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Abstract

Air-sea flux variability has contributions from both ocean and atmosphere at different spatio-temporal scales. Atmospheric

synoptic scales and the air-sea turbulent heat flux that they drive are well represented in climate models, but ocean mesoscales

and their associated variability are often not well resolved due to non-eddy-resolving spatial resolutions of current climate

models. We deploy a physics-based stochastic subgrid-scale parameterization for ocean density, that reinforces the lateral

density variations due to oceanic eddies, and examine its effect on air-sea heat flux variability in a comprehensive coupled

climate model. The stochastic parameterization substantially modifies sea surface temperature (SST) and latent heat flux

(LHF) variability and their co-variability, primarily at scales near the resolution of the ocean model grid. Enhancement in the

SST-LHF anomaly covariance, and correlations, indicate that the ocean-intrinsic component of the air-sea heat flux variability

improves with respect to high-resolution satellite observations, especially in Gulf Stream region.
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• The ability of a subgrid-scale parameterization to improve the ocean-intrinsic air-11

sea flux variability in a climate model is assessed.12
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• The stochastic parameterization improves consistency with the observations of air-15

sea interaction.16
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Abstract17

Air-sea flux variability has contributions from both ocean and atmosphere at different18

spatio-temporal scales. Atmospheric synoptic scales and the air-sea turbulent heat flux19

that they drive are well represented in climate models, but ocean mesoscales and their20

associated variability are often not well resolved due to non-eddy-resolving spatial res-21

olutions of current climate models. We deploy a physics-based stochastic subgrid-scale22

parameterization for ocean density, that reinforces the lateral density variations due to23

oceanic eddies, and examine its effect on air-sea heat flux variability in a comprehensive24

coupled climate model. The stochastic parameterization substantially modifies sea sur-25

face temperature (SST) and latent heat flux (LHF) variability and their co-variability,26

primarily at scales near the resolution of the ocean model grid. Enhancement in the SST-27

LHF anomaly covariance, and correlations, indicate that the ocean-intrinsic component28

of the air-sea heat flux variability improves with respect to high-resolution satellite ob-29

servations, especially in Gulf Stream region.30

Plain Language Summary31

Variations in air-sea heat fluxes arise from both ocean and atmosphere at differ-32

ent space and time scales. Studies suggest that at large scales, e.g., thousands of kilo-33

meters, atmospheric processes drive the ocean variability at the surface, such as sea-surface34

temperature. However, at smaller spatial scales, e.g., [100−1000] km, the oceans con-35

trol the atmosphere variability near the air-sea interface. These local air-sea feedbacks36

influence both oceans and the atmosphere on various levels and are of significant dynam-37

ical importance. However, climate models typically use large grid spacing and fail to rep-38

resent the air-sea interaction mechanism inherent to these small scales. We address this39

problem by modifying the ocean density using random noise at multiple places in the40

model before coupling it to the atmosphere. We chose density because it is used for mul-41

tiple purposes in ocean models, and imperfections in it arise due to the missing subgrid-42

scale effects that can have a major impact all over the oceans, especially the upper ocean43

which interacts the most with the atmosphere. The proposed approach led to significant44

improvement in the air-sea interaction properties at various spatial scales compared to45

satellite observations.46

1 Introduction47

Air-sea coupling plays a key role in shaping Earth’s climate and representing it cor-48

rectly is essential for reducing the uncertainties in climate projections. Theoretical stud-49

ies and satellite observations suggest that the mechanisms that control this coupling are50

strongly length- and time-scale-dependent. In mid-latitudes, synoptic-scale atmospheric51

weather events drive turbulent heat flux (THF) variability at scales O(103) km via wind52

speed fluctuations and air-sea temperature and humidity anomalies. The generated THF53

anomaly results in a slow, lagged response from the oceans; for example, an initial warm-54

ing THF anomaly is followed by heat loss from the oceans leading to cooling of the oceans55

on a timescale of several weeks (Xie, 2004). In contrast, at ocean mesoscales (101−10356

km), persistent and vigorous intrinsic eddy variability creates strong sea surface temper-57

ature (SST) anomalies and as the wind passes over them, strong air-sea temperature and58

humidity differences are generated that drive the THF variability (Hausmann et al., 2017).59

The interaction mechanism inherent to large scales has been confirmed in various ide-60

alized coupled model studies, such as Hasselmann (1976); Frankignoul and Hasselmann61

