Dobslaw & Dill,61

2019b). These EOPs are routinely provided at different latencies, of which two are con-62

sidered here: rapid and final (Kehm et al., 2023). Final EOPs require a combination of63

different data sources (Bizouard et al., 2019; Ratcliff & Gross, 2022) such as Global Nav-64

igation Satellite Systems (GNSS), Very Long Baseline Interferometry (VLBI), and Lu-65

nar and Satellite Laser Ranging (LLR, SLR). Some of the techniques require longer pro-66

cessing time and therefore, delays of up to several weeks are expected, by which the data67
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are provided to the scientific community. The current uncertainty level in final EOPs68

provided by International Earth Rotation and Reference Systems Service (IERS) is around69

20-30 micro-arcseconds [µas] for polar motion components, and 9-10 micro-seconds [µs]70

for dUT1 in terms of formal errors.71

Rapid EOPs provided by the IERS are determined through a combination of the72

most recent Global Positioning System (GPS) and VLBI 24-hour and intensive sessions73

data, augmented with Atmospheric Angular Momentum (AAM). These rapid data con-74

tain polar motion components (xp, yp) and dUT1, bridging the latency of final EOPs75

by providing 90 days of rapid combined EOPs to the past and 90 days of predicted EOPs76

into the future, with respect to the date the data are provided at. The uncertainty in77

the estimations is also provided. Currently, the level of these uncertainties varies across78

different days and also for combined and predicted EOPs. For the rapid combined EOPs,79

it can be several times bigger than that of final EOPs, but mostly below 1 milli-arcseconds80

[mas]. Predictions into the future are based on extrapolation of mathematical functions81

such as harmonic models. For longer prediction horizons, the accuracy is degraded sig-82

nificantly and can be up to several milli-arcseconds.83

There are some routines performed on the mentioned datasets before operationally84

providing the rapid EOPs data. These include systematic corrections and smoothing.85

Systematic corrections are used to mitigate the impact of different VLBI baseline solu-86

tions on polar motion and dUT1. For instance, based on different VLBI solutions of the87

United States Naval Observatory (USNO), corrections are added to the polar motion and88

dUT1 of 24-hour sessions, and similar corrections to dUT1 of intensive sessions. Smooth-89

ing algorithms are applied to remove the high-frequency noise, usually by a Lagrangian90

interpolation scheme. It is important to note that ocean tidal effects are dealt with in91

the rapid EOPs as otherwise, the accuracy would be significantly degraded because of92

the systematic effect of tides. Furthermore, AAM data that are used for the improved93

determination of rapid EOPs contain some errors. Errors in the removal of tides and also94

the addition of AAM with its associated errors would result in inaccuracies in the rapid95

data, and therefore, inconsistencies w.r.t the final EOPs. These discrepancies can eas-96

ily exceed the current uncertainty level of final polar motion and dUT1 mentioned above,97

thus suggesting the need for some type of calibration.98

There are several deficiencies in the rapid data that are currently provided by the99

IERS. First, as mentioned the errors in the removal of tides can propagate to the rapid100

EOPs. Furthermore, only AAM is used, which is essentially one type of the Effective An-101

gular Momentum (EAM) functions (Barnes et al., 1983). It is shown that Oceanic An-102

gular Momentum (OAM), Hydrological Angular Momentum (HAM), and Sea Level An-103

gular Momentum (SLAM) can have a non-negligible effect on polar motion and dUT1104

as well (Dahlen, 1976; Nastula & Ponte, 1999; Brzezinski & Nastula, 2002; Chin et al.,105

2004; Gross, 2008; Dobslaw et al., 2010; Dill & Dobslaw, 2010; Bizouard & Seoane, 2010;106

Luo et al., 2022; Kiani-Shahvandi et al., 2022). Furthermore, phenomena such as El Niño107

Southern Oscillation (ENSO) can have some influence on the rate of dUT1 (Raut et al.,108

2022; Xu et al., 2022). This can be analyzed using climatic indices (CI) like the multi-109

variate ENSO index (MEI, Wolter & Timlin, 1993), the Madden Julian Oscillation in-110

dex (MJI, Kiladis et al., 2014), and the North Atlantic Oscillation index (NAI, Visbeck,111

Hurrell, Polvani, & Cullen, 2001). It is important to mention that the included AAM112

may not have fully covered the atmospheric effects and a calibration is also needed for113

this. In addition, the effect of EAM functions is non-tidal, but it can get mixed with the114

tidal effects during the application of routines. Disentangling the causes of discrepan-115

cies between rapid and final EOPs could be challenging and might require specifically-116

designed algorithms, especially in the absence of physical or analytical models for cal-117

ibration. As the mixture of tidal and non-tidal effects, systematic corrections, and smooth-118

ing can be in a non-linear fashion, one needs to potentially use non-linear models for the119

purpose of disentanglement. Furthermore, the historical data of rapid EOPs can be uti-120
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lized to present data-driven approaches that eliminate the need for an analytical cali-121

bration approach. These arguments imply that a machine learning algorithm is poten-122

tially well suitable for this problem, which is the approach followed in this paper.123

There have been successful applications of machine learning for the analysis and124

prediction of EOPs (Dill et al., 2021; Kiani-Shahvandi & Soja, 2021, 2022; Kiani-Shahvandi125

et al., 2022). Here, however, we need to consider the specific aspects of the problem and126

develop a new machine learning algorithm. These specific aspects include 1) the calibra-127

tion characteristic, 2) the need for non-linear uncertainty estimation, and 3) the impor-128

tance analysis of different features included in the model.129

The first aspect of the problem, namely the calibration characteristic, relates to the130

fact that the goal of the problem is to reduce the discrepancies between rapid and final131

EOPs, or in other words, calibration of rapid EOPs w.r.t final EOPs. This implies that132

the input to the machine learning model should contain the rapid EOPs themselves. These133

rapid EOPs are already close to the final EOPs in a sense, therefore making the prob-134

lem similar to an identity mapping by machine learning. This can be difficult for non-135

linear machine learning algorithms (He et al., 2016), and it has been shown that a bet-136

ter approach would be to consider a residual learning framework (He et al., 2016). In-137

spired by this approach, we develop our new method in a residual learning manner, in138

which the overall output (final EOPs) is the summation of rapid EOPs and the output139

a neural network (having rapid EOPs and other geophysical information either as inputs140

or constraints). The mentioned neural network can then learn the calibration, enabling141

us also to use further geophysical information and constraints in the model. Note that142

self-calibration algorithms can also be considered (Minderer et al., 2021), in which the143

errors in different variables in the model are potentially reduced by trying to simulta-144

neously learn the calibration effects.145

The second aspect of the problem, i.e., uncertainty estimation, is an important task146

in the field of geodetic science (Kiani-Shahvandi & Soja, 2022), as these uncertainties147

provide a measure of the reliability of predictions. However, this can be challenging be-148

cause of the potential non-linearity in neural networks. In this paper, deep ensembles149

(Lakshminarayanan et al., 2016; Ganaie et al., 2022) are used, which can reduce the epis-150

temic uncertainty in the models. In deep ensembles, a series of neural networks are si-151

multaneously trained to find the mean and standard deviation in the predictions. Since152

the output is the average of the predictions of all models, the epistemic uncertainty is153

reduced and mainly the aleatoric uncertainty remains (due to the uncertainty of input154

data).155

Finally, it is important to use algorithms that support the importance analysis of156

different variables included in the model. Using this approach, we are able to analyze157

the potential sources of errors in the rapid EOPs.158

The following points summarize the goals of the current paper:159

• Developing a new machine learning algorithm specifically designed for the prob-160

lem of improving rapid EOPs accuracy, which can also provide information on un-161

certainties in the predictions,162

• Using geophysically-constrained neural networks as an additional approach in the163

context of the method,164

• Analyzing the geophysical causes of discrepancies between rapid and final EOPs.165

The rest of this paper is organized as follows. In Section 2, the ResLearner method-166

ology is introduced. In Section 3, the data used for the numerical results presented in167

the paper are described. Section 4 is devoted to results and discussions. Conclusions are168

given in Section 5.169
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2 ResLearner methodology170

This section describes the ResLearner method, including the general approach and171

its architecture.172

2.1 Introducing ResLearner173

As mentioned in Section 1, the idea of ResLearner is to calibrate the rapid EOPs174

(henceforward denoted by R) with respect to the final EOPs (denoted by F ) in a resid-175

ual manner using neural networks (NN). This implies that the conceptual representa-176

tion of ResLearner can be described by Equation (1)177

F = R + NN(θ,R,X) (1)

in which NN is a neural network with parameters θ, and X a set of geophysical data.178

In the present study, X includes EAM functions (AAM, OAM, HAM, and SLAM), tides,179

tidal excitations, and MEI, MJI, and NAI. For the architecture of the neural network180

NN, we have observed that a nonlinear Multi-Layer Perceptron (MLP, Bishop, 2006) with181

two layers is sufficient to produce the best results. The first and second layers have 1 and182

63 hidden neurons (for predicting 63 days), respectively. The activation function of the183

first layer is tangent hyperbolic, whereas for the second layer, it is linear. An important184

point regarding the architecture is that linear models can also present competitive re-185

sults (Kiani-Shahvandi et al., 2022). For the purpose of comparison of the architectures,186

we use three different linear models: Ridge regression with cross-validation, (RidgeCV,187

Marquardt & Snee, 1975; S. Liu & Dobriban, 2020), Random Sample Consensus (RANSAC,188

Fischler & Bolles, 1981), and Ordinary Least Squares (OLS, Teunissen, 2003). The rea-189

son for this choice is that RidgeCV and RANSAC are robust against outliers and less190

sensitive to the possible high variability of rapid data across different days. Out of these,191

OLS is the simplest method that can present competitive results. Note that we analyzed192

several other algorithms including Huber (Huber, 1964, 1973; Sun et al., 2020), but they193

turned out to be computationally expensive and less accurate.194

2.2 ResLearner in deep ensembles195

We use ResLearner in the context of deep ensembles (Lakshminarayanan et al., 2016).196

Therefore, a series of neural networks are trained simultaneously based on the same data,197

and the final prediction would be the average of the prediction of all the individual mod-198

els. This reduces the epistemic uncertainty (Sullivan, 2015), which is due to errors in the199

utilized model. The mathematical formulation of deep ensembles (Lakshminarayanan200

et al., 2016) is based on the assumption that the data can be represented by a heteroscedas-201

tic Gaussian distribution. The variance and mean of the distribution are then solved for,202

following the minimization of the logarithm of the likelihood function ℓ(F,R,X) as the203

loss function. The formulation of the deep ensembles for the calibration of rapid EOPs204

is given in Equations (2a)-(2f).205
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µj(R,X) = NNµ(θµ,j , R,X) (2a)

σ2
j (R,X) = log(1 + exp(NNσ(θσ,j , R,X))) + ϵ (2b)

ℓj(F,R,X) =
1

2
log σ2

j (R,X) +
1

2

(F −R− µj(R,X))2

σ2
j (R,X)

(2c)

ℓj(F,R,X) −→ minimize (2d)

µ(R,X) =
1

M

M∑
j=1

µj(R,X) (2e)

σ2(R,X) = −µ2(R,X) +
1

M

M∑
j=1

σ2
j (R,X) + µ2

j (R,X) (2f)

where µ(R,X) and σ2(R,X) are the ensemble mean and variance, being the av-206

erage of M individual members of the ensembles with mean and variance µj(R,X) in207

Equation (2a) and σ2
j (R,X) in Equation (2b), respectively. In our case, we observed that208

M = 10 is sufficient and results in the highest accuracy. Using significantly more than209

10 models seems to be unnecessary, while being drastically more computationally expen-210

sive, and at the same time, resulting in no significant gains in accuracy (below the cur-211

rent uncertainty level in EOPs). µj(R,X) and σ2
j (R,X) are modelled by two different212

neural networks NNµ(θµ,j , R,X) and NNσ(θσ,j , R,X) with different learnable param-213

eters θµ,j and θσ,j , respectively, as in Equations (2a) and (2b). Since the variance has214

to be positive, the softplus function (Szanda la, 2021) is applied to the neural network215

NNσ(θσ,j , R,X), i.e., Equation (2b). The term ϵ is a constant for numerical stability. In216

our problem, we observed that a value of ϵ = 10−8 performs sufficiently well. The loss217

function ℓj(F,R,X) is minimized for each individual model separately using Adam op-218

timizer (Kingma & Ba, 2015) with 200 epochs. Finally, it is worthwhile to mention that219

we implement the method using the TensorFlow library in Python (Abadi et al., 2016).220

2.3 Unmixing and self-calibration approaches: geophysical information221

and constraints222

In order to investigate the causes of discrepancies between rapid and final EOPs,223

one can explicitly model some of the known effects. Here, we model the effect of errors224

in EAM functions, ocean tides, and tidal excitations. The discrepancies between rapid225

and final polar motion, denoted by δxp and δyp, and rapid and final dUT1, denoted by226

δdUT1, are the sum of individual discrepancies due to EAM functions δEAM, ocean tides227

δT, tidal excitations δTE (for polar motion), and additional effects δU, which include228

smoothing, systematic correction, and unknown effects. δEAM, δT, and δTE are related229

to the variable X in the neural network in Equation (1). It is also important to note that230

the component-wise summation of individual EAM functions is used (Kiani-Shahvandi231

et al., 2022).232

Both the polar motion components and dUT1 are affected by ocean tides and li-233

bration in terms of diurnal and subdiurnal variations (Sections 5.5 and 8.2 of Petit &234

Luzum, 2010). Moreover, polar motion is affected by long-period ocean (both prograde235

and retrograde) tides which are conventionally modelled with periods from 9 days to 18.6236

years (Section 8.3 of Petit & Luzum, 2010). However, dUT1 is affected by zonal tides237

(i.e., the effect of tidal deformation), which are modelled with periods from 5 days to 18.6238

years (Section 8.1 of Petit & Luzum, 2010).239

The general approach to include the tidal effects in our model is to consider the240

harmonic functions with fixed frequencies through Delaunay parameters (Petit & Luzum,241

2010), but with variable, estimable amplitudes. This is due to the fact that in rapid EOPs242

tides are already taken care of, and we need to compensate for the potential erroneous243
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effect of tides included in the model. Therefore, δT and δTE can be modelled as in Equa-244

tion (3)245

δT, δTE =

K∑
i=1

Ai cos Θ(t) + Bi sin Θ(t) (3)

in which K is the number of tidal constituents considered, A and B the coefficients that246

should be determined by the neural networks, and Θ(t) the time-dependent argument247

of the harmonic functions based on the Delaunay parameters (Petit & Luzum, 2010). In248

the case of subdiurnal polar motion and dUT1, K = 30 constituents are added as fea-249

tures for each of xp, yp, and dUT1. For the diurnal tides, this number is K = 41 for250

each EOP. For the long period ocean tides and tidal excitations specific to polar motion251

the number is K = 10 for both xp and yp, and for the prograde and retrograde mo-252

tions. The zonal tides specific to dUT1 have K = 62 constituents (Petit & Luzum, 2010).253

δEAM is decomposed into two parts: equatorial components δχ1, χ2 and the ax-254

ial part δχ3 of the excitations. These two parts can be modelled with two groups of neu-255

ral networks (NNχ1 ,NNχ2) and NNχ3 . Additional constraints can be applied to NNχ1 ,256

