
P
os
te
d
on

2
M
ay

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
68
29
87
00
.0
73
29
86
5/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Fast computation of cloud 3D radiative effects in dynamical models

by optimizing the ecRad scheme

Peter Ukkonen1 and Robin J Hogan2

1Danish Meteorological Institute
2ECMWF

May 2, 2023

Abstract

Radiation schemes are fundamental components of weather and climate models that need to be both efficient and accurate.

In this work we refactor ecRad, a flexible radiation scheme developed at the European Centre for Medium-Range Weather

Forecasts (ECMWF). The goal was to improve performance especially with ecCKD, a new gas optics scheme that requires

only 32 spectral intervals in the longwave and shortwave to be accurate. This speeds up ecRad considerably, but also reduces

performance due to short inner loops.

We therefore carry out both higher-level code restructuring and kernel-level optimizations for the radiative transfer solvers

TripleClouds and SPARTACUS. SPARTACUS computes cloud 3D radiative effects, which have so far been neglected in large-

scale models. We exploit the lack of vertical loop dependencies in key computations by merging the spectral and vertical

dimensions, improving vectorization and instruction-level parallelism.

On the new AMD Rome-based ECMWF supercomputer, we obtain a 3-fold speedup for both solvers when using 32-term ecCKD

models. Combining ecCKD with optimized code results in very fast yet accurate radiation computations: with TripleClouds

we achieve 1.7 TFLOPs and a throughput of 621 columns/ms on a 128-core node. This is 11.5 times faster than ecRad in

Integrated Forecasting System cycle 47r3, which uses a more noisy solver (McICA) and less accurate gas optics (RRTMG).

SPARTACUS with ecCKD is now 2.4 times faster than CY47r3-ecRad, making cloud 3D radiative effects affordable to compute

within large-scale models. Preliminary results show that SPARTACUS slightly improves forecasts of 2-metre temperature and

low clouds in the tropics.

1

P
os
te
d
on

2
M
ay

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
68
29
87
00
.0
73
29
86
5/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Z2T: SH −90° to −20°, sfc

0 1 2 3 4 5 6 7 8 9 10
Forecast day

−0.02

−0.01

0.00

0.01

0.02

0.03

N
o
rm

a
lis

e
d
 d

if
fe

re
n
c
e

Z2T: Tropics −20° to 20°, sfc

0 1 2 3 4 5 6 7 8 9 10
Forecast day

−0.020

−0.015

−0.010

−0.005

0.000

0.005

 1−Jun−2021 to 31−Aug−2021 from 82 to 92 samples. Verified against 0001.

 Confidence range 95% with AR(1) inflation and Sidak correction for 4 independent tests.

SPARTACUS − TripleClouds

Z2T: NH 20° to 90°, sfc

0 1 2 3 4 5 6 7 8 9 10
Forecast day

−0.02

−0.01

0.00

0.01

0.02

LCC: SH −90° to −20°, sfc

0 1 2 3 4 5 6 7 8 9 10
Forecast day

−0.010

−0.005

0.000

0.005

0.010

N
o
rm

a
lis

e
d
 d

if
fe

re
n
c
e

LCC: Tropics −20° to 20°, sfc

0 1 2 3 4 5 6 7 8 9 10
Forecast day

−0.015

−0.010

−0.005

0.000

0.005

0.010

 1−Jun−2021 to 31−Aug−2021 from 82 to 92 samples. Verified against 0001.

 Confidence range 95% with AR(1) inflation and Sidak correction for 4 independent tests.

SPARTACUS − TripleClouds

LCC: NH 20° to 90°, sfc

0 1 2 3 4 5 6 7 8 9 10
Forecast day

−0.010

−0.005

0.000

0.005

0.010

−0.10

−0.05

0.00

0.05

0.10

N
o
rm

a
li
s
e
d
 d

if
fe

re
n
c
e
 i
n
 R

M
S

 e
rr

o
r

−135 −90 −45 0 45 90 135

−135 −90 −45 0 45 90 135

−
6

0
−

3
0

0
3

0
6

0

−
6

0
−

3
0

0
3

0
6

0

-70
-70

-60

-60

-60

-50 -50

-50

-50

-50

-40 -40

-40

-40

-40 -30

-30

-3
0

-20

-20

-2
0

-10

-10

-1
0

0

0

10

10 20

-90 -60 -30 0 30 60 90

Latitude (°N)

100

200

300

400

500

600

700

800

900

1000

P
re

s
s
u

re
 (

h
P

a
)

-1

-0.5

0

0.5

1

2

P
os
te
d
on

2
M
ay

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
68
29
87
00
.0
73
29
86
5/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

0.0 0.5 1.0 1.5 2.0 2.5
Time per 100 profiles (ms)

RRTMG
+ TripleClouds (ifort, REF)

+ TripleClouds (ifort, OPT1)
+ TripleClouds (ifort, OPT2)
+ TripleClouds (ifort, OPT3)

ecCKD

+ TripleClouds (ifort, REF)
+ TripleClouds (ifort, OPT1)
+ TripleClouds (ifort, OPT2)
+ TripleClouds (ifort, OPT3)

+ TripleClouds (gcc, REF)

+ TripleClouds (gcc, OPT1)
+ TripleClouds (gcc, OPT2)
+ TripleClouds (gcc, OPT3)

+ SPARTACUS (ifort, REF)

+ SPARTACUS (ifort, OPT1)
+ SPARTACUS (ifort, OPT2)
+ SPARTACUS (ifort, OPT3)

+ SPARTACUS (gcc, REF)

+ SPARTACUS (gcc, OPT1)
+ SPARTACUS (gcc, OPT2)
+ SPARTACUS (gcc, OPT3)

1.964
1.469(-25.2%)

1.144(-22.2%)
1.130 (-1.2%)

0.546
0.409(-25.1%)

0.280(-31.6%)
0.210(-25.0%)

0.504
0.384(-23.7%)

0.199(-48.3%)
0.161(-19.0%)

2.461
1.855(-24.6%)

1.158(-37.6%)
0.863(-25.5%)

2.442
1.741(-28.7%)

0.972(-44.2%)
0.771(-20.6%)

Aerosol optics
Cloud optics
Gas optics
SW solver
LW solver

0 1 2 3 4 5 6 7 8
Time per 100 profiles (ms)

RRTMG
+ McICA (IFS CY47r3)

+ TripleClouds

+ TripleClouds (OPT)

+ SPARTACUS

+ SPARTACUS (OPT)

ecCKD
+ TripleClouds

+ TripleClouds (OPT)

+ SPARTACUS

+ SPARTACUS (OPT)

Speedup
w.r.t.
CY47r3

1.85

2.04

1.00

7.91

3.72

0.50

0.16

2.44

0.77

Aerosol optics
Cloud optics
Gas optics
SW solver
LW solver

1.00

0.91

1.84

0.23

0.50

3.66

11.46

0.76

2.39

268

322

672

458

907

556

1708

447

1196

GFLOPS

1 2 4 8 17 34 68 136
Multiple of 32

102 103 104 105

N

15

20

25

30

35

40

45

50

Fl
oa

tin
g-

po
in

t o
pe

ra
tio

ns
 p

er
 se

co
nd

 (G
FL

OP
S)

ecRAD (ECCKD + layer blocking)
Simple timing program

3

P
os
te
d
on

2
M
ay

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
68
29
87
00
.0
73
29
86
5/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

do jlev = 1,nlay ! Start at top-of-atmosphere
nreg = nregions
if (is_clear_sky_layer(jlev) nreg = 1

do jreg = 1,nreg ! Loop over relevant regions (only 1 if layer is clear-sky)
if (jreg == 1) then ! optical properties are equal to clear-sky values
optical_depth_tot = optical_depth(:,jlev,jcol)
ssa_tot = ssa(:,jlev,jcol)
g_tot = g(:,jlev,jcol)

else
do jg = 1,ng ! loop over g-points
! Cloudy-sky optical properties from band-wise cloud values and g-point-wise clear-sky values
optical_depth_tot(jg) = optical_depth(jg,jlev,jcol) + ...
...

end do
end if

call calc_two_stream_gammas_sw(ng, mu0, ssa_tot, g_tot, gamma1, gamma2, gamma3)
call calc_reftrans_sw(ng, mu0, optical_depth_tot, ssa_tot, gamma1, gamma2, gamma3, &
& reflectance(:,jreg,jlev), transmittance(:,jreg,jlev), & ! outputs
& ref_dir(:,jreg,jlev), trans_dir_diff(:,jreg,jlev), trans_dir_dir(:,jreg,jlev)) ! outputs

end do
end do

⇓
! Computations for clear-sky region as a separate step: collapse the two inner dimensions
call calc_reftrans_sw_opt(ng*nlay, mu0, optical_depth(:,:,jcol), ssa(:,:,jcol), g(:,:,jcol), &
& reflectance_clear, transmittance_clear, ref_dir_clear, trans_dir_diff_clear, trans_dir_dir_clear)

! Cloudy computations: start at top-of-atmosphere and find first cloudy layer, if one exists
any_clouds_below = .false.
jtop = findloc(is_clear_sky_layer(1:nlay), .false., dim=1)
if (jtop>0) any_clouds_below = .true.

do while (any_clouds_below)
! Find the bottom of this cloud
jbot = ...
nlay_cloud = jbot - jtop + 1
allocate(optical_depth_tot_cloudy(ng,2:nreg,jtop:jbot), ssa_tot_cloudy(ng,2:nreg,jtop:jbot), &

& g_tot_cloudy(ng,2:nreg,jtop:jbot))

do jlev = jtop, jbot
do jreg = 2, nregions ! = 3
do jg = 1,ng
! Spectral cloudy-sky optical properties from band-wise cloud values and spectral clear-sky values
optical_depth_tot_cloudy(jg,jreg,jlev) = ...
...

end do
end do

end do

call calc_reftrans_sw_opt(ng*2*nlay_cloud, & ! g-points * cloudy regions * adjacent cloudy layers
& mu0, optical_depth_tot_cloudy, ssa_tot_cloudy, g_tot_cloudy, &
& reflectance(:,:,jtop:jbot), transmittance(:,:,jtop:jbot), & ! outputs
& ref_dir(:,:,jtop:jbot), trans_dir_diff(:,:,jtop:jbot), trans_dir_dir(:,:,jtop:jbot)) ! outputs

deallocate(optical_depth_tot_cloudy, ssa_tot_cloudy, g_tot_cloudy)

! Does another cloudy layer exist? If not, set logical to false to exit "while"
if (jbot== nlay) any_clouds_below=.false. ! surface reached

if (any(.not. is_clear_sky_layer(jbot+1:nlay))) then
! find the top of the new cloud
jtop = ...

else
any_clouds_below=.false.

end if
end do

Figure 1: Refactoring of TripleClouds-SW. In addition to optimizing and fusing kernels,
in the new code (bottom) the reflectance-transmittance computations are performed in a
batched manner for multiple layers by collapsing the spectral and vertical dimensions.

1

4

P
os
te
d
on

2
M
ay

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
68
29
87
00
.0
73
29
86
5/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

! Treat A and B each as n m-by-m square matrices (with the n dimension
! varying fastest) and perform matrix multiplications on all n matrix pairs
mat_x_mat = 0.0_jprb ! Array-wise assignment
mblock = m/3
m2block = 2*mblock
if (i_actual_matrix_pattern == IMatrixPatternShortwave) then

! Matrix has a sparsity pattern
! (C D E)
! (F G H)
! (0 0 I)
! Do the top-left (C, D, F, G)
do j2 = 1,m2block ! 1,6

do j1 = 1,m2block ! 1,6
do j3 = 1,m2block ! 1,6

mat_x_mat(1:ng3D,j1,j2) = mat_x_mat(1:ng3D,j1,j2) &
& + A(1:ng3D,j1,j3)*B(1:ng3D,j3,j2)

end do
end do

end do
do j2 = m2block+1,m ! 7,9

! Do the top-right (E & H)
do j1 = 1,m2block ! 1,6

do j3 = 1,m
mat_x_mat(1:ng3D,j1,j2) = mat_x_mat(1:ng3D,j1,j2) &

& + A(1:ng3D,j1,j3)*B(1:ng3D,j3,j2)
end do

end do
! Do the bottom-right (I)
do j1 = m2block+1,m ! 7,9

do j3 = m2block+1,m ! 7,9
mat_x_mat(1:ng3D,j1,j2) = mat_x_mat(1:ng3D,j1,j2) &

& + A(1:ng3D,j1,j3)*B(1:ng3D,j3,j2)
end do

end do
end do

else
...

