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Abstract

Passive Aquatic Listeners (PALs) have been increasingly deployed to collect minute-scale surface oceanic rainfall and wind

information, with a sampling area similar to the spaceborne sensor footprints. This provides an unprecedented opportunity

to validate satellite precipitation products over oceans. This study evaluates the Global Precipitation Climatology Project

(GPCP) daily products, including the widely-used GPCP v1.3 and the newly released GPCP v3.2, over oceans using 58 PALs as

references. The study shows that the GPCP performance depends on time scale, region, and rainfall intensity. The two versions

of GPCP perform similarly at multi-year and monthly scales, while GPCP v3.2 shows substantial improvements in representing

rain occurrence and rain intensity at daily scale. The results also highlight the challenge of precipitation measurement over

certain regions such as the tropical Northeastern Pacific and extratropical North Pacific, where both versions of the GPCP

products perform similarly but exhibit noticeable differences compared to PAL observations.
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Key Points:9

• Passive Aquatic Listeners (PALs) are used to validate GPCP products over global10

oceans.11

• Newly released GPCP Version 3.2 and the previous Version 1.3 daily products are12

compared.13

• The performance of GPCP products depends on time scale, location, and rain-14

fall intensity.15
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Abstract16

Passive Aquatic Listeners (PALs) have been increasingly deployed to collect minute-scale17

surface oceanic rainfall and wind information, with a sampling area similar to the space-18

borne sensor footprints. This provides an unprecedented opportunity to validate satel-19

lite precipitation products over oceans. This study evaluates the Global Precipitation20

Climatology Project (GPCP) daily products, including the widely-used GPCP v1.3 and21

the newly released GPCP v3.2, over oceans using 58 PALs as references. The study shows22

that the GPCP performance depends on time scale, region, and rainfall intensity. The23

two versions of GPCP perform similarly at multi-year and monthly scales, while GPCP24

v3.2 shows substantial improvements in representing rain occurrence and rain intensity25

at daily scale. The results also highlight the challenge of precipitation measurement over26

certain regions such as the tropical Northeastern Pacific and extratropical North Pacific,27

where both versions of the GPCP products perform similarly but exhibit noticeable dif-28

ferences compared to PAL observations.29

Plain Language Summary30

Satellites are the main instruments to quantify precipitation over the ocean, but31

it is difficult to check their accuracy because we do not have many rain gauges over oceans32

to compare with satellites. The Passive Aquatic Listener (PAL) is “the underwater phone”33

to listen to the sound generated when raindrops hit the sea surface. The PAL estimates34

rain rates based on the loudness of the sound at each frequency. This is similar to lis-35

tening to the rain under a tin roof. PAL can drift with ocean currents for years, so it can36

collect rainfall data over a large ocean area. The Global Precipitation Climatology Project37

(GPCP) product is a popular long-term satellite-based precipitation data record to study38

climate, water cycle, and the ocean. This study uses PAL observations to evaluate the39

performance of GPCP’s latest two versions: v1.3, and the newly released GPCP v3.2.40

The results show that the new product is better than the old product in estimating daily41

rainfall, while they are similar when estimating monthly and multi-year rainfall. We also42

notice that they provide similar estimates, which are both quite different from PAL ob-43

servations, over the tropical Northeastern Pacific and extratropical North Pacific.44

1 Introduction45

Precipitation is an essential component of the global water and energy cycles. For46

this reason, it has long been recognized that accurate knowledge of the time, amount,47

and distribution of precipitation plays a fundamental role in understanding the Earth’s48

climate system (Hartmann, 2016). As the largest reservoir of water in this system, the49

oceans receive over 75% of global precipitation and contribute approximately 85% of at-50

mospheric water vapor through evaporation (Lagerloef et al., 2010). The difference be-51

tween precipitation and evaporation (also known as the ocean-atmosphere freshwater flux)52

directly affects the upper ocean temperature, salinity, density, stability, and turbulence53

(Moum & Smyth, 2019; Sallée et al., 2021; O’Kane et al., 2016), This influences oceanic54

and atmospheric circulations and heat content, which regulate climate variability across55

multiple scales (Schmitt, 1995; Durack, 2015). Despite its importance, oceanic precip-56

itation remains one of the least understood elements in the Earth’s climate system due57

to the lack of in-situ observations over oceans (Trenberth et al., 2007; Kidd et al., 2017).58

To fill this gap, satellites have played a major role to quantify oceanic precipita-59

tion. The precipitation-capable spaceborne sensors include infrared (IR), passive microwave60

(PMW) imagers/sounders, and radars. Since each type of sensor has its own strengths61

and limitations, today’s satellite-based precipitation products are built upon a multi-sensor62

approach, which integrates the measurements from a constellation of spaceborne sensors63

to maximize the accuracy, coverage, and resolution of precipitation estimates on a global64

scale (Kidd et al., 2021). Furthermore, long-term climate records of global precipitation65
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can only be achieved through such a multi-sensor strategy (Levizzani et al., 2018). In66

this regard, the Global Precipitation Climatology Project (GPCP) was developed by merg-67

ing PMW/IR sensors and rain gauges (over land) to provide this information to the in-68

ternational community. For a long time, GPCP linked to the World Climate Research69

Programme (WCRP) and Global Energy and Water Experiment (GEWEX) activities70

(Adler et al., 2020).71

GPCP was first introduced in the mid-1990s (Arkin & Xie, 1994; Huffman et al.,72

1997), and since then, it has undergone several iterations to improve the input data sources,73

merging algorithms, and resolution (Huffman et al., 2001; Adler et al., 2003; Huffman74

et al., 2023a). GPCP products have been widely used to study the precipitation clima-75

tology and the hydrologic cycle (e.g., Yu, 2011; Lagerloef et al., 2010). However, vali-76

dating satellite-based precipitation estimates, including GPCP, over oceans remains chal-77

lenging. The in-situ reference data for validation are generally limited to rain gauges,78

which are only available from a small number of atoll/islands sites, moored buoys, and79

research vessels (Bowman, 2005; Sapiano & Arkin, 2009; Pfeifroth et al., 2013; Bolvin80

et al., 2021). Additionally, rain gauges may provide an incomplete representation of pre-81

cipitation compared to satellite data, due to the point sampling nature of gauges rela-82

tive to satellite grid box estimates that are several kilometers wide (Kidd et al., 2021).83

To overcome data limitations at sea, several other ocean-specific precipitation instruments84

have emerged, such as ship-based optical disdrometers (Klepp et al., 2018), ship-based85

motion-stabilized radars (Rutledge et al., 2019), and the subsurface Passive Aquatic Lis-86

teners (PAL; Ma & Nystuen, 2005; Yang et al., 2015).87

Different from rain gauge or ship-based sensors, PAL is an underwater acoustic sen-88

sor (hydrophone) typically mounted on drifting Argo floats (Roemmich et al., 2019), which89

can collect oceanic rainfall and wind information at minute-scale over a large domain.90

In addition, a PAL has a sampling area similar to the footprint of spaceborne sensors,91

making it more comparable to satellite data. Since 2010, 58 PALs have been deployed92

over different oceans, and their observations were recently reprocessed and made avail-93

able for use (Yang et al., 2015; Bytheway et al., 2023). In this study, we leverage this94

newly-available oceanic rainfall dataset to validate GPCP daily products over the ocean.95

To our best knowledge, this work represents the most expansive validation of GPCP daily96

data over oceans because it uses the distributed set of in-situ observations available from97

the state-of-the-art multiyear PAL database.98

2 Data99

2.1 Passive Aquatic Listeners100

PAL is an innovative acoustic sensor, a hydrophone, designed to measure rain rate101

and wind speed routinely over the ocean (J. A. Nystuen et al., 2015; Yang et al., 2015).102

It collects underwater ambient-noise time series at different frequencies and converts them103

into a multi-frequency (1-50 kHz) spectrum of sound pressure levels (SPL). The over-104

all SPL can be attributed to different sources of ocean ambient sound such as raindrops,105

surface wind, wave breaking, marine mammals, and ship traffic. Each of these sound sources106

has a unique spectral shape in terms of its SPL-frequency relation (for more details, see107

Yang et al., 2015; Ma, 2022). These relationships help determine the dominant ambient-108

noise source for each SPL spectrum, and, in the case of rainfall and surface wind speed,109

its intensity. Once the SPL spectrum is classified as either dominated by rain or wind,110

the SPL data at specific frequencies are used to estimate rain rate and wind speed, re-111

spectively. For example, if it is classified as rain, the SPL at 5 kHz (SPL5; in dB) is used112

to estimate rain rate (RR; mm h−1) using a calibrated SPL5-RR relationship. PAL-measured113

acoustic intensity correlates with rain rate, from light to heavy rainfall (Yang et al., 2023).114

