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Abstract

We propose a novel reconstruction method for coherent wavefields recorded by dense seismic arrays. The inherent spatio-

temporal coherence in collocated time series is quantified by means of the semblance norm. Using field data recorded by the

1800-station LASSO array and realistic simulations, we demonstrate that the proposed method can reconstruct the wavefields

well and produce more coherent and regularized waveform data with high signal-to-noise ratio. We further examine the

effectiveness of the reconstructed and enhanced data with stacking-based seismic location. The comparison of imaging results

for two synthetic and four field events demonstrates the superiority of reconstructed waveforms regarding source energy focusing

and imaging resolution. Polarity-uncorrected traces of reconstructed waveforms produce high-resolution source images, and the

corresponding short-term average to long-term average traces yield more stable source images with lower imaging resolution,

suggesting the method’s applicability to a wide range of common imaging and monitoring tasks.
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Abstract 24 

We propose a novel reconstruction method for coherent wavefields recorded by dense seismic 25 

arrays. The inherent spatio-temporal coherence in collocated time series is quantified by means 26 

of the semblance norm. Using field data recorded by the 1800-station LASSO array and realistic 27 

simulations, we demonstrate that the proposed method can reconstruct the wavefields well and 28 

produce more coherent and regularized waveform data with high signal-to-noise ratio. We 29 

further examine the effectiveness of the reconstructed and enhanced data with stacking-based 30 

seismic location. The comparison of imaging results for two synthetic and four field events 31 

demonstrates the superiority of reconstructed waveforms regarding source energy focusing and 32 

imaging resolution. Polarity-uncorrected traces of reconstructed waveforms produce high-33 

resolution source images, and the corresponding short-term average to long-term average traces 34 

yield more stable source images with lower imaging resolution, suggesting the method’s 35 

applicability to a wide range of common imaging and monitoring tasks. 36 

 37 

Plain language summary 38 

Dense seismic arrays are now used as a regular tool for seismic surveys at multiple scales, 39 

mainly due to the popularity of portable digital seismometers. However, the irregularity of 40 

seismic station coverage imposes challenges on array-based processing techniques. Here, we 41 

propose a technique that quantifies and utilizes the spatio-temporal coherence of dense seismic 42 

array recordings to arrive at regularized and enhanced data that can improve subsequent 43 

reconstructions. We apply the method to a dense local network consisting of about 1800 stations, 44 

and demonstrate the superiority of the reconstructed data regarding the signal-to-noise ratio and 45 

waveform coherence. We further validate the reconstructed data by source imaging and the 46 

enhanced waveforms produce cleaner and more focused source images. Reconstruction methods 47 

can further maximize the potential of dense arrays and benefit array-based seismic 48 

investigations, to achieve refined source and structure characterization. 49 

  50 
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1. Introduction 51 

Since the establishment of array seismology about two decades ago, seismic arrays and 52 

accompanying methods and applications have gained significant progress. Though originating 53 

from detecting nuclear explosions, seismic arrays are now utilized as a regular and even 54 

standardized tool for seismic monitoring ranging from large natural earthquakes to exploration 55 

and engineering scales (Hansen & Schmandt, 2015; K. L. Li et al., 2017; Furumura & Maeda, 56 

2021; Lei Li et al., 2022). Currently, more and more temporary and/or permanent dense arrays 57 

are deployed on regional and smaller reservoir scales to achieve high-quality earthquake 58 

catalogs, efficient seismic hazards assessment, and dynamic characterizations of related 59 

engineering activities. With densely sampled wavefields, seismic arrays have promoted the 60 

development of array-based processing techniques, such as backprojection and beamforming, 61 

and yielded more detailed reconstructions of seismic sources and subsurface structures (e.g., 62 

Rost & Thomas, 2002; Gibbons & Ringdal, 2006; Karplus & Schmandt, 2018; Zefeng Li et al., 63 

