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Abstract

Drought and pluvial extremes are defined as deviations from typical climatology; however, the background climatology can shift

over time in a non-stationary climate, impacting interpretations of extremes. This study evaluated changes in meteorological

drought and pluvial extremes by merging tree-ring reconstructions, observations, and climate-model simulations spanning 850

– 2100 CE across North America to determine whether the Industrial era and projected future lie outside the range of natural

climate variability. Our results found widespread and spatially consistent exacerbation of both extremes, especially summer

drought and winter pluvials, with west and south drying, the northeast wetting trends, and increased interannual variability

across the east and north. Our study underscores climate change has already shifted precipitation climatology beyond pre-

Industrial climatology and is projected to further intensify ongoing shifts.

Hosted file

960961_0_art_file_10920754_rthl50.docx available at https://authorea.com/users/610919/

articles/639697-centennial-scale-intensification-of-wet-and-dry-extremes-in-north-

america

Hosted file

960961_0_supp_10889350_rt0t2b.docx available at https://authorea.com/users/610919/articles/

639697-centennial-scale-intensification-of-wet-and-dry-extremes-in-north-america

1

https://authorea.com/users/610919/articles/639697-centennial-scale-intensification-of-wet-and-dry-extremes-in-north-america
https://authorea.com/users/610919/articles/639697-centennial-scale-intensification-of-wet-and-dry-extremes-in-north-america
https://authorea.com/users/610919/articles/639697-centennial-scale-intensification-of-wet-and-dry-extremes-in-north-america
https://authorea.com/users/610919/articles/639697-centennial-scale-intensification-of-wet-and-dry-extremes-in-north-america
https://authorea.com/users/610919/articles/639697-centennial-scale-intensification-of-wet-and-dry-extremes-in-north-america


manuscript submitted to Geophysical Research Letters 

 

1 
Centennial-scale intensification of wet and dry extremes in North America 2 

Kyungmin Sung1, Gil Bohrer1, James Stagge1 3 

1Civil, Environmental and Geodetics Engineering, The Ohio State University, Columbus, Ohio 4 

Corresponding author: James Stagge (stagge.11@osu.edu)  5 

Key Points: 6 

• This study models seasonal drought and pluvial trends, merging reconstructions, 7 
observations, and projected from 850 to 2100 CE.  8 

• Results show widespread exacerbation of both extremes with overall drying (wetting) in 9 
the southern (northeastern) North America. 10 

• Modern drought and pluvial distributions are outside pre-Industrial (1850) conditions, 11 
and exhibiting substantial shifts in some regions. 12 

 13 
  14 
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Abstract 15 

Drought and pluvial extremes are defined as deviations from typical climatology; however, the 16 

background climatology can shift over time in a non-stationary climate, impacting interpretations 17 

of extremes. This study evaluated changes in meteorological drought and pluvial extremes by 18 

merging tree-ring reconstructions, observations, and climate-model simulations spanning 850 – 19 

2100 CE across North America to determine whether the Industrial era and projected future lie 20 

outside the range of natural climate variability. Our results found widespread and spatially 21 

consistent exacerbation of both extremes, especially summer drought and winter pluvials, with 22 

west and south drying, the northeast wetting trends, and increased interannual variability across 23 

the east and north. Our study underscores climate change has already shifted precipitation 24 

climatology beyond pre-Industrial climatology and is projected to further intensify ongoing 25 

shifts.   26 

Plain Language Summary 27 

 28 
Managing water resources has become challenging due to effect of human-caused climate 29 

change on extremes. This study examines trends in droughts and pluvials (extreme wet periods) 30 

from the distant past (850 CE) to the projected future (2100 CE) to determine whether 31 

precipitation extremes in the modern, Industrial era and the future are beyond what is typical of 32 

natural climate variability in North America. Gradual precipitation trends were generated by 33 

merging information from tree rings, observations, and climate models using a novel statistical 34 

approach to correct bias. Results indicate the widespread intensification of both drought and 35 

pluvials – especially summer drought and winter pluvials during the modern and future periods. 36 