PAL is capable of reliably detecting rain rate of 0.2 mm/hour and has recorded rainfall115

rates up to 180 mm/hour over the Eastern Tropical Pacific. The sound of drizzle and116
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light rain is actually the most distinctive, so the PAL algorithm performs incredibly well117

at the lowest rain rates. At wind speeds greater than about 15 m/s, bubbles entrained118

into the ocean from breaking waves attenuate sound from raindrops hitting the ocean119

surface, so quantitative rain retrievals become impossible beyond this wind speed.120

Since 2010, 58 PALs (3 on moorings and 55 on Argo floats) have been deployed dur-121

ing different field campaigns, in which the reliability of PAL-measured rain rates and wind122

speeds has been verified against other in-situ measurements from the field campaigns (Ma123

& Nystuen, 2005; Riser et al., 2019). In general, the uncertainty of PAL-measured rain-124

fall is about 10% (Yang et al., 2015), which is similar to the uncertainty level of other125

in-situ rainfall measurements given the log-normal behavior of rain rate distributions.126

PALs have been mounted on drifting Argo floats and stationary mooring buoys to127

support recent ocean field campaigns, including NASA’s Aquarius Mission (J. Nystuen128

et al., 2011), Salinity Processes in the Upper Ocean Regional Study campaigns (SPURS-129

1 and SPURS-2, E. Lindstrom et al., 2015; E. J. Lindstrom et al., 2019), and NOAA’s130

Tropical Pacific Observing System (TPOS, Smith et al., 2019). The PAL collects data131

along the drifting trajectory of the Argo float. Typically, the Argo float drifts at 1-km132

depth for approximately 9.5 days between the vertical profiling and surface communi-133

cation cycles, and the attached PAL records rain rate data at 2-9 minute sampling in-134

tervals when rainfall is detected (otherwise, wind speed is recorded). The Argo float typ-135

ically traverses less than 3 km/day at this depth. PAL has a circular listening area ap-136

proximately 5 km in diameter when drifting at 1-km depth, making it comparable to space-137

borne sensors as they have similar sampling footprint sizes (Yang et al., 2015; Bytheway138

et al., 2023). PALs on moorings have been deployed at variable depths (e.g., 1 km or a139

few hundred meters). Their surface sampling diameter is smaller, at scales as about 5140

× the depth.141

Figure 1 shows the trajectories or locations of 58 PALs in the current database, span-142

ning the Pacific, North Atlantic, and tropical Indian Oceans. These PALs were deployed143

at different times (between 2010 and 2020) and their operational period varies (1-4 years),144

so the number of PALs available at any given time and location is highly variable. The145

rain rate and wind speed observations from these PALs were recently reprocessed into146

regular 1-minute intervals and made available for use (Bytheway et al., 2023). The dataset147

archive can be accessed through NASA EARTHDATA portal (the URL is provided in148

the Open Research Section), and more details of PALs (e.g., the ID, operational period,149

drifting extent) can be found in the Supporting Information.150

2.2 GPCP Daily Precipitation Products151

The GPCP Version 1.3 (hereinafter referred to as “GPCP v1.3”) is the first-generation152

GPCP daily product to provide 1° gridded precipitation estimates over the entire globe153

from October 1996 to present (Adler et al., 2017). It is based on the One-Degree Daily154

(1DD) technique, which was detailed in Huffman et al. (2001). This technique consists155

of two major parts: (1) the Threshold Matched Precipitation Index (TMPI) algorithm,156

which was used to derive precipitation estimates between 40°N-40°S from low-earth-orbit157

and geostationary IR datasets, with adjustments made to PMW-derived precipitation158

occurrence; and (2) the algorithm developed by Susskind et al. (1997), which was used159

to estimate precipitation over latitudes beyond 40° using the TIROS Operational Ver-160

tical Sounder (TOVS; before 2003) or the Advanced Infrared Sounder (AIRS; since 2003)161

data. Finally, these daily precipitation estimates were calibrated to the GPCP Version162

2.3 satellite-gauge monthly product to ensure accuracy and consistency (Adler et al., 2020;163

Huffman, 1997).164

The GPCP Version 3.2 (hereinafter referred to as “GPCP v3.2”) aims to improve165

the accuracy and resolution of precipitation estimates by utilizing the increased num-166

ber of spaceborne sensors and enhanced merging algorithms in the NASA Global Pre-167
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cipitation Mission (GPM) era. GPCP v3.2 provides daily, global 0.5° gridded precipi-168

tation estimates from June 2000 through September 2021 (Huffman et al., 2023a). Com-169

pared to GPCP v1.3, the major difference in GPCP v3.2 is the replacement of TMPI170

algorithm with NASA’s Integrated MultisatellitE Retrievals for the GPM mission (IMERG)171

algorithm (Huffman et al., 2019). IMERG Final Run precipitation estimates are used172

between 55°N-55°S, while TOVS/AIRS based precipitation estimates are employed at173

higher latitudes. These precipitation estimates were then calibrated to the new GPCP174

v3.2 monthly product (Huffman et al., 2023b) that uses the Merged CloudSat, NASA175

TRMM (Tropical Rainfall Measuring Mission), and NASA GPM climatological precip-176

itation product (MCTG; Behrangi & Song, 2020) over the mid- and high-latitudes oceans177

and an updated Tropical Composite Climatology (TCC; Adler et al., 2009; Wang et al.,178

2014) over the tropical oceans for climatological calibration of the GPCP. In addition,179

GPCP v3.2 contains a diagnostic data field, the probability of liquid phase (PLP; %),180

which accompanies the precipitation estimates to inform the precipitation phase.181

The GPCP v3.2 daily product became available in 2022 with the intention of even-182

tually replacing GPCP v1.3 (Huffman et al., 2023a). While GPCP v1.3 has been widely183

used and discussed in many climate-, ocean- and water-related studies (e.g., Masunaga184

et al., 2019; Yu, 2019; Arabzadeh et al., 2020), the validation of GPCP v3.2 is rarely done,185

especially over oceans due to its recent release and limited reference observations over186

oceans. The following analyses will be conducted in a comparative manner, with a fo-187

cus on GPCP v3.2 and its relative performance compared to GPCP v1.3.188

1. Extratropical North Pacific

2. Tropical Northeastern Pacific

3. Tropical Southeastern Pacific

4. Subtropical North Atlantic

5. Tropical North Indian Ocean

6. Tropical Northwestern Pacific

1. ETNP: 4 PALs 2. TNEP: 20 PALs 3. TSEP: 6 PALs 4. STNA: 18 PALs 5. TNIO: 3 PALs 6. TNWP: 7 PALs
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Figure 1. The trajectories of 58 PALs used in this study, on the global precipitation clima-

tology map derived from GPCP v3.2 (2001-2020). Different colors are used for individual PALs

to enhance visibility. The two white triangles in the zoomed-in inset show the fixed locations of

PALs (on buoy moorings) that were deployed in the tropical Eastern Pacific during SPURS-2.

3 Methodology189

The PAL data are matched to the GPCP 1° (v1.3) and 0.5° (v3.2) grids at daily190

intervals. Each 1-minute PAL rain sample is assigned to a GPCP grid based on its sam-191

pling location. All 1-minute PAL data samples within a given GPCP grid are then av-192

eraged across the daily time window to compute the daily averaged rain rate from PAL.193

This matching and averaging procedure is applied to each PAL, resulting in 58 paired194

PAL-GPCP daily data series. The drifting PALs are unlikely to traverse multiple GPCP195

grid boxes in a day, as Argo floats typically move less than 3 km/day when drifting at196

a 1-km depth (Lebedev et al., 2007; Ollitrault & Colin de Verdière, 2014). Our evalu-197

ation is limited to liquid precipitation (i.e., rainfall), so the paired PAL-GPCP data with198

a PLP value (from GPCP v3.2) below 100 are excluded from the subsequent analyses.199

Approximately 0.8% of the total daily data samples are removed, mainly from the PALs200

deployed beyond 35°N.201
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For each PAL, the paired PAL-GPCP daily data are accumulated monthly, and then202

the daily and monthly data are averaged through the PAL’s operational period to cal-203

culate the multi-year mean monthly and daily rainfall. We compare these paired daily,204

monthly, and multi-year mean PAL-GPCP estimates, and evaluate the performance of205

GPCP in terms of rain detection and rain rate estimation. For rain detection (daily scale206

only), we calculate the contingency table statistics including the probability of detection207