2018).  64 

 65 

Dense arrays can offer high-quality and even regularized full wavefields, which share similarities 66 

with recorded waveforms of controlled active sources in reflection seismology. Though the 67 

purposes may vary for seismic monitoring at different scales, the well-established summation-68 

based techniques, such as seismic migration, which originate from exploration seismology are 69 

becoming routinely applicable in passive seismology when the station coverage is sufficiently 70 

dense.  Dense arrays were shown to yield data that can be used for directly constructing energy 71 

images of seismic sources, even for triggered and/or induced microearthquakes with low signal-72 

to-noise ratios (SNRs) (Kao & Shan, 2004; Steiner et al., 2008; Lei Li, Tan, et al., 2020).  73 

Waveform stacking and reverse-time imaging methods are successfully applied to automatically 74 

detect and locate microseismic events monitored with sparse and dense arrays, respectively 75 

(Hansen & Schmandt, 2015; K. L. Li et al., 2017). 76 

 77 

One type of modern arrays is the extremely dense local network with a large number (Large-N) 78 

of sensors. For example, the Large-N array consisting of 5200 sensors in the City of Long Beach 79 

has been utilized to recover high-resolution 3D shear velocity structure (Lin et al., 2013) and 80 
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improve the detection capacity of earthquake monitoring networks in urban areas (Yang et al., 81 

2022). However, due to varying surface and deployment conditions and the relatively high cost 82 

of the array deployment, the data quality of dense arrays might not always be as good as 83 

expected. In this case, waveform reconstruction techniques can make use of waveform 84 

similarities across neighboring stations to enhance the data quality or estimate the response at 85 

intermediate or nearby locations where no stations had been deployed (see e.g., Chen et al., 86 

2019). Modern large-N station deployments, for the first time, promise to allow for a complete 87 

and un-aliased reconstruction of the full seismic wavefield. 88 

 89 

Building on the coherence of waveforms across neighboring stations, summation-based 90 

techniques originating in controlled-source seismology can be used for targeted and surgical data 91 

preconditioning and improved (micro-) seismic monitoring. Here we demonstrate the 92 

applicability and effectiveness of such a framework for enhanced seismic source location for the 93 

Large-N Seismic Survey in Oklahoma (LASSO; Dougherty et al., 2019). Backed up by 94 

numerical simulations it is found that noise levels can be effectively reduced and that for 95 

favorable sampling conditions, the effective number of stations can be increased manifold, 96 

thereby allowing for a targeted reconfiguration of the array for improving waveform-based event 97 

location accuracy. 98 

 99 

2. Methodology 100 

In exploration seismology, summation-based coherence analysis is known to be noise-robust and 101 

was shown to be a powerful and expressive foundation for process automation (Jäger et al., 102 

2001), effective data preconditioning (Höcht et al., 2009), weak wavefield separation (Schwarz, 103 

2019) and data-driven velocity inversion (Duveneck, 2004; Bauer et al. 2017, Diekmann et al., 104 

2019).We quantify spatiotemporal wavefield coherence by means of the semblance norm 𝑆 105 

(Neidell & Taner, 1971), which can be viewed as the ratio of the stack (beam) energy and the 106 

total energy considered in a data window of interest, 107 

𝑆(𝑥0, 𝑦0, 𝑡0) =
1

𝑛

∑ [∑ 𝐷(𝑥0+𝛥𝑥𝑖,𝑦0+𝛥𝑦𝑖,𝑡0+𝛥𝑡𝑖)𝑛
𝑖=1 ]

2
𝛿𝑡

∑ ∑ 𝐷2(𝑥0+𝛥𝑥𝑖,𝑦0+𝛥𝑦𝑖,𝑡0+𝛥𝑡𝑖)𝑛
𝑖=1𝛿𝑡

 ,    (1) 108 
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where 𝐷 refers to the data amplitude and (𝑥0, 𝑦0) to the reconstruction point within the array. 109 

The lateral separation of the i-th neighboring station is denoted by (𝛥𝑥𝑖 , 𝛥𝑦𝑖), and 110 

∆𝑡𝑖 =  𝑝𝑥∆𝑥𝑖 + 𝑝𝑦∆𝑦𝑖 +
1

2
(𝐻𝑥𝑥∆𝑥𝑖

2 + 2𝐻𝑥𝑦∆𝑥𝑖∆𝑦𝑖 + 𝐻𝑦𝑦∆𝑦𝑖
2)   (2) 111 

is a second-order approximation of traveltime moveout caused by an elliptical wavefront 112 

observed in the local vicinity of the considered reference location (𝑥0, 𝑦0). In this local 113 

approximation, the tilt of the wavefront is characterized by the horizontal slowness vector 114 