Spatially, southern and western regions are becoming drier, while the northeast is getting wetter, 37 

and intermediate regions show a wider range between drought and pluvial years. Our study 38 

suggests that anthropogenic climate change has already modified drought and pluvial extremes 39 

beyond natural, pre-Industrial conditions and these ongoing trends are projected to intensify 40 

through the future. Wider ranges between extreme dry and wet years increases risk for water 41 

management and shows the need for adapting water strategies to account for the "new normal" of 42 

the climate change. 43 
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1.  Introduction 44 

Quantifying precipitation non-stationarity is particularly important given the impact of 45 

anthropogenic climate change overlaid onto longer patterns of natural climate variability (Stahle 46 

et al., 2020; Williams et al., 2022). Future hydroclimate projections indicate intensifying 47 

extremes, such as droughts or pluvials (periods with sustained high precipitation) for many 48 

regions, shifting what was historically extreme to become more commonplace (Ault, 2020; 49 

Bishop et al., 2021; Stevenson et al., 2022). This has critical implications for water management 50 

systems and policies designed using early 20th century climate baselines, which may no longer be 51 

representative of current or future hydroclimate, increasing risk and vulnerability.  52 

 53 

Some regions have already experienced such changes. Mean annual precipitation in the eastern 54 

US has generally increased over the past century, while that of western US has decreased, with 55 

those changes during the past 100 years likely the most rapid since 1400CE (B. Cook et al., 56 

2019; Williams et al., 2022). These trends are attributed to anthropogenic global warming 57 

combined with complex natural variability (Diffenbaugh et al., 2015, 2017; Hoylman et al., 58 

2022; Lehner et al., 2017), which can be better understood when placed in the context of 59 

centuries of pre-Industrial natural variability. 60 

 61 

This study merges tree-ring proxy reconstructions, gridded observations, and Global Climate 62 

Model (GCM) output to quantify climate non-stationarity at a centennial-scale, permitting an 63 

estimation of anthropogenic climate change impacts on drought and pluvials relative to natural 64 

pre-Industrial variability. Modern observations often extend a century into the past, while tree-65 

ring reconstructions can extend more than 1000 years (Bishop et al., 2021), and GCMs can 66 

simulate climate over centuries from the distant past through feasible future emissions scenarios 67 

(Marvel et al., 2021). Merging these datasets creates challenges due to unique biases, stemming 68 

from tree growth sensitivities in reconstructions and systematic model biases in GCMs (Cui et 69 

al., 2021). Additionally, temporal and spatial resolution differences complicate the creation of a 70 

merged series. For example, the North American Seasonal Precipitation Atlas (NASPA) proxy 71 

reconstruction used here provides bi-annual precipitation estimates, comprised of one 5-month 72 

cool season and one 3-month warm season  (Stahle et al., 2020); far coarser than daily or 73 

monthly resolution of the other datasets. 74 
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Hence, this study aims to address: (1) whether future projections of wet and dry precipitation 75 

extremes are significantly different from the past 1000 years, and (2) how trends during the 76 

instrumental period (1900 – 2020CE) fit into the longer pattern of natural climate variability and 77 

anthropogenic climate change. This is accomplished through a novel non-linear spline model 78 

(Stagge & Sung, 2022; Sung et al., 2022) which simultaneously corrects data-induced bias to 79 

generate a single, common model of century-scale shifts in the 3-month Standardized 80 

Precipitation Index (SPI-3) (Heim, 2002), representing drought and pluvial extremes.  81 

2. Methods 82 

2.1. Data 83 

Precipitation estimates were based on tree-ring reconstructions (NASPA), processed gridded 84 

observations (CRU and GridMET), and two CMIP6 model simulations (MRI-ESM2-0 and 85 