(POD), false alarm ratio (FAR), and Heidke skill score (HSS) based on a rain/no-rain208

detection threshold of 0.5 mm/day. For rain rate estimation, we use relative bias (RB),209

root-mean-square error (RMSE), normalized root-mean-square error (NRMSE), and the210

Pearson correlation coefficient (CC). These four metrics are computed either uncondi-211

tionally (using all PAL-GPCP data including zeros) or conditionally (excluding zeros;212

i.e., for “hits” only).213

We also group the PALs into six regions based on the ocean and latitudes where214

they are deployed (as shown in Figure 1): (1) 4 PALs in the extratropical North Pacific215

(ETNP); (2) 20 PALs in the tropical Northeastern Pacific (TNEP); (3) 6 PALs in the216

tropical Southeastern Pacific (TSEP); (4) 18 PALs in the subtropical North Atlantic (STNA);217

(5) 3 PALs in the tropical North Indian Ocean (TNIO); and (6) 7 PALs in the tropical218

Northwestern Pacific (TNWP). The evaluation results will be summarized using this group-219

ing to understand the region-dependent performance of GPCP.220

To investigate GPCP’s daily performance as a function of rainfall intensity, we cal-221

culate the evaluation metrics under various rain detection thresholds (1, 2, 4, ..., 256 mm/day).222

We combine all the PAL-GPCP daily data for this analysis to ensure sufficient data sam-223

ples. In addition, two probability distribution functions (PDF), the precipitation occur-224

rence PDF (PDFc) and volume PDF (PDFv) are also computed, following the method225

detailed in Li et al. (2013).226
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Figure 2. Scatterplots comparing the multi-year mean rain rates (mm/day) estimated by (a)

GPCP v1.3 and (b) GPCP v3.2 against PAL observations. Each data point corresponds to one

PAL, and the color indicates its group by region.
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4 Results227

4.1 Comparison of Multi-year Mean228

Figure 2 compares the multi-year mean rain rates obtained from the two GPCP229

products and PALs. The GPCP estimates are highly correlated with in-situ observations,230

showing the reliability of GPCP products in characterizing rainfall climatology over oceans.231

The difference between the two GPCP versions is generally small. While GPCP v3.2 has232

slightly improved the underestimation bias compared to GPCP v1.3, it has introduced233

additional variability, resulting in larger RMSE and lower CC values. This increased vari-234

ability can be partially attributed to the higher spatial resolution of GPCP v3.2, which235

has led to realistic sub-degree variations in precipitation estimates. Despite the overall236

similarity to v1.3, GPCP v3.2 has region-dependent changes. For example, v3.2 has con-237

sistently increased multi-year mean rain rates over the tropical Northwestern Pacific and238

decreased multi-year mean rain rates at the tropical Northeastern Pacific. Furthermore,239

the region-dependent visualization in Figure 2 highlights that both GPCP versions have240

significantly underestimated rainfall over the tropical Southeastern Pacific, which will241

be further discussed below.242

4.2 Seasonality and Monthly Evaluation243

GPCP v1.3 and v3.2 perform similarly in representing the seasonality and intra-244

annual variations of rainfall over most regions (Figs. 3a, c, e-f), and there are no con-245

sistent relative improvements in GPCP v3.2 at monthly scale. For example, GPCP v3.2246

better captures the seasonality in the second half of the year over the tropical North In-247

dian Ocean (Fig. 3e), but its overestimation bias at the tropical Northwestern Pacific248

is further increased during the summer (Fig. 3c; also see Table S1 in the Supporting In-249

formation).250

On the other hand, the GPCP estimates significantly differ from PAL observations251

in the tropical Southeastern Pacific and extratropical North Pacific, as shown in Figs.252

3b and d. Specifically, the two GPCP products consistently underestimate rainfall by253

about 60% (see Table S1) throughout all months in the tropical Southeastern Pacific.254

This is likely due to the known limitation of PMW/IR sensors in detecting light and/or255

shallow convective tropical rainfall, which results in a substantial amount of undetected256

rain (Behrangi et al., 2012; Schumacher & Houze, 2003). For the high-latitude North Pa-257

cific, the discrepancy between GPCP and PAL is most noticeable during winter months258

(Nov.-Feb.), with GPCP estimates being considerably higher than PAL observations (rel-259

ative bias exceeds 100%; see Table S1). This is likely because the filtered GPCP daily260

estimates still contain a considerable amount of solid precipitation due to the imperfect261

diagnostic variable PLP (Huffman et al., 2023a). The portion of liquid vs. solid is not262

captured by the PALs since, to date, the PALs and associated algorithms have only been263

designed for quantifying liquid rainfall (though quantifying snowfall is a future research264

possibility). Nevertheless, this comparison highlights the challenge of accurately mea-265

suring wintertime rainfall with GPCP.266

4.3 Daily Rainfall Detection and Estimation Skills267

Figure 4 presents the spatial maps of daily evaluation metrics for GPCP products,268

with detailed statistics provided in Table S2 in the Supporting Information. Compared269

to the previous version (left panels in Fig. 4), GPCP v3.2 (right panels in Fig. 4) shows270

remarkable improvement at daily scale. For rainfall detection (Figs. 4a-c and g-i), it con-271

sistently reduces FAR and thus increases HSS (also see Table S2). After detection, it fur-272

ther improves rain rate estimation with an increased CC at most locations (Figs. 4f, l).273

In addition, visual comparison of the bias maps (Figs. 4d, j) suggests that GPCP v3.2274

generally overestimates rain rates while GPCP v1.3 is dominated by underestimation.275
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Figure 3. Intra-annual distributions of monthly rainfall estimated from GPCP v1.3, GPCP

v3.2 and PAL over different regions (as shown in Fig 1). The comparison includes the mean, and

interquartile range (IQR, i.e., the difference between 25% and 75% quantile, [Q1, Q3]) estimates

of monthly rainfall, which are calculated from N PALs within each region. Here, N represents the

number of PALs.

These relative changes are largely attributed to the incorporation of IMERG Final Run276

into GPCP v3.2. It suggests that the more direct use of PMW information through IMERG277

in GPCP V3.2 daily product, results in the observed improvement over GPCP v1.3 that278

uses TMPI algorithm instead of IMERG.279

The rain detection ability of GPCP v3.2 appears to vary across different ocean re-280

gions as summarized by HSS (Fig. 4i). The product demonstrates the best detection skills281

over the tropical North Pacific, where it has the highest probability of detection (POD>0.6)282

and lowest false alarm rates (FAR<0.4). As it extends towards higher latitudes, either283

its POD decreases over the North Atlantic (with an IQR of 0.44-0.51; see Table S2) or284

FAR notably increases over the North Pacific (with an IQR of 0.60-0.62; see Table S2),285

resulting in degraded detection skills of GPCP v3.2 in these regions. Furthermore, GPCP286

v3.2 shows its lowest detection potential over the tropical Southeastern Pacific and North287

Indian Ocean, where it has minimal POD and HSS values.288

Once rainfall is detected, GPCP v3.2 estimated daily rain rates correlate well with289

the PAL data (with a CC greater than 0.5; Fig. 4l) in most areas, except for the trop-290

ical Southeastern Pacific. The conditional estimation bias shows a mixed pattern with291

both negative and positive values in the tropical oceans, while it tends to be dominated292

by overestimation at higher latitudes, e.g., the North Atlantic and the North Pacific (see293

Fig. 4j). This overestimation bias peaks in the North Pacific, which is consistent with294

the monthly results as shown in Fig. 3d.295

Similar to Figure 3, Figure 4 also highlights the difference of the rainfall estimates296

from GPCP and PAL over the tropical Southeastern Pacific and extratropical North Pa-297

cific, but with more insights. For tropical Southeastern Pacific, there appears to be more298

as a “detection” issue since the GPCP and PAL data are barely correlated, exhibiting299

both low POD and high FAR. In contrast, the extratropical North Pacific is plagued by300

an overestimation problem, which results in high POD and high FAR. Although the ex-301

act reason needs to be further addressed and is outside the scope of this study, this re-302

sult shows the large uncertainty of precipitation measurements over the two regions.303

Figure 5 further shows the improvement of GPCP v3.2 over the prior version as304

a function of daily rainfall intensity. The PDFs (Figs. 5a-b) indicate that the prior ver-305
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sion of GPCP has underestimated the occurrence of both light (<2 mm/day) and heavy306

rainfall (>20 mm/day), and overestimated the contributions from medium rainfall (4-307