(1977); von Storch (2000), while the atmospheric response to the ocean dynamics at mesoscales62

has been the subject of more recent studies, e.g., Wu et al. (2006); Smirnov et al. (2014);63

Bishop et al. (2017); Patrizio and Thompson (2022).64

Most global climate models employ ocean models at a non-eddy-resolving or eddy-65

permitting resolution, and therefore do not resolve the ocean mesoscale eddies (10-10066
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km) and their respective impact on the air-sea flux variability. This is clearly problem-67

atic because studies have shown that the relative contributions of intrinsic oceanic and68

atmospheric variability in air-sea flux modulation bear enormous dynamical implications69

both for the oceans (Gaube et al., 2015; Ma et al., 2016; Jing et al., 2020; Guo et al., 2022)70

and the atmosphere (Kuo et al., 1991; Minobe et al., 2008; Ma et al., 2017; Williams,71

2012). The reader is referred to Czaja et al. (2019) for a concise review of the state of72

knowledge of modeled atmospheric response to mid-latitude SST anomalies and their scale73

dependence. Midlatitude SST fluctuations on scales close to the ocean deformation scale74

(i.e., 10-100 km) significantly affect the variability of the lower atmosphere (reviewed in75

Small et al. (2008)) and the predictability of the midlatitude weather systems (Minobe76

et al., 2008; Dunstone et al., 2016; Siqueira & Kirtman, 2016; Ma et al., 2017; Kirtman77

et al., 2017). Contemporary studies involving ultra high-resolution of the atmosphere78

are starting to divulge the physical mechanisms by which such small-scale oceanic vari-79

ability is communicated to the troposphere above the atmospheric boundary layer (Parfitt80

et al., 2016; Foussard et al., 2019). These results underscore the importance of param-81

eterizing/resolving such eddy variability in order to reduce the uncertainty in air-sea fluxes82

and their climatic impacts.83

Ocean density depends on temperature T , salinity S, and pressure p through a non-84

linear equation of state (EOS); SGS fluctuations in T and S cause the grid-cell-averaged85

density to be different from that obtained by evaluating the EOS at the grid-cell-averaged86

values of T and S (pressure fluctuations are sub-dominant). Brankart (2013) first pro-87

posed a parameterization for these density errors and discussed their non-trivial global88

impacts. An alternative parameterization, which is more accurate and more computa-89

tionally efficient, was proposed by Stanley et al. (2020) and tested in an ocean-only con-90

figuration by Kenigson et al. (2022). Whereas Kenigson et al. (2022) only tested the pa-91

rameterization in the computation of the buoyancy force and associated hydrostatic pres-92

sure, we use this parameterization to correct density at three places in the ocean model:93

the hydrostatic pressure, isopycnal slopes in the Gent-McWilliams parameterization (here-94

inafter, GM; Gent and McWilliams (1990)), and the mixed-layer lateral buoyancy gra-95

dient in the mixed-layer restratification parameterization of Fox-Kemper et al. (2008).96

In this study, we investigate the degree to which stochastic parameterizations of the mesoscale97

eddy effects can strengthen the ocean-intrinsic SST variability and its impact on air-sea98

THF variability. We note that while this particular parameterization of ocean density99

nonlinearity effects is physically well grounded, it does not attempt to account for all the100

subgrid-scale processes that impact air-sea THF variability. A positive result here should101

be taken to be suggestive that further research on a broader range of stochastic param-102

eterizations would be fruitful.103

2 Theory and Methods104

2.1 SGS Density Parameterization105

The ocean density correction used in this paper derives from the Taylor expansion106

of the nonlinear EOS (denoted as ρ̂) about the grid-cell average quantities. Following107

the notations of Stanley et al. (2020), the corrected grid-cell-mean density (denoted ρ)108

is109

ρ = ρ̂(T , S, p) +
∂2
T ρ̂(T , S, p)

2
σ2
T , (1)

where T (x, y, z, t) and S(x, y, z, t) are grid-cell-averaged temperature and salinity, respec-110

tively, and σ2
T (x, y, z, t) is the variance of unresolved SGS temperature. The stochastic111

parameterization proposed by Stanley et al. (2020) for σ2
T is112

σ2
T = ceχ|δx ◦ ∇T |2. (2)