NNχ2
and NNχ3

. For instance, we apply the Liouville equation (Chin et al., 2004) for257

δP (in the imaginary domain, δP = δxp − iδyp) to investigate if there are additional258

parts that are not available in EAM data or the tidal effects that result in errors δxp,259

δyp in the polar motion components. Similarly, for the rate of dUT1 a linear combina-260

tion of mass (pressure: p) and motion (wind: w) terms of the χ3 component of the EAM261

functions would be considered, bearing physical meaning for example concerning man-262

tle anelasticity (Dickman, 2003; Dobslaw & Dill, 2019b). In addition, a neural network263

denoted by NNs(θs, R, χ3) should learn the remaining signals in the rate of dUT1 (i.e.,264

periods larger than annual), including its interannual trend. Furthermore, since EAM265

data used in the study are both observations and forecasts, NNχ1 , NNχ2 , and NNχ3 can266

be used to minimize the difference between forecasts and their corresponding observa-267

tions simultaneously with the minimization of the difference between rapid and final EOPs.268

Depending on the effects included, we have to consider two aspects, namely the un-269

mixing problem and the self-calibration. The unmixing problem occurs when the tidal270

effects and EAM functions are included in the model and investigated for their impact271

on the reduction of differences between rapid and final EOPs. If, in addition, we try to272

calibrate the EAM forecasts simultaneously with the calibration of rapid EOPs, we have273

to introduce a self-calibration approach. In mathematical terms, this concept is described274

in Equations (4a)-(4f):275

–7–
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δxp, δyp = δχ1, δχ2 + δT + δTE + δU (4a)

δP +
i

σcw

d

dt
δP = δχ1 + iδχ2

δP = δxp − iδyp

σcw =
2π

T
(1 +

i

2Q
)

T = 434.2

Q = 100

i =
√
−1

(4b)

δχ1,o, δχ2,o = δχ1,f , δχ2,f + NNχ1,χ2(θχ1,2 , R, χ1,f , χ2,f ) (4c)

δdUT1 = δχ3 + δT′ + δU′ (4d)

d

dt
δdUT1 = αδχp

3
+ βδχw

3
+ NNs(θs, R, χ3) (4e)

δχ3,o = δχ3,f + NNχ3
(θχ3

, R, χ3) (4f)

In Equation (4a), the error terms in polar motion δxp and δyp result from the er-276

rors in the equatorial components of the excitation functions δχ1, χ2, ocean tides, long277

period ocean tides and tidal excitations, and the remaining errors (smoothing, system-278

atic correction, or unknown). NNχ1
, NNχ2

are used to calibrate the EAM forecasts used279

in the model with respect to the corresponding observations as in Equation (4c). These280

calibrated values can then be used in Equation (4b) to improve the prediction accuracy.281

A similar condition can be considered for dUT1 based on the differentiation of dUT1 and282

the mass and motion terms of the axial component of EAM δχp
3, δχw

3 , through the lin-283

ear equation (4e), with learnable parameters α and β. Crucial to mention is the pres-284

ence of the neural network NNs that learns the remaining signals in the rate of dUT1,285

including the interannual trend. Note that the errors in dUT1 (c.f. Equation (4d)) come286

from the errors in the axial component of the excitation functions δχ3, subdiurnal and287

diurnal tides δT ′′, long-period (zonal) tides δZ ′ and the remaining errors δU′ (δT ′ =288

δT′′ +δZ′). Similar to the case of polar motion, here also the difference between fore-289

casts and their corresponding observations is simultaneously minimized with the cali-290

bration of rapid EOPs–Equation (4f). Finally, it is worthwhile mentioning that the meth-291

ods used for polar motion use both xp and yp as the feature in the model, since this is292

shown to result in better prediction accuracy (Kiani-Shahvandi et al., 2022).293

2.4 Feature importance methodology294

For the analysis of feature importance, the goal of which is to investigate the im-295

portance of different input features in making accurate predictions, we use the method296

of deep feature ranking (Maksymilian & Chen, 2020). This method eliminates the need297

for combinatorial optimization (Bengio et al., 2021) for feature importance. This is ad-298

vantageous since the importance of different features can be simultaneously analyzed,299

instead of analyzing individual or combinations of different features. Therefore, a large300

number of features can be investigated. The choice is furthermore justified since the ResLearner301

approach is mainly non-linear.302

We define the feature importance (FI) as the relative contribution to the results.303

This means that FI in the first approximation is the ratio of the standard deviation of304

the method with or without the k-th feature σ(k) relative to the standard deviation of305

the output σF , as in Equation (5)306

FIk =
σ(k)

σF
(5)
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Note that σ(k), k = 1, ... are the output of the deep feature ranking method (Maksymilian307

& Chen, 2020).308

2.5 Geophysically-constrained neural networks: introducing ResLearner309

PhycoRNN310

In addition to the unmixing and self-calibration problems, the concept of Physi-311

cally Constrained Neural Networks (PCNN, Geneva & Zabaras, 2020) can be used for312

directly applying the physical constraints to the problem using Recurrent Neural Net-313

works (RNN, Rumelhart, Hinton, & Williams, 1986). It has been shown that PCNN meth-314

ods like PhyLSTM (Zhang et al., 2020), which is based on long short-term memory (LSTM,315

Hochreiter & Schmidhuber, 1997) and the physical conditions of the problem, could present316

state-of-the-art prediction performance. As LSTM is the base of PhyLSTM, one can think317

of replacing it with more modern architectures. We investigated several state-of-the-art318

architectures for the problem, including PhyLSTM itself, coupled oscillatory RNN (coRNN,319

Rusch & Mishra, 2021) and Long Expressive Memory (LEM, Rusch, Mishra, Erichson,320

& Mahoney, 2022). The coRNN architecture achieved the best performance and there-321

fore we chose it to replace the LSTM cell in PhyLSTM. Using this approach, we devise322

a new architecture called PhycoRNN. The architecture is shown in Figure 1. In this ar-323

chitecture, there are two coRNN cells. The input I = (R,EAM), containing rapid EOPs324

and EAM, passes through the first coRNN cell and generates two outputs V1, V2 which325

are subsequently passed through a Dense layer (Bishop, 2006) to generate the output326

G. The squared difference between G and the output F containing final EOPs data should327

be minimized, which can be called the mathematical loss, denoted by Lossm. V1 and V2328

are additionally passed through the second coRNN cell to generate the two outputs Z1329

and Z2, which by applying another Dense layer to them would generate the output H.330

The geophysical constraints are then applied to H.331

The geophysical constraint in the case of polar motion is the Liouville equation pre-332

sented in Equation (4b), while for dUT1 rate is the linear combination presented in Equa-333

tion (4e). In this case, α and β can be written as the following Equation (6) (Dobslaw334

& Dill, 2019b).335

α = 2πΩ
kr
Ceff

(1 + k′2,eff + ∆k′an,eff)

β = 2π
kr
Ceff

(6)

in which Ω = 7.292115 × 10−5 [ 1s ] is the rotation rate of the Earth, kr = 0.9976 the336

effect of rotational deformation, Ceff = 7.118246 × 1037 [kgm2] the effective axial mo-337

ment of inertia, and k′2,eff = −0.2415, ∆k′an,eff = −0.0087 the effective load Love num-338

ber and the mantle anelasticity, respectively.339

The mentioned geophysical constraints constitute the so-called physical loss, de-340

noted by Lossp. The total loss is the summation of the mathematical loss and the phys-341

ical loss. To optimize the parameters of the neural networks we use the so-called LBFGS342

algorithm (D. Liu & Nocedal, 1989) since it has been shown to be quite efficient in PCNN343

problems. Finally, it should be noted that we investigated the number of time steps (in-344

put sequence length) used in the coRNN cell and a value of 3 was chosen since it resulted345

in the best prediction accuracy. Here, 200 epochs of training were used. The method was346

implemented using the PyTorch library (Paszke et al., 2019).347
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Figure 1: PhycoRNN architecture as a geophysically-constrained neural network, devised
and used in the study.

2.6 Prediction accuracy metric348

In order to evaluate the prediction accuracy, we use the mean absolute error (MAE)349

metric, which is commonly used in EOP prediction studies (Kalarus et al., 2010; Modiri350

et al., 2018; Kiani-Shahvandi et al., 2022). This is done for each day individually.351

The quantification of improvement is based on the change in MAE for different days.352

If the MAE of one method is smaller than the baseline of rapid data themselves, we achieve353

an improvement. The MAE and improvement are defined in Equations (7a) and (7b):354

MAEk =
1

N

N∑
i=1

|RC
i,k − Fi|, k = −31, ..., 31 (7a)

improvementk = 100%
MAEB

k − MAEk

MAEB
k

(7b)

In these equations, the index k is used for the day number, which is from -31 to 31. The355

number of predictions made is denoted by N . The predictions are denoted by RC
i,k (su-356

perscript C referring to calibration) for the i-th prediction and k-th day ahead. Fi de-357

notes the corresponding final EOPs. The improvement is calculated by the percentage358

change in the MAE across different days, relative to the baseline (superscript B).359

2.7 Summary of the concepts and optimal characteristics for ResLearner360

A summary of the optimal characteristics of the ResLearner method is presented361

in Table 1, as determined in extended tests.362
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Table 1: Optimal characteristics for the ResLearner machine learning algorithm used for
the calibration of rapid EOPs with respect to final EOPs

characteristic choice/description

primary type of neural networks non-linear MLP with two layers. 1 and 63 hid-
den neurons in layers, with tangent hyperbolic
and linear activation functions for first and
second layers, respectively

alternative type of neural networks linear models: RANSAC, RidgdeCV, OLS

grouping of EOPs equatorial and axial, i.e., for the prediction of
xp or yp: both xp and yp used as feature; for
the prediction of dUT1: only dUT1

non-linear uncertainty estimation deep ensembles with M=10 simultaneous neu-
ral networks

feature importance analysis deep feature ranking

evaluation metric MAE

EAM functions considered atmosphere, ocean, hydrology, and sea level

tidal effects subdiurnal, diurnal, long period and tidal exci-
tations, and long-period (zonal, for dUT1 only)
with K= 30, 41, 10, 62 constituents, respec-
tively

CI MEI, NAI, MJI

PhycoRNN number of time steps 3

geophysical conditions for PhycoRNN Liouville equation for rotational dynamics
and polar motion; Earth rotation rate for first
derivative of dUT1

unmixing importance analysis of different features in-
cluded in the model for their impact on the
discrepancies between rapid and final EOPs

self-calibration simultaneous calibration of EAM forecasts and
the rapid EOPs

3 Data description363

Here we describe the data used for the numerical results presented in the paper.364

Essentially, there are seven groups of data used in the study365

• IERS rapid and final EOP 14 C04 series366

• IERS final EOP 20 C04 series367

• Jet Propulsion Laboratory (JPL) final EOP series (EOP2)368

• European Space Agency (ESA) rapid and final EOP series369

• ETH Zurich 14-day EAM forecasts370

• GFZ German Research Center for Geosciences EAM analysis products371

• National Oceanic and Atmospheric Administration (NOAA) MEI, NAI, MJI372
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IERS final 14 C04 EOP series (Bizouard et al., 2019) is the result of the combina-373

tion of different space geodetic techniques including GNSS and VLBI and acts as the base-374

line to evaluate the various predictions against. This EOP time series is available from375

1962 onward. Similar final EOPs data that are consistent with the latest International376

Terrestrial Reference Frame (ITRF2020) are provided by SYstèmes de Référence Temps-377

Espace (SYRTE). As mentioned in Section 1, IERS rapid EOPs (Dick & Thaller, 2018)378

are provided by using the most recent GPS and VLBI (24-hour and intensive session)379

data. The data are updated daily, but not archived publicly (daily finals). We have saved380

the rapid files since January 2015. Therefore, approximately 8 years of data is available381

for training and evaluation of the ResLearner algorithm. JPL series 2 of final EOPs are382

provided daily and contain the EOPs from 1976 onward, with less latency compared to383

the final IERS data. The JPL final series can act as the target in the training phase, i.e.,384

IERS rapid EOPs are mapped to the final JPL EOPs. This creates another solution in385

addition to the one with final IERS data as the target.386

For the purpose of additional validation, we use final, rapid and predicted EOPs387

provided by ESA and derived within the framework of the ESA project on ”Independent388

Generation of Earth Orientation Parameters” (ESA-EOP, Dill et al., 2020; Kehm et al.,389

2023). The data result from series of hindcast experiments, in which the final EOPs are390

combined from GNSS, SLR, VLBI and DORIS and the rapid EOPs are combined from391

GNSS and VLBI only. Predictions are based on deterministic signals derived from the392

final and rapid EOPs time series in combination with EAM analysis and prediction data393

(as available on the assumed start date of prediction). Two series of hindcast scenarios394

from the study were provided, namely a realistic scenario and an ideal scenario. While395

the realistic scenario (scenario H1 in Kehm et al., 2023) assumes that the VLBI contri-396

bution to rapid (combined) EOPs solely relies on intensive data, the ideal scenario (sce-397

nario H2 in Kehm et al., 2023) assumes both 24-hour and intensive data to be available398

for the rapid combination. Each hindcast scenario is provided in the form of a data set399

containing 656 daily files for a time span from January 2018 up to January 2020. Thereby,400

each daily file contains final EOPs from around January 2009 up to a prediction hori-401

zon of about -28 days, rapid (combined) EOPs up to the day before the prediction start,402

and predicted EOPs up to a prediction horizon of +90 days. Here, we will use both sce-403

narios for validation.404

Regarding the EAM data, both the observations and forecasts are used, since fore-405

casts can help significantly to improve the EOP prediction performance (Modiri et al.,406

2020; Kiani-Shahvandi et al., 2022). Since the horizon of the forecasts is also a deter-407

mining factor (Kur et al., 2022), we use 14-day forecasts of ETH Zurich (Kiani Shah-408

vandi et al., 2022) since they are both accurate and cover a reasonable forecasting hori-409

zon for short-term EOP prediction (i.e., suitable for accurate real-time purposes). Note410

that EAM predictions from all 14 days are used, since based on our analysis it results411

in the best performance (for instance, using 10-day forecasts results in less improvement).412

The EAM analysis files are taken from GFZ German Research Center for Geosciences413

(Dobslaw & Dill, 2018; Dill et al., 2019a). All four types of EAM functions, i.e., AAM,414

OAM, HAM, and SLAM, are used as geophysical features in the ResLearner algorithm.415

We use CI provided by NOAA. Climatic index MEI is provided bimonthly by an416

empirical orthogonal function that combines different variables including sea surface pres-417

sure and temperature (Wolter & Timlin, 1993; Timmermann et al., 2018; Di Lorenzo et418

al., 2023). Since the data are bimonthly, they should be interpolated to generate daily419

values to be used as an additional feature for the prediction of dUT1. We also use NAI420

and MJI suspected for their influence on the rate of dUT1 (Hendon, 1995; Mazzarella,421

2007).422

Several investigations are presented in Section 4. In Figure 2, we show the rapid423

xp, yp, and dUT1 time series as well as the training and evaluation intervals for five dif-424

ferent studies presented in this paper. The first study (S1) is similar to the subsequent425
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three, but it is done operationally, with retraining at each prediction epoch. The start-426

ing date of evaluation is 20 May 2021 to be consistent with operational EAM forecasts427

(Kiani Shahvandi et al., 2022). The next three (S2, S3, S4) are hindcast studies that use428

IERS rapid EOPs as the input and IERS final 14 C04 or JPL EOP2 as the output. The429

purpose of these studies is to analyze the performance of the algorithm in the past. The430

final study (S5) is based on the ESA and IERS rapid and final EOPs. This is also only431

possible in a hindcast study. Crucial to mention is that hindcast studies observe the rules432

of real-time prediction (i.e., no future information being available), but with the predic-433

tion time in the past.434

Figure 2: Top and middle panels show the polar motion and dUT1 series used in the
study. The bottom panel shows the training and prediction intervals for each of the five
studies (S1)-(S5) presented in Section 4.