MIROC-ES2L, Table 1) . Two CMIP6 models were chosen because they provide simulations of 86 

the full period 850-2100 CE via the past1000 (850 to 1849 CE), historical (1850 to 2014 CE), 87 

and ScenarioMIP experiments (2015-2100 CE). We considered two future Socioeconomic 88 

Shared Pathways (SSPs) to bracket potential futures from the “business as usual” high emissions 89 

scenario, SSP 5-8.5, to the low emissions scenario, SSP1-2.6 (Eyring et al., 2016).  90 

Table 1. Datasets. 91 
Name Model CMIP6 Experiment Period Spatial Resolution 

CRU Observed - 1901-2018 0.5° × 0.5° 

(Harris et al., 2020) 

GridMET+ 
Observed - 1950 - 2020 0.04° × 0.04° 

(Abatzoglou, 2013) 

NASPA 
Proxy + 

Downscaled 
- 850* - 2016 

0.5° × 0.5° 

(Stahle et al., 2020) 

MIROC-ES2L GCM Past1000 850-1849 2.8° × 2.8° 

(Hajima et al., 2020) 

MIROC-ES2L GCM Historical 1850- 2014 2.8° × 2.8° 

(Hajima et al., 2020) 

MIROC-ES2L GCM 
SSP1-2.6 &  

SSP5-8.5 
2015- 2100 

2.8° × 2.8° 

(Hajima et al., 2020) 

MRI-ESM2 GCM Past1000 850 - 1849 100 km × 100 km 

(Yukimoto et al., 2019) 

MRI-ESM2 GCM Historical 1850 -2014 100 km × 100 km 
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(Yukimoto et al., 2019) 

MRI-ESM2 GCM 
SSP1-2.6 &  

SSP5-8.5 
2015- 2100 

100 km × 100 km 

(Yukimoto et al., 2019) 

*NASPA starting year varies from 0-1400 C.E., depending on the grid location. This study used data from 850 C.E. 92 
if it were available. 93 
+US only 94 
 95 
Spatial resolution followed NASPA grid placement and resolution (0.5° x 0.5°) with relevant 96 

time series from the other datasets selected based on the shortest distance to the NASPA grid 97 

center. GridMET data is only available for the Continental United States, so was not included 98 

outside this region.  99 

2.2. Temporal Downscaling 100 

Precipitation was considered at a monthly resolution, natively for all datasets except for the bi-101 

annual NASPA, which was temporally downscaled following the approach of Sung and Stagge 102 

(2022) using K-nearest neighbor (KNN) resampling (Gangopadhyay et al., 2005). Here, KNN 103 

resampling was used to insert 13-month SPI-3 series from the observed record into a given 104 

NASPA year based on similarity to the 3 bracketing NASPA estimates (prior year’s MJJ, 105 

concurrent DJFMA, and concurrent MJJ). Global Precipitation Climatology Centre (GPCC)  106 

precipitation was used as the historical catalog because it was originally used for NASPA 107 

calibration.  108 

KNN resampling used SPI-3 sequences, then converted to precipitation, rather than precipitation 109 

sequences. This increased the sampling catalog twelve-fold, avoiding repetition in resampling, 110 

and was reasonable because normalized SPI-3 values are independent of season. Ten annual 111 

historical SPI-3 sequences were resampled (K=10), converted back to precipitation, and then 112 

averaged to produce the monthly NASPA estimate and associated uncertainty. 113 

2.3. Non-Stationary SPI 114 

A non-stationary SPI (NSPI) approach (Sung et al., 2022) was used to simultaneously model 115 

centennial-scale trends of droughts and pluvials and to account for data-induced bias. The NSPI 116 

is similar to the the SPI by fitting probability density functions to accumulated precipitation, but  117 

allows distribution parameters to shift gradually through time (Pedersen et al., 2019; Wood, 118 