⇓
pure subroutine mat_x_mat_sw_repeats(ng_sw_in, nlev_b, A, B, C)

integer, intent(in) :: ng_sw_in, nlev_b
real(jprb), intent(in), dimension(ng_sw*nlev_b,9,9) :: A, B
real(jprb), intent(out),dimension(ng_sw*nlev_b,9,9) :: C
integer :: j1, j2, j22
!dir$ assume_aligned A:64,B:64,C:64
! Input matrices have pattern:
! (C D E)
! (F=-D G=-C H)
! (0 0 I), where each element is a 3-by-3 matrix
! As a result, output matrices have pattern:
! (C D E)
! (F=D G=C H)
! (0 0 I)
do j2 = 1,3

j22 = j2 + 6
do j1 = 1,6

! Do the top-left (C, F)
! Unroll innermost matmul loop: more work for each iteration of SIMD loop
C(:,j1,j2) = A(:,j1,1)*B(:,1,j2) + A(:,j1,2)*B(:,2,j2) + A(:,j1,3)*B(:,3,j2) &
& + A(:,j1,4)*B(:,4,j2) + A(:,j1,6)*B(:,6,j2)
! Do the top-right (E & H)
C(:,j1,j22) = A(:,j1,1)*B(:,1,j22) + A(:,j1,2)*B(:,2,j22) + A(:,j1,3)*B(:,3,j22) &
& + A(:,j1,4)*B(:,4,j22) + A(:,j1,5)*B(:,5,j22) + A(:,j1,6)*B(:,6,j22) &
& + A(:,j1,7)*B(:,7,j22) + A(:,j1,8)*B(:,8,j22) + A(:,j1,9)*B(:,9,j22)

end do
do j1 = 7,9 ! Do the bottom-right (I)

C(:,j1,j22) = A(:,j1,7)*B(:,7,j22) + A(:,j1,8)*B(:,8,j22) + A(:,j1,9)*B(:,9,j22)
end do

end do
C(:,1:3,4:6) = C(:,4:6,1:3) ! D = F
C(:,4:6,4:6) = C(:,1:3,1:3) ! G = C
C(:,7:9,1:6) = 0.0_jprb ! Lower left corner

Figure 1: Reference (top) and optimized (bottom) versions of the matrix-matrix mul-
tiplication kernel used in the shortwave matrix exponential computations. The latter
unrolls loops and reduces work by exploiting that some matrix elements are repeated. For
this performance-critical code, further speedup was gained by data alignment. The Intel
compiler reported aligned data access only after declaring ng_sw at compile-time.

1

5

P
os
te
d
on

2
M
ay

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
68
29
87
00
.0
73
29
86
5/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

! Initialize the derivatives at the surface; the surface is treated as a
single

! clear-sky layer so we only need to put values in region 1.
lw_derivatives_g_reg = 0.0_jprb
lw_derivatives_g_reg(:,1) = flux_up_surf / sum(flux_up_surf)
lw_derivatives(icol, nlev+1) = 1.0_jprb

! Move up through the atmosphere computing the derivatives at each half-level
do jlev = nlev,1,-1

! Compute effect of overlap at half-level jlev+1, yielding
! derivatives just above that half-level
lw_derivatives_g_reg = singlemat_x_vec(ng,ng,nreg,u_matrix(:,:,jlev+1),
lw_derivatives_g_reg)

! Compute effect of transmittance of layer jlev, yielding
! derivatives just below the half-level above (jlev)
lw_derivatives_g_reg = transmittance(:,:,jlev) * lw_derivatives_g_reg

lw_derivatives(icol, jlev) = sum(lw_derivatives_g_reg)
end do

⇓
...

! Move up through the atmosphere computing the derivatives at each half-level
do jlev = nlev,1,-1

! Inline everything in one loop over g-points
lw_deriv_old = lw_derivatives_g_reg
sum_tmp = 0.0_jprb
associate(A=>u_matrix(:,:,jlev+1), b=>lw_deriv_old)

!$omp simd reduction(+:sum_tmp)
do jg = 1, ng

! Compute effect of overlap at half-level jlev+1, yielding derivatives just above that
! half-level (matrix-vector multiply)
! both inner and outer loop of the matrix loops j1 and j2 unrolled
! inner loop: j2=1 j2=2 j2=3
lw_derivatives_g_reg(jg,1) = A(1,1)*b(jg,1) + A(1,2)*b(jg,2) + A(1,3)*b(jg,3)
lw_derivatives_g_reg(jg,2) = A(2,1)*b(jg,1) + A(2,2)*b(jg,2) + A(2,3)*b(jg,3)
lw_derivatives_g_reg(jg,3) = A(3,1)*b(jg,1) + A(3,2)*b(jg,2) + A(3,3)*b(jg,3)

! Compute effect of transmittance of layer jlev, yielding
! derivatives just below the half-level above (jlev)
lw_derivatives_g_reg(jg,1) = lw_derivatives_g_reg(jg,1) * transmittance(jg,1,jlev)
lw_derivatives_g_reg(jg,2) = lw_derivatives_g_reg(jg,2) * transmittance(jg,2,jlev)
lw_derivatives_g_reg(jg,3) = lw_derivatives_g_reg(jg,3) * transmittance(jg,3,jlev)

sum_tmp = sum_tmp + lw_derivatives_g_reg(jg,1) + lw_derivatives_g_reg(jg,2) + &
& + lw_derivatives_g_reg(jg,3)

end do
end associate

lw_derivatives(icol, jlev) = sum_tmp
end do

Figure 1: Reference (top) and optimized (bottom) version of the longwave derivatives
kernel used by TripleClouds.

1

6

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Fast computation of cloud 3D radiative effects in1

dynamical models by optimizing the ecRad scheme2

Peter Ukkonen 1, Robin J. Hogan 2,3
3

1Danish Meteorological Institute4
2European Centre for Medium-Range Weather Forecasts, Reading, UK5

3Department of Meteorology, University of Reading, Reading, UK6

Key Points:7

• The ecRad radiation scheme was sped up threefold by using code optimization8

• Combining the optimized TripleClouds solver with new gas optics reduces the run-9

time of IFS radiation 11-fold10

• Cloud 3D radiative effects can now be computed twice as fast as the operational11

scheme12

Corresponding author: Peter Ukkonen, peterukk@gmail.com

–1–

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Abstract13

Radiation schemes are fundamental components of weather and climate models that14

need to be both efficient and accurate. In this work we refactor ecRad, a flexible radi-15

ation scheme developed at the European Centre for Medium-Range Weather Forecasts16

(ECMWF). The goal was to improve performance especially with ecCKD, a new gas op-17

tics scheme that requires only 32 spectral intervals in the longwave and shortwave to be18

accurate. This speeds up ecRad considerably, but also reduces performance due to short19

inner loops.20

We therefore carry out both higher-level code restructuring and kernel-level opti-21

mizations for the radiative transfer solvers TripleClouds and SPARTACUS. SPARTA-22

CUS computes cloud 3D radiative effects, which have so far been neglected in large-scale23

models. We exploit the lack of vertical loop dependencies in key computations by merg-24

ing the spectral and vertical dimensions, improving vectorization and instruction-level25

parallelism.26

On the new AMD Rome-based ECMWF supercomputer, we obtain a 3-fold speedup27

for both solvers when using 32-term ecCKD models. Combining ecCKD with optimized28

code results in very fast yet accurate radiation computations: with TripleClouds we achieve29

1.7 TFLOPs and a throughput of 621 columns/ms on a 128-core node. This is 11.5 times30

faster than ecRad in Integrated Forecasting System cycle 47r3, which uses a more noisy31

solver (McICA) and less accurate gas optics (RRTMG). SPARTACUS with ecCKD is32

now 2.4 times faster than CY47r3-ecRad, making cloud 3D radiative effects affordable33

to compute within large-scale models. Preliminary results show that SPARTACUS slightly34

improves forecasts of 2-metre temperature and low clouds in the tropics.35

Plain Language Summary36

A crucial step in simulating weather and climate is calculating how atmospheric37

radiation (shortwave radiation from the sun and terrestrial longwave radiation) inter-38

acts with Earth’s atmosphere and surface. The complexity of the underlying physics has39

necessitated making approximations in how radiative transfer is treated, such as consid-40

ering it only in upwards and downwards directions, thereby ignoring 3D effects. Even41

so, radiative transfer has historically been a computationally expensive component of weather42

and climate simulations.43

Here we show that a state-of-the-art radiation code can be sped up threefold by44

using code optimization techniques that seek to maximise performance on modern pro-45

cessors. Combining this with a recent innovation that reduces the number of spectral46

computations required for accurate solutions, an order-of-magnitude increase in speed47

is obtained compared to the existing radiation scheme in a global weather model. Cru-48

cially, these improvements also make a radiation scheme that accounts for 3D radiative49

effects by clouds fast enough to be used operationally. When included in global simu-50

lations, these 3D effects act to warm the lower atmosphere substantially.51

1 Introduction52

Atmospheric radiation is well-understood, but too complex to be solved in an ex-53

act manner in weather and climate models. That is, with the exception of the treatment54

of sub-grid cloud structure (which can easily become a dominant source of error), highly55

accurate solutions to atmospheric radiative transfer are available but too costly for dy-56

namical models. This leaves the parameterization of radiation as an exercise in how to57

obtain as accurate broadband longwave and shortwave fluxes as possible at the least pos-58

sible computational cost. For the spectral integration, the correlated-k -distribution method59

(CKD, e.g. Goody et al., 1989) has emerged as a leading solution. CKD is based on re-60

–2–

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

ordering the highly detailed absorption spectra of atmospheric gases by its optical prop-61

erties into a cumulative probability function. Accurate spectral integration then becomes62

possible with only O(102 - 103) quadrature points - in CKD schemes these pseudo-monochromatic63

spectral intervals are referred to as k -terms or g-points - compared with O(106 - 107) for64

line-by-line methods which resolve individual spectral lines.65

Despite the use of CKD, and considering the transfer of diffuse radiation only in66

the upward and downward directions (‘two streams’), radiation computations are expen-67

sive enough that their temporal and/or spatial frequency is often limited. In high-resolution68

forecasts based on the IFS, a global numerical weather prediction (NWP) model devel-69

oped at ECMWF, radiation is called every hour on a grid with roughly 10 times fewer70

columns than the rest of the model (Hogan & Bozzo, 2018). Such approximations are71

a source of uncertainty in large-scale models. In particular, 3D radiative effects by clouds72

are routinely ignored in weather and climate simulations, yet were estimated by Schafer73

(2017) to be similar in magnitude to anthropogenic greenhouse gas forcing (this does not74

imply they are as important for climate projections, as 3D effects are not changing and75

biases associated with missing processes are generally offset by model tuning). Due to76

the spatial and temporal coarsening, ecRad is only a few percent of the total IFS run-77

time (Hogan & Bozzo, 2018), but radiation becomes more expensive for larger-scale sim-78

ulations where it must be called at a higher frequency relative to the model time step.79

For instance, in a coarse-resolution setup of the ECHAM climate model, radiation ac-80

counted for half of the runtime of the atmospheric model (Cotronei & Slawig, 2020).81

The perceived expense of radiation schemes has led to attempts to replace them82

with a faster and approximative neural network (NN) emulator (Chevallier et al., 1998;83

Krasnopolsky et al., 2008; Pal et al., 2019; Liu et al., 2020; Roh & Song, 2020; Song &84

Roh, 2021; Kim & Song, 2022), avoiding explicit spectral computations and typically pre-85

dicting heating rates directly. While large speed-ups of 1-2 orders of magnitude have been86

achieved, this approach can suffer from not only worse accuracy but also a lack of en-87

ergy conservation, generalization and flexibility. For example, emulators are almost al-88

ways tied to a specific vertical grid, and are less interpretable and configurable than mod-89

ern radiation schemes which use different modules to compute the optical properties of90

gases, aerosols and clouds, and combine these in a radiative transfer solver. The advan-91

tages of flexibility, also with regards to vertical grids, were retained in Ukkonen et al.92

(2020) by only replacing the gas optics component with NNs. Radiative forcings with93

respect to individual greenhouse gases, important for climate applications, may also not94

be well represented by top-down emulators (we are not aware of any full-emulation pa-95

per evaluating these). Although ML emulators may yet prove useful, for instance by be-96

ing able to run on graphics processing units (GPUs), a recent study (Ukkonen, 2022a)97

indicates that they suffer from similar speed-accuracy trade-offs as radiation schemes:98

a recurrent NN approach which structurally mimics radiative transfer computations gave99

much better accuracy than dense networks, but also a much smaller speed-up.100

Fortunately, the reliable radiative transfer equations need not be sacrificed at the101

altar of efficiency. Algorithmic developments can, for instance, substantially reduce the102

number of spectral terms required for a given level of accuracy (Hogan & Matricardi, 2022).103

It may also be argued that the use of code restructuring to better exploit modern CPU’s104

represents an underutilized potential for many physics codes. In one case, a modern ra-105

diation scheme was made roughly 3 times faster by combining a refactoring of the ra-106

diative transfer solver with replacing the gas optics module with a NN version (Ukkonen107

et al., 2020). In another, code restructuring of the RRTMG radiation scheme also im-108

proved speed threefold on targeted Intel hardware (Michalakes et al., 2016). In many legacy109

codes, the baseline performance may be much worse (Michalakes et al., 2016). While the110

independent column framework used in sub-grid parameterizations enables straightfor-111

ward parallelization across multiple cores, exploiting other types of parallelism offered112

by modern CPUs, namely SIMD (single instruction, multiple data) vectorization, or instruction-113