4 Results and discussions435

4.1 Analysis for the operational results in 2021-2022436

Here, we present the performance analysis of the methods discussed in Section 2437

based on the data described in Section 3. Note that the analysis refers to the study num-438

ber 1 (S1) in Figure 2. The following points summarize the study configuration:439

• The baseline solution is rapid EOPs as provided by IERS,440

• Methods are trained on both IERS and JPL final EOPs,441

• The final IERS 14 C04 EOP series is used for evaluation.442

4.1.1 Prediction accuracy and improvement443

Figures 3 and 4 present the results of applying both the ResLearner and ResLearner444

PhycoRNN algorithms to the study interval shown in Figure 2. For better visualization445

of the performances, the prediction interval is divided into two parts: days -31 to 0 and446

days 1 to 31. The improvements with respect to the IERS baseline are presented in Fig-447

ure 5 for polar motion and Figure 6 for dUT1. Based on Figures 3-6, several important448

points become evident.449

First, the results of ResLearner PhycoRNN from days 1 onward seem to be iden-450

tical to those of ResLearner when IERS 14 C04 is used for training. They are also very451

similar on days -31 to day 0, but not identical. This proves that for methods trained on452

IERS 14 C04, both PhycoRNN and ResLearner can be used. However, when JPL EOPs453
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is used in the training, the results of ResLearner PhycoRNN and ResLearner are differ-454

ent. In this case, ResLearner PhycoRNN works better in yp, but worse in xp, approx-455

imately after day 13. This can be explained by the fact that ResLearner PhycoRNN has456

focused more on the yp component because of its larger amplitude and thus is perform-457

ing worse on xp. Note, however, this is the best architecture for ResLearner PhycoRNN,458

implying that it cannot outperform ResLearner in xp, but only in yp. We tried to weight459

the loss functions so that the amplitudes of the errors of xp and yp be in the same range,460

but this did not improve the results. Regarding the difference between the results us-461

ing JPL and IERS data as target, it becomes clear that the PhycoRNN has been able462

to capture the physics, but there is not as meaningful geophysical information in the map-463

ping from rapid to JPL as from rapid to IERS. This is because the PhycoRNN is effec-464

tively transforming between EAM and GAM (Geodetic Angular Momentum), which as465

Dill et al. (2020) also point out, are not in full agreement with the JPL combined EOP466

series, especially for the equatorial components. This implies that having the Liouville467

equation as a hard constraint would not be beneficial if the EAM and EOPs series do468

not correspond to each other. In this case, a more mathematical-based approach would469

present better results, which is the case with ResLearner. We conclude that if the EOP470

and EAM series correspond to each other, the results of ResLearner and ResLearner Phy-471

coRNN are almost identical, thereby suggesting physical and mathematical information472

have been adequately captured. Otherwise, ResLearner PhycoRNN does not perform well,473

since the geophysical constraints are less informative. This happens mostly for polar mo-474

tion, but not for dUT1, which is due to the better agreement on the axial components475

of the GAM derived from different EOPs series (Dobslaw & Dill, 2019b).476

Second, the improvement for polar motion components reaches 60% and generally477

remains above 40% for days -15 to 13. This is achieved by training the data on IERS478

14 C04 final series, but not on JPL. Reasons for this discrepancy may include the longer479

interval that JPL provides the data for, which results in less informative data as a re-480

sult of the degraded accuracy. More importantly, as mentioned GAM derived from IERS481

and JPL using EAM data do not fully correspond and can have large discrepancies, re-482

sulting in a reduction in accuracy of PhycoRNN predictions with JPL data as target.483

The improvements for dUT1 are generally smaller than those for polar motion. But they484

tend to increase for longer prediction horizons. The accuracy of both ResLearner Phy-485

coRNN and ResLearner in days -31 to 0 for polar motion is almost below or at the un-486

certainty level of the polar motion data. This confirms that the methods can deliver re-487

sults with an uncertainty level similar to that of the polar motion data. Finally, it is im-488

portant to note that the accuracy of the IERS baseline and most of the methods is bet-489

ter at day 0 than at day -1. This behavior is more pronounced in polar motion compared490

to dUT1, meaning that the improvement for polar motion drops significantly at this day.491

We suspect that the reason for this anomalous behavior lies within the data and not in492

the applied models, as it is also visible in the IERS baseline, and might be related to a493

dominance of GNSS-derived polar motion information in the final IERS product and on494

the final day of the rapid combination (Kehm et al., 2023). The ResLearner unmixer al-495

gorithm (Section 2.3) can be used to further investigate this anomalous behavior.496
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(a)

(b)

Figure 3: Prediction accuracy of polar motion components xp, yp for the first study (S1),
in terms of MAE [mas]. ResLearner and ResLearner PhycoRNN are trained on both JPL
and IERS final EOPs. (a) shows the MAE across days -31 to 0, while (b) focuses on days
1 to 31.
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(a)

(b)

Figure 4: Prediction accuracy of dUT1 for the first study (S1), in terms of MAE [ms].
ResLearner and ResLearner PhycoRNN are trained on both JPL and IERS final EOPs.
(a) shows the MAE across days -31 to 0, while (b) focuses on days 1 to 31.
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(a)

(b)

Figure 5: Improvement of prediction accuracy of polar motion components xp, yp for the
first study (S1), in terms of percentage [%], computed according to Equation (7) based on
the MAE of the baseline and that of ResLearner and ResLearner PhycoRNN. (a) shows
the improvement across days -31 to 0, while (b) focuses on days 1 to 31.
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(a)

(b)

Figure 6: Improvement of prediction accuracy of dUT1 for the first study (S1) presented
in Figure 2, in terms of percentage [%], computed according to Equation (7) based on
the MAE of baseline and that of ResLearner and ResLearner PhycoRNN. (a) shows the
improvement across days -31 to 0, while (b) focuses on days 1 to 31. Note that the im-
provements are with respect to the IERS rapid data.

4.1.2 Importance of geophysical information497

We find that EAM functions are one of the most important features that contribute498

to the discrepancies between rapid and final EOPs. As an example, in Figure 7, the Kendall499

correlations between the differences between rapid and final EOP IERS 14 C04, and the500

equatorial components of the individual EAM functions are shown. AAM and OAM (par-501

ticularly the motion terms) present the highest correlation with these differences, thereby502

suggesting the importance of EAM for the ResLearner unmixer. Furthermore, even though503

in the rapid data AAM is included, the presence of the correlation suggests errors in ac-504

counting for AAM in the processes. In Figure 8 the importance of different features (FI)505

used in the model is presented, based on the methodology presented in Section 2 and ac-506

cording to Equation (5). For polar motion, Figure 8 gives the importance of the features507

xp, yp, EAM, and tides (semi-diurnal, diurnal, long-period tidal excitations combined),508

while for dUT1, it gives the importance of the features dUT1, EAM, tides (semi-diurnal,509
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diurnal, and long-period (zonal) combined), and CI. The individual CI components, i.e.,510

MEI, NAI, and MJI are also displayed. Besides xp, yp, and dUT1 themselves, the EAM511

and tides are the most important features, confirmed also by other studies (Kiani-Shahvandi512

et al., 2022). Figure 7 also shows that AAM and OAM are the most important EAM func-513

tions for this problem (both mass and motion terms). Among CI, MEI seems to be the514

most relevant and can have effects several times bigger than the uncertainty level of dUT1.515

However, NAI and MJI have only a minor importance for the short-term prediction of516

dUT1. We therefore recommend only using MEI among the various climatic indices. We517

consider this to be in alignment with the observation that ENSO has a significant im-518

pact on the rate of dUT1, especially on interannual time scales (Chao, 1984).519

We furthermore analyze the relationship between MEI and the physical condition520

on the rate of dUT1. In Figure 9, we show the negative of the rate of dUT1, i.e., − d
dtdUT1521

(IERS rapid data) and the reproduced trend (which is in fact, rather an interannual sig-522

nal in view of the limited time-period considered), the χp
3 and χw

3 components of the EAM523

functions, and MEI. Most of the signal in the rate can be explained by χw
3 which is due524

to the zonal winds (Volland, 1996). However, the reproduced MEI also seems to be able525

to explain parts of the signal, especially around mid-2022. This can potentially be at-526

tributed to a La Niña event, which occurred in mid-2022. La Niña events have been shown527

to influence the rotation rates of the Earth (Xu et al., 2022). We can therefore state that528

ResLearner has been able to link the geophysical information to the input data. Note,529

however, that in short-term prediction the importance of MEI is smaller than that of other530

features, including χp
3 and χw

3 . But in the long-term, using MEI results in better train-531

ing and prediction by ResLearner.532

Figure 7: Kendall correlation (shown as corr in the figure) between the differences be-
tween rapid and final IERS EOPs, and the equatorial components of the individual EAM
functions. Note that mass and motion terms (χp

i , χw
i i = 1, 2) are analyzed separately.
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(a)

(b)

Figure 8: Feature importance analysis based on the algorithm presented in Section 2.4
and according to Equation (5). For polar motion components (a), features include xp, yp,
equatorial components of EAM, T and TE (i.e., semi-diurnal, diurnal, and long-period
tides and tidal excitations). For dUT1 (b), the features are dUT1, axial component of
EAM, tides (semi-diurnal, diurnal, and zonal), and CI (climatic indices). CI is further
decomposed into its components, i.e., MEI, NAI, MJI.
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Figure 9: Negative rate of dUT1 (IERS rapid), − d
dtdUT1, together with the regressed

interannual trend, χp
3, χw

3 components of the EAM functions, and MEI, as obtained from
the ResLearner algorithm. The interannual trend is solved during the training process and
predicted accordingly at the prediction epoch. MEI here refers to what the ResLearner
sees during training, i.e., the input feature MEI. Similarly, χp

3 and χw
3 are reproduced, but

they are almost identical to their input form, because of their high feature importance.
The mid-2022 La Niña event is highlighted by a black box.

4.1.3 Unmixing: on the potential causes of errors in rapid EOP data533

Building upon the results of feature importance analysis in Figures 7 and 8, the534

ResLearner unmixer algorithm can be applied to find the individual components of the535

EAM and tides that contribute most to the discrepancies between rapid and final EOPs.536

The corresponding results are presented in Figure 10, based on FI as given in Equation537

(5). In order to asses their significance, we also show their corresponding 95% confidence538

intervals. We have grouped the contributions into 1) tides and EAM (δT, δEAM) and539

2) remaining errors (δU, systematic correction, smoothing, and unknown). Panel (a) gives540

the relative contributions of these two groups. The effect of the first group is bigger, thereby541

suggesting that the potential causes of discrepancy lie within tides and EAM. The five542

most important features among the first group are further investigated in panel (b).543

It is important to clarify that based on Figure 10 one can conclude that the most544

important features contributing to the anomaly observed at day 0 are (in the order of545

importance) δEAM at day 0, δU (including the dominance of the GNSS-derived polar546

motion), and δT. Regarding tides in polar motion, subdiurnal and diurnal tides, retro-547

grade 13.63 and 27.56 days, and prograde 13.66 and 27.56 days long-period tides and tidal548

excitations are important. For dUT1, however, zonal tides of periods 13.78, 14.77, 23.89549

days, and subdiurnal tides are relevant. For δU the approximate FI, together with their550

95% confidence intervals are summarized in Table 2. Note that for δEAM and δT, the551

approximate values of importance are computed by multiplying the FI in panel (a) and552

(b), based on the fundamental rule of probability.553
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Table 2: The approximate FI and corresponding 95% confidence intervals for δEAM, δU,
δT for the potential causes of discrepancies between the rapid and final EOP IERS 14
C04 series.

EOP δEAM δU δT

xp 37±20% 33±6% 29±18%

yp 47±23% 30±7% 23±15%

dUT1 54±28% 26±8% 21±11%

(a)

(b)

Figure 10: (a) FI computed according to Equation (5) for two groups 1) tides and EAM
(δT & δEAM), 2) rest of errors (δU, systematic correction, smoothing, unknown) ; (b) FI
computed for EAM and various tidal constituents resulting in the discrepancies between
rapid and final EOPs, based on the methodology presented in Section 2. The uncertain-
ties shown in the form of error bars are for 95% confidence interval. The analysis is for
day 0 of prediction, containing the anomalous behaviour.
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4.1.4 Self-calibration554

After identifying the causes of errors in rapid data as from Figure 10, we apply the555

ResLearner self-calibration algorithm described in Section 2.3 in order to reduce the er-556

roneous effects of the EAM functions. The results are shown in Figures 11 and 12 against557

the output of ResLearner algorithm without self-calibration. ResLearner self-calibration558

slightly improves the prediction performance (on average 5.5%). The improvement is achieved559

on both polar motion and dUT1, thereby suggesting the success of ResLearner self-calibration560

in reducing the errors.561

(a)

(b)

Figure 11: ResLearner self-calibration algorithm for the polar motion components against
the ResLearner without self-calibration. (a) shows the comparison of days -31 to 0 while
(b) displays that of days 1 to 31.
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(a)

(b)

Figure 12: ResLearner self-calibration algorithm for dUT1 against the ResLearner with-
out self-calibration. (a) shows the comparison of days -31 to 0 while (b) displays that of
days 1 to 31.