2008).   The two parameters of the gamma distribution (mean, µ and shape, 𝛼) were modeled 119 

simultaneously by month and year to simultaneously capture recurring seasonality (monthly) and 120 
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multi-decadal trends (year) (Eqs. 1-3). Here, 𝑃ଷି௠௢௡௧௛,௠,௬ represents the 3-month average 121 

precipitation rate at month m and  year y. This model therefore captures shifts in the underlying 122 

distribution, from which we can extract changes in drought and pluvials, defined as SPI= -1.5 123 

(percentile = 6.7%) and SPI = 1.5 (percentile = 93.3%), respectively. 124 

To account for data bias in the mean (Eq 2) and shape (Eq 3) parameters, the model included a 125 

unique intercept, 𝛽଴, and a spline function to account for seasonally differing biases, 𝛽ଵ𝑓௦. The 126 

function fs is a cubic polynomial spline controlled by 𝛽 at each control point. The final term, 127 𝑓௧௘൫𝑋௬௘௔௥, 𝑋௠௢௡௧௛൯, represents the common smoothed long-term trend and seasonality after 128 

accounting for biases, modeled as a tensor product spline function.   129 

𝑃ଷ ௠௢௡௧௛,௠,௬ = 𝑔𝑎𝑚𝑚𝑎(µ, 𝛼)   ൬𝑚: 𝑚𝑜𝑛𝑡ℎ ,𝑦: 𝑦𝑒𝑎𝑟 ൰ 

 

(1) 

µ =   𝛽଴µ ⎝⎜
⎛ 𝐶𝑅𝑈𝑁𝐴𝑆𝑃𝐴𝐺𝑟𝑖𝑑𝑚𝑒𝑡𝑀𝑅𝐼𝑀𝐼𝑅𝑂𝐶 ⎠⎟

⎞ + 𝛽ଵµ 𝑓௦_µ ⎝⎜
⎛𝑋௠௢௡௧௛, 𝐶𝑅𝑈𝑁𝐴𝑆𝑃𝐴𝐺𝑟𝑖𝑑𝑚𝑒𝑡𝑀𝑅𝐼𝑀𝐼𝑅𝑂𝐶 ⎠⎟

⎞ + 𝛽ଶµ 𝑓௧௘_µ൫𝑋௬௘௔௥, 𝑋௠௢௡௧௛ ൯ 

 

(2)

1log (𝛼) = 𝛽଴ఈ + 𝛽଴ఈ𝑓௦_ఈ ⎝⎜
⎛ 𝐶𝑅𝑈𝑁𝐴𝑆𝑃𝐴𝐺𝑟𝑖𝑑𝑚𝑒𝑡𝑀𝑅𝐼𝑀𝐼𝑅𝑂𝐶 ⎠⎟

⎞ + 𝛽ଵఈ 𝑓௦_ఈ ⎝⎜
⎛𝑋௠௢௡௧௛, 𝐶𝑅𝑈𝑁𝐴𝑆𝑃𝐴𝐺𝑟𝑖𝑑𝑚𝑒𝑡𝑀𝑅𝐼𝑀𝐼𝑅𝑂𝐶 ⎠⎟

⎞ + 𝛽ଶఈ 𝑓௧௘_ఈ൫𝑋௬௘௔௥, 𝑋௠௢௡௧௛ ൯ 

 

(3)

 130 

CRU precipitation was considered  ‘ground truth’ for bias correction because it is a land-based 131 

observation dataset that has undergone validation. Biases are assumed stationary through time; 132 

thereby bias estimated during the overlapping period with CRU will remain constant over the 133 

entire record length. This bias correction approach is similar to quantile mapping (Lanzante et 134 

al., 2018), as the f(Xmonth, by = model) terms adjust the distribution mean and shape parameters, 135 

with the added spline constraint that limits bias correction from changing dramatically month to 136 

month.   137 

2.4. Significance tests 138 

Significance testing was based on gamma distribution comparisons, always using 1840-1860 as 139 

the pre-Industrial climatology (IPCC, 2014). The null hypothesis assumed that current (2000-140 
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2020) or future (2080-2100) precipitation values for SPI = ±1.5 were equivalent to pre-Industrial 141 