–3–

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

level parallelism, may be considerably more challenging. Similarly, efficient use of com-114

plex cache memory hierarchies is anything but guaranteed. For any potentially expen-115

sive physics routine that is likely called within an OpenMP loop in a NWP or climate116

model, it follows that knowledge of basic optimization techniques of serial code becomes117

important, especially so as simulations are being performed at increasingly high reso-118

lution, with ever higher energy costs (Fuhrer et al., 2018).119

Related to this, the move towards heterogeneous supercomputing platforms which120

incorporate accelerators presents a great challenge and necessitates re-thinking how we121

write and maintain code (Lawrence et al., 2018). An example of how this can be tack-122

led at the parameterization level is found in the RTE+RRTMGP radiation code (Pincus123

et al., 2019), which makes use of isolated computational objects that can be adapted to124

new hardware platforms. Whether CPU or GPU, hardware is evolving towards higher125

levels of parallelism, as simply increasing clock counts is no longer feasible. Allowing this126

to influence not only algorithm design and implementation, but also the choice of algo-127

rithm, may therefore be prudent. For radiation, schemes based on CKD have tradition-128

ally been expensive enough to have kept less accurate broadband schemes relevant, as129

they have allowed spatially or temporally more frequent radiation computations. How-130

ever, CKD has a higher level of parallelism owing to the independent spectral compu-131

tations, and so hardware trends may favour it over band-based approaches. In total a132

CKD-based radiation scheme has two “embarassingly parallel” dimensions (columns and133

g-points), and a partially parallelizable vertical dimension (as not all computations have134

vertical loop dependencies). If the code is organized in a way where this parallelism can135

be fully exploited by the hardware, high performance can be achieved.136

With this in mind, we describe various optimizations for ecRad, a flexible and open-137

source CKD-based radiation scheme developed at ECMWF. Our main goal was to im-138

prove the performance with ecCKD, a new gas optics scheme which uses relatively few139

k -terms (only 32 for the candidate SW and LW models). This improves speed but also140

reduces efficiency of the vectorized code by shortening vectorized loops. To address this141

we restructure the longwave (LW) and shortwave (SW) versions of the TripleClouds and142

SPARTACUS solvers (Hogan et al., 2016). While targeting ECMWF’s new HPC plat-143

form based on AMD Zen 2 (‘Rome’) microarchitecture, expressing more parallelism should144

also help prepare ecRad for GPUs. In addition we optimize many kernels, e.g. to avoid145

the use of double precision in numerically sensitive two-stream calculations, which re-146

quires tuning some coefficients and introducing physical or numerical securities in order147

to avoid substantial errors in fluxes. We note that thorough refactoring of SPARTACUS148

is a laboursome undertaking; being a more sophisticated solver, the shortwave alone con-149

tained more than 1500 lines of code (excluding subroutines). We follow a simple strat-150

egy based on manually instrumenting ecRad code to get a profile of the runtimes and151

estimates of floating point operations per second (FLOPS) for different code sections.152

Although this is not always a useful metric, radiation codes are computationally inten-153

sive, and code sections with significant runtimes and low FLOPS indicated optimization154

potential. Unfortunately, the code contained relatively few hotspots and in total, many155

person months were spent on the refactoring. However, the effort should be well spent156

as SPARTACUS is the only radiation scheme that is capable of representing 3D radia-157

tive effects at a relatively low cost, having previously been 5.8 times slower than the McICA158

solver used in the IFS (Hogan & Bozzo, 2018). This difference is reduced by the use of159

ecCKD. A major goal was to eliminate the remaining gap and make SPARTACUS fast160

enough to be considered for operational use in weather and climate models.161

The bulk of the paper concerns optimizations to ecRad; following a brief overview162

of the radiation scheme and its relevant components (Section 2) we describe the high-163

level code restructuring to improve performance (Section 3). In Section 4, we list some164

other optimizations that were used, while kernel-specific changes are detailed in Appendix165

A. We then evaluate runtimes and performance in Section 5. Given that global simu-166

–4–

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

lations with SPARTACUS have not yet been published, some preliminary results of the167

impact of 3D cloud radiative effects in the IFS are presented in Section 6, followed by168

concluding remarks (Section 7).169

2 The ECMWF radiation scheme ‘ecRad’170

The ecRad radiation scheme was developed at ECMWF and has been used oper-171

ationally in the IFS since 2017 (Hogan & Bozzo, 2018) and by the German Weather Ser-172

vice (DWD) since 2021, as well as being available for anyone to use under an open-source173

license. It is highly configurable, with the capability for the four main components (the174

radiative transfer solver and the calculation of the optical properties of gases, aerosols175

and clouds) to be changed independently of each other. Two of these components offer176

opportunities for a significant trade-off between accuracy and efficiency: the solver (dis-177

cussed in section 2.1) and the treatment of gas optics (section 2.2).178

2.1 Radiative transfer solvers179

The solver takes as input the optical properties of the atmosphere in different spec-180

tral regions, and computes profiles of broadband fluxes from which heating rates may181

be computed. The main challenge is to represent sub-grid cloud structure. The McICA182

solver (Monte Carlo Independent Column Approximation) is used operationally by ECMWF183

and DWD, and feeds each spectral interval of the radiative transfer calculation with a184

different stochastic realization of the cloud profile. The McICA implementation described185

by Hogan and Bozzo (2018) exactly respects the total cloud cover prescribed by the model’s186

overlap assumptions, as well as the fraction of clouds exposed to space at each level. How-187

ever, the model’s assumption on sub-grid heterogeneity of cloud water content is only188

respected in a statistical sense, so there is a modest amount of noise in instantaneous189

radiative fluxes.190

The TripleClouds solver (Shonk & Hogan, 2008) takes a quite different approach:191

each layer containing cloud is divided horizontally into three ‘regions’, one clear and two192

cloudy, with the water contents of the two cloudy regions chosen to best approximate193

the radiative impact of the full probability distribution of cloud water assumed by the194

model. The model’s overlap assumptions are used to pass the fluxes between adjacent195

layers in a way that reproduces exactly the same total cloud cover as used by McICA,196

but the fluxes are free from stochastic noise.197

The SPARTACUS (Speedy Algorithm for Radiative Transfer through Cloud Sides)198

solver of Hogan et al. (2016) describes the sub-grid cloud field in the same way as Triple-199

Clouds, but terms are added to the equations to allow radiation to flow laterally between200

regions at a rate proportional to the assumed length of the interface between them, flows201

that are neglected in all operational radiation schemes worldwide. In the shortwave, this202

approach to representing 3D radiative transfer has been found to perform well against203

reference Monte Carlo radiation calculations for a wide range of cloud types (Hogan et204

al., 2019), capturing differences with traditional 1D radiative transfer of as much as 40 W m−2.205

In the longwave, emission from cloud sides acts to increase the cloud radiative effect, but206

preliminary evaluation against Monte Carlo calculations suggests that the SPARTACUS207

somewhat overestimates this 3D effect; work is ongoing to improve the physical assump-208

tions made in the longwave. It was reported by Hogan and Bozzo (2018) that compared209

to TripleClouds, SPARTACUS makes ecRad 3.3 times slower, while compared to McICA,210

SPARTACUS makes ecRad 5.8 times slower. Thus, SPARTACUS is a good example of211

a parameterization that offers a more accurate representation of the real world but is too212

expensive to deploy operationally, and therefore with code optimization could become213

affordable for operational use.214

–5–

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

2.2 The RRTMG and ecCKD gas-optics scheme215

The gas-optics component dictates the spectral resolution of the entire radiative216

transfer scheme, and scales its overall computational cost. Like the radiation schemes217

of many weather and climate models worldwide, ecRad by default computes the spec-218

tral absorption of gases using the Rapid Radiative Transfer Model for General Circu-219

lation Models, RRTMG (Mlawer et al., 1997), which uses a total of 140 spectral inter-220

vals in the longwave and 112 in the shortwave.221

Hogan and Matricardi (2022) recently developed the ECMWF Correlated k-Distribution222

tool ‘ecCKD’, which generates gas-optics models in the form of look-up tables that can223

be stored in a single configuration file. Since version 1.4, ecRad has the capability to use224

ecCKD gas-optics models. Hogan and Matricardi (2022) used three techniques to reduce225

the number of spectral intervals while retaining accuracy: the full-spectrum correlated-226

k method, the hypercube partition method for treating the spectral overlap of gases, and227

the optimization of look-up table coefficients against a set of training profiles. We use228

their models with 32 spectral intervals in each of the longwave and shortwave; since this229

is several times fewer than used by RRTMG, we expect a speed-up of the entire radi-230

ation scheme.231

3 High-level code restructuring to expose more parallelism232

3.1 Motivation233

In both TripleClouds and SPARTACUS, the computation of layer reflectances, trans-234

mittances and source functions take a large share of the total runtime. In the reference235

code, these kernels are called within a vertical loop, and contain SIMD-vectorized loops236

over g-points, the innermost dimension in ecRad. This is problematic for ecCKD as it237

results in loops that are too short (e.g. 32 iterations) to efficiently utilize modern CPU’s.238

Similarly to a car assembly line which can produce cars at a rate that is much faster than239

the time taken to produce an individual car, microprocessors have a level of parallelism240

that comes from instruction pipelining. Because pipelined instructions include a wind-241

up and wind-down phase where microprocessor units are idling for a given number of cy-242

cles - the number of overlapped instructions, known as latency or depth - the through-243

put (number of operations per cycle) when executing N independent operations with a244

pipeline of depth m is given by p = 1
1+m−1

N

(Hager & Wellein, 2010).245

In the reference code, the reflectance-transmittance kernels are called inside a ver-246

tical loop and N is equal to the number of g-points. With ecCKD, N = 32, and to ob-247

tain a decent efficiency of e.g. p = 0.64 results per cycle, we arrive at m = 19. How-248

ever, complex calculations can have much longer latencies than this, with the exponen-249

tial function alone having a longer latency. The computations of reflectance and trans-250

mittance using a two-stream approximation are very involved and include many high-251

latency operations such as floating point division. This can easily lead to the instruc-252

tion stream being stalled (‘pipeline bubble’). Vector or superscalar parallelism makes the253

situation even worse as multiple identical pipelines operating in parallel decreases the254

loop length of each pipe (Hager & Wellein, 2010).255

Knowing that the exponential function (used in the two-stream kernels to compute256

transmittance from optical depth) alone has a long latency, simply moving it outside of257

the long SIMD-vectorized loop with other complex arithmetic improved performance by258

alleviating such a pipeline stall. However, even after the separately vectorized exponen-259

tial it is useful, if possible, to increase N . Luckily, this can be done by exploiting the lack260

of vertical dependencies in the underlying computations. Specifically, collapsing the ver-261

tical and g-point dimension together prior to the kernel calls acts to increase the length262

of SIMD-vectorized loops (improving vectorization and instruction-level parallelism) and263

also reduces overhead from procedure calls.264

–6–

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

3.2 Batched clear-sky computations265

Beginning with the most trivial change, in both TripleClouds and SPARTACUS266

the computation of clear-sky reflectance and transmittance is performed for all layers (re-267

gardless of whether they contain clouds) and so the subroutine call can simply be moved268

outside a vertical loop and the two inner dimensions collapsed, e.g. call calc_reftrans_opt269

(ng*nlev, od(:,:,jcol), ..., reflectance_clear, ...). Here the first argument gives270

the length of the SIMD-vectorized dimension i.e. number of g-points (ng) times num-271

ber of layers, or levels as they are called in ecRad (fluxes, meanwhile, are defined at nlev+1272

‘half-levels’). The performance of the shortwave reflectance-transmittance kernel (which273

includes optimizations described in Appendix A) as a function of the vectorized dimen-274

sion N is shown in Figure 1. Optimal performance with ecCKD is achieved when the275

vertical dimension is fully collapsed with the spectral dimension, without the need for276

blocking, with roughly doubled performance compared to the previous code layout where277

the length of the vectorized loop equals ng=32. The new structure is efficient also when278

using other gas optics schemes, as considerably larger spectral and/or vertical dimen-279

sions can be accommodated before a performance drop-off occurs when the arrays can280

no longer fit in faster cache. The trade-off is a small increase in code complexity, as it281

requires the reflectances and transmittances to be split into separate arrays for clear-sky282

and cloudy regions: reflectance_clear(ng, nlev) and reflectance_cloudy(ng, 2:nregions283

, nlev) instead of reflectance(ng, nregions, nlev), but in practice other code sections284

are hardly affected as flux computations depend on the presence of clouds anyway. An-285

other benefit is that overhead from subroutine calls is much reduced.286

1 2 4 8 17 34 68 136
Multiple of 32

102 103 104 105

N

15

20

25

30

35

40

45

50

Fl
oa

tin
g-

po
in

t o
pe

ra
tio

ns
 p

er
 se

co
nd

 (G
FL

OP
S)

ecRAD (ECCKD + layer blocking)
Simple timing program

Figure 1: Serial single-precision performance of the optimized shortwave two-stream ker-
nel (y-axis) versus loop length N (x-axis). The solid black line shows the performance
as measured within a realistic program running the full radiation code for 7320 columns
using a column block size of 8, ecCKD gas optics, the TripleClouds solver, and blocking
also in the vertical dimension with different block sizes (top x-axis) to test the impact of
varying N. Conveniently, the performance peaks around N corresponding to the number
of g-points in ecCKD (32) times the number of vertical levels in the IFS high-resolution
model (137), meaning that collapsing the g-point dimension with the vertical dimension
results in optimal performance on this platform (AMD Ryzen 9 3900, GNU Fortran 9.3).
The dotted line was obtained using a simple timing program that calls the kernel with
synthetic data in order to test a wider range of N.