4.1.5 Comparative analysis: linear models562

As mentioned in Section 2, linear ResLearner models can also present competitive563

results, i.e., close to the prediction performance of the state-of-the-art algorithms. The564

goal of this analysis is to illuminate the role of non-linearity in the model. Three differ-565

ent methods are considered: OLS, RANSAC, and RidgeCV. The results are compared566

with the non-linear ResLearner. The results of the comparative analysis are summarized567

in Figure 13. The results are shown only for days 1 to 31 since it is only on these days568

that we see a clear pattern of superiority of non-linear models. On days -31 to 0, the re-569

sults are mixed: methods like OLS may outperform non-linear ones on some days, while570

on the rest of the days, the non-linear models outperform OLS. This analysis confirms571

that in this study, the non-linearity results in a gain in prediction performance. Further-572

more, it is by non-linearity that the unmixing and self-calibration problems can capture573

almost all the signals in the input data.574
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(a)

(b)

(c)

Figure 13: Comparison between the linear and non-linear ResLearner algorithms. Three
different linear models are analyzed: OLS, RANSAC, RidgeCV. (a) shows the results for
polar motion xp component, (b) for polar motion yp component, and (c) for dUT1.
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4.1.6 Prediction uncertainty575

The ResLearner methodology implemented in the context of deep ensembles can576

provide uncertainties in the predictions. As an example, Figure 14 shows the predictions577

of polar motion and dUT1 together with their associated uncertainties, plotted for 2022-578

12-31. The mean values are given by µ, while the standard deviations are given by σ.579

The prediction uncertainties shown represent a 95% confidence (±1.96σ) interval. Note580

that the derived prediction uncertainties depend on the respective day, but are usually581

close to the uncertainties in the rapid data. This confirms that ResLearner models in582

deep ensembles have been able to effectively reduce the epistemic uncertainty due to model583

errors. The reason is, the ResLearner is essentially a parametric model, the parameters584

of which are derived through optimization schemes. As a result, there is inevitably some585

uncertainties in the model parameters, which translate to the uncertainty in the predic-586

tions. Using the ensemble approach, we can effectively reduce this type of uncertainty587

and allow the model to predict more accurately and confidently.588
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(a)

(b)

(c)

Figure 14: Prediction uncertainty for (a) polar motion xp, (b) polar motion yp, and (c)
dUT1 for the date 2022-12-31, using ResLearner in the context of deep ensembles. µxp,
µyp, and µdUT1 are the mean values of the prediction, while σxp, σyp, and σdUT1 are the
associated standard deviations. The confidence interval is 95% (±1.96σ).
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4.2 Hindcast analysis: 2018, 2019, 2020589

We analyze the performance of the ResLearner method in hindcast scenarios, cor-590

responding to the second, third, and fourth analyses (S2, S3, and S4) shown in Figure591

2. The same conditions as in the first study (S1) are applied here as well, i.e., using the592

rapid IERS as the baseline, training on both IERS 14 C04 and JPL final EOPs 2 data,593

and evaluating against the IERS 14 C04 series.594

Applying the same ResLearner architecture to these intervals, we get the results595

displayed in Figures 15 and 16. The results are divided into two parts: days -31 to 0 and596

days 1 to 31. Two important points can be deduced from these results. First, the accu-597

racies are different from year to year and they do not show a clear reduction with increas-598

ing training intervals. This means that ResLearner tends to improve the prediction ac-599

curacy even when the training time span is shorter. Thus, the algorithm does not crit-600

ically depend on the amount of data fed to it (c.f. Kiani-Shahvandi & Soja, 2021). This601

can be explained by the fact that the architecture is designed in a way that does not in-602

clude too many learnable parameters, which can therefore be well trained. Second, the603

anomalous behavior of the polar motion components at day 0 also appears here, suggest-604

ing that the problem with rapid data also existed during earlier years.605
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(a)

(b)

Figure 15: Prediction accuracy of hindcast studies S2, S3, and S4 for polar motion
components xp and yp, in terms of MAE [mas]. Only the ResLearner is used (but not
ResLearner PhycoRNN since they are similar). (a) displays the results for the days -31 to
0 and (b) for the days 1 to 31.
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(a)

(b)

Figure 16: Prediction accuracy of hindcast studies S2, S3, and S4 for dUT1, in terms of
MAE [ms]. Only the ResLearner is used. (a) displays the results for the days -31 to 0,
while (b) for the days 1 to 31.

4.3 Analysis of ESA EOP data: a hindcast study606

This analysis corresponds to the last study (S5) in Figure 2, the role of which is607

to validate our approach against an independent dataset of EOPs. The following points608

are important regarding this study.609

• The prediction horizon is 31 days, i.e., days -15 to 15610

• Two baselines are considered: the rapid EOPs as provided by IERS and by ESA611

EOPs612

• The final ESA EOPs are used for evaluation613

• Validation is done against both the ideal and realistic ESA hindcast scenarios de-614

scribed in Section 3615

We perform three different evaluations, namely:616
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• evaluation 1: training only on IERS final EOPs up to the end of 2022,617

• evaluation 2: training only on IERS final EOPs up to the respective time of ESA618

EOPs, using retraining at each epoch,619

• evaluation 3: training on a combination of IERS and ESA EOPs, similarly with620

retaining.621

The first evaluation is a hindcast study based on the pre-trained models. This means622

that no retraining is needed and predictions are made all at once. The second evalua-623

tion is more of operational nature, although in the past. The training period is thereby624

assumed to extend from 2015 up to the prediction day. In the third evaluation, IERS625

data from 2015 up to the end of 2017 are used for the training and first prediction. For626

each subsequent prediction, the ESA final data are added day-by-day to the training.627

We analyze both the ideal and realistic scenarios mentioned in Section 3. First, we628

discuss the ideal case. The results of these evaluations are shown in Figures 17-18. Con-629

sidering these results, we would like to highlight the following points: First, ResLearner630

is able to further improve the prediction accuracy based on ESA data, confirming its flex-631

ibility for different datasets. Second, there is not much difference between the results of632

the three evaluations. Only evaluation 1 presents minor superiority over the other eval-633

uations. This is expected, however, as in this case, the model has seen not only the past634

but also the future final IERS EOPs. Third, all evaluations, as well as the ideal ESA base-635

line, show a significant improvement compared to the IERS baseline. Moreover, they show636

a more realistic behavior of the error of day 0, omitting the anomalous behavior seen in637

the IERS baseline (the error of day 0 being smaller than that of day -1). Application of638

ResLearner unmixer here points mostly again towards the EAM as the culprit. Further-639

more, it shows that ESA and IERS data are slightly inconsistent at day 0, with the rapid640

IERS baseline accuracy being better when evaluated against IERS 14 C04. This, how-641

ever, does not have an impact on the high prediction accuracy of both ESA baseline sce-642

narios, which is close to that achieved with ResLearner.643
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(a)

(b)

Figure 17: Prediction accuracy of the ResLearner algorithm for polar motion components
xp and yp, based on study 5 (S5) and for three different evaluations: 1) training only
IERS final EOPs up to the end of 2022, 2) evaluation 2: training only IERS final EOPs
up to the respective time of ESA, 3) evaluation 3: training on a combination of IERS and
ESA ideal data. Two baselines are presented: rapid IERS and rapid ESA ideal scenario.
The data are evaluated against the final ESA ideal data. (a) shows the results for predic-
tion days -31 to 0, while (b) for days 1 to 31.
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(a)

(b)

Figure 18: Prediction accuracy of the ResLearner algorithm for dUT1, based on study 5
(S5) and for three different evaluations: 1) training only IERS final EOPs up to the end
of 2022, 2) evaluation 2: training only IERS final EOPs up to the respective time of ESA,
3) evaluation 3: training on a combination of IERS and ESA ideal data. Two baselines
are presented: rapid IERS and rapid ESA ideal scenario. The data are evaluated against
the final ESA ideal data. (a) shows the results for prediction days -31 to 0, while (b) for
days 1 to 31.

Figure 19 presents the results of the ESA realistic scenario for dUT1. While there644

is no significant difference between the ESA ideal and realistic scenarios for polar mo-645

tion, dUT1 shows a clear reduction in prediction accuracy for days -15 to 0 compared646

to the ESA ideal scenario. This can be related to the missing of VLBI 24-hour data on647

these days, as the ESA realistic scenario only considers VLBI intensive sessions and GNSS648

rapids in the rapid combination. However, the change in prediction accuracy from days649

1 to 15 is insignificant.650

For ResLearner trained on the ESA realistic data, the prediction horizons between651

-15 and 0 days show a significant improvement compared to the ESA realistic scenario.652

This is in contrast to the results achieved by training on the ESA ideal scenario, where653

the additional improvement achieved by ResLearner is only minor. Thus, the results sug-654
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gest that ResLearner can contribute to mitigating the effect of the processing latency655

of 24-hour VLBI sessions, which are crucial for a reliable determination of dUT1.656

Figure 19: Prediction accuracy of the ResLearner algorithm for dUT1, based on study 5
(S5) and for three different evaluations: 1) training only IERS final EOPs up to the end
of 2022, 2) evaluation 2: training only IERS final EOPs up to the respective time of ESA,
3) evaluation 3: training on a combination of IERS and ESA realistic data. Two base-
lines are presented: rapid IERS and rapid ESA realistic scenario. The data are evaluated
against the final ESA realistic data.

4.4 Further discussions and recommendations657

Several consequences arise from the results presented above. First, in order to an-658

alyze the sensitivity of the anomalous behavior at day 0 between the rapid and final IERS659

EOP series for evaluation, we evaluate the results of ResLearner and ResLearner Phy-660

coRNN against the IERS 20 C04 series. This is similar to what is presented in Figure661

5, but the reference EOP series is different. The results are shown in Figure 20. Com-662

paring Figures 5 and 20, we observe that the anomalous behavior at day 0 is less severe.663

This further shows the dependence of the results on the version of IERS final and con-664

firms that the choice of reference evaluation series is important when evaluating in gen-665

eral, and in this case especially for day 0. Note that we also trained the algorithms based666

on the IERS 20 C04 series and observed that the anomalous behavior at day 0 is less se-667

vere. This attests to the suitability of IERS 20 C04 to address this problem to a certain668

extent.669
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Figure 20: Improvement in prediction accuracy of polar motion components xp, yp for
the first study presented in Figure 2, in terms of percentage. This is similar to Figure 5,
but evaluated against the IERS 20 C04 instead of IERS 14 C04. Only the days -31 to 0
are shown to check for anomalous behavior at day 0.

In addition, since there are several types of the ResLearner method, we can com-670

pute an ensemble of all types based on IERS 20 C04 as target EOPs. A simple weighted671

ensemble is used, with the weights computed based on the overall prediction performance672

of individual types of ResLearner. We call this type of ResLearner the full ensemble ResLearner.673

The results of improvement for the full ensemble ResLearner are shown in Figure 21. The674

problem at day 0 is almost eliminated and we achieve up to 50% improvement in accu-675

racy compared to the IERS rapid data. Note, however, that the improvements for days676

1 to 31 are smaller compared to those presented in Figure 5, thereby suggesting that us-677

ing the full ensemble approach is only beneficial in days -31 to 0. Crucial to note is that678

training a similar full ensemble based on IERS 14 C04 is not beneficial as the error would679

still persist.680

Figure 21: Improvement in prediction accuracy of polar motion components xp, yp for
the first study presented in Figure 2, in terms of percentage. This is similar to Figures 5
and 20, but a weighted ensemble of the types of ResLearner algorithm is used. Only the
days -31 to 0 are shown to check for anomalous behavior at day 0.
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Based on our thorough analyses, we present some recommendations regarding the681

improvement of rapid EOP data, summarized in Table 3.682

Table 3: Recommendations based on the numerical results presented in Section 4.

characteristics recommendation

type of ResLearner non-linear ResLearner with self-calibration

most relevant features EAM, semi-diurnal, diurnal, zonal tides, MEI

EOP series for training and evaluation IERS 20 C04

5 Conclusions683

We devised a new machine learning method called ResLearner for the purpose of684

reducing errors in rapid EOPs w.r.t. final EOPs. The method is essentially non-linear685

and has a physically-constrained form called ResLearner PhycoRNN based on coupled686

oscillatory recurrent neural networks. Additionally, we also investigated the linear form687

of the method. Unmixing and self-calibration problems are analyzed as well, used for find-688

ing the causes of discrepancies between rapid and final EOPs, and calibrating the errors689

in the input features. Extensive numerical investigations are performed on both IERS690

and JPL final data, as well as validations against independent series of ESA hindcast ex-691

periments. The results show the superiority of non-linear ResLearner compared to the692

linear methods. Furthermore, ResLearner PhycoRNN can outperform ResLearner in the693

yp component of polar motion, while ResLearner is better in the xp component. Gen-694

erally, the improvement in the accuracy of both polar motion components is over 40%695

across a large portion of the prediction horizon and can reach up to 60%. For dUT1, the696

improvement in prediction accuracy is smaller, but becomes larger for later prediction697

days, reaching up to 25%. In this context, validation against the ESA hindcast exper-698

iments demonstrates the capability of ResLearner to partially compensate for quality lim-699

itations in rapid dUT1 determination that are related to the latency of 24-hour VLBI700

data. As technical limitations will not allow for a faster availability of these data in the701

foreseeable future, ResLearner could become a valuable component in enhancing the qual-702

ity of this parameter crucial for low-latency and real-time applications.703

There is an anomalous behavior in the IERS rapid EOP data at day 0, where the704

consistency with the IERS finals appears to be better than at day -1. The unmixing al-705

gorithm suggests that errors in EAM, dominance of GNSS-derived polar motion, and tides706

are the main causes of this behavior. By applying the ResLearner self-calibration to the707

data, the errors are reduced and further improvement is achieved. Furthermore, using708

the IERS 20 C04 series either as the target in the training phase or as reference series709

for evaluation reduces this anomalous behavior, which suggests the superiority of the IERS710

20 C04 over the 14 C04 EOP series. This is further justified when an ensemble of all types711

of ResLearner methods is used, in which case we no longer observe this anomalous be-712

havior.713

We further discussed the importance of geophysical information and found that be-714

sides EAM functions, tidal corrections and CI contribute to the prediction performance.715

Subdiurnal, diurnal, and long-period (zonal) tides in the oceans are all found to be rel-716

evant. Furthermore, the multivariate ENSO index is found to be the most relevant CI.717

Further investigation in this context should focus on each individual component in or-718

der to judge whether errors assigned to a certain part of a (conventional) model are ac-719
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tually to be related to it. In this context, feature importance can give hints on where720

model deficiencies might have an impact on the quality of current EOP determination.721

Up to now, the ResLearner-based EOP determination realises a rapid EOP prod-722

uct that does not have a seamless transition from the corresponding final EOPs. This723

is in contrast to the EOP series realised by the ESA approach, where final and rapid EOPs724

combined from space-geodetic observations are directly complemented by a prediction725

that uses the last set of rapid (combined) EOPs as initial values. Further investigation726

might put focus on incorporating ML-based features already as conditions into the com-727

bination of the space-geodetic techniques, thereby realising a seamless EOP time series728

from the past into the future.729

Since the method developed in this paper is based on the concept of physically-constrained730

neural networks, by modifying the geophysical constraints it can be used for other ad-731

justment and prediction problems as well. One such problem in the field of Earth rota-732

tion is the long-term prediction of changes in the length-of-day. We hope that the re-733

sults presented in this paper stimulate further research in this direction to combine the734

mathematical rigor of neural networks and the strength of geophysical information.735
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Abstract18

Rapid provision of Earth Orientation Parameters (EOPs, here polar motion and dUT1)19

is indispensable in many geodetic applications and also for spacecraft navigation. There20

are, however, discrepancies between the rapid EOPs and the final EOPs that have a higher21

latency, but the highest accuracy. To reduce these discrepancies, we focus on a data-driven22

approach, present a novel method named ResLearner, and use it in the context of deep23

ensemble learning. Furthermore, we introduce a geophysically-constrained approach for24

ResLearner. We show that the most important geophysical information to improve the25

rapid EOPs is the effective angular momentum functions of atmosphere, ocean, land hy-26

drology, and sea level. In addition, semi-diurnal, diurnal, and long-period tides coupled27

with prograde and retrograde tidal excitations are important features. The influence of28

some climatic indices on the prediction accuracy of dUT1 is discussed and El Niño South-29

ern Oscillation is found to be influential. We developed an operational framework, pro-30

viding the improved EOPs on a daily basis with a prediction window of 63 days to fully31

cover the latency of final EOPs. We show that under the operational conditions and us-32

ing the rapid EOPs of the International Earth Rotation and Reference Systems Service33

(IERS) we achieve improvements as high as 60%, thus significantly reducing the differ-34

ences between rapid and final EOPs. Furthermore, we discuss how the new final series35

IERS 20 C04 is preferred over 14 C04. Finally, we compare against EOP hindcast ex-36

periments of European Space Agency, on which ResLearner presents comparable improve-37

ments.38

Plain Language Summary39

The International Earth Rotation and Reference Systems Service (IERS) provides40

rapid Earth Orientation Parameters (EOPs) using different space geodetic techniques41

to bridge the latency of the final, most accurate EOPs solution. However, these rapid42