(𝑝𝑥, 𝑝𝑦) and wavefront curvature is governed by the elements of the Hessian of the traveltime 115 

𝐻𝑥𝑥, 𝐻𝑥𝑦, and 𝐻𝑦𝑦 (e.g., Bortfeld, 1989; Diekmann et al., 2019). In order to not mis-associate 116 

different phases, the time window 𝛿𝑡 should be chosen reasonably small and, in practice, often 117 

corresponds to the pre-dominant signal period of interest. Because 𝑆 takes only values between 0 118 

(not at all coherent) to 1 (perfectly coherent), it lends itself well for optimization. 119 

 120 

To ensure reliable convergence even for very low SNRs, we employ a differential evolution 121 

global optimizer to locally maximize 𝑆 for every considered reconstruction point (e.g., Das & 122 

Suganthan, 2011). In order to increase robustness and reduce computational costs, we further 123 

assume local spherical symmetry of the wavefront, which corresponds to coinciding Hessian 124 

components in x and y direction. As an extension of conventional beamforming (e.g., Rost & 125 

Thomas, 2002), the optimization of 𝑆 leads to a data-derived estimate of the local horizontal 126 

slowness vector of the emerging wavefront and  its curvature radius, which in turn allows for the 127 

reconstruction of the data amplitude 𝐷 via 128 

𝐷(𝑥0, 𝑦0, 𝑡0) =
1

𝑛
𝑆(𝑥0, 𝑦0, 𝑡0) ∑ 𝐷(𝑥0 + 𝛥𝑥𝑖 , 𝑦0 + 𝛥𝑦𝑖, 𝑡0 + 𝛥𝑡𝑖) 𝑛

𝑖=1 .   (3) 129 

In equation (3), weighting by the semblance has a noise-suppression effect comparable to phase-130 

weighted stacking (Schimmel & Paulssen, 1997) without leading to undesired distortions of the 131 

waveforms. For mere data enhancement purposes, coherence analysis and wavefield 132 

reconstruction is performed for every actual station location within the array, whereas a 133 

departure from the actual station geometry results in the construction of a new, imaginary station 134 

response. Thus, the technique can also be used to inter- and extrapolate fields and reconfigure the 135 

overall array geometry. 136 
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 137 

To further assess the improvement of data enhancement by the proposed framework, we test it 138 

with stacking-based seismic source location using synthetic and field waveforms from a Large-N 139 

array. Stacking-based location methods, as a modern but well-established methodology, have 140 

been widely used to automatically detect and locate seismic events at local and regional scales 141 

(Grigoli et al., 2013; Shi et al., 2019; Yang et al., 2022). The methods share the essence of 142 

weighted backprojection/stacking of wavefields with Kirchhoff migration (Esmersoy & Miller, 143 

1989), and the source location can be easily picked from the energy-focused image. In general, 144 

only primary phases are used due to the dominant energy, though all subsequent phases are 145 

usable in theory. Diffraction stacking (DS) is the most common operator which simply 146 

summarizes waveforms from individual stations along a theoretical traveltime moveout curve 147 

(Baker et al., 2005; Gajewski et al., 2007; Ishii et al., 2005; Kao & Shan, 2004). The formula of 148 

the DS method reads as follows, 149 

𝑀𝐷𝑆(𝑥, 𝑡𝑠) = ∑ 𝐶𝐹𝑖(𝑡)𝛿[𝑡 − (𝑡𝑠 + 𝑡𝑖,𝑥)]𝑁
𝑖=1 ,      (4) 150 

where 𝑀𝐷𝑆(𝑥, 𝑡𝑠) is the stacking value, 𝑥 denotes the source coordinates, 𝑡𝑠 denotes the source 151 

origin time, 𝐶𝐹𝑖(𝑡)  is the characteristic function (CF) of the waveform  recorded at station 𝑖, 152 