–7–

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

3.3 Batched cloudy computations287

The lack of loop dependencies in the vertical dimension can likewise be exploited288

in the more demanding reflectance-transmittance computations for cloudy layers and re-289

gions, but this requires batching together the two cloudy regions and/or adjacent cloudy290

layers. The best way to do this depends on the particular solver.291

3.3.1 TripleClouds-SW292

In shortwave TripleClouds, we collapse the g-point, region and vertical dimensions293

by grouping together adjacent cloudy layers. This was implemented with a do while loop294

which checks if any cloudy layers still exists and finds the top and bottom of this extended295

cloudy layer, as illustrated in Fig. 2. The new code leads to a vectorized dimension of296

2× ng × nlaycloud−depth in the cloudy reflectance-transmittance computations.297

–8–

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

do jlev = 1,nlay ! Start at top-of-atmosphere
nreg = nregions
if (is_clear_sky_layer(jlev) nreg = 1

do jreg = 1,nreg ! Loop over relevant regions (only 1 if layer is clear-sky)
if (jreg == 1) then ! optical properties are equal to clear-sky values
optical_depth_tot = optical_depth(:,jlev,jcol)
ssa_tot = ssa(:,jlev,jcol)
g_tot = g(:,jlev,jcol)

else
do jg = 1,ng ! loop over g-points
! Cloudy-sky optical properties from band-wise cloud values and g-point-wise clear-sky values
optical_depth_tot(jg) = optical_depth(jg,jlev,jcol) + ...
...

end do
end if

call calc_two_stream_gammas_sw(ng, mu0, ssa_tot, g_tot, gamma1, gamma2, gamma3)
call calc_reftrans_sw(ng, mu0, optical_depth_tot, ssa_tot, gamma1, gamma2, gamma3, &
& reflectance(:,jreg,jlev), transmittance(:,jreg,jlev), & ! outputs
& ref_dir(:,jreg,jlev), trans_dir_diff(:,jreg,jlev), trans_dir_dir(:,jreg,jlev)) ! outputs

end do
end do

⇓
! Computations for clear-sky region as a separate step: collapse the two inner dimensions
call calc_reftrans_sw_opt(ng*nlay, mu0, optical_depth(:,:,jcol), ssa(:,:,jcol), g(:,:,jcol), &
& reflectance_clear, transmittance_clear, ref_dir_clear, trans_dir_diff_clear, trans_dir_dir_clear)

! Cloudy computations: start at top-of-atmosphere and find first cloudy layer, if one exists
any_clouds_below = .false.
jtop = findloc(is_clear_sky_layer(1:nlay), .false., dim=1)
if (jtop>0) any_clouds_below = .true.

do while (any_clouds_below)
! Find the bottom of this cloud
jbot = ...
nlay_cloud = jbot - jtop + 1
allocate(optical_depth_tot_cloudy(ng,2:nreg,jtop:jbot), ssa_tot_cloudy(ng,2:nreg,jtop:jbot), &

& g_tot_cloudy(ng,2:nreg,jtop:jbot))

do jlev = jtop, jbot
do jreg = 2, nregions ! = 3
do jg = 1,ng
! Spectral cloudy-sky optical properties from band-wise cloud values and spectral clear-sky values
optical_depth_tot_cloudy(jg,jreg,jlev) = ...
...

end do
end do

end do

call calc_reftrans_sw_opt(ng*2*nlay_cloud, & ! g-points * cloudy regions * adjacent cloudy layers
& mu0, optical_depth_tot_cloudy, ssa_tot_cloudy, g_tot_cloudy, &
& reflectance(:,:,jtop:jbot), transmittance(:,:,jtop:jbot), & ! outputs
& ref_dir(:,:,jtop:jbot), trans_dir_diff(:,:,jtop:jbot), trans_dir_dir(:,:,jtop:jbot)) ! outputs

deallocate(optical_depth_tot_cloudy, ssa_tot_cloudy, g_tot_cloudy)

! Does another cloudy layer exist? If not, set logical to false to exit "while"
if (jbot== nlay) any_clouds_below=.false. ! surface reached

if (any(.not. is_clear_sky_layer(jbot+1:nlay))) then
! find the top of the new cloud
jtop = ...

else
any_clouds_below=.false.

end if
end do

Figure 2: Refactoring of TripleClouds-SW. In addition to optimizing and fusing kernels,
in the new code (bottom) the reflectance-transmittance computations are performed in a
batched manner for multiple layers by collapsing the spectral and vertical dimensions.

3.3.2 TripleClouds-LW298

In longwave TripleClouds we decided to batch the reflectance-transmittance com-299

putations only over g-points and the two cloudy regions, but not layers, as this was slightly300

faster on the tested platform. To achieve better performance on platforms with longer301

vector lengths it would likely be worth the increase in memory footprint to batch over302

–9–

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

the vertical dimension as well, but we did not wish to sacrifice performance on the tar-303

geted hardware or write more complex code to allow both options at this point.304

3.3.3 SPARTACUS-SW305

SPARTACUS represents cloud 3-D radiative effects by adding extra terms to the306

two-stream equations. The coupled system of equations can be solved by a method based307

on the matrix exponential. In both LW and SW solvers, these matrix exponentials are308

a computational hotspot, with the shared expm kernel accounting for almost 50% of the309

total runtime of the reference code. The matrix exponential is performed for each ‘3D’310

g-point in cloudy layers, where 3D effects are not considered for g-points which have very311

large optical depths that exceed a threshold. Because the individual matrices for which312

the matrix exponential is computed have small sizes corresponding to the total number313

of clear and cloudy regions, (nreg × 3, nreg × 3), they are placed non-contiguously in314

memory and the g-point dimension is vectorized instead. To vectorize over ‘3D’ g-points,315

it is assumed that prior to the solver the g-points have been reordered in approximate316

order of gas optical depth which is in practice is implemented using a hard-coded map-317

ping. Clear-sky optical depths are then searched for the cut-off index ng3D used in expm,318

which is dominated by matrix-matrix multiplications implemented as C(1:ng3D,j1,j2) =319

C(1:ng3D,j1,j2) + A(1:ng3D,j1,j3) × B(1:ng3D,j3,j2). Kernel-level optimization of the short-320

wave kernel expm sw is described in Appendix A.321

Efficiency can again be improved by collapsing the spectral and vertical dimensions.322

We exploit the same principle as in TripleClouds-SW, batching multiple cloudy layers323

using a do while loop. Recognizing that in the shortwave, ng3D is typically close to ng,324

3D computations can be performed for all g-points without much redundancy (capping325

the optical depths to the threshold value), and flattening the two dimensions. This re-326

sults in a vectorized dimension of ng × nlaycloud-depth instead of ng3D ≈ ng. As an added327

benefit, SPARTACUS-SW no longer requires g-points to be ordered by optical depth,328

eliminating any errors associated with assuming a constant reordering. Because the com-329

putation of reflectances, transmittances and source functions (longwave only) in SPAR-330

TACUS involves many intermediate arrays which are quite large, to use cache memory331

efficiently it is useful to ensure that the number of batched layers does not become too332

large. In the refactored code we set this threshold using a simple expression that depends333

on ng and working precision, and a constant tuned to result in 6 layers when using 32334

g-points and single precision (if using double precision, only 3 layers would be batched).335

This gave good performance on the AMD platform; for optimal performance the user336

may wish to tune the maximum batch size to the hardware at hand.337

Finally, after reflectances and transmittances have been determined, the solver works338

its way up from the surface to the top-of-atmosphere computing the total albedos (the339

albedo of the entire atmosphere below a layer). In the shortwave, this includes the com-340

putation of entrapment (Hogan et al., 2019) where the rate of exchange between the sub-341

regions in a given layer and the subregions in the layer above is computed via a coupled342

differential equation written in terms of a singular exchange matrix. This is once again343

solved using the matrix-exponential method. The simpler structure of these matrices en-344

ables using a faster method described in the appendix of Hogan et al. (2018). Nonethe-345

less, these computations represent a small hotspot. While the loop-carried dependen-346

cies prevent batching across the vertical dimension as for expm, it is possible to batch347

the fast expm computations across the three subregions times two (being performed for348

both diffuse and direct albedo), increasing the vectorized dimension by a factor of 6.349

3.3.4 SPARTACUS-LW350

In the longwave, the fraction of g-points which have optical depths small enough351

for 3D effects to matter is typically much lower than in the shortwave, and doing them352

–10–

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

for all g-points would result in a great deal of redundancy. Therefore, the code was re-353

structured to collect all the ‘3D’ g-points from adjacent cloudy layers, where ng3D varies354

by layer, into larger arrays with the inner dimension ng3Dtot. This increases code com-355

plexity and introduces overhead but is worth it as the time spent in expm was more than356

halved (when using ecCKD and optimized kernel) due to avoiding very inefficient calls357

with small loop lengths. This change made SPARTACUS-LW faster by roughly a third.358

4 Other optimizations359

Many other optimization techniques were applied across the radiation scheme, in-360

cluding loop unrolling, loop fusion (often made possible by inlining functions), and avoid-361

ing temporary arrays. Here we list some general optimizations - employed in different362

modules of the radiation scheme - below, and refer the reader to Appendix A for an ac-363

count of kernel-specific optimizations, which included important but painstaking work364

of porting code fully to single precision. (We only discuss this aspect for the two-stream365

kernel but note that SPARTACUS had issues with numerical instability that were es-366

pecially difficult to solve as they were not immediately reproducible offline).367

• Declaring ng at compile time. In ecRad, the spectral dimension, whose length is368

given by the number of g-points ng, is the leading dimension and in many sections369

cannot be collapsed with the vertical dimension. Simply declaring ngSW and ngLW370

at compile time can improve performance of ecRad with ecCKD by up to 25% (Ta-371

ble 1) by allowing the compiler to optimize many such short loops in the solvers,372

aerosol optics and gas optics. This was implemented using a preprocessing direc-373

tive #ifdef ng_sw which sets the leading dimension to a parameter if it is passed374

to the compiler, and to a procedure argument ng_sw_in if it is not.375

• Removing conditionals. Conditional branches to prevent division by zero, e.g. in376

sections where optical properties from gases, clouds and aerosols are combined within377

a spectral loop, were replaced with the use of max(value, some number) in the de-378

nominator by recognizing that if the denominator was zero the numerator was also379

zero. In the LW two-stream kernel moving a necessary conditional to a separate380

loop also improved performance by vectorizing the more compute-intensive parts.381

• Merged broadband flux computations. The last step in the solver is to compute382

broadband fluxes by summing the fluxes defined at g-points and three regions. In383

the shortwave, this reduction over two dimensions is performed for three variables:384

upwelling, downwelling, and direct downwelling flux. By doing all three sums in385

a single loop over g-points with the SIMD reduction clause in OpenMP, and man-386

ually unrolling the sum over regions, the arithmetic intensity can be greatly im-387

proved compared to having separate calls to the sum intrinsic function:388

389
! Store the broadband fluxes390

! flux%sw_up(jcol,jlev+1) = sum(sum(flux_up,1))391

! flux%sw_dn(jcol,jlev+1) = mu0 * sum(sum(direct_dn,1)) + sum(sum(flux_dn,1))392

sums_up = 0.0_jprb; sums_dn = 0.0_jprb; sums_dn_dir = 0.0_jprb393

!$omp simd reduction(+:sums_up, sums_dn, sums_dn_dir)394

do jg = 1, ng_sw395

sums_up = sums_up + flux_up(jg,1) + flux_up(jg,2) + flux_up(jg,3)396

sums_dn = sums_dn + flux_dn(jg,1) + flux_dn(jg,2) + flux_dn(jg,3)397

sums_dn_dir = sums_dn_dir + direct_dn(jg,1) + direct_dn(jg,2) + direct_dn(jg,3)398

end do399

flux%sw_up(jcol,jlev+1) = sums_up400

flux%sw_dn(jcol,jlev+1) = mu0*sums_dn_dir + sums_dn401402

For cloud-free layers, summing over cloudy regions (regions 2-3) can be skipped.403

• Avoiding temporary arrays. In many sections, one or more temporary arrays were404

removed by using the output array(s) of a subroutine for intermediate computa-405

tions and/or by reusing temporary/local arrays. Code clarity was retained by the406

use of Fortran’s associate construct.407

–11–

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

5 Timing results408

We evaluate performance by running an offline version of ecRad, which can be com-409

piled with both reference and optimized code, on a single node of ECMWF’s new AMD-410

based supercomputer. The results were obtained using a test case of 10,000 columns ran-411

domly sampled from a global snapshot from a high-resolution IFS simulation (00 UTC412

2020/04/30), repeated 4 times for a total of 40,000 profiles with 137 vertical levels. Fig.413

3 shows ecRad runtimes with a breakdown into components, as well as the overall single-414

precision floating-point performance, as obtained by instrumentation with the GPTL li-415

brary. The dynamically scheduled OpenMP parallelization was over blocks of columns416

(block size was set to 8) in an outer loop, in which the ecRad derived type arguments,417

and not their array components, are blocked in order to avoid inefficient striding over418

all columns (unlike ecRad’s internal variables, its input/outputs use columns innermost).419

This reflects IFS use, except that the offline setup does not include preparation of de-420

rived types and interpolation to the coarser grid. Computations were repeated 10 times421

in an outermost loop, and the program was run 5 times, with the fastest result shown.422

0 1 2 3 4 5 6 7 8
Time per 100 profiles (ms)

RRTMG
+ McICA (IFS CY47r3)

+ TripleClouds

+ TripleClouds (OPT)

+ SPARTACUS

+ SPARTACUS (OPT)

ecCKD
+ TripleClouds

+ TripleClouds (OPT)

+ SPARTACUS

+ SPARTACUS (OPT)

Speedup
w.r.t.
CY47r3

1.85

2.04

1.00

7.91

3.72

0.50

0.16

2.44

0.77

Aerosol optics
Cloud optics
Gas optics
SW solver
LW solver

1.00

0.91

1.84

0.23

0.50

3.66

11.46

0.76

2.39

268

322

672

458

907

556

1708

447

1196

GFLOPS

Figure 3: Time per 100 profiles (x-axis) for different configurations of ecRad (y-axis),
with colors indicating different components of the radiation scheme. The results are
grouped firstly by the choice of gas optics, as this determines the number of g-points.
Then, the results are grouped by solver (McICA, TripleClouds and SPARTACUS), and
finally (for TripleClouds and SPARTACUS only) by different versions of code, where the
runtime profile of the optimized code (OPT) is plotted below the reference. To the right,
speedup w.r.t. the configuration of ecRad in IFS cy47r3 (RRTMG+McICA) is shown, fol-
lowed by an estimate of floating-point performance. The component runtimes are means
of per-thread values reported by GPTL, but normalized so they add up to the total time
spent in the OpenMP loop (annotated values). Platform: AMD EPYC 7H12, GNU For-
tran compiler version 9.3 (’-O3 march=native’), 128 threads=cores.