EOPs are not in full agreement with the final EOPs. In order to reduce the differences43

between the rapid and final EOPs, we focus on the application of machine learning and44

present a novel method named ResLearner, which is based on geodetic data and geophys-45

ical constraints. We present the method in the context of deep ensemble learning, focus-46

ing on a prediction window of 63 days. We also attempt to link informative geophysi-47

cal effects to these discrepancies. We show that they are linked to a mixture of atmo-48

spheric, oceanic, hydrological, and sea level effective angular momentum functions, dom-49

inance of the GNSS-derived polar motion, and various short- and long-term tidal exci-50

tations. El Niño Southern Oscillation is also relevant for dUT1 prediction. The method-51

ology can provide significant improvements of up to 60% in operational settings with re-52

spect to rapid EOPs provided by IERS. Additional validation is done by using the data53

of Jet Propulsion Laboratory final EOP series and also EOP series provided by the Eu-54

ropean Space Agency.55

1 Introduction56

Earth Orientation Parameters (EOPs) represent variations of Earth’s rotation axis57

in time (Lambeck, 1980; Gross, 1997). Among these parameters, polar motion compo-58

nents, (xp, yp), and the difference between universal time and coordinated universal time,59

dUT1, are of great interest, because of their importance for applications such as satel-60

lite and spacecraft navigation and orientation of deep-space telescopes (Dobslaw & Dill,61

2019b). These EOPs are routinely provided at different latencies, of which two are con-62

sidered here: rapid and final (Kehm et al., 2023). Final EOPs require a combination of63

different data sources (Bizouard et al., 2019; Ratcliff & Gross, 2022) such as Global Nav-64

igation Satellite Systems (GNSS), Very Long Baseline Interferometry (VLBI), and Lu-65

nar and Satellite Laser Ranging (LLR, SLR). Some of the techniques require longer pro-66

cessing time and therefore, delays of up to several weeks are expected, by which the data67
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are provided to the scientific community. The current uncertainty level in final EOPs68

provided by International Earth Rotation and Reference Systems Service (IERS) is around69

20-30 micro-arcseconds [µas] for polar motion components, and 9-10 micro-seconds [µs]70

for dUT1 in terms of formal errors.71

Rapid EOPs provided by the IERS are determined through a combination of the72

most recent Global Positioning System (GPS) and VLBI 24-hour and intensive sessions73

data, augmented with Atmospheric Angular Momentum (AAM). These rapid data con-74

tain polar motion components (xp, yp) and dUT1, bridging the latency of final EOPs75

by providing 90 days of rapid combined EOPs to the past and 90 days of predicted EOPs76

into the future, with respect to the date the data are provided at. The uncertainty in77

the estimations is also provided. Currently, the level of these uncertainties varies across78

different days and also for combined and predicted EOPs. For the rapid combined EOPs,79

it can be several times bigger than that of final EOPs, but mostly below 1 milli-arcseconds80

[mas]. Predictions into the future are based on extrapolation of mathematical functions81

such as harmonic models. For longer prediction horizons, the accuracy is degraded sig-82

nificantly and can be up to several milli-arcseconds.83

There are some routines performed on the mentioned datasets before operationally84

providing the rapid EOPs data. These include systematic corrections and smoothing.85

Systematic corrections are used to mitigate the impact of different VLBI baseline solu-86

tions on polar motion and dUT1. For instance, based on different VLBI solutions of the87

United States Naval Observatory (USNO), corrections are added to the polar motion and88

dUT1 of 24-hour sessions, and similar corrections to dUT1 of intensive sessions. Smooth-89

ing algorithms are applied to remove the high-frequency noise, usually by a Lagrangian90

interpolation scheme. It is important to note that ocean tidal effects are dealt with in91

the rapid EOPs as otherwise, the accuracy would be significantly degraded because of92

the systematic effect of tides. Furthermore, AAM data that are used for the improved93

determination of rapid EOPs contain some errors. Errors in the removal of tides and also94

the addition of AAM with its associated errors would result in inaccuracies in the rapid95

data, and therefore, inconsistencies w.r.t the final EOPs. These discrepancies can eas-96

ily exceed the current uncertainty level of final polar motion and dUT1 mentioned above,97

thus suggesting the need for some type of calibration.98

There are several deficiencies in the rapid data that are currently provided by the99

IERS. First, as mentioned the errors in the removal of tides can propagate to the rapid100

EOPs. Furthermore, only AAM is used, which is essentially one type of the Effective An-101

gular Momentum (EAM) functions (Barnes et al., 1983). It is shown that Oceanic An-102

gular Momentum (OAM), Hydrological Angular Momentum (HAM), and Sea Level An-103

gular Momentum (SLAM) can have a non-negligible effect on polar motion and dUT1104

as well (Dahlen, 1976; Nastula & Ponte, 1999; Brzezinski & Nastula, 2002; Chin et al.,105

2004; Gross, 2008; Dobslaw et al., 2010; Dill & Dobslaw, 2010; Bizouard & Seoane, 2010;106

Luo et al., 2022; Kiani-Shahvandi et al., 2022). Furthermore, phenomena such as El Niño107

Southern Oscillation (ENSO) can have some influence on the rate of dUT1 (Raut et al.,108

2022; Xu et al., 2022). This can be analyzed using climatic indices (CI) like the multi-109

variate ENSO index (MEI, Wolter & Timlin, 1993), the Madden Julian Oscillation in-110

dex (MJI, Kiladis et al., 2014), and the North Atlantic Oscillation index (NAI, Visbeck,111

Hurrell, Polvani, & Cullen, 2001). It is important to mention that the included AAM112

may not have fully covered the atmospheric effects and a calibration is also needed for113

this. In addition, the effect of EAM functions is non-tidal, but it can get mixed with the114

tidal effects during the application of routines. Disentangling the causes of discrepan-115

cies between rapid and final EOPs could be challenging and might require specifically-116

designed algorithms, especially in the absence of physical or analytical models for cal-117

ibration. As the mixture of tidal and non-tidal effects, systematic corrections, and smooth-118

ing can be in a non-linear fashion, one needs to potentially use non-linear models for the119

purpose of disentanglement. Furthermore, the historical data of rapid EOPs can be uti-120
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lized to present data-driven approaches that eliminate the need for an analytical cali-121

bration approach. These arguments imply that a machine learning algorithm is poten-122

tially well suitable for this problem, which is the approach followed in this paper.123

There have been successful applications of machine learning for the analysis and124

prediction of EOPs (Dill et al., 2021; Kiani-Shahvandi & Soja, 2021, 2022; Kiani-Shahvandi125

et al., 2022). Here, however, we need to consider the specific aspects of the problem and126

develop a new machine learning algorithm. These specific aspects include 1) the calibra-127

tion characteristic, 2) the need for non-linear uncertainty estimation, and 3) the impor-128

tance analysis of different features included in the model.129

The first aspect of the problem, namely the calibration characteristic, relates to the130

fact that the goal of the problem is to reduce the discrepancies between rapid and final131

EOPs, or in other words, calibration of rapid EOPs w.r.t final EOPs. This implies that132

the input to the machine learning model should contain the rapid EOPs themselves. These133

rapid EOPs are already close to the final EOPs in a sense, therefore making the prob-134

lem similar to an identity mapping by machine learning. This can be difficult for non-135

linear machine learning algorithms (He et al., 2016), and it has been shown that a bet-136

ter approach would be to consider a residual learning framework (He et al., 2016). In-137

spired by this approach, we develop our new method in a residual learning manner, in138

which the overall output (final EOPs) is the summation of rapid EOPs and the output139

a neural network (having rapid EOPs and other geophysical information either as inputs140

or constraints). The mentioned neural network can then learn the calibration, enabling141

us also to use further geophysical information and constraints in the model. Note that142

self-calibration algorithms can also be considered (Minderer et al., 2021), in which the143

errors in different variables in the model are potentially reduced by trying to simulta-144

neously learn the calibration effects.145

The second aspect of the problem, i.e., uncertainty estimation, is an important task146

in the field of geodetic science (Kiani-Shahvandi & Soja, 2022), as these uncertainties147

provide a measure of the reliability of predictions. However, this can be challenging be-148

cause of the potential non-linearity in neural networks. In this paper, deep ensembles149

(Lakshminarayanan et al., 2016; Ganaie et al., 2022) are used, which can reduce the epis-150

temic uncertainty in the models. In deep ensembles, a series of neural networks are si-151

multaneously trained to find the mean and standard deviation in the predictions. Since152

the output is the average of the predictions of all models, the epistemic uncertainty is153

reduced and mainly the aleatoric uncertainty remains (due to the uncertainty of input154

data).155

Finally, it is important to use algorithms that support the importance analysis of156

different variables included in the model. Using this approach, we are able to analyze157

the potential sources of errors in the rapid EOPs.158

The following points summarize the goals of the current paper:159

• Developing a new machine learning algorithm specifically designed for the prob-160

lem of improving rapid EOPs accuracy, which can also provide information on un-161

certainties in the predictions,162

• Using geophysically-constrained neural networks as an additional approach in the163

context of the method,164

• Analyzing the geophysical causes of discrepancies between rapid and final EOPs.165

The rest of this paper is organized as follows. In Section 2, the ResLearner method-166

ology is introduced. In Section 3, the data used for the numerical results presented in167

the paper are described. Section 4 is devoted to results and discussions. Conclusions are168

given in Section 5.169
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2 ResLearner methodology170

This section describes the ResLearner method, including the general approach and171

its architecture.172

2.1 Introducing ResLearner173

As mentioned in Section 1, the idea of ResLearner is to calibrate the rapid EOPs174

(henceforward denoted by R) with respect to the final EOPs (denoted by F ) in a resid-175

ual manner using neural networks (NN). This implies that the conceptual representa-176

tion of ResLearner can be described by Equation (1)177

F = R + NN(θ,R,X) (1)

in which NN is a neural network with parameters θ, and X a set of geophysical data.178

In the present study, X includes EAM functions (AAM, OAM, HAM, and SLAM), tides,179

tidal excitations, and MEI, MJI, and NAI. For the architecture of the neural network180

NN, we have observed that a nonlinear Multi-Layer Perceptron (MLP, Bishop, 2006) with181

two layers is sufficient to produce the best results. The first and second layers have 1 and182

63 hidden neurons (for predicting 63 days), respectively. The activation function of the183

first layer is tangent hyperbolic, whereas for the second layer, it is linear. An important184

point regarding the architecture is that linear models can also present competitive re-185

sults (Kiani-Shahvandi et al., 2022). For the purpose of comparison of the architectures,186

we use three different linear models: Ridge regression with cross-validation, (RidgeCV,187

Marquardt & Snee, 1975; S. Liu & Dobriban, 2020), Random Sample Consensus (RANSAC,188

Fischler & Bolles, 1981), and Ordinary Least Squares (OLS, Teunissen, 2003). The rea-189

son for this choice is that RidgeCV and RANSAC are robust against outliers and less190

sensitive to the possible high variability of rapid data across different days. Out of these,191

OLS is the simplest method that can present competitive results. Note that we analyzed192

several other algorithms including Huber (Huber, 1964, 1973; Sun et al., 2020), but they193

turned out to be computationally expensive and less accurate.194

2.2 ResLearner in deep ensembles195

We use ResLearner in the context of deep ensembles (Lakshminarayanan et al., 2016).196

Therefore, a series of neural networks are trained simultaneously based on the same data,197

and the final prediction would be the average of the prediction of all the individual mod-198

els. This reduces the epistemic uncertainty (Sullivan, 2015), which is due to errors in the199

utilized model. The mathematical formulation of deep ensembles (Lakshminarayanan200

et al., 2016) is based on the assumption that the data can be represented by a heteroscedas-201

tic Gaussian distribution. The variance and mean of the distribution are then solved for,202

following the minimization of the logarithm of the likelihood function ℓ(F,R,X) as the203

loss function. The formulation of the deep ensembles for the calibration of rapid EOPs204

is given in Equations (2a)-(2f).205
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µj(R,X) = NNµ(θµ,j , R,X) (2a)

σ2
j (R,X) = log(1 + exp(NNσ(θσ,j , R,X))) + ϵ (2b)

ℓj(F,R,X) =
1

2
log σ2

j (R,X) +
1

2

(F −R− µj(R,X))2

σ2
j (R,X)

(2c)

ℓj(F,R,X) −→ minimize (2d)

µ(R,X) =
1

M

M∑
j=1

µj(R,X) (2e)

σ2(R,X) = −µ2(R,X) +
1

M

M∑
j=1

σ2
j (R,X) + µ2

j (R,X) (2f)

where µ(R,X) and σ2(R,X) are the ensemble mean and variance, being the av-206

erage of M individual members of the ensembles with mean and variance µj(R,X) in207

Equation (2a) and σ2
j (R,X) in Equation (2b), respectively. In our case, we observed that208

M = 10 is sufficient and results in the highest accuracy. Using significantly more than209

10 models seems to be unnecessary, while being drastically more computationally expen-210

sive, and at the same time, resulting in no significant gains in accuracy (below the cur-211

rent uncertainty level in EOPs). µj(R,X) and σ2
j (R,X) are modelled by two different212

neural networks NNµ(θµ,j , R,X) and NNσ(θσ,j , R,X) with different learnable param-213

eters θµ,j and θσ,j , respectively, as in Equations (2a) and (2b). Since the variance has214

to be positive, the softplus function (Szanda la, 2021) is applied to the neural network215

NNσ(θσ,j , R,X), i.e., Equation (2b). The term ϵ is a constant for numerical stability. In216

our problem, we observed that a value of ϵ = 10−8 performs sufficiently well. The loss217

function ℓj(F,R,X) is minimized for each individual model separately using Adam op-218

timizer (Kingma & Ba, 2015) with 200 epochs. Finally, it is worthwhile to mention that219

we implement the method using the TensorFlow library in Python (Abadi et al., 2016).220

2.3 Unmixing and self-calibration approaches: geophysical information221

and constraints222

In order to investigate the causes of discrepancies between rapid and final EOPs,223

one can explicitly model some of the known effects. Here, we model the effect of errors224

in EAM functions, ocean tides, and tidal excitations. The discrepancies between rapid225

and final polar motion, denoted by δxp and δyp, and rapid and final dUT1, denoted by226

δdUT1, are the sum of individual discrepancies due to EAM functions δEAM, ocean tides227

δT, tidal excitations δTE (for polar motion), and additional effects δU, which include228

smoothing, systematic correction, and unknown effects. δEAM, δT, and δTE are related229

to the variable X in the neural network in Equation (1). It is also important to note that230

the component-wise summation of individual EAM functions is used (Kiani-Shahvandi231

et al., 2022).232

Both the polar motion components and dUT1 are affected by ocean tides and li-233

bration in terms of diurnal and subdiurnal variations (Sections 5.5 and 8.2 of Petit &234

Luzum, 2010). Moreover, polar motion is affected by long-period ocean (both prograde235

and retrograde) tides which are conventionally modelled with periods from 9 days to 18.6236

years (Section 8.3 of Petit & Luzum, 2010). However, dUT1 is affected by zonal tides237

(i.e., the effect of tidal deformation), which are modelled with periods from 5 days to 18.6238

years (Section 8.1 of Petit & Luzum, 2010).239

The general approach to include the tidal effects in our model is to consider the240

harmonic functions with fixed frequencies through Delaunay parameters (Petit & Luzum,241