Here ∇T is the lateral gradient of the resolved temperature field, δx is the horizontal grid113

size, ◦ is the Hadamard product, χ(x, y, t) is a depth-independent normally-distributed114
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random noise with zero mean and constant variance σ2
χ = 0.39, and c is a tunable pa-115

rameter. Stanley et al. (2020) performed a rigorous offline diagnostic for the parameter116

c for different spatial resolutions of the target model and suggested c = 0.17 for our model117

resolution. However, following Kenigson et al. (2022) we increase this value to c = 0.33118

to account for the weaker resolved temperature gradients in a coarse-model simulation119

compared to those obtained by coarsening a high-resolution simulation. The log-normal120

form of noise is chosen based on the statistical analysis of the residuals from the deter-121

ministic form (i.e., Eq. 2 without the term eχ), and the multiplicative formulation is adopted122

to ensure the parameterized variance is always positive. Furthermore, χ is uncorrelated123

in space but has the following first-order autoregressive, or AR(1), structure in time124

χ(x, y, t) = ϕ(x, y, t)χ(x, y, t− δt) + ϵ(x, y, t), (3)

where ϵ(x, y, t) is a zero-mean Gaussian random noise with no correlations in space and125

time. The variance of ϵ varies with the AR(1) parameter ϕ(x, y, t) such that the process126

variance σ2
χ remains constant. Next, ϕ(x, y, t) is expressed using the decorrelation time127

scale (τ) of the local kinetic energy as128

ϕ(x, y, t) = e
δt

τ(x,y,t) , (4)

where δt is the model baroclinic time step and τ is equal to129

τ(x, y, t) = k

√
δx2 + δy2

u2 + v2
. (5)

Here u(x, y, t) and v(x, y, t) are the upper-ocean instantaneous velocities, and k = 3.7130

is a tunable parameter whose value was estimated by Stanley et al. (2020). The decor-131

relation timescale τ essentially depends on the resolved fields, and the offline diagnos-132

tics have shown that it varies between a few days to several months for 2/3◦ resolution133

ocean model. The global map of the parameterized SGS temperature variance for a 2/3◦134

resolution MOM6 simulations stored as monthly mean is shown in Fig. 1a (note the log-135

arithmic scaling). It is easy to note that the variance is significantly higher in mid-latitude136

western boundary current (WBC) regions compared to the tropics (note the logarith-137

mic scaling). This is due to the enormous lateral temperature gradients and strong mesoscale138

eddy variability present in those regions.139

2.2 Model and Observations140

We evaluated the impact of the stochastic parameterization on air-sea interaction141

in a modified version of the fully coupled Community Earth System Model version 2.3142

(CESM2; Danabasoglu et al. (2020)). For these experiments the ocean component of CESM2143

was replaced by the Modular Ocean Model, version 6, (MOM6) which uses an Arbitrary144

Lagrangian-Eulerian vertical coordinate method (Adcroft et al., 2019; Griffies et al., 2020).145

The ocean model resolution is nominally 2/3◦ (finer near the equator) with 65 target z*146

vertical levels (Adcroft & Campin, 2004) with finer vertical resolution near the ocean sur-147

face (2.5m) and coarser towards the bottom (≈ 250m) The model uses the energetically148

consistent mesoscale backscatter proposed by Jansen et al. (2019) involving mesoscale149

eddy kinetic energy budget and GM parameterization along with the GEOMETRIC pa-150

rameterization (Marshall et al., 2012) to set the GM coefficient κ. Explicit diapycnal mix-151

ing in the oceans due to convection and static instabilities is not permitted due to the152

hydrostatic approximation, but is parameterized using the K-profile parameterization153

(KPP) proposed in Large et al. (1994); restratification of the mixed layer is handled us-154

ing the FFH parameterization (Fox-Kemper et al., 2008). The Wright EOS (Wright, 1997)155

is used to compute density as a function of pressure, temperature, and salinity.156

MOM6 is coupled to Los-Alamos Sea Ice Model, version 5, (CICE5; Hunke et al.157

(2010)) and the finite-volume Community Atmospheric Model Version 6 (CAM6; Danabasoglu158

et al. (2020)) where the atmospheric primitive equations are discretized on 70 vertical159
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Figure 1. Illustration of the characteristics of the SGS density parameterization, model,

and observations: (a) Spatial pattern of the parameterized SGS SST variance in log10 scale (the

color bar denotes exponents of 10); (b)-(c) Standard deviation of monthly anomalies of SST and

LHF, respectively, from CESM-MOM6 Stoch simulation; (d)-(e) Same as (b)-(c) but for the