𝛿[𝑡 − (𝑡𝑠 + 𝑡𝑖,𝑥)] is the DS operator, where 𝛿 is the Dirac delta function and 𝑡𝑖,𝑥 is the theoretical 153 

travel time from station 𝑖 to the source 𝑥. Through simple mathematical derivation and testing, 154 

we know that the basic imaging patterns of DS are deformed circular arc and spherical surface 155 

intersections under general 2D and 3D models, respectively (L. Li et al., 2018). For surface 156 

monitoring, there is an inherent depth-origin time tradeoff when determining the source locations 157 

by searching for the maximum imaging values. 158 

 159 

3. Dataset 160 

The LASSO experiment, led by the USGS, is a recent and notable example of a Large-N dense 161 

array involving more than 1800 single-component nodal seismometers with 500 Hz sampling 162 

rate, covering a 25 km by 32 km area of active saltwater disposal in northern Oklahoma (Figure. 163 

1, Dougherty et al., 2019). The seismometers were buried in shallow holes along county roads 164 

with a spacing of ∼400 m, yielding a dense and regularized pattern which is ideal for wavefield 165 
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reconstruction and regularization. The LASSO array operated for nearly a month from April to 166 

May of 2016 and recorded more than 3000 events (Peña Castro et al., 2019), including the 112 167 

local events from the Oklahoma Geological Survey (OGS) earthquake catalog. Several recent 168 

studies have shown the suitability of the array for analyzing the spatiotemporal clustering of 169 

seismicity (Cochran et al., 2020), source spectral properties (Kemna et al., 2020), near-source 170 

radiation patterns (Trugman et al., 2021), and the leaking modes from ambient noise (Zhengbo 171 

Li et al., 2022). Two events from the OGS catalog beneath the array have already been used to 172 

demonstrate the effectiveness of DS-based seismic location methods at regional scale (Lei Li, 173 

Xie, et al., 2020). 174 

 175 

In this work, we use the array to investigate the performance of wavefield reconstruction and its 176 

advantages for seismic source location. We select four field events from both the OGS catalog 177 

and the extended catalog from previous studies (Dougherty et al., 2019; Peña Castro et al., 2019; 178 

Trugman et al., 2021). Two events from the OGS catalog denoted by the numbers 24021 and 179 

23183 were located near the western margin and outside of the array, respectively. The other two 180 

events from the extended catalog have a magnitude of ML 0.08 and ML 2.03 and were located 181 

near the central area of the array. In the following, we refer to these four events by ‘event 182 

24021’, ‘event 23183’, ‘event ML008’, and ‘event ML203’, respectively.  183 

 184 

To further validate the reliability of the proposed workflow, we also conduct numerical 185 

simulations to mimic the field-recorded waveforms of event 24021 and event ML203 under 186 

controlled and reproducible conditions. The finite-difference method is adopted to generate the 187 

synthetic waveforms with double-couple source mechanisms in an isotropic layered model 188 

(Rubinstein et al., 2018; L. Li et al., 2021). Real noise recorded by the LASSO array is added to 189 

the synthetic waveforms to simulate realistic conditions with varying SNR levels (see 190 

supplementary information S1).  191 

 192 
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 193 

Figure 1. The location and layout of the LASSO array. (a) the LASSO array is located in Oklahoma, North 194 

America; (b) the station layout of the array, the small circles denote the positions of the ~1800 stations, the single 195 

large circle denotes the local aperture of 5 km that is mainly discussed in this work; (c) the discretization of the 196 

reconstruction grid is 500 m in x and y direction (trace density maps for  apertures of 3 km and 7 km can be found in 197 

Figure S1). The reference point (x, y) = (0, 0) corresponds to x= 579000 and y= 4051000 in the UTM coordinate 198 

system. (d) Temporal snapshots of the raw waveform data recorded for events ML008, 24021, ML203, and 23183 199 