2010), but with variable, estimable amplitudes. This is due to the fact that in rapid EOPs242

tides are already taken care of, and we need to compensate for the potential erroneous243
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effect of tides included in the model. Therefore, δT and δTE can be modelled as in Equa-244

tion (3)245

δT, δTE =

K∑
i=1

Ai cos Θ(t) + Bi sin Θ(t) (3)

in which K is the number of tidal constituents considered, A and B the coefficients that246

should be determined by the neural networks, and Θ(t) the time-dependent argument247

of the harmonic functions based on the Delaunay parameters (Petit & Luzum, 2010). In248

the case of subdiurnal polar motion and dUT1, K = 30 constituents are added as fea-249

tures for each of xp, yp, and dUT1. For the diurnal tides, this number is K = 41 for250

each EOP. For the long period ocean tides and tidal excitations specific to polar motion251

the number is K = 10 for both xp and yp, and for the prograde and retrograde mo-252

tions. The zonal tides specific to dUT1 have K = 62 constituents (Petit & Luzum, 2010).253

δEAM is decomposed into two parts: equatorial components δχ1, χ2 and the ax-254

ial part δχ3 of the excitations. These two parts can be modelled with two groups of neu-255

ral networks (NNχ1 ,NNχ2) and NNχ3 . Additional constraints can be applied to NNχ1 ,256

NNχ2
and NNχ3

. For instance, we apply the Liouville equation (Chin et al., 2004) for257

δP (in the imaginary domain, δP = δxp − iδyp) to investigate if there are additional258

parts that are not available in EAM data or the tidal effects that result in errors δxp,259

δyp in the polar motion components. Similarly, for the rate of dUT1 a linear combina-260

tion of mass (pressure: p) and motion (wind: w) terms of the χ3 component of the EAM261

functions would be considered, bearing physical meaning for example concerning man-262

tle anelasticity (Dickman, 2003; Dobslaw & Dill, 2019b). In addition, a neural network263

denoted by NNs(θs, R, χ3) should learn the remaining signals in the rate of dUT1 (i.e.,264

periods larger than annual), including its interannual trend. Furthermore, since EAM265

data used in the study are both observations and forecasts, NNχ1 , NNχ2 , and NNχ3 can266

be used to minimize the difference between forecasts and their corresponding observa-267

tions simultaneously with the minimization of the difference between rapid and final EOPs.268

Depending on the effects included, we have to consider two aspects, namely the un-269

mixing problem and the self-calibration. The unmixing problem occurs when the tidal270

effects and EAM functions are included in the model and investigated for their impact271

on the reduction of differences between rapid and final EOPs. If, in addition, we try to272

calibrate the EAM forecasts simultaneously with the calibration of rapid EOPs, we have273

to introduce a self-calibration approach. In mathematical terms, this concept is described274

in Equations (4a)-(4f):275
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δxp, δyp = δχ1, δχ2 + δT + δTE + δU (4a)

δP +
i

σcw

d

dt
δP = δχ1 + iδχ2

δP = δxp − iδyp

σcw =
2π

T
(1 +

i

2Q
)

T = 434.2

Q = 100

i =
√
−1

(4b)

δχ1,o, δχ2,o = δχ1,f , δχ2,f + NNχ1,χ2(θχ1,2 , R, χ1,f , χ2,f ) (4c)

δdUT1 = δχ3 + δT′ + δU′ (4d)

d

dt
δdUT1 = αδχp

3
+ βδχw

3
+ NNs(θs, R, χ3) (4e)

δχ3,o = δχ3,f + NNχ3
(θχ3

, R, χ3) (4f)

In Equation (4a), the error terms in polar motion δxp and δyp result from the er-276

rors in the equatorial components of the excitation functions δχ1, χ2, ocean tides, long277

period ocean tides and tidal excitations, and the remaining errors (smoothing, system-278

atic correction, or unknown). NNχ1
, NNχ2

are used to calibrate the EAM forecasts used279

in the model with respect to the corresponding observations as in Equation (4c). These280

calibrated values can then be used in Equation (4b) to improve the prediction accuracy.281

A similar condition can be considered for dUT1 based on the differentiation of dUT1 and282

the mass and motion terms of the axial component of EAM δχp
3, δχw

3 , through the lin-283

ear equation (4e), with learnable parameters α and β. Crucial to mention is the pres-284

ence of the neural network NNs that learns the remaining signals in the rate of dUT1,285

including the interannual trend. Note that the errors in dUT1 (c.f. Equation (4d)) come286

from the errors in the axial component of the excitation functions δχ3, subdiurnal and287

diurnal tides δT ′′, long-period (zonal) tides δZ ′ and the remaining errors δU′ (δT ′ =288

δT′′ +δZ′). Similar to the case of polar motion, here also the difference between fore-289

casts and their corresponding observations is simultaneously minimized with the cali-290

bration of rapid EOPs–Equation (4f). Finally, it is worthwhile mentioning that the meth-291

ods used for polar motion use both xp and yp as the feature in the model, since this is292

shown to result in better prediction accuracy (Kiani-Shahvandi et al., 2022).293

2.4 Feature importance methodology294

For the analysis of feature importance, the goal of which is to investigate the im-295

portance of different input features in making accurate predictions, we use the method296

of deep feature ranking (Maksymilian & Chen, 2020). This method eliminates the need297

for combinatorial optimization (Bengio et al., 2021) for feature importance. This is ad-298

vantageous since the importance of different features can be simultaneously analyzed,299

instead of analyzing individual or combinations of different features. Therefore, a large300

number of features can be investigated. The choice is furthermore justified since the ResLearner301

approach is mainly non-linear.302

We define the feature importance (FI) as the relative contribution to the results.303

This means that FI in the first approximation is the ratio of the standard deviation of304

the method with or without the k-th feature σ(k) relative to the standard deviation of305

the output σF , as in Equation (5)306

FIk =
σ(k)

σF
(5)
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Note that σ(k), k = 1, ... are the output of the deep feature ranking method (Maksymilian307

& Chen, 2020).308

2.5 Geophysically-constrained neural networks: introducing ResLearner309

PhycoRNN310

In addition to the unmixing and self-calibration problems, the concept of Physi-311

cally Constrained Neural Networks (PCNN, Geneva & Zabaras, 2020) can be used for312

directly applying the physical constraints to the problem using Recurrent Neural Net-313

works (RNN, Rumelhart, Hinton, & Williams, 1986). It has been shown that PCNN meth-314

ods like PhyLSTM (Zhang et al., 2020), which is based on long short-term memory (LSTM,315

Hochreiter & Schmidhuber, 1997) and the physical conditions of the problem, could present316

state-of-the-art prediction performance. As LSTM is the base of PhyLSTM, one can think317

of replacing it with more modern architectures. We investigated several state-of-the-art318

architectures for the problem, including PhyLSTM itself, coupled oscillatory RNN (coRNN,319

Rusch & Mishra, 2021) and Long Expressive Memory (LEM, Rusch, Mishra, Erichson,320

& Mahoney, 2022). The coRNN architecture achieved the best performance and there-321

fore we chose it to replace the LSTM cell in PhyLSTM. Using this approach, we devise322

a new architecture called PhycoRNN. The architecture is shown in Figure 1. In this ar-323

chitecture, there are two coRNN cells. The input I = (R,EAM), containing rapid EOPs324

and EAM, passes through the first coRNN cell and generates two outputs V1, V2 which325

are subsequently passed through a Dense layer (Bishop, 2006) to generate the output326

G. The squared difference between G and the output F containing final EOPs data should327

be minimized, which can be called the mathematical loss, denoted by Lossm. V1 and V2328

are additionally passed through the second coRNN cell to generate the two outputs Z1329

and Z2, which by applying another Dense layer to them would generate the output H.330

The geophysical constraints are then applied to H.331

The geophysical constraint in the case of polar motion is the Liouville equation pre-332

sented in Equation (4b), while for dUT1 rate is the linear combination presented in Equa-333

tion (4e). In this case, α and β can be written as the following Equation (6) (Dobslaw334

& Dill, 2019b).335

α = 2πΩ
kr
Ceff

(1 + k′2,eff + ∆k′an,eff)

β = 2π
kr
Ceff

(6)

in which Ω = 7.292115 × 10−5 [ 1s ] is the rotation rate of the Earth, kr = 0.9976 the336

effect of rotational deformation, Ceff = 7.118246 × 1037 [kgm2] the effective axial mo-337

ment of inertia, and k′2,eff = −0.2415, ∆k′an,eff = −0.0087 the effective load Love num-338

ber and the mantle anelasticity, respectively.339

The mentioned geophysical constraints constitute the so-called physical loss, de-340

noted by Lossp. The total loss is the summation of the mathematical loss and the phys-341

ical loss. To optimize the parameters of the neural networks we use the so-called LBFGS342

algorithm (D. Liu & Nocedal, 1989) since it has been shown to be quite efficient in PCNN343

problems. Finally, it should be noted that we investigated the number of time steps (in-344

put sequence length) used in the coRNN cell and a value of 3 was chosen since it resulted345

in the best prediction accuracy. Here, 200 epochs of training were used. The method was346

implemented using the PyTorch library (Paszke et al., 2019).347
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Figure 1: PhycoRNN architecture as a geophysically-constrained neural network, devised
and used in the study.

2.6 Prediction accuracy metric348

In order to evaluate the prediction accuracy, we use the mean absolute error (MAE)349

metric, which is commonly used in EOP prediction studies (Kalarus et al., 2010; Modiri350

et al., 2018; Kiani-Shahvandi et al., 2022). This is done for each day individually.351

The quantification of improvement is based on the change in MAE for different days.352

If the MAE of one method is smaller than the baseline of rapid data themselves, we achieve353

an improvement. The MAE and improvement are defined in Equations (7a) and (7b):354

MAEk =
1

N

N∑
i=1

|RC
i,k − Fi|, k = −31, ..., 31 (7a)

improvementk = 100%
MAEB

k − MAEk

MAEB
k

(7b)

In these equations, the index k is used for the day number, which is from -31 to 31. The355

number of predictions made is denoted by N . The predictions are denoted by RC
i,k (su-356

perscript C referring to calibration) for the i-th prediction and k-th day ahead. Fi de-357

notes the corresponding final EOPs. The improvement is calculated by the percentage358

change in the MAE across different days, relative to the baseline (superscript B).359

2.7 Summary of the concepts and optimal characteristics for ResLearner360

A summary of the optimal characteristics of the ResLearner method is presented361

in Table 1, as determined in extended tests.362
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Table 1: Optimal characteristics for the ResLearner machine learning algorithm used for
the calibration of rapid EOPs with respect to final EOPs

characteristic choice/description

primary type of neural networks non-linear MLP with two layers. 1 and 63 hid-
den neurons in layers, with tangent hyperbolic
and linear activation functions for first and
second layers, respectively

alternative type of neural networks linear models: RANSAC, RidgdeCV, OLS

grouping of EOPs equatorial and axial, i.e., for the prediction of
xp or yp: both xp and yp used as feature; for
the prediction of dUT1: only dUT1

non-linear uncertainty estimation deep ensembles with M=10 simultaneous neu-
ral networks

feature importance analysis deep feature ranking

evaluation metric MAE

EAM functions considered atmosphere, ocean, hydrology, and sea level

tidal effects subdiurnal, diurnal, long period and tidal exci-
tations, and long-period (zonal, for dUT1 only)
with K= 30, 41, 10, 62 constituents, respec-
tively

CI MEI, NAI, MJI

PhycoRNN number of time steps 3

geophysical conditions for PhycoRNN Liouville equation for rotational dynamics
and polar motion; Earth rotation rate for first
derivative of dUT1

unmixing importance analysis of different features in-
cluded in the model for their impact on the
discrepancies between rapid and final EOPs

self-calibration simultaneous calibration of EAM forecasts and
the rapid EOPs

3 Data description363

Here we describe the data used for the numerical results presented in the paper.364

Essentially, there are seven groups of data used in the study365

• IERS rapid and final EOP 14 C04 series366

• IERS final EOP 20 C04 series367

• Jet Propulsion Laboratory (JPL) final EOP series (EOP2)368

• European Space Agency (ESA) rapid and final EOP series369

• ETH Zurich 14-day EAM forecasts370

• GFZ German Research Center for Geosciences EAM analysis products371

• National Oceanic and Atmospheric Administration (NOAA) MEI, NAI, MJI372
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IERS final 14 C04 EOP series (Bizouard et al., 2019) is the result of the combina-373

tion of different space geodetic techniques including GNSS and VLBI and acts as the base-374

line to evaluate the various predictions against. This EOP time series is available from375

1962 onward. Similar final EOPs data that are consistent with the latest International376

Terrestrial Reference Frame (ITRF2020) are provided by SYstèmes de Référence Temps-377

Espace (SYRTE). As mentioned in Section 1, IERS rapid EOPs (Dick & Thaller, 2018)378

are provided by using the most recent GPS and VLBI (24-hour and intensive session)379

data. The data are updated daily, but not archived publicly (daily finals). We have saved380

the rapid files since January 2015. Therefore, approximately 8 years of data is available381

for training and evaluation of the ResLearner algorithm. JPL series 2 of final EOPs are382

provided daily and contain the EOPs from 1976 onward, with less latency compared to383

the final IERS data. The JPL final series can act as the target in the training phase, i.e.,384

IERS rapid EOPs are mapped to the final JPL EOPs. This creates another solution in385

addition to the one with final IERS data as the target.386

For the purpose of additional validation, we use final, rapid and predicted EOPs387

provided by ESA and derived within the framework of the ESA project on ”Independent388

Generation of Earth Orientation Parameters” (ESA-EOP, Dill et al., 2020; Kehm et al.,389

2023). The data result from series of hindcast experiments, in which the final EOPs are390

combined from GNSS, SLR, VLBI and DORIS and the rapid EOPs are combined from391

GNSS and VLBI only. Predictions are based on deterministic signals derived from the392

final and rapid EOPs time series in combination with EAM analysis and prediction data393

(as available on the assumed start date of prediction). Two series of hindcast scenarios394

from the study were provided, namely a realistic scenario and an ideal scenario. While395

the realistic scenario (scenario H1 in Kehm et al., 2023) assumes that the VLBI contri-396

bution to rapid (combined) EOPs solely relies on intensive data, the ideal scenario (sce-397

nario H2 in Kehm et al., 2023) assumes both 24-hour and intensive data to be available398

for the rapid combination. Each hindcast scenario is provided in the form of a data set399

containing 656 daily files for a time span from January 2018 up to January 2020. Thereby,400

each daily file contains final EOPs from around January 2009 up to a prediction hori-401

zon of about -28 days, rapid (combined) EOPs up to the day before the prediction start,402

and predicted EOPs up to a prediction horizon of +90 days. Here, we will use both sce-403

narios for validation.404

Regarding the EAM data, both the observations and forecasts are used, since fore-405

casts can help significantly to improve the EOP prediction performance (Modiri et al.,406

2020; Kiani-Shahvandi et al., 2022). Since the horizon of the forecasts is also a deter-407

mining factor (Kur et al., 2022), we use 14-day forecasts of ETH Zurich (Kiani Shah-408

vandi et al., 2022) since they are both accurate and cover a reasonable forecasting hori-409

zon for short-term EOP prediction (i.e., suitable for accurate real-time purposes). Note410

that EAM predictions from all 14 days are used, since based on our analysis it results411

in the best performance (for instance, using 10-day forecasts results in less improvement).412

The EAM analysis files are taken from GFZ German Research Center for Geosciences413

(Dobslaw & Dill, 2018; Dill et al., 2019a). All four types of EAM functions, i.e., AAM,414

OAM, HAM, and SLAM, are used as geophysical features in the ResLearner algorithm.415

We use CI provided by NOAA. Climatic index MEI is provided bimonthly by an416

empirical orthogonal function that combines different variables including sea surface pres-417

sure and temperature (Wolter & Timlin, 1993; Timmermann et al., 2018; Di Lorenzo et418

al., 2023). Since the data are bimonthly, they should be interpolated to generate daily419

values to be used as an additional feature for the prediction of dUT1. We also use NAI420

and MJI suspected for their influence on the rate of dUT1 (Hendon, 1995; Mazzarella,421

2007).422

Several investigations are presented in Section 4. In Figure 2, we show the rapid423

xp, yp, and dUT1 time series as well as the training and evaluation intervals for five dif-424

ferent studies presented in this paper. The first study (S1) is similar to the subsequent425

–12–



manuscript submitted to JGR: Solid Earth

three, but it is done operationally, with retraining at each prediction epoch. The start-426

ing date of evaluation is 20 May 2021 to be consistent with operational EAM forecasts427

(Kiani Shahvandi et al., 2022). The next three (S2, S3, S4) are hindcast studies that use428

IERS rapid EOPs as the input and IERS final 14 C04 or JPL EOP2 as the output. The429

purpose of these studies is to analyze the performance of the algorithm in the past. The430

final study (S5) is based on the ESA and IERS rapid and final EOPs. This is also only431

possible in a hindcast study. Crucial to mention is that hindcast studies observe the rules432

of real-time prediction (i.e., no future information being available), but with the predic-433

tion time in the past.434

Figure 2: Top and middle panels show the polar motion and dUT1 series used in the
study. The bottom panel shows the training and prediction intervals for each of the five
studies (S1)-(S5) presented in Section 4.