values. 10,000 random samples of the mean and shape parameter were taken from the modeled 142 

distributions of the pre-Industrial and comparison time period to capture parameter uncertainty 143 

while accounting for covariance. The significance of shifts in the  precipitation extremes was 144 

determined by a two-tailed test in which the null hypothesis was rejected when more than 97.5% 145 

of random samples agreed with the sign of precipitation difference. This method is conceptually 146 

similar to a two-tailed paired t-test with α=0.05 but uses random samples from modeled 147 

distributions (Chow, 1960).  148 

3. Results 149 

3.1. Anthropogenic Period (1850-2100 CE) Trends 150 

First, we examined modern changes in the 3-month drought and pluvial precipitation (SPI = 151 

±1.5), by comparing current (2000-2020) and future (2080-2100) time slices from the NSPI 152 

model to the recent pre-Industrial baseline (1840-1860) (Figs. 1 and 2). For most regions and 153 

seasons, pluvial precipitation has increased (Fig. 2), while droughts have become drier (Fig. 1), 154 

with these trends projected to worsen throughout the next century regardless of emissions 155 

scenario. This pattern of intensifying both extremes, less precipitation during drought years and 156 

more precipitation during pluvials, is especially apparent in the Central and Eastern US. Pluvial 157 

intensification is most common during winter (NDJ) and spring (FMA) (Fig. 2), while drought 158 

intensification is most spatially extensive during summer (MJJ) and fall (ASO) (Fig. 1).  159 

 160 

Not all regions show intensification of both extremes, instead experiencing exclusively wetter or 161 

drier trends. Mexico and the southwestern US have become drier for both drought and pluvial 162 

extremes across most seasons, with the most consistently significant decreases during drought 163 

years . Conversely, eastern Canada has/will become wetter at both extremes, most substantially 164 

during cool seasons (NDJ and FMA), resulting in worsening pluvials, but lessening droughts.  165 

 166 

Pluvial and drought trends form spatially consistent regions despite all grid cells being modeled 167 

independently. That is, trends do not change radically over short distances, but rather transition 168 

smoothly in space. This lends further support to the findings, showing a strong spatiotemporal 169 

signal that stands apart from random noise, despite independent calibration. The specific 3-170 
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month periods displayed here were chosen to align with the NASPA seasons (MJJ, DJFMA) 171 

(Stahle et al., 2020). 172 

 173 

Cool season droughts follow a distinct latitudinal breakpoint, with lessening winter drought 174 

above 40°N and worsening winter drought below 40°N (Fig. 1, top rows), reminiscent of 175 

latitudinal gradients noted previously for the western US (Swain et al., 2018).  Lessening winter 176 

drought is most notable in Eastern Canada, where winter drought precipitation is projected to 177 

increase by almost 50% for both future scenarios. Mexico and the southwestern US have already 178 

experienced significant intensification of winter drought and is projected to worsen, reducing 179 

precipitation amounts associated with a moderate/severe drought (SPI= -1.5) by almost 100% 180 

relative to 1840-1860 climatology (Fig. 1).  The trend towards lessening cool season drought 181 

extremes is not statistically significant to date, but is projected to become significant by the end 182 

of the century, whereas the trend towards worsening winter drought extremes across much of 183 

southern North America has already shown significant changes relative to pre-Industrial 184 

climatology.  185 

During warm seasons (MJJ and ASO), the region of worsening drought expands to cover much 186 

of North America (Fig. 1), but showing relatively smaller change. Mexico, the southwestern US, 187 

and the Caribbean show especially significant warm season drought precipitation decreases. This 188 

is particularly deleterious when considered alongside their significant cool season drought 189 

intensification, leading to drought intensification throughout the year. Because these regions rely 190 

on the warm season North American Monsoon (July -September) for a majority of their annual 191 

precipitation (Grantz et al., 2007), intensified warm season drought increases risks of water 192 

shortage by failing to refill reservoirs. Some exceptions to the worsening warm season drought 193 

trend exist (northern intermountain western US and central Mexico plateau), which may be 194 

related to the spatial complexity of mountainous precipitation (Preece et al., 2021).   195 