The optimizations give roughly a three-fold speed-up in the total runtime of ecRad423

configured with ecCKD and either TripleClouds and SPARTACUS. Optimized Triple-424

Clouds with ecCKD is blazingly fast: 100 atmospheric profiles takes only 0.16 millisec-425

–12–

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

onds to compute on the 128-core AMD node, or roughly 20 ms per core. This is nearly426

11.5 times faster than the operational IFS radiation (reference ecRad using McICA and427

RRTMG), achieved mainly by the reduction in spectral resolution (64 versus 252 g-points428

in total) combined with a much higher floating point performance (1708 GFLOPS ver-429

sus 268), as opposed to fundamental differences between the solvers (their reference ver-430

sions have similar runtimes and FLOPS). For SPARTACUS, we find that the optimized431

code with ecCKD runs more than twice as fast as operational ecRad, and ten times faster432

than reference SPARTACUS with RRTMG, making cloud 3D effects truly affordable for433

large-scale dynamical models. Importantly, performance is improved also when using other434

gas optics schemes, as ecRad configured with RRTMG and either TripleClouds or SPAR-435

TACUS is roughly 2 times faster than before.436

These speed-ups are a result of a large number changes. To assess the relative im-437

pact of different optimizations, our version of offline ecRad can be compiled with three438

levels of increased refactoring. The runtimes using different versions of the code and two439

different compilers (including Intel’s compiler, which is used for the operational forecast440

model at ECMWF) are shown in Fig. 4. It can be seen that both high-level refactoring441

and kernel-level optimizations are important, but the latter are decisive in achieving high442

performance and getting the full benefit of layer batching, as switching to the new reflectance-443

transmittance and expm kernels (the main hotspots) gives the largest percentage reduc-444

tion in runtime relative to the previous level of code optimization. Finally, making ng445

a compile time constant in the aerosol optics, gas optics and solvers speeds up radiation446

computations with 32-term ecCKD models by a further 19-25%, having a larger impact447

for TripleClouds compiled with the Intel compiler.448

–13–

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

0.0 0.5 1.0 1.5 2.0 2.5
Time per 100 profiles (ms)

RRTMG
+ TripleClouds (ifort, REF)

+ TripleClouds (ifort, OPT1)
+ TripleClouds (ifort, OPT2)
+ TripleClouds (ifort, OPT3)

ecCKD

+ TripleClouds (ifort, REF)
+ TripleClouds (ifort, OPT1)
+ TripleClouds (ifort, OPT2)
+ TripleClouds (ifort, OPT3)

+ TripleClouds (gcc, REF)

+ TripleClouds (gcc, OPT1)
+ TripleClouds (gcc, OPT2)
+ TripleClouds (gcc, OPT3)

+ SPARTACUS (ifort, REF)

+ SPARTACUS (ifort, OPT1)
+ SPARTACUS (ifort, OPT2)
+ SPARTACUS (ifort, OPT3)

+ SPARTACUS (gcc, REF)

+ SPARTACUS (gcc, OPT1)
+ SPARTACUS (gcc, OPT2)
+ SPARTACUS (gcc, OPT3)

1.964
1.469(-25.2%)

1.144(-22.2%)
1.130 (-1.2%)

0.546
0.409(-25.1%)

0.280(-31.6%)
0.210(-25.0%)

0.504
0.384(-23.7%)

0.199(-48.3%)
0.161(-19.0%)

2.461
1.855(-24.6%)

1.158(-37.6%)
0.863(-25.5%)

2.442
1.741(-28.7%)

0.972(-44.2%)
0.771(-20.6%)

Aerosol optics
Cloud optics
Gas optics
SW solver
LW solver

Figure 4: As in Fig. 3, but using increasing levels of code optimization and both the
GNU Fortran (labeled “gcc”) and Intel Fortran compiler (“ifort”, with compiler options
’-O2 -march=avx2 -align array64byte -fast-transcedentals -finline-functions ...’ reflecting
IFS use) included in Intel OneAPI version 2021.4. Annotations again give the total run-
time, with the percentage change relative to the previous level shown in brackets. OPT1
= all changes except using the original reflectance-transmittance and matrix exponential
kernels, and without declaring ng at compile time. OPT2 = OPT1 + optimized main
kernels. OPT3 = OPT2 + declaring ng at compile time (full optimizations, corresponding
to ‘OPT’ in Fig. 3).

6 Preliminary IFS results with SPARTACUS449

We now briefly describe the impact of cloud 3D radiative effects in the IFS by com-450

paring simulations using SPARTACUS and TripleClouds, which is otherwise similar to451

the SPARTACUS solver but does not compute 3D effects. Firstly, to estimate climate452

impacts, eight 13-month long (first month is spin-up) coupled atmosphere-ocean simu-453

lations using a horizontal grid spacing of around 60 km (TCo199) were performed. These454

simulations are long enough to capture fast atmospheric and land-surface processes that455

respond to changes in the radiation scheme, but short enough that the response is not456

significantly affected by the longer-term changes to ocean circulation. We note that while457

3D effects have an overall warming effect on larger scales, they include several processes458

such as shortwave cloud side interception whose cooling effect can dominate at low so-459

lar zenith angles; this could be seen if looking at instantaneous and local 3D effects as460

opposed to long-term averages (Schafer, 2017), which is our focus here.461

Fig. 5 shows a latitude-pressure cross-section of zonal mean temperature differences462

between the SPARTACUS and TripleClouds runs. In year-long simulations, 3D effects463

warm almost the entire troposphere by up 0.5 K, the warming being strongest at mid-464

latitudes, while impacts are neutral below 700 hPa near the equator. We stress that these465

simulations are too short to capture the ocean response, and 3D effects are likely to have466

–14–

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

a stronger impact in longer simulations. Interestingly, a visual comparison with Figure467

2 of Tian et al. (2013), depicting CMIP5 tropospheric temperature biases against the468

MERRA reanalysis and a satellite infrared product, suggests a decent match between469

the SPARTACUS warming pattern and CMIP5 cold biases. Comparing our IFS simu-470

lations to ERA5, some existing mid-latitude cold biases were indeed reduced, but SPAR-471

TACUS also introduced a warm bias in low latitudes between 200 and 700 hPa, and ex-472

acerbated existing IFS stratospheric cold biases near the poles (not shown), where 3D473

effects have a cooling effect that reaches 1 K over the North Pole. Because operational474

models are carefully tuned to produce a realistic climate, and contain numerous com-475

pensating errors, tuning or revision of other model components is likely required to com-476

pensate for the temperature changes caused by SPARTACUS.477

-70
-70

-60

-60

-60

-50 -50

-50

-50

-50

-40 -40

-40

-40

-40 -30

-30

-3
0

-20

-20

-2
0

-10

-10

-1
0

0

0

10

10 20

-90 -60 -30 0 30 60 90

Latitude (°N)

100

200

300

400

500

600

700

800

900

1000

P
re

s
s
u
re

 (
h
P

a
)

-1

-0.5

0

0.5

1

Figure 5: Height-latitude cross section of the zonal mean of the temperature difference
between SPARTACUS and TripleClouds runs (where the former includes cloud 3D radia-
tive effects).

Finally, we briefly evaluate the impact on forecast skill using a suite of high-resolution478

(TCo1279; roughly 9 km horizontal grid spacing) 10-day simulations initialized at con-479

secutive days between 1. June and 31. August 2021 (a total of 92 runs using both Triple-480

Clouds and SPARTACUS). It should again be noted that these results are without any481

model tuning to counteract the tropospheric warming and stratospheric cooling by SPAR-482

TACUS. It is therefore not surprising that the SPARTACUS runs exhibit higher root-483

mean-square-error (RMSE) in temperature aloft due to increased bias, with significant484

skill degradation in the low latitudes between 100 and 900 hPa (due to warming), and485

in the northern hemisphere between 10 and 100 hPa (due to cooling). This is not shown,486

instead we focus on the areas where we find improvement. Most notably, RMSE of 2-487

metre temperature is reduced by up to 10% in the tropics (Fig. 6). The decrease in RMSE488

over tropical land was mostly due to reduced cold bias. But encouragingly, the standard489

deviation of 2-metre temperature is also significantly reduced in the tropics overall (Fig.490

7, top row), nearly 1% on average. The inclusion of 3D cloud effects also slightly reduces491

random errors of low cloud cover in the tropics (Fig. 7, bottom row).492

–15–

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

−0.10

−0.05

0.00

0.05

0.10

N
o
rm

a
li
s
e
d
 d

if
fe

re
n
c
e
 i
n
 R

M
S

 e
rr

o
r

−135 −90 −45 0 45 90 135

−135 −90 −45 0 45 90 135

−
6
0

−
3
0

0
3
0

6
0

−
6
0

−
3
0

0
3
0

6
0

Figure 6: Normalised difference in root-mean-square error in the 7-day forecast of 2-
metre temperature between high-resolution simulations using SPARTACUS and Triple-
Clouds. The plot shows the average impact on forecast skill across a suite of TCo1279
IFS simulations in June-July-August 2019 (82 samples). Negative numbers (blue colors)
indicate improved skill from incorporating 3D effects, up to 10% as shown in dark blue.

Z2T: SH −90° to −20°, sfc

0 1 2 3 4 5 6 7 8 9 10
Forecast day

−0.02

−0.01

0.00

0.01

0.02

0.03

N
o

rm
a

lis
e

d
 d

if
fe

re
n

c
e

Z2T: Tropics −20° to 20°, sfc

0 1 2 3 4 5 6 7 8 9 10
Forecast day

−0.020

−0.015

−0.010

−0.005

0.000

0.005

 1−Jun−2021 to 31−Aug−2021 from 82 to 92 samples. Verified against 0001.

 Confidence range 95% with AR(1) inflation and Sidak correction for 4 independent tests.

SPARTACUS − TripleClouds

Z2T: NH 20° to 90°, sfc

0 1 2 3 4 5 6 7 8 9 10
Forecast day

−0.02

−0.01

0.00

0.01

0.02

LCC: SH −90° to −20°, sfc

0 1 2 3 4 5 6 7 8 9 10
Forecast day

−0.010

−0.005

0.000

0.005

0.010

N
o
rm

a
lis

e
d
 d

if
fe

re
n
c
e

LCC: Tropics −20° to 20°, sfc

0 1 2 3 4 5 6 7 8 9 10
Forecast day

−0.015

−0.010

−0.005

0.000

0.005

0.010

 1−Jun−2021 to 31−Aug−2021 from 82 to 92 samples. Verified against 0001.

 Confidence range 95% with AR(1) inflation and Sidak correction for 4 independent tests.

SPARTACUS − TripleClouds

LCC: NH 20° to 90°, sfc

0 1 2 3 4 5 6 7 8 9 10
Forecast day

−0.010

−0.005

0.000

0.005

0.010

Figure 7: As in Fig. 6, but showing the normalised difference in standard deviation of
2-metre temperature (top row) and low cloud cover (bottom row) by forecast day (x-axis)
and region (Southern Hemisphere, Tropics, and Northern Hemisphere). Error bars give
the 95% confidence range computed from 82-92 samples.