4 Results and discussions435

4.1 Analysis for the operational results in 2021-2022436

Here, we present the performance analysis of the methods discussed in Section 2437

based on the data described in Section 3. Note that the analysis refers to the study num-438

ber 1 (S1) in Figure 2. The following points summarize the study configuration:439

• The baseline solution is rapid EOPs as provided by IERS,440

• Methods are trained on both IERS and JPL final EOPs,441

• The final IERS 14 C04 EOP series is used for evaluation.442

4.1.1 Prediction accuracy and improvement443

Figures 3 and 4 present the results of applying both the ResLearner and ResLearner444

PhycoRNN algorithms to the study interval shown in Figure 2. For better visualization445

of the performances, the prediction interval is divided into two parts: days -31 to 0 and446

days 1 to 31. The improvements with respect to the IERS baseline are presented in Fig-447

ure 5 for polar motion and Figure 6 for dUT1. Based on Figures 3-6, several important448

points become evident.449

First, the results of ResLearner PhycoRNN from days 1 onward seem to be iden-450

tical to those of ResLearner when IERS 14 C04 is used for training. They are also very451

similar on days -31 to day 0, but not identical. This proves that for methods trained on452

IERS 14 C04, both PhycoRNN and ResLearner can be used. However, when JPL EOPs453
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is used in the training, the results of ResLearner PhycoRNN and ResLearner are differ-454

ent. In this case, ResLearner PhycoRNN works better in yp, but worse in xp, approx-455

imately after day 13. This can be explained by the fact that ResLearner PhycoRNN has456

focused more on the yp component because of its larger amplitude and thus is perform-457

ing worse on xp. Note, however, this is the best architecture for ResLearner PhycoRNN,458

implying that it cannot outperform ResLearner in xp, but only in yp. We tried to weight459

the loss functions so that the amplitudes of the errors of xp and yp be in the same range,460

but this did not improve the results. Regarding the difference between the results us-461

ing JPL and IERS data as target, it becomes clear that the PhycoRNN has been able462

to capture the physics, but there is not as meaningful geophysical information in the map-463

ping from rapid to JPL as from rapid to IERS. This is because the PhycoRNN is effec-464

tively transforming between EAM and GAM (Geodetic Angular Momentum), which as465

Dill et al. (2020) also point out, are not in full agreement with the JPL combined EOP466

series, especially for the equatorial components. This implies that having the Liouville467

equation as a hard constraint would not be beneficial if the EAM and EOPs series do468

not correspond to each other. In this case, a more mathematical-based approach would469

present better results, which is the case with ResLearner. We conclude that if the EOP470

and EAM series correspond to each other, the results of ResLearner and ResLearner Phy-471

coRNN are almost identical, thereby suggesting physical and mathematical information472

have been adequately captured. Otherwise, ResLearner PhycoRNN does not perform well,473

since the geophysical constraints are less informative. This happens mostly for polar mo-474

tion, but not for dUT1, which is due to the better agreement on the axial components475

of the GAM derived from different EOPs series (Dobslaw & Dill, 2019b).476

Second, the improvement for polar motion components reaches 60% and generally477

remains above 40% for days -15 to 13. This is achieved by training the data on IERS478

14 C04 final series, but not on JPL. Reasons for this discrepancy may include the longer479

interval that JPL provides the data for, which results in less informative data as a re-480

sult of the degraded accuracy. More importantly, as mentioned GAM derived from IERS481

and JPL using EAM data do not fully correspond and can have large discrepancies, re-482

sulting in a reduction in accuracy of PhycoRNN predictions with JPL data as target.483

The improvements for dUT1 are generally smaller than those for polar motion. But they484

tend to increase for longer prediction horizons. The accuracy of both ResLearner Phy-485

coRNN and ResLearner in days -31 to 0 for polar motion is almost below or at the un-486

certainty level of the polar motion data. This confirms that the methods can deliver re-487

sults with an uncertainty level similar to that of the polar motion data. Finally, it is im-488

portant to note that the accuracy of the IERS baseline and most of the methods is bet-489

ter at day 0 than at day -1. This behavior is more pronounced in polar motion compared490

to dUT1, meaning that the improvement for polar motion drops significantly at this day.491

We suspect that the reason for this anomalous behavior lies within the data and not in492

the applied models, as it is also visible in the IERS baseline, and might be related to a493

dominance of GNSS-derived polar motion information in the final IERS product and on494

the final day of the rapid combination (Kehm et al., 2023). The ResLearner unmixer al-495

gorithm (Section 2.3) can be used to further investigate this anomalous behavior.496
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(a)

(b)

Figure 3: Prediction accuracy of polar motion components xp, yp for the first study (S1),
in terms of MAE [mas]. ResLearner and ResLearner PhycoRNN are trained on both JPL
and IERS final EOPs. (a) shows the MAE across days -31 to 0, while (b) focuses on days
1 to 31.
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(a)

(b)

Figure 4: Prediction accuracy of dUT1 for the first study (S1), in terms of MAE [ms].
ResLearner and ResLearner PhycoRNN are trained on both JPL and IERS final EOPs.
(a) shows the MAE across days -31 to 0, while (b) focuses on days 1 to 31.
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(a)

(b)

Figure 5: Improvement of prediction accuracy of polar motion components xp, yp for the
first study (S1), in terms of percentage [%], computed according to Equation (7) based on
the MAE of the baseline and that of ResLearner and ResLearner PhycoRNN. (a) shows
the improvement across days -31 to 0, while (b) focuses on days 1 to 31.
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(a)

(b)

Figure 6: Improvement of prediction accuracy of dUT1 for the first study (S1) presented
in Figure 2, in terms of percentage [%], computed according to Equation (7) based on
the MAE of baseline and that of ResLearner and ResLearner PhycoRNN. (a) shows the
improvement across days -31 to 0, while (b) focuses on days 1 to 31. Note that the im-
provements are with respect to the IERS rapid data.

4.1.2 Importance of geophysical information497

We find that EAM functions are one of the most important features that contribute498

to the discrepancies between rapid and final EOPs. As an example, in Figure 7, the Kendall499

correlations between the differences between rapid and final EOP IERS 14 C04, and the500

equatorial components of the individual EAM functions are shown. AAM and OAM (par-501

ticularly the motion terms) present the highest correlation with these differences, thereby502

suggesting the importance of EAM for the ResLearner unmixer. Furthermore, even though503

in the rapid data AAM is included, the presence of the correlation suggests errors in ac-504

counting for AAM in the processes. In Figure 8 the importance of different features (FI)505

used in the model is presented, based on the methodology presented in Section 2 and ac-506

cording to Equation (5). For polar motion, Figure 8 gives the importance of the features507

xp, yp, EAM, and tides (semi-diurnal, diurnal, long-period tidal excitations combined),508

while for dUT1, it gives the importance of the features dUT1, EAM, tides (semi-diurnal,509
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diurnal, and long-period (zonal) combined), and CI. The individual CI components, i.e.,510

MEI, NAI, and MJI are also displayed. Besides xp, yp, and dUT1 themselves, the EAM511

and tides are the most important features, confirmed also by other studies (Kiani-Shahvandi512

et al., 2022). Figure 7 also shows that AAM and OAM are the most important EAM func-513

tions for this problem (both mass and motion terms). Among CI, MEI seems to be the514

most relevant and can have effects several times bigger than the uncertainty level of dUT1.515

However, NAI and MJI have only a minor importance for the short-term prediction of516

dUT1. We therefore recommend only using MEI among the various climatic indices. We517

consider this to be in alignment with the observation that ENSO has a significant im-518

pact on the rate of dUT1, especially on interannual time scales (Chao, 1984).519

We furthermore analyze the relationship between MEI and the physical condition520

on the rate of dUT1. In Figure 9, we show the negative of the rate of dUT1, i.e., − d
dtdUT1521

(IERS rapid data) and the reproduced trend (which is in fact, rather an interannual sig-522

nal in view of the limited time-period considered), the χp
3 and χw

3 components of the EAM523

functions, and MEI. Most of the signal in the rate can be explained by χw
3 which is due524

to the zonal winds (Volland, 1996). However, the reproduced MEI also seems to be able525

to explain parts of the signal, especially around mid-2022. This can potentially be at-526

tributed to a La Niña event, which occurred in mid-2022. La Niña events have been shown527

to influence the rotation rates of the Earth (Xu et al., 2022). We can therefore state that528

ResLearner has been able to link the geophysical information to the input data. Note,529

however, that in short-term prediction the importance of MEI is smaller than that of other530

features, including χp
3 and χw

3 . But in the long-term, using MEI results in better train-531

ing and prediction by ResLearner.532

Figure 7: Kendall correlation (shown as corr in the figure) between the differences be-
tween rapid and final IERS EOPs, and the equatorial components of the individual EAM
functions. Note that mass and motion terms (χp

i , χw
i i = 1, 2) are analyzed separately.
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(a)

(b)

Figure 8: Feature importance analysis based on the algorithm presented in Section 2.4
and according to Equation (5). For polar motion components (a), features include xp, yp,
equatorial components of EAM, T and TE (i.e., semi-diurnal, diurnal, and long-period
tides and tidal excitations). For dUT1 (b), the features are dUT1, axial component of
EAM, tides (semi-diurnal, diurnal, and zonal), and CI (climatic indices). CI is further
decomposed into its components, i.e., MEI, NAI, MJI.
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Figure 9: Negative rate of dUT1 (IERS rapid), − d
dtdUT1, together with the regressed

interannual trend, χp
3, χw

3 components of the EAM functions, and MEI, as obtained from
the ResLearner algorithm. The interannual trend is solved during the training process and
predicted accordingly at the prediction epoch. MEI here refers to what the ResLearner
sees during training, i.e., the input feature MEI. Similarly, χp

3 and χw
3 are reproduced, but

they are almost identical to their input form, because of their high feature importance.
The mid-2022 La Niña event is highlighted by a black box.

4.1.3 Unmixing: on the potential causes of errors in rapid EOP data533

Building upon the results of feature importance analysis in Figures 7 and 8, the534

ResLearner unmixer algorithm can be applied to find the individual components of the535

EAM and tides that contribute most to the discrepancies between rapid and final EOPs.536

The corresponding results are presented in Figure 10, based on FI as given in Equation537

(5). In order to asses their significance, we also show their corresponding 95% confidence538

intervals. We have grouped the contributions into 1) tides and EAM (δT, δEAM) and539

2) remaining errors (δU, systematic correction, smoothing, and unknown). Panel (a) gives540

the relative contributions of these two groups. The effect of the first group is bigger, thereby541

suggesting that the potential causes of discrepancy lie within tides and EAM. The five542

most important features among the first group are further investigated in panel (b).543

It is important to clarify that based on Figure 10 one can conclude that the most544

important features contributing to the anomaly observed at day 0 are (in the order of545

importance) δEAM at day 0, δU (including the dominance of the GNSS-derived polar546

motion), and δT. Regarding tides in polar motion, subdiurnal and diurnal tides, retro-547

grade 13.63 and 27.56 days, and prograde 13.66 and 27.56 days long-period tides and tidal548

excitations are important. For dUT1, however, zonal tides of periods 13.78, 14.77, 23.89549

days, and subdiurnal tides are relevant. For δU the approximate FI, together with their550

95% confidence intervals are summarized in Table 2. Note that for δEAM and δT, the551

approximate values of importance are computed by multiplying the FI in panel (a) and552

(b), based on the fundamental rule of probability.553

–21–



manuscript submitted to JGR: Solid Earth

Table 2: The approximate FI and corresponding 95% confidence intervals for δEAM, δU,
δT for the potential causes of discrepancies between the rapid and final EOP IERS 14
C04 series.

EOP δEAM δU δT

xp 37±20% 33±6% 29±18%

yp 47±23% 30±7% 23±15%

dUT1 54±28% 26±8% 21±11%

(a)

(b)

Figure 10: (a) FI computed according to Equation (5) for two groups 1) tides and EAM
(δT & δEAM), 2) rest of errors (δU, systematic correction, smoothing, unknown) ; (b) FI
computed for EAM and various tidal constituents resulting in the discrepancies between
rapid and final EOPs, based on the methodology presented in Section 2. The uncertain-
ties shown in the form of error bars are for 95% confidence interval. The analysis is for
day 0 of prediction, containing the anomalous behaviour.
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4.1.4 Self-calibration554

After identifying the causes of errors in rapid data as from Figure 10, we apply the555

ResLearner self-calibration algorithm described in Section 2.3 in order to reduce the er-556

roneous effects of the EAM functions. The results are shown in Figures 11 and 12 against557

the output of ResLearner algorithm without self-calibration. ResLearner self-calibration558

slightly improves the prediction performance (on average 5.5%). The improvement is achieved559

on both polar motion and dUT1, thereby suggesting the success of ResLearner self-calibration560

in reducing the errors.561

(a)

(b)

Figure 11: ResLearner self-calibration algorithm for the polar motion components against
the ResLearner without self-calibration. (a) shows the comparison of days -31 to 0 while
(b) displays that of days 1 to 31.
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(a)

(b)

Figure 12: ResLearner self-calibration algorithm for dUT1 against the ResLearner with-
out self-calibration. (a) shows the comparison of days -31 to 0 while (b) displays that of
days 1 to 31.