196 
197 
198 

199 

200 

201 

202 

203 

204 

205 

Figure 1. Pe

future under

Pluvials 

southwes

most sign

US and C

Canada a

in the we

 

ercent precipitat

r ssp1-2.6, (righ

have intens

stern US, pa

nificant acro

Canada duri

are more spa

est occurs in 

manuscr

tion change com

t) ssp5-8.5 scena

sified for m

articularly du

oss eastern N

ing future sc

atially homo

mountainou

ript submitted t

mpared to pre-Ind

arios. 

most of Nor

uring cool se

North Ameri

cenarios (Fig

ogenous, we 

us topograph

to Geophysical

 

dustrials for dro

rth America

easons. The 

ica, with this

g. 2, top row

note that th

hy during the

l Research Let

ought years (SPI 

a (Fig. 2), 

intensificati

s region exp

ws). While t

he strongest w

e early spring

tters 

I = -1.5). (left):  

except for 

ion of cool s

panding to co

trends in the

winter pluvi

g (FMA).  

current era (cen

Mexico and

season pluvi

over much o

e eastern US

ial intensific

 
nter) 

d the 

ials is 

of the 

S and 

cation 



manuscript submitted to Geophysical Research Letters 

 

During the MJJ early summer period, the region of decreasing wet extremes expands northward 206 

centered on the southwestern US.  With increasing CO2 forcing, this trend intensifies in 207 

magnitude and expands spatially to include the American Plains and the Caribbean. Our finding 208 

of a decrease in MJJ pluvials followed by little change during ASO mirrors previous findings of 209 

a seasonal delay in the North American Monsoon under climate change (B. I. Cook & Seager, 210 

2013; Pascale et al., 2017; Prein et al., 2022).   211 

 212 

For all locations, future scenarios are extensions of the last century with no notable sign changes 213 

between 2020 and 2100. Trends for many regions are already statistically significant during the 214 

instrumental period (1850-2020) and where they are not, trends often become significant under 215 

one or both  future climate change scenarios. This implies that climate change has begun to 216 

affect precipation in a manner consistent with GCM simulations under increased greenhouse gas 217 

concentrations and is likely to become more intense and detectable through the 21st century.  218 

 219 
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pre-Industrial fluctuation, the most extreme shifts for all of these sites occur after 1850, further 241 

emphasizing that modern and projected precipitation shifts are outside pre-Industrial (850-1850 242 

CE) natural variability, as tested in Figs. 1 and 2. 243 

  244 

The southern-most reference site, Mexico City (Fig. 3h), exhibits a shift towards drier conditions 245 

for both drought and pluvial years across most seasons, with the most dramatic changes 246 

occurring during the wet season (Jul-Sep). In future projections under high emissions scenarios, 247 

drought year precipitation is nearly 50% of the pre-Industrial, with decreases already emerging in 248 

the present (2020). 249 

 250 

Northern and southern California, shown to the far left (Figs. 3d and g), both exhibit modern 251 

(post 1850) decrease in spring and early summer precipitation, with this trend particularly intense 252 

in Southern California. Modern drought decreases in Southern California continue throughout 253 

the summer and into the fall, whereas no equivalent trends exhist in northern California (Fig 1). 254 

Finally, both northern and southern California have experienced a long trend towards increased 255 

pluvial year precipitation during the wet winter season beginning well before the Industrial 256 

period (ca 1100 CE) (Figs 3 and 4). To better illustrate centennial-scale shifts in southern 257 

California precipitation, we examine the wet season pluvial increase (JFM), and the notable 258 

drying of the summer shoulder season (MJJ) (Fig 4).  259 

 260 

JFM pluvial increases run counter to the overwhelming drying trend in southern California and 261 

the surrounding region, as indicated by a rightward shift in the distribution’s upper tail and an 262 

increase in the upper bound through time (Fig 4a). This winter pluvial wetting trend occurred 263 

gradually over the last millennium, since 1000 CE, with no detectable acceleration during the 264 