16 mm/day) in terms of both rain occurrence and volume. In contrast, the PDFs of GPCP308

v3.2 agree very well with those of PALs, pointing to the success of this new product in309

accurately representing the full spectrum of rainfall over oceans. GPCP v3.2 shows bet-310

ter rainfall detection skills across all rain intensities (Fig. 5c), especially during heavy311

rainfall (note the drop of HSS for GPCP v1.3 when rain rate exceeds 8 mm/day). For312

those detected (i.e., “hits” ) events, GPCP v3.2 tends to overestimate rainfall under var-313

ious intensities while GPCP v1.3 tends to largely underestimate it. The correlation de-314

creases with increased rain rates, but the correlation value for GPCP v3.2 is consistently315

higher (better) than v1.3 by about 0.16.316

5 Conclusions317

Satellite precipitation products such as GPCP have long served as valuable sources318

of oceanic precipitation information, which is critical for our understanding of the cli-319

mate and weather systems, global water and energy cycles, and upper ocean processes.320

Prior to this study, our knowledge of GPCP precipitation estimation performance over321

oceans was limited due to insufficient in-situ observations. With recent advances in oceanic322

observing technology, an increasing number of PALs have been deployed in global oceans323

to collect minute-scale oceanic rainfall data with a surface sampling area similar to space-324

borne sensors. These PALs, mostly drifting at 1-km depth along with Argo floats plus325

a several others on subsurface moorings, cover a broad expanse of ocean areas and many326

years of time, providing us with an unprecedented opportunity to validate satellite pre-327

cipitation estimates over oceans. Using 58 PALS as a reference Bytheway et al. (2023)328

reviewed IMERG, CMORPH, and PDIR-Now, while this study evaluates the GPCP daily329

products, including the widely-used GPCP v1.3 and the newly released GPCP v3.2. Through330

a suite of evaluation metrics, we compare the two GPCP products and assess their per-331

formance as a function of time scale, region, and rainfall intensity. To the best of our knowl-332

edge, this is the first study to validate GPCP daily products using a comprehensive in-333

situ oceanic dataset of PALs.334

GPCP v1.3 and v3.2 perform similarly at multi-year scale. Their multi-year mean335

rainfall estimates are highly correlated with PAL observations (CC of ∼0.9) with only336

slight underestimation (7.8 % for v1.3 and 3.9% for v3.2). This demonstrates their rea-337

sonable performance in characterizing rainfall climatology over oceans and a slight im-338

provement at multi-year time scales from v3.2. The two versions also capture well the339

seasonality and intra-annual variations of rainfall over most oceans (e.g., the tropical North-340

eastern Pacific, tropical Northwestern Pacific, subtropical North Atlantic, and tropical341

North Indian Ocean) with comparable performance.342

When evaluated at daily scale, GPCP v3.2 remarkably outperforms the previous343

version (v1.3) in terms of rain occurrence and rain intensity. Compared to GPCP v1.3,344

GPCP v3.2 reduces FAR and thus improves HSS. It also consistently increases CC at345

most locations. The conditional analysis, which evaluates GPCP’s performance as a func-346

tion of rain intensity, further indicates that GPCP v3.2 consistently exhibits improved347

skill at different intensities. Its estimated probability distribution functions for rainfall348

occurrence and volume closely align with those from PALs, whereas GPCP v1.3 under-349

estimates the occurrence of both light (<2 mm/day) and heavy rainfall (>20 mm/day)350

and overestimates the contributions from medium rainfall (4-16 mm/day).351

Our evaluation highlights two regions, the tropical Southeastern Pacific and extra-352

tropical North Pacific, where both versions of GPCP products exhibit similar performance353

and show noticeable differences from PAL observations at multiple time scales. Although354

the precise causes require detailed analysis outside the scope of this study, the present355
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work highlights the challenges of accurately measuring precipitation with GPCP in these356

two regions.357

This study provides valuable insights into the performance of GPCP daily prod-358

ucts over oceans using in-situ observations from 58 PALs across several oceanic regions.359

It is important to recognize that these PALs are still limited in time and spatial cover-360

age and do not cover the entire global ocean, especially in the southern part. The de-361

ployment of additional PALs would certainly increase the opportunity to further eval-362

uate satellite precipitation products, which is needed to understand how best to use them363

and how to guide their improvements.364

Open Research Section365

GPCP v1.3 daily data can be obtained from the NOAA National Centers for En-366

vironmental Information (NCEI) as part of NOAA Climate Data Record (CDR) Pro-367

gram at https://www.ncei.noaa.gov/data/global-precipitation-climatology-project368

-gpcp-daily/access/. GPCP v3.2 daily data can be accessed from the NASA God-369

dard Earth Sciences Data and Information Services Center (GES DISC) at https://370

disc.gsfc.nasa.gov/datasets/GPCPDAY 3.2/summary. The PAL dataset archive is cur-371

rently available at https://downloads.psl.noaa.gov/psd3/cruises/PAL/, and will372

be also available at NASA ERATHDATA portal at https://doi.org/10.5067/GPMGV/373

PAL/DATA101.374
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Figure 4. Spatial maps of (a, g) probability of detection (POD), (b, h) false alarm ratio

(FAR), (c, i) Heidke skill score (HSS); and conditional (d, j) relative bias (RB), (e, k) normal-

ized root-mean-square error (NRMSE), and (f, l) Pearson’s correlation coefficient (CC) for daily

GPCP v1.3 (left panels) and GPCP v3.2 (right panels) estimates against PALs. The circles rep-

resent the drifting end location of PALs, and rain detection threshold is 0.5 mm/day.
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Figure 5. Comparison of (a) probability distribution function by occurrence (PDFc), (b)

probability distribution function by volume (PDFv), (c) rainfall detection skills (FAR and HSS),

and (d) estimation metrics (RB and CC) as a function of daily rainfall intensity for GPCP prod-

ucts.
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Buehler, S. A. (2018). Oceanrain, A New In-situ Shipboard Global Ocean465

Surface-reference Dataset of All Water Cycle Components. Scientific Data,466

5 (1), 1–22.467

Lagerloef, G., Schmitt, R., Schanze, J., & Kao, H.-Y. (2010). The Ocean and the468

Global Water Cycle. Oceanography , 23 (4), 82–93. doi: 10.5670/oceanog.2010469

.07470

Lebedev, K., Yoshinari, H., Maximenko, N., & Hacker, P. (2007). YoMaHa’07: Ve-471

locity Data Assessed from Trajectories of Argo Floats at Parking Level and at472

the Sea Surface (Tech. Rep. No. 4(2)). IPRC Technical Note.473

Levizzani, V., Kidd, C., Aonashi, K., Bennartz, R., Ferraro, R. R., Huffman, G. J.,474

. . . Wang, N. (2018). The Activities of the International Precipitation Working475

Group. Quarterly Journal of the Royal Meteorological Society , 144 (S1), 3–15.476

doi: 10.1002/qj.3214477

Li, Z., Yang, D., & Hong, Y. (2013). Multi-scale Evaluation of High-resolution478

Multi-sensor Blended Global Precipitation Products over the Yangtze River.479

Journal of Hydrology , 500 , 157–169. doi: 10.1016/j.jhydrol.2013.07.023480

Lindstrom, E., Bryan, F., & Schmitt, R. (2015). SPURS: Salinity Processes in the481

Upper-ocean Regional Study. Oceanography , 28 (1), 14–19.482

Lindstrom, E. J., Edson, J. B., Schanze, J. J., & Shcherbina, A. Y. (2019). SPURS-483

2: Salinity Processes in the Upper-Ocean Regional Study 2 – The Eastern484

Equatorial Pacific Experiment. Oceanography , 6. doi: https://doi.org/10.5670/485

oceanog.2019.207486

Ma, B. B. (2022). Rainfall at Sea: Using the Underwater Sounds of Raindrops as487

a Rain Gauge for Weather and Climate. Acoustics Today , 18 (2), 62. doi: 10488

.1121/AT.2022.18.2.62489

Ma, B. B., & Nystuen, J. A. (2005). Passive Acoustic Detection and Measurement of490

Rainfall at Sea. Journal of Atmospheric and Oceanic Technology , 22 .491
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Abstract16

Passive Aquatic Listeners (PALs) have been increasingly deployed to collect minute-scale17

surface oceanic rainfall and wind information, with a sampling area similar to the space-18

borne sensor footprints. This provides an unprecedented opportunity to validate satel-19

lite precipitation products over oceans. This study evaluates the Global Precipitation20