–16–

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

7 Conclusions493

In this work we have refactored the ecRad radiation scheme by using both kernel-494

level optimizations and higher-level code restructuring to improve performance. Our goal495

was to capitalize on recent developments in gas optics schemes, namely the new ecCKD496

tool, which allows the spectral dimension to be reduced considerably (to e.g. 32 g-points497

in the LW and SW; 64 in total) while retaining accuracy. While speeding up all ecRad498

solvers, it also decreases floating-point performance due to shortening the innermost vec-499

torized loops over g-points. To address this we restructured the TripleClouds and SPAR-500

TACUS solvers to collapse the spectral and vertical dimensions where possible. We also501

performed many kernel-level optimizations, for instance to improve the efficiency of ma-502

trix computations in SPARTACUS, a solver that can compute cloud 3D radiative effects503

at a relatively low cost. In an effort to make it truly affordable for operational use, we504

ended up carrying out a thorough performance refactoring of the entire SPARTACUS505

code. Taken together, our optimizations increase the performance of ecRad configured506

with ecCKD and either TripleClouds or SPARTACUS by factor of three, and the opti-507

mized code is also much faster when using older gas optics schemes with more g-points.508

While targeting ECMWF’s new supercomputer equipped with AMD Zen 2 CPUs,509

the high-level code restructuring to expose more parallelism should be useful for any fu-510

ture code porting on GPU, and benefit CPU’s with longer vector lengths (via AVX-512511

instructions) even more. It should also be applicable to other correlated-k radiation codes,512

or possibly even other physics parameterizations which include demanding computations513

conditional to the presence of clouds. The memory layout of ecRad with the spectral di-514

mension innermost, combined with code restructuring to group together cloudy layers515

in a column and collapsing with the spectral dimension, is likely ideal for performance516

for 1D radiation schemes, as it allows for sufficiently long vectorized loops (even for spec-517

trally reduced gas optics) to achieve high performance. A memory layout with columns518

innermost would not allow the compute-intensive computations specific to cloudy lay-519

ers to be batched in a similar way, and the column batch size may have to be kept small520

due to memory constraints, reducing SIMD and instruction-level parallelism.521

Combining optimized TripleClouds with ecCKD, we obtain a speed-up factor larger522

than ten relative to the operational radiation scheme in IFS cy47r3 that is based on McICA523

and RRTMG. This may have implications for emulation studies, which attempt to re-524

place physical schemes with a cheap NN emulator: considering that a low-complexity re-525

current NN (which, unlike a faster dense NN, could produce both fluxes and heating rates526

accurately) was only 4 times faster than a shortwave radiation scheme using 7 times more527

g-points than ecCKD (Ukkonen, 2022a), the value of using ML for radiation can be ques-528

tioned - at least for emulation of 1D radiation schemes seeking a speed-up on CPUs. Fu-529

ture studies on this topic should strive to compare NNs to a state-of-the-art radiation530

scheme, as older codes may be orders-of-magnitudes slower.531

With SPARTACUS, we find that the optimized code coupled with ecCKD is more532

than twice as fast as the operational IFS radiation. To our knowledge, cloud 3D radia-533

tive effects have until now been neglected in all weather and climate models due to com-534

putational reasons, so this represents a major development. In year-long coupled IFS sim-535

ulations, SPARTACUS significantly warms the troposphere compared to its fully-1D coun-536

terpart (TripleClouds), and these effects are likely to be more pronounced in longer cli-537

mate simulations, which we leave for future studies to explore. We also performed high-538

resolution simulations and find that SPARTACUS improves medium-range forecasts of539

2-metre temperature and low cloud cover in the tropics. SPARTACUS is still under de-540

velopment to improve some physical assumptions made in the longwave, and we also fore-541

see other opportunities to further increase realism, such as using high-resolution cloud542

fields to determine SPARTACUS inputs related to cloud sub-grid variability (instead of543

using a constant value) when running radiation on a coarser grid as is currently done in544

the IFS.545

–17–

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Appendix A: Kernel-level optimizations546

Two-stream kernels547

The reference version of ecRad computes the two-stream solutions of reflectance548

and transmittance (Meador & Weaver, 1980) in double precision, as the underlying equa-549

tions are numerically sensitive. This issue was also noted by Cotronei and Slawig (2020),550

who left this kernel in double precision when converting ECHAM radiation to single pre-551

cision. We found that the code can be made mostly accurate in single precision simply552

by using a different minimum value for the variable k (Eq. 18 in Meador & Weaver, 1980)553

in the single precision case (10−4 instead of 10−12), but that very rare combinations of554

the inputs (single-scattering albedo, optical depth and asymmetry factor) could still cause555

unphysical results in the shortwave computations. This issue was solved by constrain-556

ing the output variables to prevent that energy could be spuriously created, recognis-557

ing that the direct beam can either be reflected (ref dir), penetrate unscattered to the558

base of a layer (trans dir), or penetrate through but be scattered on the way (trans dir diff)559

- the rest must be absorbed. This was coded as:560

561
ref_dir(jg) = max(0, min(ref_dir(jg), mu0*(1-trans_dir_dir(jg))))562

trans_dir_diff(jg) = max(0, min(trans_dir_diff(jg), mu0*(1-trans_dir_dir(jg)) - ref_dir(jg)))563564

Here, the cosine of the solar zenith angle (mu0) is present because ecRad uses a conven-565

tion that the direct flux is into a plane perpendicular to the sun’s direction while diffuse566

fluxes are into a horizontal plane. After implementing the adjusted threshold and secu-567

rity, the mean absolute difference in SW and LW net fluxes between double and single568

precision computations with TripleClouds was around 0.001 Wm−2 for 10000 columns569

saved from a high-resolution IFS simulation, and heating rate biases were close to zero.570

Both the longwave and shortwave kernels were also sped up by vectorizing the trans-571

mittance computation separately by calling the exponential function with an array ar-572

gument, and conditionals to ensure accurate source functions when the optical depth is573

low were also placed in a separate post-processing loop, improving performance despite574

some redundant computations. In the shortwave kernel, conditionals could be removed575

altogether by borrowing a security to avoid division by zero from RTE+RRTMGP.576

SPARTACUS matrix operations577

Loop unrolling is a common optimization strategy that compilers can in some cases578

perform automatically, but if the loop bounds are not known at compile time, the com-579

piler may not know it is advantageous. More involved code patterns may also prevent580

the compiler from doing this. SPARTACUS uses a matrix exponential solver based on581

a single precision variant of an optimal scaling and squaring algorithm utilizing Padé ap-582

proximants (Higham, 2005). The scaling and squaring method involves performing many583

matrix-matrix multiplications. Because the matrices operated by SPARTACUS are very584

small, (nreg × 3, nreg × 3) = (9, 9) in the shortwave and (nreg × 2, nreg × 2) = (6, 6)585

in the longwave, for performance reasons the matrix-exponential kernel expm stores them586

in the two outer dimensions of 3D arrays, and the fastest-varying spectral dimension is587

vectorized instead. We found that manually unrolling the innermost of the matrix mul-588

tiplication loops improved performance on the tested compilers. Redundant computa-589

tions in expm were also identified and removed: in the shortwave (only), many of the matrix-590

matrix multiplications can exploit not only the sparsity but also some repeated elements591

in the input matrices, which result in the output matrices also having repeated elements.592

Given this and the different matrix dimensions, separate LW and SW versions were writ-593

ten for expm. The refactoring of the shortwave matrix multiplication kernel is illustrated594

in Fig. A1.595

Similar optimizations were also employed in the many other matrix operations per-596

formed by SPARTACUS, such as matrix-vector multiplication, and solving linear sys-597

–18–

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

tems of equations for a matrix or vector using LU decomposition. For most of these, sep-598

arate longwave and shortwave kernels were made to allow declaring the inner dimension599

(ngSW or ngLW) at compile time, even if other dimensions were identical.600

! Treat A and B each as n m-by-m square matrices (with the n dimension
! varying fastest) and perform matrix multiplications on all n matrix pairs
mat_x_mat = 0.0_jprb ! Array-wise assignment
mblock = m/3
m2block = 2*mblock
if (i_actual_matrix_pattern == IMatrixPatternShortwave) then

! Matrix has a sparsity pattern
! (C D E)
! (F G H)
! (0 0 I)
! Do the top-left (C, D, F, G)
do j2 = 1,m2block ! 1,6

do j1 = 1,m2block ! 1,6
do j3 = 1,m2block ! 1,6

mat_x_mat(1:ng3D,j1,j2) = mat_x_mat(1:ng3D,j1,j2) &
& + A(1:ng3D,j1,j3)*B(1:ng3D,j3,j2)

end do
end do

end do
do j2 = m2block+1,m ! 7,9

! Do the top-right (E & H)
do j1 = 1,m2block ! 1,6

do j3 = 1,m
mat_x_mat(1:ng3D,j1,j2) = mat_x_mat(1:ng3D,j1,j2) &

& + A(1:ng3D,j1,j3)*B(1:ng3D,j3,j2)
end do

end do
! Do the bottom-right (I)
do j1 = m2block+1,m ! 7,9

do j3 = m2block+1,m ! 7,9
mat_x_mat(1:ng3D,j1,j2) = mat_x_mat(1:ng3D,j1,j2) &

& + A(1:ng3D,j1,j3)*B(1:ng3D,j3,j2)
end do

end do
end do

else
...

⇓
pure subroutine mat_x_mat_sw_repeats(ng_sw_in, nlev_b, A, B, C)

integer, intent(in) :: ng_sw_in, nlev_b
real(jprb), intent(in), dimension(ng_sw*nlev_b,9,9) :: A, B
real(jprb), intent(out),dimension(ng_sw*nlev_b,9,9) :: C
integer :: j1, j2, j22
!dir$ assume_aligned A:64,B:64,C:64
! Input matrices have pattern:
! (C D E)
! (F=-D G=-C H)
! (0 0 I), where each element is a 3-by-3 matrix
! As a result, output matrices have pattern:
! (C D E)
! (F=D G=C H)
! (0 0 I)
do j2 = 1,3

j22 = j2 + 6
do j1 = 1,6

! Do the top-left (C, F)
! Unroll innermost matmul loop: more work for each iteration of SIMD loop
C(:,j1,j2) = A(:,j1,1)*B(:,1,j2) + A(:,j1,2)*B(:,2,j2) + A(:,j1,3)*B(:,3,j2) &
& + A(:,j1,4)*B(:,4,j2) + A(:,j1,6)*B(:,6,j2)
! Do the top-right (E & H)
C(:,j1,j22) = A(:,j1,1)*B(:,1,j22) + A(:,j1,2)*B(:,2,j22) + A(:,j1,3)*B(:,3,j22) &
& + A(:,j1,4)*B(:,4,j22) + A(:,j1,5)*B(:,5,j22) + A(:,j1,6)*B(:,6,j22) &
& + A(:,j1,7)*B(:,7,j22) + A(:,j1,8)*B(:,8,j22) + A(:,j1,9)*B(:,9,j22)

end do
do j1 = 7,9 ! Do the bottom-right (I)

C(:,j1,j22) = A(:,j1,7)*B(:,7,j22) + A(:,j1,8)*B(:,8,j22) + A(:,j1,9)*B(:,9,j22)
end do

end do
C(:,1:3,4:6) = C(:,4:6,1:3) ! D = F
C(:,4:6,4:6) = C(:,1:3,1:3) ! G = C
C(:,7:9,1:6) = 0.0_jprb ! Lower left corner

Figure A1: Reference (top) and optimized (bottom) versions of the matrix-matrix mul-
tiplication kernel used in the shortwave matrix exponential computations. The latter
unrolls loops and reduces work by exploiting that some matrix elements are repeated. For
this performance-critical code, further speedup was gained by data alignment. The Intel
compiler reported aligned data access only after declaring ng_sw at compile-time.

–19–

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

The other main optimization for expm was in the last step of the algorithm, where601

the matrices across different g-points are individually squared. This section has poor per-602

formance because the nature of the scaling and squaring method means that the num-603

ber of squarings (stored in the N -sized integer array expo) varies by g-point, resulting604

in many temporary copies of small arrays and lack of vectorization. Efficiency was im-605

proved by first squaring all the matrices by the minimum expo, ensuring vectorization.606

In the shortwave, performance was also increased (at the cost of code complexity) by squar-607

ing groups of matrices, based on array indexing of memory-contiguous matrices that still608

need to be squared after the first step.609

Longwave derivatives610

The final step in the longwave solvers is the computation of longwave derivatives,611

the rate of change of layer broadband upwelling longwave fluxes with respect to surface612

broadband upwelling flux, which is used for approximate radiation updates in every model613

column at every model time step (Hogan & Bozzo, 2015). This kernel was relatively ex-614

pensive for TripleClouds, as it consists of doing ng multiplications of very small matri-615

ces and vectors (m=nreg), followed by a multiplication with transmittance (ng,nreg) at616

each g-point, and finally a sum over ng and nreg, at each level. In the expected case of617

nreg=3, the matrix-vector computations, multiplication with transmittance and sum over618

nreg and ng were all combined in a single vectorized loop over g-points by inlining the619

matrix-vector computation and unrolling the three regions (Fig. A2). A similar optimiza-620

tion was done for SPARTACUS where transmittances are 3-D arrays. When combined621

ng being made a compile-time constant, the kernels were sped up by a factor of 5-7, de-622

creasing their share of the total runtime from almost a fifth to only a few percent when623

using optimized TripleClouds and ecCKD.624

–20–

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

! Initialize the derivatives at the surface; the surface is treated as a
single

! clear-sky layer so we only need to put values in region 1.
lw_derivatives_g_reg = 0.0_jprb
lw_derivatives_g_reg(:,1) = flux_up_surf / sum(flux_up_surf)
lw_derivatives(icol, nlev+1) = 1.0_jprb

! Move up through the atmosphere computing the derivatives at each half-level
do jlev = nlev,1,-1

! Compute effect of overlap at half-level jlev+1, yielding
! derivatives just above that half-level
lw_derivatives_g_reg = singlemat_x_vec(ng,ng,nreg,u_matrix(:,:,jlev+1),
lw_derivatives_g_reg)

! Compute effect of transmittance of layer jlev, yielding
! derivatives just below the half-level above (jlev)
lw_derivatives_g_reg = transmittance(:,:,jlev) * lw_derivatives_g_reg

lw_derivatives(icol, jlev) = sum(lw_derivatives_g_reg)
end do

⇓
...