Industrial period or into the future. The cool season in southern California is where NASPA has 265 

the best cross-validation skill (Stahle et al., 2020), lending confidence to these findings. Others 266 

have simulated relatively little change in extremely wet seasons during the 1900s and increases 267 

by 2100 (Swain et al., 2018), though our findings suggest this trend may be part of a gradual 268 

pluvial increase beginning centuries prior. It should be noted that the gradual precipitation 269 

increase for JFM pluvials is not reflected during drought years, which instead show a 270 
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Considered together, southern California has experienced a gradual increase in wet season 286 

pluvials and a sudden 20th century decrease in spring and early summer precipitation, which 287 

generally agrees with prior studies indicating intensifying seasonality and extremes (Persad et al., 288 

2020; Swain et al., 2018; Williams et al., 2022). This intensification complicates regional water 289 

management already experiencing a decade long drought (Diffenbaugh et al., 2015; Williams et 290 

al., 2020). Precipitation decreases during the spring and early summer lengthens the duration of 291 

the summer dry season, increasing reliance on reservoir storage accumulated during the wet 292 

period from three distinct source areas: northern California’s Sierra Nevada mountains, the 293 

Colorado River, and locally (Pagán et al., 2016; Woodhouse et al., 2020). Increasing annual 294 

variability make Sierra Nevada and local sources more uncertain (Fig. 3d and g), whereas the 295 

Colorado River Basin is projected to undergo dramatic decreases over the next century (Fig. 1 296 

and 2), further exacerbating water management risks. 297 

 298 

4. Discussions and Conclusions 299 

 300 

The approach used here, integrating datasets from the past through the future, relies on a novel 301 

use of hierarchical spline models (Sung et al., 2022) to provide a comprehensive view of modern 302 

and projected drought and pluvial extremes in the context of centuries of pre-industrial climate. 303 

By considering overlapping data types, distribution shifts only become significant when 304 

consistent across multiple sources and decades. Thus, GCM simulations support NASPA 305 

reconstruction skill gaps, like the northeast cool season or the ASO interpolated season (Stahle et 306 

al., 2020), while integrative splines improved parameter stability. Spatial agreement across 307 

thousands of independently modeled cells provides further confidence in these findings.  308 

 309 

Our results highlight many regions which experienced sharp hydroclimate trends during the 20th 310 

and 21st centuries relative to a largely stable precipitation climatology during the prior 1,000 311 

years. Drier summer droughts and wetter winter pluvials are typical across much of North 312 

America, particularly in the east and north. Unlike these regions with wider interannual 313 

variability, the south and southwest show consistent drying trends, while the far northeast and 314 

eastern Canada exhibit consistent wetting trends. Our findings agree with prior studies 315 

suggesting that climate change has intensified the hydrologic cycle, worsening drought risks 316 
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during historical dry seasons (Chou et al., 2013; Dai, 2013; Diffenbaugh et al., 2015; Lehner et 317 

al., 2018) and increasing pluvial magnitudes during wet seasons for many regions (Diffenbaugh 318 

& Davenport, 2021; Swain et al., 2018) with projected future intensification. Increases in 319 

interannual variability for mid-latitude regions and rapid trends toward dryer[wetter] conditions 320 

in the south[north] with more intense extremes makes water management more challenging as 321 

infrastructure and strategies developed  in the early or mid-1900s using that time’s climatology is 322 

often no longer representative of current or future climate extremes (Gangopadhyay et al., 2022; 323 

Mallakpour et al., 2019). We expect our study contributes to water infrastructure adaptation to a 324 

“new climate normal” (Hoylman et al., 2022) through improved quantification of hydroclimatic 325 

trends placed into a millenial-scale context. 326 
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