Climatology Project (GPCP) daily products, including the widely-used GPCP v1.3 and21

the newly released GPCP v3.2, over oceans using 58 PALs as references. The study shows22

that the GPCP performance depends on time scale, region, and rainfall intensity. The23

two versions of GPCP perform similarly at multi-year and monthly scales, while GPCP24

v3.2 shows substantial improvements in representing rain occurrence and rain intensity25

at daily scale. The results also highlight the challenge of precipitation measurement over26

certain regions such as the tropical Northeastern Pacific and extratropical North Pacific,27

where both versions of the GPCP products perform similarly but exhibit noticeable dif-28

ferences compared to PAL observations.29

Plain Language Summary30

Satellites are the main instruments to quantify precipitation over the ocean, but31

it is difficult to check their accuracy because we do not have many rain gauges over oceans32

to compare with satellites. The Passive Aquatic Listener (PAL) is “the underwater phone”33

to listen to the sound generated when raindrops hit the sea surface. The PAL estimates34

rain rates based on the loudness of the sound at each frequency. This is similar to lis-35

tening to the rain under a tin roof. PAL can drift with ocean currents for years, so it can36

collect rainfall data over a large ocean area. The Global Precipitation Climatology Project37

(GPCP) product is a popular long-term satellite-based precipitation data record to study38

climate, water cycle, and the ocean. This study uses PAL observations to evaluate the39

performance of GPCP’s latest two versions: v1.3, and the newly released GPCP v3.2.40

The results show that the new product is better than the old product in estimating daily41

rainfall, while they are similar when estimating monthly and multi-year rainfall. We also42

notice that they provide similar estimates, which are both quite different from PAL ob-43

servations, over the tropical Northeastern Pacific and extratropical North Pacific.44

1 Introduction45

Precipitation is an essential component of the global water and energy cycles. For46

this reason, it has long been recognized that accurate knowledge of the time, amount,47

and distribution of precipitation plays a fundamental role in understanding the Earth’s48

climate system (Hartmann, 2016). As the largest reservoir of water in this system, the49

oceans receive over 75% of global precipitation and contribute approximately 85% of at-50

mospheric water vapor through evaporation (Lagerloef et al., 2010). The difference be-51

tween precipitation and evaporation (also known as the ocean-atmosphere freshwater flux)52

directly affects the upper ocean temperature, salinity, density, stability, and turbulence53

(Moum & Smyth, 2019; Sallée et al., 2021; O’Kane et al., 2016), This influences oceanic54

and atmospheric circulations and heat content, which regulate climate variability across55

multiple scales (Schmitt, 1995; Durack, 2015). Despite its importance, oceanic precip-56

itation remains one of the least understood elements in the Earth’s climate system due57

to the lack of in-situ observations over oceans (Trenberth et al., 2007; Kidd et al., 2017).58

To fill this gap, satellites have played a major role to quantify oceanic precipita-59

tion. The precipitation-capable spaceborne sensors include infrared (IR), passive microwave60

(PMW) imagers/sounders, and radars. Since each type of sensor has its own strengths61

and limitations, today’s satellite-based precipitation products are built upon a multi-sensor62

approach, which integrates the measurements from a constellation of spaceborne sensors63

to maximize the accuracy, coverage, and resolution of precipitation estimates on a global64

scale (Kidd et al., 2021). Furthermore, long-term climate records of global precipitation65
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can only be achieved through such a multi-sensor strategy (Levizzani et al., 2018). In66

this regard, the Global Precipitation Climatology Project (GPCP) was developed by merg-67

ing PMW/IR sensors and rain gauges (over land) to provide this information to the in-68

ternational community. For a long time, GPCP linked to the World Climate Research69

Programme (WCRP) and Global Energy and Water Experiment (GEWEX) activities70

(Adler et al., 2020).71

GPCP was first introduced in the mid-1990s (Arkin & Xie, 1994; Huffman et al.,72

1997), and since then, it has undergone several iterations to improve the input data sources,73

merging algorithms, and resolution (Huffman et al., 2001; Adler et al., 2003; Huffman74

et al., 2023a). GPCP products have been widely used to study the precipitation clima-75

tology and the hydrologic cycle (e.g., Yu, 2011; Lagerloef et al., 2010). However, vali-76

dating satellite-based precipitation estimates, including GPCP, over oceans remains chal-77

lenging. The in-situ reference data for validation are generally limited to rain gauges,78

which are only available from a small number of atoll/islands sites, moored buoys, and79

research vessels (Bowman, 2005; Sapiano & Arkin, 2009; Pfeifroth et al., 2013; Bolvin80

et al., 2021). Additionally, rain gauges may provide an incomplete representation of pre-81

cipitation compared to satellite data, due to the point sampling nature of gauges rela-82

tive to satellite grid box estimates that are several kilometers wide (Kidd et al., 2021).83

To overcome data limitations at sea, several other ocean-specific precipitation instruments84

have emerged, such as ship-based optical disdrometers (Klepp et al., 2018), ship-based85

motion-stabilized radars (Rutledge et al., 2019), and the subsurface Passive Aquatic Lis-86

teners (PAL; Ma & Nystuen, 2005; Yang et al., 2015).87

Different from rain gauge or ship-based sensors, PAL is an underwater acoustic sen-88

sor (hydrophone) typically mounted on drifting Argo floats (Roemmich et al., 2019), which89

can collect oceanic rainfall and wind information at minute-scale over a large domain.90

In addition, a PAL has a sampling area similar to the footprint of spaceborne sensors,91

making it more comparable to satellite data. Since 2010, 58 PALs have been deployed92

over different oceans, and their observations were recently reprocessed and made avail-93

able for use (Yang et al., 2015; Bytheway et al., 2023). In this study, we leverage this94

newly-available oceanic rainfall dataset to validate GPCP daily products over the ocean.95

To our best knowledge, this work represents the most expansive validation of GPCP daily96

data over oceans because it uses the distributed set of in-situ observations available from97

the state-of-the-art multiyear PAL database.98

2 Data99

2.1 Passive Aquatic Listeners100

PAL is an innovative acoustic sensor, a hydrophone, designed to measure rain rate101

and wind speed routinely over the ocean (J. A. Nystuen et al., 2015; Yang et al., 2015).102

It collects underwater ambient-noise time series at different frequencies and converts them103

into a multi-frequency (1-50 kHz) spectrum of sound pressure levels (SPL). The over-104

all SPL can be attributed to different sources of ocean ambient sound such as raindrops,105

surface wind, wave breaking, marine mammals, and ship traffic. Each of these sound sources106

has a unique spectral shape in terms of its SPL-frequency relation (for more details, see107

Yang et al., 2015; Ma, 2022). These relationships help determine the dominant ambient-108

noise source for each SPL spectrum, and, in the case of rainfall and surface wind speed,109

its intensity. Once the SPL spectrum is classified as either dominated by rain or wind,110

the SPL data at specific frequencies are used to estimate rain rate and wind speed, re-111

spectively. For example, if it is classified as rain, the SPL at 5 kHz (SPL5; in dB) is used112

to estimate rain rate (RR; mm h−1) using a calibrated SPL5-RR relationship. PAL-measured113

acoustic intensity correlates with rain rate, from light to heavy rainfall (Yang et al., 2023).114

PAL is capable of reliably detecting rain rate of 0.2 mm/hour and has recorded rainfall115

rates up to 180 mm/hour over the Eastern Tropical Pacific. The sound of drizzle and116
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light rain is actually the most distinctive, so the PAL algorithm performs incredibly well117

at the lowest rain rates. At wind speeds greater than about 15 m/s, bubbles entrained118

into the ocean from breaking waves attenuate sound from raindrops hitting the ocean119

surface, so quantitative rain retrievals become impossible beyond this wind speed.120

Since 2010, 58 PALs (3 on moorings and 55 on Argo floats) have been deployed dur-121

ing different field campaigns, in which the reliability of PAL-measured rain rates and wind122

speeds has been verified against other in-situ measurements from the field campaigns (Ma123

& Nystuen, 2005; Riser et al., 2019). In general, the uncertainty of PAL-measured rain-124

fall is about 10% (Yang et al., 2015), which is similar to the uncertainty level of other125

in-situ rainfall measurements given the log-normal behavior of rain rate distributions.126

PALs have been mounted on drifting Argo floats and stationary mooring buoys to127

support recent ocean field campaigns, including NASA’s Aquarius Mission (J. Nystuen128

et al., 2011), Salinity Processes in the Upper Ocean Regional Study campaigns (SPURS-129

1 and SPURS-2, E. Lindstrom et al., 2015; E. J. Lindstrom et al., 2019), and NOAA’s130

Tropical Pacific Observing System (TPOS, Smith et al., 2019). The PAL collects data131

along the drifting trajectory of the Argo float. Typically, the Argo float drifts at 1-km132

depth for approximately 9.5 days between the vertical profiling and surface communi-133

cation cycles, and the attached PAL records rain rate data at 2-9 minute sampling in-134

tervals when rainfall is detected (otherwise, wind speed is recorded). The Argo float typ-135

ically traverses less than 3 km/day at this depth. PAL has a circular listening area ap-136

proximately 5 km in diameter when drifting at 1-km depth, making it comparable to space-137

borne sensors as they have similar sampling footprint sizes (Yang et al., 2015; Bytheway138

et al., 2023). PALs on moorings have been deployed at variable depths (e.g., 1 km or a139

few hundred meters). Their surface sampling diameter is smaller, at scales as about 5140