! Move up through the atmosphere computing the derivatives at each half-level
do jlev = nlev,1,-1

! Inline everything in one loop over g-points
lw_deriv_old = lw_derivatives_g_reg
sum_tmp = 0.0_jprb
associate(A=>u_matrix(:,:,jlev+1), b=>lw_deriv_old)

!$omp simd reduction(+:sum_tmp)
do jg = 1, ng

! Compute effect of overlap at half-level jlev+1, yielding derivatives just above that
! half-level (matrix-vector multiply)
! both inner and outer loop of the matrix loops j1 and j2 unrolled
! inner loop: j2=1 j2=2 j2=3
lw_derivatives_g_reg(jg,1) = A(1,1)*b(jg,1) + A(1,2)*b(jg,2) + A(1,3)*b(jg,3)
lw_derivatives_g_reg(jg,2) = A(2,1)*b(jg,1) + A(2,2)*b(jg,2) + A(2,3)*b(jg,3)
lw_derivatives_g_reg(jg,3) = A(3,1)*b(jg,1) + A(3,2)*b(jg,2) + A(3,3)*b(jg,3)

! Compute effect of transmittance of layer jlev, yielding
! derivatives just below the half-level above (jlev)
lw_derivatives_g_reg(jg,1) = lw_derivatives_g_reg(jg,1) * transmittance(jg,1,jlev)
lw_derivatives_g_reg(jg,2) = lw_derivatives_g_reg(jg,2) * transmittance(jg,2,jlev)
lw_derivatives_g_reg(jg,3) = lw_derivatives_g_reg(jg,3) * transmittance(jg,3,jlev)

sum_tmp = sum_tmp + lw_derivatives_g_reg(jg,1) + lw_derivatives_g_reg(jg,2) + &
& + lw_derivatives_g_reg(jg,3)

end do
end associate

lw_derivatives(icol, jlev) = sum_tmp
end do

Figure A2: Reference (top) and optimized (bottom) version of the longwave derivatives
kernel used by TripleClouds.

Open Research Section625

The development version of ecRad 1.6, which includes our configurable optimiza-626

tions and new gas optics schemes (ecCKD, RRTMGP and RRTMGP-NN), has been up-627

loaded to Zenodo (https://doi.org/10.5281/zenodo.7148329) (Ukkonen, 2022b). We628

expect most of the optimizations to feature in a future official version of ecRad (https://629

github.com/ecmwf-ifs/ecrad).630

References631

Chevallier, F., Chéruy, F., Scott, N., & Chédin, A. (1998). A neural network ap-632

proach for a fast and accurate computation of a longwave radiative budget.633

Journal of applied meteorology , 37 (11), 1385–1397.634

Cotronei, A., & Slawig, T. (2020). Single-precision arithmetic in echam radiation635

reduces runtime and energy consumption. Geoscientific Model Development ,636

13 (6), 2783–2804.637

–21–

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Fuhrer, O., Chadha, T., Hoefler, T., Kwasniewski, G., Lapillonne, X., Leutwyler, D.,638

. . . Vogt, H. (2018, May). Near-global climate simulation at 1 km resolution:639

establishing a performance baseline on 4888GPUs with COSMO 5.0. , 11 (4),640

1665–1681. Retrieved from https://doi.org/10.5194/gmd-11-1665-2018641

doi: 10.5194/gmd-11-1665-2018642

Goody, R., West, R., Chen, L., & Crisp, D. (1989). The correlated-k method for ra-643

diation calculations in nonhomogeneous atmospheres. Journal of Quantitative644

Spectroscopy and Radiative Transfer , 42 (6), 539–550.645

Hager, G., & Wellein, G. (2010). Introduction to high performance computing for646

scientists and engineers. CRC Press.647

Higham, N. J. (2005). The scaling and squaring method for the matrix exponen-648

tial revisited. SIAM Journal on Matrix Analysis and Applications, 26 (4),649

1179–1193.650

Hogan, R. J., & Bozzo, A. (2015). Mitigating errors in surface temperature forecasts651

using approximate radiation updates. Journal of Advances in Modeling Earth652

Systems, 7 (2), 836–853.653

Hogan, R. J., & Bozzo, A. (2018). A flexible and efficient radiation scheme for the654

ecmwf model. Journal of Advances in Modeling Earth Systems, 10 (8), 1990–655

2008. doi: https://doi.org/10.1029/2018MS001364656

Hogan, R. J., Fielding, M. D., Barker, H. W., Villefranque, N., & Schäfer, S. A.657

(2019). Entrapment: An important mechanism to explain the shortwave 3d658

radiative effect of clouds. Journal of the Atmospheric Sciences, 76 (7), 2123–659

2141.660

Hogan, R. J., & Matricardi, M. (2022). A tool for generating fast k-distribution661

gas-optics models for weather and climate applications. Journal of Ad-662

vances in Modeling Earth Systems, 14 (10), e2022MS003033. Retrieved663

from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/664

2022MS003033 (e2022MS003033 2022MS003033) doi: https://doi.org/10.1029/665

2022MS003033666

Hogan, R. J., Quaife, T., & Braghiere, R. (2018). Fast matrix treatment of 3-d ra-667

diative transfer in vegetation canopies: Spartacus-vegetation 1.1. Geoscientific668

Model Development , 11 (1), 339–350.669

Hogan, R. J., Schäfer, S. A., Klinger, C., Chiu, J. C., & Mayer, B. (2016). Rep-670

resenting 3-d cloud radiation effects in two-stream schemes: 2. matrix formu-671

lation and broadband evaluation. Journal of Geophysical Research: Atmo-672

spheres, 121 (14), 8583–8599.673

Kim, P. S., & Song, H.-J. (2022). Usefulness of automatic hyperparameter optimiza-674

tion in developing radiation emulator in a numerical weather prediction model.675

Atmosphere, 13 (5), 721.676

Krasnopolsky, V. M., Fox-Rabinovitz, M. S., & Belochitski, A. A. (2008). Decadal677

climate simulations using accurate and fast neural network emulation of full,678

longwave and shortwave, radiation. Monthly Weather Review , 136 (10), 3683–679

3695.680

Lawrence, B. N., Rezny, M., Budich, R., Bauer, P., Behrens, J., Carter, M., . . . oth-681

ers (2018). Crossing the chasm: how to develop weather and climate models682

for next generation computers? Geoscientific Model Development , 11 (5),683

1799–1821.684

Liu, Y., Caballero, R., & Monteiro, J. M. (2020). Radnet 1.0: Exploring deep learn-685

ing architectures for longwave radiative transfer. Geoscientific Model Develop-686

ment , 13 (9), 4399–4412.687

Meador, W., & Weaver, W. (1980). Two-stream approximations to radiative transfer688

in planetary atmospheres: A unified description of existing methods and a new689

improvement. Journal of Atmospheric Sciences, 37 (3), 630–643.690

Michalakes, J., Iacono, M. J., & Jessup, E. R. (2016). Optimizing weather model691

radiative transfer physics for intel’s many integrated core (mic) architecture.692

–22–

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Parallel Processing Letters, 26 (04), 1650019.693

Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A.694

(1997). Radiative transfer for inhomogeneous atmospheres: Rrtm, a vali-695

dated correlated-k model for the longwave. Journal of Geophysical Research:696

Atmospheres, 102 (D14), 16663–16682.697

Pal, A., Mahajan, S., & Norman, M. R. (2019). Using deep neural networks698

as cost-effective surrogate models for super-parameterized e3sm radia-699

tive transfer. Geophysical Research Letters, 46 (11), 6069–6079. doi:700

https://doi.org/10.1029/2018GL081646701

Pincus, R., Mlawer, E. J., & Delamere, J. S. (2019). Balancing accuracy, efficiency,702

and flexibility in radiation calculations for dynamical models. Journal of Ad-703

vances in Modeling Earth Systems, 11 (10), 3074–3089.704

Roh, S., & Song, H.-J. (2020). Evaluation of neural network emulations for radia-705

tion parameterization in cloud resolving model. Geophysical Research Letters,706

47 (21), e2020GL089444. doi: https://doi.org/10.1029/2020GL089444707

Schafer, S. A. (2017). What is the global impact of 3d cloud-radiation interactions?708

(Unpublished doctoral dissertation). University of Reading.709

Shonk, J. K., & Hogan, R. J. (2008). Tripleclouds: An efficient method for repre-710

senting horizontal cloud inhomogeneity in 1d radiation schemes by using three711

regions at each height. Journal of Climate, 21 (11), 2352–2370.712

Song, H.-J., & Roh, S. (2021). Improved weather forecasting using neural network713

emulation for radiation parameterization. Journal of Advances in Model-714

ing Earth Systems, 13 (10), e2021MS002609. doi: https://doi.org/10.1029/715

2021MS002609716

Tian, B., Fetzer, E. J., Kahn, B. H., Teixeira, J., Manning, E., & Hearty, T. (2013).717

Evaluating cmip5 models using airs tropospheric air temperature and specific718

humidity climatology. Journal of Geophysical Research: Atmospheres, 118 (1),719

114–134.720

Ukkonen, P. (2022a). Exploring pathways to more accurate machine learning emula-721

tion of atmospheric radiative transfer. Journal of Advances in Modeling Earth722

Systems, e2021MS002875. doi: 10.1029/2021MS002875723

Ukkonen, P. (2022b, October). Optimized version of the ecRad radiation scheme724

with new RRTMGP-NN gas optics [Dataset]. Zenodo. Retrieved from725

https://doi.org/10.5281/zenodo.7852526 doi: 10.5281/zenodo.7852526726

Ukkonen, P., Pincus, R., Hogan, R. J., Nielsen, K. P., & Kaas, E. (2020). Accel-727

erating radiation computations for dynamical models with targeted machine728

learning and code optimization. Journal of Advances in Modeling Earth Sys-729

tems, 12 (12), e2020MS002226. doi: https://doi.org/10.1029/2020MS002226730

–23–

Figure 1.

1 2 4 8 17 34 68 136
Multiple of 32

102 103 104 105

N

15

20

25

30

35

40

45

50

Fl
oa

tin
g-

po
in

t o
pe

ra
tio

ns
 p

er
 se

co
nd

 (G
FL

OP
S)

ecRAD (ECCKD + layer blocking)
Simple timing program

Figure 2 (Latex-generated code listing).

do jlev = 1,nlay ! Start at top-of-atmosphere
nreg = nregions
if (is_clear_sky_layer(jlev) nreg = 1

do jreg = 1,nreg ! Loop over relevant regions (only 1 if layer is clear-sky)
if (jreg == 1) then ! optical properties are equal to clear-sky values
optical_depth_tot = optical_depth(:,jlev,jcol)
ssa_tot = ssa(:,jlev,jcol)
g_tot = g(:,jlev,jcol)

else
do jg = 1,ng ! loop over g-points
! Cloudy-sky optical properties from band-wise cloud values and g-point-wise clear-sky values
optical_depth_tot(jg) = optical_depth(jg,jlev,jcol) + ...
...

end do
end if

call calc_two_stream_gammas_sw(ng, mu0, ssa_tot, g_tot, gamma1, gamma2, gamma3)
call calc_reftrans_sw(ng, mu0, optical_depth_tot, ssa_tot, gamma1, gamma2, gamma3, &
& reflectance(:,jreg,jlev), transmittance(:,jreg,jlev), & ! outputs
& ref_dir(:,jreg,jlev), trans_dir_diff(:,jreg,jlev), trans_dir_dir(:,jreg,jlev)) ! outputs

end do
end do

⇓
! Computations for clear-sky region as a separate step: collapse the two inner dimensions
call calc_reftrans_sw_opt(ng*nlay, mu0, optical_depth(:,:,jcol), ssa(:,:,jcol), g(:,:,jcol), &
& reflectance_clear, transmittance_clear, ref_dir_clear, trans_dir_diff_clear, trans_dir_dir_clear)

! Cloudy computations: start at top-of-atmosphere and find first cloudy layer, if one exists
any_clouds_below = .false.
jtop = findloc(is_clear_sky_layer(1:nlay), .false., dim=1)
if (jtop>0) any_clouds_below = .true.

do while (any_clouds_below)
! Find the bottom of this cloud
jbot = ...
nlay_cloud = jbot - jtop + 1
allocate(optical_depth_tot_cloudy(ng,2:nreg,jtop:jbot), ssa_tot_cloudy(ng,2:nreg,jtop:jbot), &

& g_tot_cloudy(ng,2:nreg,jtop:jbot))

do jlev = jtop, jbot
do jreg = 2, nregions ! = 3
do jg = 1,ng
! Spectral cloudy-sky optical properties from band-wise cloud values and spectral clear-sky values
optical_depth_tot_cloudy(jg,jreg,jlev) = ...
...

end do
end do

end do

call calc_reftrans_sw_opt(ng*2*nlay_cloud, & ! g-points * cloudy regions * adjacent cloudy layers
& mu0, optical_depth_tot_cloudy, ssa_tot_cloudy, g_tot_cloudy, &
& reflectance(:,:,jtop:jbot), transmittance(:,:,jtop:jbot), & ! outputs
& ref_dir(:,:,jtop:jbot), trans_dir_diff(:,:,jtop:jbot), trans_dir_dir(:,:,jtop:jbot)) ! outputs

deallocate(optical_depth_tot_cloudy, ssa_tot_cloudy, g_tot_cloudy)

! Does another cloudy layer exist? If not, set logical to false to exit "while"
if (jbot== nlay) any_clouds_below=.false. ! surface reached

if (any(.not. is_clear_sky_layer(jbot+1:nlay))) then
! find the top of the new cloud
jtop = ...

else
any_clouds_below=.false.

end if
end do

Figure 1: Refactoring of TripleClouds-SW. In addition to optimizing and fusing kernels,
in the new code (bottom) the reflectance-transmittance computations are performed in a
batched manner for multiple layers by collapsing the spectral and vertical dimensions.