(from left to right), respectively. (e) Semblance estimated locally on the regular grid. The green markers denote the 200 

cataloged epicenter locations. 201 

 202 
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4. Results 203 

4.1 Waveform Coherence Analysis 204 

Wavefield snapshots of events recorded with the LASSO array indicate that the dense station 205 

coverage allows to infer the directionality and curvature of wavefronts. Despite the favorable 206 

station configuration, however, waveform coherence is either compromised by the presence of 207 

noise sources, or by coda complexity indicating the presence of structure-related secondary 208 

sources in the near subsurface. In Figure 1(d), such snapshots are displayed for events ML008, 209 

24021, ML203, and 23183, respectively. While for very small magnitudes, the primary signal 210 

threatens to drown in the ambient noise field (compare e.g., event ML008), stronger events allow 211 

for the discrimination of different phases, independent of whether the sources were located 212 

directly underneath or outside of the array. Figure 1(e) shows the distribution of waveform 213 

coherence, represented by the semblance coefficient (equation (1)) evaluated on a dense regular 214 

grid with an increment of 500 m in x and y direction, respectively. For all four considered events, 215 

first arrivals appear as prominent coherent signatures that follow the primary wavefront 216 

traversing the LASSO array. A comparison with the raw waveform data displayed in (d) 217 

indicates that especially later-arriving phases of lower amplitude become more easily 218 

recognizable in the positive-definite semblance map (e). The semblance can be directly utilized 219 

to enhance the waveform consistency and SNR (compare Figures S2-S5). Accompanying the 220 

regular semblance grid are fields of local estimates of the horizontal slope vector (𝑝𝑥, 𝑝𝑦) as a 221 

by-product of the optimization procedure. The estimated slope and semblance fields allow for a 222 

multitude of applications, including but not limited to wavefront-tomographic inversion 223 

(Diekmann, et al. 2019). 224 

 225 

First and foremost, following equation (3), these quantities enable the reconstruction of the 226 

recorded seismic waveforms by performing coherence-weighted local directional summation 227 

(averaging) within circular apertures of 5 km radius. Following this strategy, folds of up to 90 228 

can be reached in the central parts of the array and a natural tapering occurs once the spatial grid 229 

leaves the array (compare Figure 1(c)). In Figure 2, results of coherent wavefield reconstruction 230 

of event ML203 on the 500 x 500 m spatial grid are compared with the respective raw waveform 231 

data that went into the analysis. To more systematically investigate the noise suppression 232 
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performance of the method, three realistic synthetic reproductions of the event are shown 233 

alongside the field data recordings and their reconstruction. The three synthetic versions of 234 

ML203 are characterized by different noise levels, covering the noise-free case and SNRs of ~1 235 

and less than 1, respectively. For all three synthetic realizations and the original field data, the 236 

reconstruction preserves coherent energy and suppresses incoherent noise, resulting in cleaner, 237 

more continuous, and more resolved datasets that can subsequently be used for improved source 238 

imaging. Although this is not fully verified yet, in the field data case, circular shapes in the 239 

northern part of the primary wavefront (compare the fourth column in Figure 2(b)) might 240 

indicate the presence of a secondary source – possibly related to distinct lateral change in 241 

structure – that could have been excited by event ML203. 242 

 243 

 244 

Figure 2. Coherent wavefield reconstruction performed on the same 500 m x 500 m spatially regular grid as for the 245 

semblance optimization, whose results are displayed in Figure 2(b). Displayed are 4 different versions of event 246 

ML203 – noise-free synthetics, synthetics with SNR ~1, synthetics with SNR <1, and the actual field data 247 

recordings (from left to right). Like in Figure 2, the cataloged event location and the station locations in (b) are 248 

denoted by a green marker and black dots, respectively. Results for all the four field events using different apertures 249 

and time series plots can be found in Figures S3, S4 and S5). 250 
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 251 

4.2 Stacking-based Seismic Source Images  252 

 In the following, we consider P-waves only when stacking the source energy using equation (3), 253 

since only vertical components are available in field data and the P-wave, as the primary phase, 254 

is not contaminated by subsequent phases.  255 

Figure 3 shows the source imaging results of STA/LTA traces for the synthetic and field event 256 