× the depth.141

Figure 1 shows the trajectories or locations of 58 PALs in the current database, span-142

ning the Pacific, North Atlantic, and tropical Indian Oceans. These PALs were deployed143

at different times (between 2010 and 2020) and their operational period varies (1-4 years),144

so the number of PALs available at any given time and location is highly variable. The145

rain rate and wind speed observations from these PALs were recently reprocessed into146

regular 1-minute intervals and made available for use (Bytheway et al., 2023). The dataset147

archive can be accessed through NASA EARTHDATA portal (the URL is provided in148

the Open Research Section), and more details of PALs (e.g., the ID, operational period,149

drifting extent) can be found in the Supporting Information.150

2.2 GPCP Daily Precipitation Products151

The GPCP Version 1.3 (hereinafter referred to as “GPCP v1.3”) is the first-generation152

GPCP daily product to provide 1° gridded precipitation estimates over the entire globe153

from October 1996 to present (Adler et al., 2017). It is based on the One-Degree Daily154

(1DD) technique, which was detailed in Huffman et al. (2001). This technique consists155

of two major parts: (1) the Threshold Matched Precipitation Index (TMPI) algorithm,156

which was used to derive precipitation estimates between 40°N-40°S from low-earth-orbit157

and geostationary IR datasets, with adjustments made to PMW-derived precipitation158

occurrence; and (2) the algorithm developed by Susskind et al. (1997), which was used159

to estimate precipitation over latitudes beyond 40° using the TIROS Operational Ver-160

tical Sounder (TOVS; before 2003) or the Advanced Infrared Sounder (AIRS; since 2003)161

data. Finally, these daily precipitation estimates were calibrated to the GPCP Version162

2.3 satellite-gauge monthly product to ensure accuracy and consistency (Adler et al., 2020;163

Huffman, 1997).164

The GPCP Version 3.2 (hereinafter referred to as “GPCP v3.2”) aims to improve165

the accuracy and resolution of precipitation estimates by utilizing the increased num-166

ber of spaceborne sensors and enhanced merging algorithms in the NASA Global Pre-167

–4–



manuscript submitted to Geophysical Research Letters

cipitation Mission (GPM) era. GPCP v3.2 provides daily, global 0.5° gridded precipi-168

tation estimates from June 2000 through September 2021 (Huffman et al., 2023a). Com-169

pared to GPCP v1.3, the major difference in GPCP v3.2 is the replacement of TMPI170

algorithm with NASA’s Integrated MultisatellitE Retrievals for the GPM mission (IMERG)171

algorithm (Huffman et al., 2019). IMERG Final Run precipitation estimates are used172

between 55°N-55°S, while TOVS/AIRS based precipitation estimates are employed at173

higher latitudes. These precipitation estimates were then calibrated to the new GPCP174

v3.2 monthly product (Huffman et al., 2023b) that uses the Merged CloudSat, NASA175

TRMM (Tropical Rainfall Measuring Mission), and NASA GPM climatological precip-176

itation product (MCTG; Behrangi & Song, 2020) over the mid- and high-latitudes oceans177

and an updated Tropical Composite Climatology (TCC; Adler et al., 2009; Wang et al.,178

2014) over the tropical oceans for climatological calibration of the GPCP. In addition,179

GPCP v3.2 contains a diagnostic data field, the probability of liquid phase (PLP; %),180

which accompanies the precipitation estimates to inform the precipitation phase.181

The GPCP v3.2 daily product became available in 2022 with the intention of even-182

tually replacing GPCP v1.3 (Huffman et al., 2023a). While GPCP v1.3 has been widely183

used and discussed in many climate-, ocean- and water-related studies (e.g., Masunaga184

et al., 2019; Yu, 2019; Arabzadeh et al., 2020), the validation of GPCP v3.2 is rarely done,185

especially over oceans due to its recent release and limited reference observations over186

oceans. The following analyses will be conducted in a comparative manner, with a fo-187

cus on GPCP v3.2 and its relative performance compared to GPCP v1.3.188

1. Extratropical North Pacific

2. Tropical Northeastern Pacific

3. Tropical Southeastern Pacific

4. Subtropical North Atlantic

5. Tropical North Indian Ocean

6. Tropical Northwestern Pacific
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Figure 1. The trajectories of 58 PALs used in this study, on the global precipitation clima-

tology map derived from GPCP v3.2 (2001-2020). Different colors are used for individual PALs

to enhance visibility. The two white triangles in the zoomed-in inset show the fixed locations of

PALs (on buoy moorings) that were deployed in the tropical Eastern Pacific during SPURS-2.

3 Methodology189

The PAL data are matched to the GPCP 1° (v1.3) and 0.5° (v3.2) grids at daily190

intervals. Each 1-minute PAL rain sample is assigned to a GPCP grid based on its sam-191

pling location. All 1-minute PAL data samples within a given GPCP grid are then av-192

eraged across the daily time window to compute the daily averaged rain rate from PAL.193

This matching and averaging procedure is applied to each PAL, resulting in 58 paired194

PAL-GPCP daily data series. The drifting PALs are unlikely to traverse multiple GPCP195

grid boxes in a day, as Argo floats typically move less than 3 km/day when drifting at196

a 1-km depth (Lebedev et al., 2007; Ollitrault & Colin de Verdière, 2014). Our evalu-197

ation is limited to liquid precipitation (i.e., rainfall), so the paired PAL-GPCP data with198

a PLP value (from GPCP v3.2) below 100 are excluded from the subsequent analyses.199

Approximately 0.8% of the total daily data samples are removed, mainly from the PALs200

deployed beyond 35°N.201
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For each PAL, the paired PAL-GPCP daily data are accumulated monthly, and then202

the daily and monthly data are averaged through the PAL’s operational period to cal-203

culate the multi-year mean monthly and daily rainfall. We compare these paired daily,204

monthly, and multi-year mean PAL-GPCP estimates, and evaluate the performance of205

GPCP in terms of rain detection and rain rate estimation. For rain detection (daily scale206

only), we calculate the contingency table statistics including the probability of detection207

(POD), false alarm ratio (FAR), and Heidke skill score (HSS) based on a rain/no-rain208

detection threshold of 0.5 mm/day. For rain rate estimation, we use relative bias (RB),209

root-mean-square error (RMSE), normalized root-mean-square error (NRMSE), and the210

Pearson correlation coefficient (CC). These four metrics are computed either uncondi-211

tionally (using all PAL-GPCP data including zeros) or conditionally (excluding zeros;212

i.e., for “hits” only).213

We also group the PALs into six regions based on the ocean and latitudes where214

they are deployed (as shown in Figure 1): (1) 4 PALs in the extratropical North Pacific215

(ETNP); (2) 20 PALs in the tropical Northeastern Pacific (TNEP); (3) 6 PALs in the216

tropical Southeastern Pacific (TSEP); (4) 18 PALs in the subtropical North Atlantic (STNA);217

(5) 3 PALs in the tropical North Indian Ocean (TNIO); and (6) 7 PALs in the tropical218

Northwestern Pacific (TNWP). The evaluation results will be summarized using this group-219

ing to understand the region-dependent performance of GPCP.220

To investigate GPCP’s daily performance as a function of rainfall intensity, we cal-221

culate the evaluation metrics under various rain detection thresholds (1, 2, 4, ..., 256 mm/day).222

We combine all the PAL-GPCP daily data for this analysis to ensure sufficient data sam-223

ples. In addition, two probability distribution functions (PDF), the precipitation occur-224

rence PDF (PDFc) and volume PDF (PDFv) are also computed, following the method225

detailed in Li et al. (2013).226
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Figure 2. Scatterplots comparing the multi-year mean rain rates (mm/day) estimated by (a)

GPCP v1.3 and (b) GPCP v3.2 against PAL observations. Each data point corresponds to one

PAL, and the color indicates its group by region.
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4 Results227

4.1 Comparison of Multi-year Mean228

Figure 2 compares the multi-year mean rain rates obtained from the two GPCP229

products and PALs. The GPCP estimates are highly correlated with in-situ observations,230

showing the reliability of GPCP products in characterizing rainfall climatology over oceans.231