J-OFURO3 observations for the period 2000-2015. The monthly anomalies were computed by

removing the monthly climatology and the linear trend.
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levels and horizontal resolution of 0.95◦×1.25◦. The atmosphere, sea-ice, and land com-160

municate their fluxes and state information every 30 minutes via the CESM coupler. The161

air-sea fluxes are computed within the coupler on the ocean model grid and are passed162

to the atmospheric model every 30 mins and to the ocean model every hour. The model163

was run for a total of 100 years under the pre-industrial greenhouse gas conditions with164

and without the stochastic SGS density parameterization, referred to here as Stoch and165

Control, respectively. This study analyzes monthly means from the last 35 years of both166

experiments. We used monthly-mean products because mesoscale ocean eddy variabil-167

ity is strongest on monthly to annual time scales, and the employed eddy parameteri-168

zation can be expected to produce notable impacts on these frequencies.169

Observations of SST and surface heat fluxes used in this paper for comparison with170

the model experiments are taken from a remote-sensing-based third-generation ocean flux171

dataset, abbreviated J-OFURO3 (Tomita et al. (2019); hereinafter, also referred to as172

OBS). It provides datasets for surface heat, momentum, freshwater fluxes, and the as-173

sociated physical parameters over the ice-free global oceans from 1986-2017 in daily and174

monthly-mean temporal resolutions with 0.25 degrees spatial resolution. J-OFURO project175

computes the turbulent surface fluxes using a bulk method where all physical parame-176

ters are satellite-derived except the 2m air temperature, which is obtained from the NCEP-177

DOE reanalysis product. The latest version, i.e. J-OFURO3, is a significant advance-178

ment over its predecessors as it uses state-of-the-art algorithms to estimate near-surface179

specific humidity and employs advanced techniques to combine multi-satellite sensor out-180

puts. In addition, rigorous and systematic validations against the in-situ observations181

and other datasets ensure more accuracy for J-OFURO3. The OBS version 1.1 monthly-182

mean products are available from 1988-2017, but we only used the years 2000-2015 in183

this paper to avoid data gaps.184

For a basic illustration of the OBS and model outputs, standard deviations of the185

monthly anomalies of SST and latent heat flux (LHF) from the Stoch simulation and OBS186

are shown in Fig. 1(b-e). While the spatial patterns of the SST and LHF variability are187

similar for both OBS and Stoch, the magnitude of the variability differs across them. This188

is especially true near the ocean jets and currents, such as Gulf Stream (GS), Kuroshio,189

Oyashio, Agulhas, and Brazil-Malvinas confluence, which are the areas of focus in this190

study. These major jets and currents generally show a stronger SST/LHF variability in191

OBS than in the CESM-MOM6 simulation. The Kuroshio is an exception to this, as the192

Stoch simulation possesses stronger and more eastward extended SST variability in this193

region (compare Fig. 1b and d). This is a known bias related to the convergence of the194

mean kinetic energy and the largest SST gradient regions (Thompson & Kwon, 2010).195

Additionally, Stoch possesses significantly higher LHF variability around the Labrador196

and Irminger seas region, which is speculated to be driven by excess SST variability in197

this region, but the exact reasons are unknown at this point. Nevertheless, the gener-198

ally reduced variance around the jets in model simulations is due to their coarse spatial199

resolution, which leads to substantially less eddy variability in these turbulent regions200

(see Fig. S1 in the supplementary material for an illustration) and suppresses their large-201

scale feedback.202

2.3 Analysis Methods203

In this paper, we consider the LHF and SST for all our analyses. We focus on the204

LHF component of the net surface heat flux because several previous studies have shown205

that latent heat dominates the net surface heat flux response to the SST; the contribu-206

tions from the sensible and radiative heat fluxes are sub-dominant (Frankignoul & Kestenare,207

2002; Park et al., 2005; Hausmann et al., 2017). In CESM simulations, LHF is computed208

using a bulk flux formula – proportional to the air density, wind speed, and difference209

in the specific humidity saturated at the ocean surface (strongly dependent on SST) and210
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of the air. The Stanley parameterization influences LHF indirectly through the resolved211

variables for the oceans in the bulk formula.212

This paper focuses on local air-sea interactions and studies the changes produced213

therein by the stochastic SGS density parameterization. As discussed in Section 1, at214

ocean mesoscales, the LHF variability is driven by intrinsic SST variability, led by the215

mesoscale eddies. We call this SST variability intrinsic because it is not forced by air-216

sea heat flux anomalies unlike in the case of slow SST variations over large spatial scales.217