ML203, directly corresponding to Figure 2. The relatively large number of stations in this dense 257 

array can tolerate a certain amount of noise, while the reconstructed waveforms produce higher 258 

imaging resolution even though the raw waveforms are contaminated by high-level noise. As 259 

observed and discussed in Section 4.1, the reconstructed waveforms exhibit a higher coherence 260 

and SNR, which naturally produce stacking-based source images with more coherent energy 261 

concentration and higher imaging resolution. The horizontal locations are basically consistent 262 

with reference values from the catalog and/or previous studies (indicated as white circles). The 263 

slightly biased depth locations are mainly resulting from the combined effects of velocity 264 

uncertainty and the inherent depth-origin time tradeoff. The dense surface array also yields 265 

higher imaging resolution in the horizontal direction than in the depth direction.  266 

 267 

Figure 4 shows the source imaging results of raw waveforms for the two controlled simulations 268 

of events ML203 and 24021. After wavefield reconstruction, the imaging results show only few 269 

and comparably weak secondary peaks and fewer artifacts. The improvements in Figure 4(a) 270 

indicate that while trace summation carried out during reconstruction leads to decreased noise 271 

levels not only in the reconstructed domain, but also in the subsequently formed image. Figure 272 

4(b) on the other hand illustrates the positive impact the regularizing and interpolating 273 

capabilities of the reconstruction have on waveform-based high-resolution source imaging. In 274 

summary, the reconstructed waveforms from this dense array enable high-resolution source 275 

images with polarity-uncorrected waveforms. The results for two other field events (ML008 and 276 

23183) can be found in Figures S6 and S7. The highly consistent imaging results of the same 277 

event using different input waveforms further demonstrate the reliability of the proposed 278 

reconstruction strategy. 279 



manuscript submitted to Geophysical Research Letters 

 

 280 

Figure 3. The source imaging results of STA/LTA traces for the synthetic and field event ML203. The left column 281 

corresponds to the result of using unreconstructed waveforms, and the right column images result from the use of 282 

wavefield reconstruction. (a) to (c) correspond to results gained with realistic synthetic waveforms with different 283 

noise levels applied, (d) shows the results of the field event ML203. Reference locations from the catalog and/or 284 

previous studies are indicated by a circle. 285 
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 286 

 287 

Figure 4. The source imaging results of raw traces for the synthetic event ML203 (a) and synthetic event 24021 (b). 288 

The left column corresponds to the result of unreconstructed waveforms, and the right column images made use of 289 

wavefield reconstruction. Real locations are indicated as white circles. Whereas in (a), severe noise contamination of 290 

the raw data leads to a strong noise footprint in the image, the strong artifacts in the raw-data image in (b) result 291 

from insufficient spatial sampling of the LASSO array in the vicinity of the source.  292 

 293 

Compared with polarity-uncorrected raw traces, the corresponding stacked values are smeared 294 

more severely and the imaging resolution is lower for STA/LTA traces mainly due to the lower 295 

waveform resolution (compare Figures S6 and S7). Since the STA/LTA function further 296 

improves the SNR by flattening the waveforms and suppressing phase information, the 297 

respective imaging profiles are cleaner but exhibit stronger footprints surrounding the source 298 

area, suggesting prominent energy concentration along the isochronous surfaces. Consequently, 299 

the results of STA/LTA traces involving different input waveforms are relatively stable and the 300 

contrast of their imaging resolution is gentler. It is worth noting that using original polarity-301 

uncorrected waveforms to stack the source energy involves the possibility of blurring the 302 

inferred source locations, if the combined effects of source mechanism and source-receiver 303 
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geometry accidentally yield severely destructive results (e.g., Zhebel & Eisner, 2015). 304 

Alternatively, with more coherent and regular waveform records, we can obtain reliable source 305 

images and location estimates with even fewer traces, and thus, help to lower computational 306 

demands for source location and other subsequent processing tasks. 307 

 308 

5. Discussion 309 

While the noise suppression and regularization capabilities of coherent wavefield reconstruction 310 

could be successfully demonstrated for the LASSO array, it needs to be stated that not all array 311 

configurations are equally suitable for such a reconstruction. Especially very directional array 312 

configurations, such as the typically T-shaped array geometries introduced for nuclear test 313 

monitoring make a 3D spatio-temporal reconstruction of the wavefield more challenging in 314 