4.1.5 Comparative analysis: linear models562

As mentioned in Section 2, linear ResLearner models can also present competitive563

results, i.e., close to the prediction performance of the state-of-the-art algorithms. The564

goal of this analysis is to illuminate the role of non-linearity in the model. Three differ-565

ent methods are considered: OLS, RANSAC, and RidgeCV. The results are compared566

with the non-linear ResLearner. The results of the comparative analysis are summarized567

in Figure 13. The results are shown only for days 1 to 31 since it is only on these days568

that we see a clear pattern of superiority of non-linear models. On days -31 to 0, the re-569

sults are mixed: methods like OLS may outperform non-linear ones on some days, while570

on the rest of the days, the non-linear models outperform OLS. This analysis confirms571

that in this study, the non-linearity results in a gain in prediction performance. Further-572

more, it is by non-linearity that the unmixing and self-calibration problems can capture573

almost all the signals in the input data.574
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(a)

(b)

(c)

Figure 13: Comparison between the linear and non-linear ResLearner algorithms. Three
different linear models are analyzed: OLS, RANSAC, RidgeCV. (a) shows the results for
polar motion xp component, (b) for polar motion yp component, and (c) for dUT1.
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4.1.6 Prediction uncertainty575

The ResLearner methodology implemented in the context of deep ensembles can576

provide uncertainties in the predictions. As an example, Figure 14 shows the predictions577

of polar motion and dUT1 together with their associated uncertainties, plotted for 2022-578

12-31. The mean values are given by µ, while the standard deviations are given by σ.579

The prediction uncertainties shown represent a 95% confidence (±1.96σ) interval. Note580

that the derived prediction uncertainties depend on the respective day, but are usually581

close to the uncertainties in the rapid data. This confirms that ResLearner models in582

deep ensembles have been able to effectively reduce the epistemic uncertainty due to model583

errors. The reason is, the ResLearner is essentially a parametric model, the parameters584

of which are derived through optimization schemes. As a result, there is inevitably some585

uncertainties in the model parameters, which translate to the uncertainty in the predic-586

tions. Using the ensemble approach, we can effectively reduce this type of uncertainty587

and allow the model to predict more accurately and confidently.588
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(a)

(b)

(c)

Figure 14: Prediction uncertainty for (a) polar motion xp, (b) polar motion yp, and (c)
dUT1 for the date 2022-12-31, using ResLearner in the context of deep ensembles. µxp,
µyp, and µdUT1 are the mean values of the prediction, while σxp, σyp, and σdUT1 are the
associated standard deviations. The confidence interval is 95% (±1.96σ).
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4.2 Hindcast analysis: 2018, 2019, 2020589

We analyze the performance of the ResLearner method in hindcast scenarios, cor-590

responding to the second, third, and fourth analyses (S2, S3, and S4) shown in Figure591

2. The same conditions as in the first study (S1) are applied here as well, i.e., using the592

rapid IERS as the baseline, training on both IERS 14 C04 and JPL final EOPs 2 data,593

and evaluating against the IERS 14 C04 series.594

Applying the same ResLearner architecture to these intervals, we get the results595

displayed in Figures 15 and 16. The results are divided into two parts: days -31 to 0 and596

days 1 to 31. Two important points can be deduced from these results. First, the accu-597

racies are different from year to year and they do not show a clear reduction with increas-598

ing training intervals. This means that ResLearner tends to improve the prediction ac-599

curacy even when the training time span is shorter. Thus, the algorithm does not crit-600

ically depend on the amount of data fed to it (c.f. Kiani-Shahvandi & Soja, 2021). This601

can be explained by the fact that the architecture is designed in a way that does not in-602

clude too many learnable parameters, which can therefore be well trained. Second, the603

anomalous behavior of the polar motion components at day 0 also appears here, suggest-604

ing that the problem with rapid data also existed during earlier years.605
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(a)

(b)

Figure 15: Prediction accuracy of hindcast studies S2, S3, and S4 for polar motion
components xp and yp, in terms of MAE [mas]. Only the ResLearner is used (but not
ResLearner PhycoRNN since they are similar). (a) displays the results for the days -31 to
0 and (b) for the days 1 to 31.
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(a)

(b)

Figure 16: Prediction accuracy of hindcast studies S2, S3, and S4 for dUT1, in terms of
MAE [ms]. Only the ResLearner is used. (a) displays the results for the days -31 to 0,
while (b) for the days 1 to 31.

4.3 Analysis of ESA EOP data: a hindcast study606

This analysis corresponds to the last study (S5) in Figure 2, the role of which is607

to validate our approach against an independent dataset of EOPs. The following points608

are important regarding this study.609

• The prediction horizon is 31 days, i.e., days -15 to 15610

• Two baselines are considered: the rapid EOPs as provided by IERS and by ESA611

EOPs612

• The final ESA EOPs are used for evaluation613

• Validation is done against both the ideal and realistic ESA hindcast scenarios de-614

scribed in Section 3615

We perform three different evaluations, namely:616
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• evaluation 1: training only on IERS final EOPs up to the end of 2022,617

• evaluation 2: training only on IERS final EOPs up to the respective time of ESA618

EOPs, using retraining at each epoch,619

• evaluation 3: training on a combination of IERS and ESA EOPs, similarly with620

retaining.621

The first evaluation is a hindcast study based on the pre-trained models. This means622

that no retraining is needed and predictions are made all at once. The second evalua-623

tion is more of operational nature, although in the past. The training period is thereby624

assumed to extend from 2015 up to the prediction day. In the third evaluation, IERS625

data from 2015 up to the end of 2017 are used for the training and first prediction. For626

each subsequent prediction, the ESA final data are added day-by-day to the training.627

We analyze both the ideal and realistic scenarios mentioned in Section 3. First, we628

discuss the ideal case. The results of these evaluations are shown in Figures 17-18. Con-629

sidering these results, we would like to highlight the following points: First, ResLearner630

is able to further improve the prediction accuracy based on ESA data, confirming its flex-631

ibility for different datasets. Second, there is not much difference between the results of632

the three evaluations. Only evaluation 1 presents minor superiority over the other eval-633

uations. This is expected, however, as in this case, the model has seen not only the past634

but also the future final IERS EOPs. Third, all evaluations, as well as the ideal ESA base-635

line, show a significant improvement compared to the IERS baseline. Moreover, they show636

a more realistic behavior of the error of day 0, omitting the anomalous behavior seen in637

the IERS baseline (the error of day 0 being smaller than that of day -1). Application of638

ResLearner unmixer here points mostly again towards the EAM as the culprit. Further-639

more, it shows that ESA and IERS data are slightly inconsistent at day 0, with the rapid640

IERS baseline accuracy being better when evaluated against IERS 14 C04. This, how-641

ever, does not have an impact on the high prediction accuracy of both ESA baseline sce-642

narios, which is close to that achieved with ResLearner.643
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(a)

(b)

Figure 17: Prediction accuracy of the ResLearner algorithm for polar motion components
xp and yp, based on study 5 (S5) and for three different evaluations: 1) training only
IERS final EOPs up to the end of 2022, 2) evaluation 2: training only IERS final EOPs
up to the respective time of ESA, 3) evaluation 3: training on a combination of IERS and
ESA ideal data. Two baselines are presented: rapid IERS and rapid ESA ideal scenario.
The data are evaluated against the final ESA ideal data. (a) shows the results for predic-
tion days -31 to 0, while (b) for days 1 to 31.
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(a)

(b)

Figure 18: Prediction accuracy of the ResLearner algorithm for dUT1, based on study 5
(S5) and for three different evaluations: 1) training only IERS final EOPs up to the end
of 2022, 2) evaluation 2: training only IERS final EOPs up to the respective time of ESA,
3) evaluation 3: training on a combination of IERS and ESA ideal data. Two baselines
are presented: rapid IERS and rapid ESA ideal scenario. The data are evaluated against
the final ESA ideal data. (a) shows the results for prediction days -31 to 0, while (b) for
days 1 to 31.

Figure 19 presents the results of the ESA realistic scenario for dUT1. While there644

is no significant difference between the ESA ideal and realistic scenarios for polar mo-645

tion, dUT1 shows a clear reduction in prediction accuracy for days -15 to 0 compared646

to the ESA ideal scenario. This can be related to the missing of VLBI 24-hour data on647

these days, as the ESA realistic scenario only considers VLBI intensive sessions and GNSS648

rapids in the rapid combination. However, the change in prediction accuracy from days649

1 to 15 is insignificant.650

For ResLearner trained on the ESA realistic data, the prediction horizons between651

-15 and 0 days show a significant improvement compared to the ESA realistic scenario.652

This is in contrast to the results achieved by training on the ESA ideal scenario, where653

the additional improvement achieved by ResLearner is only minor. Thus, the results sug-654
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gest that ResLearner can contribute to mitigating the effect of the processing latency655

of 24-hour VLBI sessions, which are crucial for a reliable determination of dUT1.656

Figure 19: Prediction accuracy of the ResLearner algorithm for dUT1, based on study 5
(S5) and for three different evaluations: 1) training only IERS final EOPs up to the end
of 2022, 2) evaluation 2: training only IERS final EOPs up to the respective time of ESA,
3) evaluation 3: training on a combination of IERS and ESA realistic data. Two base-
lines are presented: rapid IERS and rapid ESA realistic scenario. The data are evaluated
against the final ESA realistic data.

4.4 Further discussions and recommendations657

Several consequences arise from the results presented above. First, in order to an-658

alyze the sensitivity of the anomalous behavior at day 0 between the rapid and final IERS659

EOP series for evaluation, we evaluate the results of ResLearner and ResLearner Phy-660

coRNN against the IERS 20 C04 series. This is similar to what is presented in Figure661

5, but the reference EOP series is different. The results are shown in Figure 20. Com-662

paring Figures 5 and 20, we observe that the anomalous behavior at day 0 is less severe.663

This further shows the dependence of the results on the version of IERS final and con-664

firms that the choice of reference evaluation series is important when evaluating in gen-665

eral, and in this case especially for day 0. Note that we also trained the algorithms based666

on the IERS 20 C04 series and observed that the anomalous behavior at day 0 is less se-667

vere. This attests to the suitability of IERS 20 C04 to address this problem to a certain668

extent.669
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Figure 20: Improvement in prediction accuracy of polar motion components xp, yp for
the first study presented in Figure 2, in terms of percentage. This is similar to Figure 5,
but evaluated against the IERS 20 C04 instead of IERS 14 C04. Only the days -31 to 0
are shown to check for anomalous behavior at day 0.

In addition, since there are several types of the ResLearner method, we can com-670

pute an ensemble of all types based on IERS 20 C04 as target EOPs. A simple weighted671

ensemble is used, with the weights computed based on the overall prediction performance672

of individual types of ResLearner. We call this type of ResLearner the full ensemble ResLearner.673

The results of improvement for the full ensemble ResLearner are shown in Figure 21. The674

problem at day 0 is almost eliminated and we achieve up to 50% improvement in accu-675

racy compared to the IERS rapid data. Note, however, that the improvements for days676

1 to 31 are smaller compared to those presented in Figure 5, thereby suggesting that us-677

ing the full ensemble approach is only beneficial in days -31 to 0. Crucial to note is that678

training a similar full ensemble based on IERS 14 C04 is not beneficial as the error would679

still persist.680

Figure 21: Improvement in prediction accuracy of polar motion components xp, yp for
the first study presented in Figure 2, in terms of percentage. This is similar to Figures 5
and 20, but a weighted ensemble of the types of ResLearner algorithm is used. Only the
days -31 to 0 are shown to check for anomalous behavior at day 0.
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Based on our thorough analyses, we present some recommendations regarding the681

improvement of rapid EOP data, summarized in Table 3.682

Table 3: Recommendations based on the numerical results presented in Section 4.

characteristics recommendation

type of ResLearner non-linear ResLearner with self-calibration

most relevant features EAM, semi-diurnal, diurnal, zonal tides, MEI

EOP series for training and evaluation IERS 20 C04

5 Conclusions683

We devised a new machine learning method called ResLearner for the purpose of684

reducing errors in rapid EOPs w.r.t. final EOPs. The method is essentially non-linear685

and has a physically-constrained form called ResLearner PhycoRNN based on coupled686

oscillatory recurrent neural networks. Additionally, we also investigated the linear form687

of the method. Unmixing and self-calibration problems are analyzed as well, used for find-688

ing the causes of discrepancies between rapid and final EOPs, and calibrating the errors689

in the input features. Extensive numerical investigations are performed on both IERS690

and JPL final data, as well as validations against independent series of ESA hindcast ex-691

periments. The results show the superiority of non-linear ResLearner compared to the692

linear methods. Furthermore, ResLearner PhycoRNN can outperform ResLearner in the693

yp component of polar motion, while ResLearner is better in the xp component. Gen-694

erally, the improvement in the accuracy of both polar motion components is over 40%695

across a large portion of the prediction horizon and can reach up to 60%. For dUT1, the696

improvement in prediction accuracy is smaller, but becomes larger for later prediction697

days, reaching up to 25%. In this context, validation against the ESA hindcast exper-698

iments demonstrates the capability of ResLearner to partially compensate for quality lim-699

itations in rapid dUT1 determination that are related to the latency of 24-hour VLBI700

data. As technical limitations will not allow for a faster availability of these data in the701

foreseeable future, ResLearner could become a valuable component in enhancing the qual-702

ity of this parameter crucial for low-latency and real-time applications.703

There is an anomalous behavior in the IERS rapid EOP data at day 0, where the704

consistency with the IERS finals appears to be better than at day -1. The unmixing al-705

gorithm suggests that errors in EAM, dominance of GNSS-derived polar motion, and tides706

are the main causes of this behavior. By applying the ResLearner self-calibration to the707

data, the errors are reduced and further improvement is achieved. Furthermore, using708

the IERS 20 C04 series either as the target in the training phase or as reference series709

for evaluation reduces this anomalous behavior, which suggests the superiority of the IERS710

20 C04 over the 14 C04 EOP series. This is further justified when an ensemble of all types711

of ResLearner methods is used, in which case we no longer observe this anomalous be-712

havior.713

We further discussed the importance of geophysical information and found that be-714

sides EAM functions, tidal corrections and CI contribute to the prediction performance.715

Subdiurnal, diurnal, and long-period (zonal) tides in the oceans are all found to be rel-716

evant. Furthermore, the multivariate ENSO index is found to be the most relevant CI.717

Further investigation in this context should focus on each individual component in or-718

der to judge whether errors assigned to a certain part of a (conventional) model are ac-719
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tually to be related to it. In this context, feature importance can give hints on where720

model deficiencies might have an impact on the quality of current EOP determination.721

Up to now, the ResLearner-based EOP determination realises a rapid EOP prod-722

uct that does not have a seamless transition from the corresponding final EOPs. This723

is in contrast to the EOP series realised by the ESA approach, where final and rapid EOPs724

combined from space-geodetic observations are directly complemented by a prediction725

that uses the last set of rapid (combined) EOPs as initial values. Further investigation726

might put focus on incorporating ML-based features already as conditions into the com-727

bination of the space-geodetic techniques, thereby realising a seamless EOP time series728

from the past into the future.729

Since the method developed in this paper is based on the concept of physically-constrained730

neural networks, by modifying the geophysical constraints it can be used for other ad-731

justment and prediction problems as well. One such problem in the field of Earth rota-732

tion is the long-term prediction of changes in the length-of-day. We hope that the re-733

sults presented in this paper stimulate further research in this direction to combine the734

mathematical rigor of neural networks and the strength of geophysical information.735
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