The difference between the two GPCP versions is generally small. While GPCP v3.2 has232

slightly improved the underestimation bias compared to GPCP v1.3, it has introduced233

additional variability, resulting in larger RMSE and lower CC values. This increased vari-234

ability can be partially attributed to the higher spatial resolution of GPCP v3.2, which235

has led to realistic sub-degree variations in precipitation estimates. Despite the overall236

similarity to v1.3, GPCP v3.2 has region-dependent changes. For example, v3.2 has con-237

sistently increased multi-year mean rain rates over the tropical Northwestern Pacific and238

decreased multi-year mean rain rates at the tropical Northeastern Pacific. Furthermore,239

the region-dependent visualization in Figure 2 highlights that both GPCP versions have240

significantly underestimated rainfall over the tropical Southeastern Pacific, which will241

be further discussed below.242

4.2 Seasonality and Monthly Evaluation243

GPCP v1.3 and v3.2 perform similarly in representing the seasonality and intra-244

annual variations of rainfall over most regions (Figs. 3a, c, e-f), and there are no con-245

sistent relative improvements in GPCP v3.2 at monthly scale. For example, GPCP v3.2246

better captures the seasonality in the second half of the year over the tropical North In-247

dian Ocean (Fig. 3e), but its overestimation bias at the tropical Northwestern Pacific248

is further increased during the summer (Fig. 3c; also see Table S1 in the Supporting In-249

formation).250

On the other hand, the GPCP estimates significantly differ from PAL observations251

in the tropical Southeastern Pacific and extratropical North Pacific, as shown in Figs.252

3b and d. Specifically, the two GPCP products consistently underestimate rainfall by253

about 60% (see Table S1) throughout all months in the tropical Southeastern Pacific.254

This is likely due to the known limitation of PMW/IR sensors in detecting light and/or255

shallow convective tropical rainfall, which results in a substantial amount of undetected256

rain (Behrangi et al., 2012; Schumacher & Houze, 2003). For the high-latitude North Pa-257

cific, the discrepancy between GPCP and PAL is most noticeable during winter months258

(Nov.-Feb.), with GPCP estimates being considerably higher than PAL observations (rel-259

ative bias exceeds 100%; see Table S1). This is likely because the filtered GPCP daily260

estimates still contain a considerable amount of solid precipitation due to the imperfect261

diagnostic variable PLP (Huffman et al., 2023a). The portion of liquid vs. solid is not262

captured by the PALs since, to date, the PALs and associated algorithms have only been263

designed for quantifying liquid rainfall (though quantifying snowfall is a future research264

possibility). Nevertheless, this comparison highlights the challenge of accurately mea-265

suring wintertime rainfall with GPCP.266

4.3 Daily Rainfall Detection and Estimation Skills267

Figure 4 presents the spatial maps of daily evaluation metrics for GPCP products,268

with detailed statistics provided in Table S2 in the Supporting Information. Compared269

to the previous version (left panels in Fig. 4), GPCP v3.2 (right panels in Fig. 4) shows270

remarkable improvement at daily scale. For rainfall detection (Figs. 4a-c and g-i), it con-271

sistently reduces FAR and thus increases HSS (also see Table S2). After detection, it fur-272

ther improves rain rate estimation with an increased CC at most locations (Figs. 4f, l).273

In addition, visual comparison of the bias maps (Figs. 4d, j) suggests that GPCP v3.2274

generally overestimates rain rates while GPCP v1.3 is dominated by underestimation.275
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Figure 3. Intra-annual distributions of monthly rainfall estimated from GPCP v1.3, GPCP

v3.2 and PAL over different regions (as shown in Fig 1). The comparison includes the mean, and

interquartile range (IQR, i.e., the difference between 25% and 75% quantile, [Q1, Q3]) estimates

of monthly rainfall, which are calculated from N PALs within each region. Here, N represents the

number of PALs.

These relative changes are largely attributed to the incorporation of IMERG Final Run276

into GPCP v3.2. It suggests that the more direct use of PMW information through IMERG277

in GPCP V3.2 daily product, results in the observed improvement over GPCP v1.3 that278

uses TMPI algorithm instead of IMERG.279

The rain detection ability of GPCP v3.2 appears to vary across different ocean re-280

gions as summarized by HSS (Fig. 4i). The product demonstrates the best detection skills281

over the tropical North Pacific, where it has the highest probability of detection (POD>0.6)282

and lowest false alarm rates (FAR<0.4). As it extends towards higher latitudes, either283

its POD decreases over the North Atlantic (with an IQR of 0.44-0.51; see Table S2) or284

FAR notably increases over the North Pacific (with an IQR of 0.60-0.62; see Table S2),285

resulting in degraded detection skills of GPCP v3.2 in these regions. Furthermore, GPCP286

v3.2 shows its lowest detection potential over the tropical Southeastern Pacific and North287

Indian Ocean, where it has minimal POD and HSS values.288

Once rainfall is detected, GPCP v3.2 estimated daily rain rates correlate well with289

the PAL data (with a CC greater than 0.5; Fig. 4l) in most areas, except for the trop-290

ical Southeastern Pacific. The conditional estimation bias shows a mixed pattern with291

both negative and positive values in the tropical oceans, while it tends to be dominated292

by overestimation at higher latitudes, e.g., the North Atlantic and the North Pacific (see293

Fig. 4j). This overestimation bias peaks in the North Pacific, which is consistent with294

the monthly results as shown in Fig. 3d.295

Similar to Figure 3, Figure 4 also highlights the difference of the rainfall estimates296

from GPCP and PAL over the tropical Southeastern Pacific and extratropical North Pa-297

cific, but with more insights. For tropical Southeastern Pacific, there appears to be more298

as a “detection” issue since the GPCP and PAL data are barely correlated, exhibiting299

both low POD and high FAR. In contrast, the extratropical North Pacific is plagued by300

an overestimation problem, which results in high POD and high FAR. Although the ex-301

act reason needs to be further addressed and is outside the scope of this study, this re-302

sult shows the large uncertainty of precipitation measurements over the two regions.303

Figure 5 further shows the improvement of GPCP v3.2 over the prior version as304

a function of daily rainfall intensity. The PDFs (Figs. 5a-b) indicate that the prior ver-305
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sion of GPCP has underestimated the occurrence of both light (<2 mm/day) and heavy306

rainfall (>20 mm/day), and overestimated the contributions from medium rainfall (4-307

16 mm/day) in terms of both rain occurrence and volume. In contrast, the PDFs of GPCP308

v3.2 agree very well with those of PALs, pointing to the success of this new product in309

accurately representing the full spectrum of rainfall over oceans. GPCP v3.2 shows bet-310

ter rainfall detection skills across all rain intensities (Fig. 5c), especially during heavy311

rainfall (note the drop of HSS for GPCP v1.3 when rain rate exceeds 8 mm/day). For312

those detected (i.e., “hits” ) events, GPCP v3.2 tends to overestimate rainfall under var-313

ious intensities while GPCP v1.3 tends to largely underestimate it. The correlation de-314

creases with increased rain rates, but the correlation value for GPCP v3.2 is consistently315

higher (better) than v1.3 by about 0.16.316

5 Conclusions317

Satellite precipitation products such as GPCP have long served as valuable sources318

of oceanic precipitation information, which is critical for our understanding of the cli-319

mate and weather systems, global water and energy cycles, and upper ocean processes.320

Prior to this study, our knowledge of GPCP precipitation estimation performance over321

oceans was limited due to insufficient in-situ observations. With recent advances in oceanic322

observing technology, an increasing number of PALs have been deployed in global oceans323

to collect minute-scale oceanic rainfall data with a surface sampling area similar to space-324

borne sensors. These PALs, mostly drifting at 1-km depth along with Argo floats plus325

a several others on subsurface moorings, cover a broad expanse of ocean areas and many326

years of time, providing us with an unprecedented opportunity to validate satellite pre-327

cipitation estimates over oceans. Using 58 PALS as a reference Bytheway et al. (2023)328

reviewed IMERG, CMORPH, and PDIR-Now, while this study evaluates the GPCP daily329

products, including the widely-used GPCP v1.3 and the newly released GPCP v3.2. Through330

a suite of evaluation metrics, we compare the two GPCP products and assess their per-331

formance as a function of time scale, region, and rainfall intensity. To the best of our knowl-332

edge, this is the first study to validate GPCP daily products using a comprehensive in-333

situ oceanic dataset of PALs.334

GPCP v1.3 and v3.2 perform similarly at multi-year scale. Their multi-year mean335

rainfall estimates are highly correlated with PAL observations (CC of ∼0.9) with only336

slight underestimation (7.8 % for v1.3 and 3.9% for v3.2). This demonstrates their rea-337

sonable performance in characterizing rainfall climatology over oceans and a slight im-338

provement at multi-year time scales from v3.2. The two versions also capture well the339

seasonality and intra-annual variations of rainfall over most oceans (e.g., the tropical North-340

eastern Pacific, tropical Northwestern Pacific, subtropical North Atlantic, and tropical341