practice. However, if only coherent data enhancement is concerned, 2D projections of wavefields 315 

can still be successfully regularized and enhanced with reduced (2D) moveout operators and 316 

directional (2D) apertures. One prominent use case of such 2D projections is fiber-optic 317 

distributed acoustic sensing (DAS), where strain or strain rate is recorded along the local axis of 318 

buried fiber-optic cables (e.g., Lindsey et al., 2017; Jousset et al., 2018). In the context of 319 

volcano monitoring, coherent data enhancement techniques were demonstrated to improve the 320 

sensitivity and overall data quality of DAS arrays (Jousset et al., 2022). No matter whether 2D or 321 

3D applications are concerned, the appropriate choice of local spatial aperture dimensions are 322 

crucial for the success of the method. There exists a natural trade-off between fold (the more 323 

neighboring traces are included the better are the noise suppression capabilities) and wavefield 324 

complexity (the smaller the aperture, the more wavefield complexity can be honored). So, while 325 

a simple circular aperture radius of 5 km led to reasonable results for LASSO, more complicated 326 

and possibly spatially varying aperture dimensions should be utilized under less favorable 327 

conditions (compare supplementary Figures S2 and S3). 328 

 329 

We present the imaging results for all considered events to further demonstrate the effectiveness 330 

of waveform reconstruction, but the source-receiver geometry is not the only dominant factor for 331 

stacking-based methods, other factors like velocity model and stacking operators also directly 332 
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affect the final imaging results. Besides, this work only presents a qualitative evaluation of the 333 

imaging resolution. A detailed quantitative analysis of the imaging resolution is out of the scope 334 

of the current study, and we are aware that a comprehensive uncertainty evaluation of source 335 

imaging remains challenging so far. Though we only investigate the performance of coherent 336 

wavefield reconstruction with stacking-based seismic location, we believe the proposed method 337 

can introduce benefits for other array-based techniques and other scenarios associated with dense 338 

seismic arrays. For example, time reverse techniques rely on dense and regular wavefields to 339 

produce coherent and focused imaging results (e.g., Werner & Saenger, 2018). We believe 340 

reconstructed wavefields have good potential to achieve improved subsurface structures and 341 

source characterizations by enhancing the imaging profiles. Besides, the enhanced and 342 

regularized wavefields can be used for various subsequent seismic processing, such as 343 

constraining velocity tomography and seismic migration, detecting small earthquakes, and 344 

facilitating source mechanism inversion. 345 

6. Conclusions 346 

We proposed a novel reconstruction method for coherent seismic wavefields with dense arrays. 347 

The spatiotemporal wavefield coherence embedded in the dense seismic array is quantified and 348 

utilized to reconstruct the wavefields. The summation-based techniques enable the method 349 

adapted to weak events with low SNRs. Application to both realistic and field seismic events 350 

recorded by the dense LASSO array in Oklahoma reveals improved SNR, data coherence and 351 

regularity. Results of events at different locations demonstrate the applicability of the proposed 352 

method in waveform reconstruction to general source distributions. To further examine the 353 

merits of the proposed method, we tested the reconstructed waveforms using stacking-based 354 

location and compared the imaging results with those of unreconstructed waveforms. 355 

Reconstructed waveforms produce better location results accounting for the SNR and resolution 356 

of the images, due to their higher SNRs and data coherence than unreconstructed waveforms.  357 

 358 

Data Availability Statement 359 

Field waveform data in this study are archived by the IRIS-DMC and are available for public 360 

download using the PH5 Web Services Interface under network code 2A 361 
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(http://service.iris.edu/ph5ws/dataselect/docs/1/builder/, last accessed March 2023). Synthetic 362 

waveforms are generated with the open-source FDwave3D package (L. Li et al., 2021). The 363 

reconstruction and source imaging results are freely accessible in an open repository (L. Li & 364 

Schwarz, 2023). The easily reproducible reconstruction algorithm was written in the high-365 

performance programming language Julia (Bezanson et al., 2017) and semblance maximization 366 

was accomplished with Julias global optimization library BlackBoxOptim.jl (Feldt & Stukalov, 367 

2018). Visualizations (images and animations) were generated with the Julia plotting API Plots.jl 368 

and Makie.jl – a flexible open-source plotting library for the Julia language (Danisch & 369 

Krumbiegel, 2021). 370 
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Introduction  

The text, figures and table included in this document are designed to 

complement and support the analysis presented in the main text.  