1

Figure 3.

0 1 2 3 4 5 6 7 8
Time per 100 profiles (ms)

RRTMG
+ McICA (IFS CY47r3)

+ TripleClouds

+ TripleClouds (OPT)

+ SPARTACUS

+ SPARTACUS (OPT)

ecCKD
+ TripleClouds

+ TripleClouds (OPT)

+ SPARTACUS

+ SPARTACUS (OPT)

Speedup
w.r.t.
CY47r3

1.85

2.04

1.00

7.91

3.72

0.50

0.16

2.44

0.77

Aerosol optics
Cloud optics
Gas optics
SW solver
LW solver

1.00

0.91

1.84

0.23

0.50

3.66

11.46

0.76

2.39

268

322

672

458

907

556

1708

447

1196

GFLOPS

Figure 4.

0.0 0.5 1.0 1.5 2.0 2.5
Time per 100 profiles (ms)

RRTMG
+ TripleClouds (ifort, REF)

+ TripleClouds (ifort, OPT1)
+ TripleClouds (ifort, OPT2)
+ TripleClouds (ifort, OPT3)

ecCKD

+ TripleClouds (ifort, REF)
+ TripleClouds (ifort, OPT1)
+ TripleClouds (ifort, OPT2)
+ TripleClouds (ifort, OPT3)

+ TripleClouds (gcc, REF)

+ TripleClouds (gcc, OPT1)
+ TripleClouds (gcc, OPT2)
+ TripleClouds (gcc, OPT3)

+ SPARTACUS (ifort, REF)

+ SPARTACUS (ifort, OPT1)
+ SPARTACUS (ifort, OPT2)
+ SPARTACUS (ifort, OPT3)

+ SPARTACUS (gcc, REF)

+ SPARTACUS (gcc, OPT1)
+ SPARTACUS (gcc, OPT2)
+ SPARTACUS (gcc, OPT3)

1.964
1.469(-25.2%)

1.144(-22.2%)
1.130 (-1.2%)

0.546
0.409(-25.1%)

0.280(-31.6%)
0.210(-25.0%)

0.504
0.384(-23.7%)

0.199(-48.3%)
0.161(-19.0%)

2.461
1.855(-24.6%)

1.158(-37.6%)
0.863(-25.5%)

2.442
1.741(-28.7%)

0.972(-44.2%)
0.771(-20.6%)

Aerosol optics
Cloud optics
Gas optics
SW solver
LW solver

Figure 5.

-70
-70

-60

-60

-60

-50 -50

-50

-50

-50

-40 -40

-40

-40

-40 -30

-30
-3

0

-20

-20
-2

0

-10

-10
-1

0

0

0

10

10 20

-90 -60 -30 0 30 60 90

Latitude (°N)

100

200

300

400

500

600

700

800

900

1000

P
re

s
s
u

re
 (

h
P

a
)

-1

-0.5

0

0.5

1

Figure 6.

−0.10

−0.05

0.00

0.05

0.10

N
o

rm
a

li
s
e

d
 d

if
fe

re
n

c
e

 i
n

 R
M

S
 e

rr
o

r

−135 −90 −45 0 45 90 135

−135 −90 −45 0 45 90 135

−
6

0
−

3
0

0
3

0
6

0

−
6

0
−

3
0

0
3

0
6

0

Figure 7.

Z2T: SH −90° to −20°, sfc

0 1 2 3 4 5 6 7 8 9 10
Forecast day

−0.02

−0.01

0.00

0.01

0.02

0.03

N
o

rm
a

lis
e

d
 d

if
fe

re
n

c
e

Z2T: Tropics −20° to 20°, sfc

0 1 2 3 4 5 6 7 8 9 10
Forecast day

−0.020

−0.015

−0.010

−0.005

0.000

0.005

 1−Jun−2021 to 31−Aug−2021 from 82 to 92 samples. Verified against 0001.

 Confidence range 95% with AR(1) inflation and Sidak correction for 4 independent tests.

SPARTACUS − TripleClouds

Z2T: NH 20° to 90°, sfc

0 1 2 3 4 5 6 7 8 9 10
Forecast day

−0.02

−0.01

0.00

0.01

0.02

LCC: SH −90° to −20°, sfc

0 1 2 3 4 5 6 7 8 9 10
Forecast day

−0.010

−0.005

0.000

0.005

0.010

N
o
rm

a
lis

e
d
 d

if
fe

re
n
c
e

LCC: Tropics −20° to 20°, sfc

0 1 2 3 4 5 6 7 8 9 10
Forecast day

−0.015

−0.010

−0.005

0.000

0.005

0.010

 1−Jun−2021 to 31−Aug−2021 from 82 to 92 samples. Verified against 0001.

 Confidence range 95% with AR(1) inflation and Sidak correction for 4 independent tests.

SPARTACUS − TripleClouds

LCC: NH 20° to 90°, sfc

0 1 2 3 4 5 6 7 8 9 10
Forecast day

−0.010

−0.005

0.000

0.005

0.010

Figure A1 (Latex-generated code listing).

! Treat A and B each as n m-by-m square matrices (with the n dimension
! varying fastest) and perform matrix multiplications on all n matrix pairs
mat_x_mat = 0.0_jprb ! Array-wise assignment
mblock = m/3
m2block = 2*mblock
if (i_actual_matrix_pattern == IMatrixPatternShortwave) then

! Matrix has a sparsity pattern
! (C D E)
! (F G H)
! (0 0 I)
! Do the top-left (C, D, F, G)
do j2 = 1,m2block ! 1,6

do j1 = 1,m2block ! 1,6
do j3 = 1,m2block ! 1,6

mat_x_mat(1:ng3D,j1,j2) = mat_x_mat(1:ng3D,j1,j2) &
& + A(1:ng3D,j1,j3)*B(1:ng3D,j3,j2)

end do
end do

end do
do j2 = m2block+1,m ! 7,9

! Do the top-right (E & H)
do j1 = 1,m2block ! 1,6

do j3 = 1,m
mat_x_mat(1:ng3D,j1,j2) = mat_x_mat(1:ng3D,j1,j2) &

& + A(1:ng3D,j1,j3)*B(1:ng3D,j3,j2)
end do

end do
! Do the bottom-right (I)
do j1 = m2block+1,m ! 7,9

do j3 = m2block+1,m ! 7,9
mat_x_mat(1:ng3D,j1,j2) = mat_x_mat(1:ng3D,j1,j2) &

& + A(1:ng3D,j1,j3)*B(1:ng3D,j3,j2)
end do

end do
end do

else
...

⇓
pure subroutine mat_x_mat_sw_repeats(ng_sw_in, nlev_b, A, B, C)

integer, intent(in) :: ng_sw_in, nlev_b
real(jprb), intent(in), dimension(ng_sw*nlev_b,9,9) :: A, B
real(jprb), intent(out),dimension(ng_sw*nlev_b,9,9) :: C
integer :: j1, j2, j22
!dir$ assume_aligned A:64,B:64,C:64
! Input matrices have pattern:
! (C D E)
! (F=-D G=-C H)
! (0 0 I), where each element is a 3-by-3 matrix
! As a result, output matrices have pattern:
! (C D E)
! (F=D G=C H)
! (0 0 I)
do j2 = 1,3

j22 = j2 + 6
do j1 = 1,6

! Do the top-left (C, F)
! Unroll innermost matmul loop: more work for each iteration of SIMD loop
C(:,j1,j2) = A(:,j1,1)*B(:,1,j2) + A(:,j1,2)*B(:,2,j2) + A(:,j1,3)*B(:,3,j2) &
& + A(:,j1,4)*B(:,4,j2) + A(:,j1,6)*B(:,6,j2)
! Do the top-right (E & H)
C(:,j1,j22) = A(:,j1,1)*B(:,1,j22) + A(:,j1,2)*B(:,2,j22) + A(:,j1,3)*B(:,3,j22) &
& + A(:,j1,4)*B(:,4,j22) + A(:,j1,5)*B(:,5,j22) + A(:,j1,6)*B(:,6,j22) &
& + A(:,j1,7)*B(:,7,j22) + A(:,j1,8)*B(:,8,j22) + A(:,j1,9)*B(:,9,j22)

end do
do j1 = 7,9 ! Do the bottom-right (I)

C(:,j1,j22) = A(:,j1,7)*B(:,7,j22) + A(:,j1,8)*B(:,8,j22) + A(:,j1,9)*B(:,9,j22)
end do

end do
C(:,1:3,4:6) = C(:,4:6,1:3) ! D = F
C(:,4:6,4:6) = C(:,1:3,1:3) ! G = C
C(:,7:9,1:6) = 0.0_jprb ! Lower left corner

Figure 1: Reference (top) and optimized (bottom) versions of the matrix-matrix mul-
tiplication kernel used in the shortwave matrix exponential computations. The latter
unrolls loops and reduces work by exploiting that some matrix elements are repeated. For
this performance-critical code, further speedup was gained by data alignment. The Intel
compiler reported aligned data access only after declaring ng_sw at compile-time.

1

Figure A2 (latex-generated code listing).

! Initialize the derivatives at the surface; the surface is treated as a
single

! clear-sky layer so we only need to put values in region 1.
lw_derivatives_g_reg = 0.0_jprb
lw_derivatives_g_reg(:,1) = flux_up_surf / sum(flux_up_surf)
lw_derivatives(icol, nlev+1) = 1.0_jprb

! Move up through the atmosphere computing the derivatives at each half-level
do jlev = nlev,1,-1

! Compute effect of overlap at half-level jlev+1, yielding
! derivatives just above that half-level
lw_derivatives_g_reg = singlemat_x_vec(ng,ng,nreg,u_matrix(:,:,jlev+1),
lw_derivatives_g_reg)

! Compute effect of transmittance of layer jlev, yielding
! derivatives just below the half-level above (jlev)
lw_derivatives_g_reg = transmittance(:,:,jlev) * lw_derivatives_g_reg

lw_derivatives(icol, jlev) = sum(lw_derivatives_g_reg)
end do

⇓
...

! Move up through the atmosphere computing the derivatives at each half-level
do jlev = nlev,1,-1

! Inline everything in one loop over g-points
lw_deriv_old = lw_derivatives_g_reg
sum_tmp = 0.0_jprb
associate(A=>u_matrix(:,:,jlev+1), b=>lw_deriv_old)

!$omp simd reduction(+:sum_tmp)
do jg = 1, ng

! Compute effect of overlap at half-level jlev+1, yielding derivatives just above that
! half-level (matrix-vector multiply)
! both inner and outer loop of the matrix loops j1 and j2 unrolled
! inner loop: j2=1 j2=2 j2=3
lw_derivatives_g_reg(jg,1) = A(1,1)*b(jg,1) + A(1,2)*b(jg,2) + A(1,3)*b(jg,3)
lw_derivatives_g_reg(jg,2) = A(2,1)*b(jg,1) + A(2,2)*b(jg,2) + A(2,3)*b(jg,3)
lw_derivatives_g_reg(jg,3) = A(3,1)*b(jg,1) + A(3,2)*b(jg,2) + A(3,3)*b(jg,3)

! Compute effect of transmittance of layer jlev, yielding
! derivatives just below the half-level above (jlev)
lw_derivatives_g_reg(jg,1) = lw_derivatives_g_reg(jg,1) * transmittance(jg,1,jlev)
lw_derivatives_g_reg(jg,2) = lw_derivatives_g_reg(jg,2) * transmittance(jg,2,jlev)
lw_derivatives_g_reg(jg,3) = lw_derivatives_g_reg(jg,3) * transmittance(jg,3,jlev)

sum_tmp = sum_tmp + lw_derivatives_g_reg(jg,1) + lw_derivatives_g_reg(jg,2) + &
& + lw_derivatives_g_reg(jg,3)

end do
end associate

lw_derivatives(icol, jlev) = sum_tmp
end do

Figure 1: Reference (top) and optimized (bottom) version of the longwave derivatives
kernel used by TripleClouds.

1

	Article File
	Figure 1 legend
	Figure 1
	Figure 2 (Latex-generated code listing) legend
	Figure 2 (Latex-generated code listing)
	Figure 3 legend
	Figure 3
	Figure 4 legend
	Figure 4
	Figure 5 legend
	Figure 5
	Figure 6 legend
	Figure 6
	Figure 7 legend
	Figure 7
	Figure A1 (Latex-generated code listing) legend
	Figure A1 (Latex-generated code listing)
	Figure A2 (latex-generated code listing) legend
	Figure A2 (latex-generated code listing)