North Indian Ocean) with comparable performance.342

When evaluated at daily scale, GPCP v3.2 remarkably outperforms the previous343

version (v1.3) in terms of rain occurrence and rain intensity. Compared to GPCP v1.3,344

GPCP v3.2 reduces FAR and thus improves HSS. It also consistently increases CC at345

most locations. The conditional analysis, which evaluates GPCP’s performance as a func-346

tion of rain intensity, further indicates that GPCP v3.2 consistently exhibits improved347

skill at different intensities. Its estimated probability distribution functions for rainfall348

occurrence and volume closely align with those from PALs, whereas GPCP v1.3 under-349

estimates the occurrence of both light (<2 mm/day) and heavy rainfall (>20 mm/day)350

and overestimates the contributions from medium rainfall (4-16 mm/day).351

Our evaluation highlights two regions, the tropical Southeastern Pacific and extra-352

tropical North Pacific, where both versions of GPCP products exhibit similar performance353

and show noticeable differences from PAL observations at multiple time scales. Although354

the precise causes require detailed analysis outside the scope of this study, the present355
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work highlights the challenges of accurately measuring precipitation with GPCP in these356

two regions.357

This study provides valuable insights into the performance of GPCP daily prod-358

ucts over oceans using in-situ observations from 58 PALs across several oceanic regions.359

It is important to recognize that these PALs are still limited in time and spatial cover-360

age and do not cover the entire global ocean, especially in the southern part. The de-361

ployment of additional PALs would certainly increase the opportunity to further eval-362

uate satellite precipitation products, which is needed to understand how best to use them363

and how to guide their improvements.364

Open Research Section365

GPCP v1.3 daily data can be obtained from the NOAA National Centers for En-366

vironmental Information (NCEI) as part of NOAA Climate Data Record (CDR) Pro-367

gram at https://www.ncei.noaa.gov/data/global-precipitation-climatology-project368

-gpcp-daily/access/. GPCP v3.2 daily data can be accessed from the NASA God-369

dard Earth Sciences Data and Information Services Center (GES DISC) at https://370

disc.gsfc.nasa.gov/datasets/GPCPDAY 3.2/summary. The PAL dataset archive is cur-371

rently available at https://downloads.psl.noaa.gov/psd3/cruises/PAL/, and will372

be also available at NASA ERATHDATA portal at https://doi.org/10.5067/GPMGV/373

PAL/DATA101.374
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Figure 4. Spatial maps of (a, g) probability of detection (POD), (b, h) false alarm ratio

(FAR), (c, i) Heidke skill score (HSS); and conditional (d, j) relative bias (RB), (e, k) normal-

ized root-mean-square error (NRMSE), and (f, l) Pearson’s correlation coefficient (CC) for daily

GPCP v1.3 (left panels) and GPCP v3.2 (right panels) estimates against PALs. The circles rep-

resent the drifting end location of PALs, and rain detection threshold is 0.5 mm/day.
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Figure 5. Comparison of (a) probability distribution function by occurrence (PDFc), (b)

probability distribution function by volume (PDFv), (c) rainfall detection skills (FAR and HSS),

and (d) estimation metrics (RB and CC) as a function of daily rainfall intensity for GPCP prod-

ucts.
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Table S1. Monthly evaluation statistics for GPCP v1.3 and v3.2 over different regions. Values

outside and in the parentheses are the mean and interquartile range (IQR, i.e., 25% and 75%

quantiles), respectively.

Region RB [%] RMSE [mm] CC [-]

TNEP
−8.1 (−24.6, 5.6)a 92.5 (52.3, 113.1) 0.83 (0.78, 0.88)
−17.6 (−34.1, 6.5)b 90.8 (51.5, 108.5) 0.80 (0.77, 0.89)

TSEP
−66.1 (−89.8, −80.0) 35.1 (24.0, 35.2) 0.01 (−0.19, 0.04)
−63.7 (−88.5, −73.9) 37.7 (24.0, 35.8) 0.16 (−0.06, 0.17)

TNWP
17.5 (2.86, 21.2) 63.1 (32.8, 91.4) 0.75 (0.70, 0.83)
31.5 (15.0, 56.9) 79.3 (49.5, 103.2) 0.48 (0.50, 0.84)

ETNP
106.2 (78.5, 125.2) 66.4 (45.9, 89.0) 0.52 (0.37, 0.68)
100.9 (56.1, 158.6) 68.0 (56.2, 85.4) 0.56 (0.42, 0.65)

TNIO
−19.2 (−11.9, 6.2) 68.5 (27.3, 37.8) 0.75 (0.72, 0.76)
−17.4 (4.2, 24.8) 68.7 (28.8, 37.1) 0.80 (0.76, 0.85)

STNA
−4.9 (−26.2, −11.3) 34.5 (60.8, 79.1) 0.72 (0.73, 0.79)
13.0 (−23.4, −12.9) 34.4 (60.0, 77.4) 0.81 (0.79, 0.81)

a. for each ocean, the upper row is for GPCP v1.3.
b. for each ocean, the lower row is for GPCP v3.2.
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Table S2. Daily evaluation statistics for GPCP v1.3 and v3.2 over different regions. Values

outside and in the parentheses are the mean and interquartile range (IQR, i.e., 25% and 75%

quantiles), respectively. Here, RB, RMSE, and CC are unconditional statistics that complement

the conditional statistics as shown in Figure 4.

Region RB [%] RMSE [mm/day] CC [-]

TNEP
−8.1 (−25.2, 1.4)a 11.3 (8.3, 14.0) 0.42 (0.39, 0.50)
−16.3 (−30.6, 5.9)b 11.8 (9.0, 14.5) 0.61 (0.59, 0.70)

TSEP
−66.5 (−90.2, −72.5) 3.8 (2.4, 3.4) 0.1 (−0.01, 0.06)
−63.5 (−88.7, −73.5) 3.9 (2.3, 3.4) 0.19 (0.05, 0.16)

TNWP
10.6 (−5.2, 19.2) 9.8 (5.9, 13.1) 0.48 (0.44, 0.53)
30.7 (14.4, 56.8) 9.8 (5.3, 13.9) 0.70 (0.65, 0.77)

ETNP
104.2 (76.9, 131.7) 6.5 (5.2, 7.0) 0.29 (0.26, 0.33)
104.6 (69.5, 161.8) 6.6 (5.7, 6.9) 0.45 (0.43, 0.49)

TNIO
−19.4 (−26.4, −11.4) 10.6 (8.9, 12.7) 0.43 (0.38, 0.47)
−17.4 (−23.3, −12.6) 10.3 (9.0, 11.8) 0.62 (0.59, 0.64)

STNA
−5.6 (−12.3, 5.5) 5.0 (4.1, 5.0) 0.50 (0.49, 0.54)
13.0 (5.4, 25.3) 5.2 (4.4, 5.5) 0.69 (0.66, 0.75)

POD [-] FAR [-] HSS [-]

TNEP
0.65 (0.57, 0.80) 0.32 (0.19, 0.45) 0.24 (0.12, 0.29)
0.61 (0.49, 0.77) 0.21 (0.12, 0.30) 0.36 (0.21, 0.49)

TSEP
0.15 (0.03, 0.06) 0.72 (0.59, 0.82) 0.04 (−0.03, 0.03)
0.21 (0.10, 0.13) 0.46 (0.41, 0.54) 0.16 (0.10, 0.16)

TNWP
0.67 (0.48, 0.81) 0.48 (0.35, 0.58) 0.19 (0.15, 0.23)
0.70 (0.65, 0.78) 0.38 (0.26, 0.49) 0.36 (0.32, 0.39)

ETNP
0.60 (0.51, 0.69) 0.62 (0.59, 0.65) 0.15 (0.13, 0.18)
0.61 (0.51, 0.76) 0.61 (0.60, 0.62) 0.18 (0.16, 0.23)

TNIO
0.39 (0.34, 0.45) 0.45 (0.44, 0.46) 0.09 (0.07, 0.11)
0.35 (0.30, 0.41) 0.37 (0.35, 0.37) 0.16 (0.13, 0.21)

STNA
0.37 (0.31, 0.39) 0.54 (0.49, 0.59) 0.21 (0.18, 0.25)
0.48 (0.44, 0.51) 0.42 (0.39, 0.45) 0.36 (0.33, 0.38)

a. for each ocean, the upper row is for GPCP v1.3.
b. for each ocean, the lower row is for GPCP v3.2.
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