 

 

Text S1: Generation of realistic waveform data  

To generate realistic synthetic data, we use the same model parameters 

of event ML203 and event 24021, including the velocity model, source 

parameters, and station geometry, to simulate the waveforms, and then add 

corresponding field noise from each station to respective traces of synthetic 

waveforms. The noise is created and defined by the following equation (Staněk 

et al., 2014) :  

𝑁𝑜𝑖𝑠𝑒 =  
𝐴𝑛𝑜𝑖𝑠𝑒

𝑚𝑒𝑎𝑛(|𝐴𝑛𝑜𝑖𝑠𝑒|)
∙ 𝑚𝑒𝑎𝑛(|𝐴𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐|) ∙ 𝑁𝐿 ,              (S1) 



where 𝐴𝑛𝑜𝑖𝑠𝑒 is the noise retrieved from field waveforms on each trace at a given 

time window before the first arrival, 𝐴𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 is the computed amplitudes for the 

given model parameters, 𝑁𝐿 means the level or intensity of the noise, which 

approximates the reversed value of the SNR. The selected noise amplitudes are 

extended recurrently to match the noise-free synthetic amplitudes. In this work, 

we select the first 400 samples of noise amplitudes from each trace to resemble 

the field noise and set the noise level as 0, 5, and 10, denoting them as noise-

free, SNR~1, and SNR<1, respectively. The 𝑁𝑜𝑖𝑠𝑒 is then added to the original 

synthetic amplitudes to obtain realistic waveforms with field noise:  

𝐴𝑟𝑒𝑎𝑙 =  𝐴𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 + 𝑁𝑜𝑖𝑠𝑒 .                        (S2) 

The noisy synthetic waveforms are normalized trace by trace before 

entering the reconstruction and location workflow.  
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Figure S1. Number of traces in different apertures 

 



Figure S2. Coherence of the four field events using different apertures 

 
 



Figure S3. Reconstructed wavefields of the four field events using different 

apertures 

 
 

  



Figure S4. Unreconstructed and reconstructed waveforms of the four field 

events. (a) event ML008, (b) event 24021, (c) event ML203, (d) event 23183. The 

left column corresponds to raw traces of unreconstructed waveforms, and the 

right column are those of reconstructed waveforms. Only portions (50 traces) of 

the seismograms are shown.  

 
 

 

  



Figure S5. STA/LTA traces of the unreconstructed raw waveforms and 

reconstructed waveforms of the synthetic and field event ML203. The left column 

corresponds to STA/LTA traces of unreconstructed waveforms, and the right 

column are those of reconstructed waveforms. (a) to (c) correspond to different 

noise levels, (d) corresponds to the field event ML203. Only portions (about 50 

traces) of the seismograms are shown.  

 
 

  



Figure S6. The source imaging results for the four field events using raw traces. 

(a) event ML008, (b) event 24021, (c) event ML203, (d) event 23183. The left 

column corresponds to the result of unreconstructed waveforms, and the right 

column images result from reconstructed waveforms. Reference locations from 

the catalog and/or previous studies are indicated as white circles. Please note 

the degradation of the depth resolution of event 24021 and event 23183, mainly 

caused by the array geometry and the properties of the chosen stacking 

operator. The horizontal resolution of the images, on the other hand, remains 

consistently high. 

 
 

  



Figure S7. The source imaging results for the four field events using STA/LTA 

traces. (a) event ML008, (b) event 24021, (c) event ML203, (d) event 23183. The 

left column corresponds to the result of unreconstructed waveforms, and the 

right column images result from reconstructed waveforms. Reference locations 

from the catalog and/or previous studies are indicated by a circle. 

 
 

 

  



Movies S1 to S5: Synchronized animations of the raw data (left), its 

reconstruction (center) and the estimated waveform coherence (right) for the 

four field events and the synthetic event ML203 (SNR<1). 

 

 

 