As a result of ocean-driven LHF variability, large outgoing heat flux is noticed over warm218

SST anomalies, and less heat flux is seen departing over the colder SST anomalies (Small219

et al., 2008, 2019). This suggests a positive instantaneous correlation between SST and220

LHF, where the sign convention is such that the outgoing heat flux from the oceans is221

considered positive and incoming is considered negative. In contrast, at large scales (e.g.,222

ocean basin size), the air is more in equilibrium with the slow-varying SST beneath it223

and leads to situations where significant outgoing heat flux from the oceans, driven by224

atmospheric forcing, is seen to cool the oceans. This refers to lagged SST (or, ocean) re-225

sponse to air-sea heat flux variations, i.e., small instantaneous SST-LHF correlation but226

large ∂(SST)/∂t-LHF correlation (Wu et al., 2006; Bishop et al., 2017; Small et al., 2019).227

Throughout this paper, we will use the term ‘instantaneous correlation’ to refer to the228

simultaneous SST-LHF correlation and ‘tendency correlation’ to refer to the ∂(SST)/∂t-229

LHF correlations. We use these two types of correlations to infer the dominant forcing230

in the ocean-atmosphere feedback mechanism, i.e., (1) if the instantaneous correlation231

is large, it suggests the oceans (precisely, SST) forcing the atmosphere (or, latent heat232

flux variability), whereas (2) if ∂(SST)/∂t-LHF is large, it means the atmosphere is driv-233

ing the oceans. While (1) is believed to hold true at small scales, (2) is supposed to be234

the case at large scales. Because the SGS density parameterization corrects the ocean235

density on ocean mesoscales, it is expected to have a more significant impact on small-236

scale instantaneous correlations than large-scale tendency correlations, as synoptic-scale237

atmospheric processes are already well resolved in climate models. It must be noted that238

the 2/3◦ ocean model resolution does not resolve the mesoscales, so the direct impact239

of ocean mesoscales on LHF variability must be absent from the model. But ocean mesoscales240

induce ocean-intrinsic variability at larger scales, which are resolved, and we hope to rep-241

resent some of this effect using the stochastic parameterization.242

Because we study the scale dependence of local correlations, we use a spatial fil-243

ter on the original fields to separate the eddying part from their large-scale counterpart.244

We use a fast, efficient Python package named GCM-Filters (Loose et al., 2022), which245

achieves filtering using an iterative application of a discrete Laplacian, resembling dif-246

fusion (Grooms et al., 2021). We use the Taper filter shape described by Grooms et al.247

(2021), which makes a sharper distinction between large and small scales than Gaussian248

or boxcar filters. We used filtering length scales from 200 km up to 800 km with a spac-249

ing of 100 km. Although the term ‘eddy’ is frequently used to describe the small-scale250

part of a field produced by a high-pass spatial filter, we use the term sub-filter scale (SFS)251

to avoid confusion, since our model does not resolve mesoscale eddies. A monthly cli-252

matology (for both SST and LHF) is then computed and subtracted from the monthly-253

mean values to provide the monthly anomalies, followed by the removal of the linear trend.254

3 Results255

In this section, we diagnose the impact of the SGS stochastic density corrections256

on the variability and co-variability of SST and LHF and pinpoint the gains/losses by257

comparing against the J-OFURO3 observational outputs. We also make efforts to ex-258

plain the identified parameterization impacts from a physical perspective.259
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3.1 Sub Filter Scale Variability and Co-variability260

To elucidate the impact of the SGS density parameterization on variability across261

scales, we provide the difference in the standard deviations of the SFS SST from Stoch262

and Control runs. We also study this difference (Stoch-Control) for SFS SST-LHF co-263

variance to demonstrate the effects on SST-LHF co-variability. The SFS fields here are264

obtained using the 500 km filter scale. Because the parameterization is mostly active near265

the areas of strong temperature fronts (see Fig. 1a), we only focused on four most promi-266

nent frontal regions: the GS and Kuroshio in the northern hemisphere, and the Agul-267

has and Brazil-Malvinas Confluence (BMC) in the southern hemisphere. Note that the268

SFS variability patterns are not expected to be the same as in Fig. 1a because the lat-269

ter shows temperature variability over scales smaller than the model grid size, whereas270

the SFS variability is over the scales between the model grid size and the filter scale.271

It is evident that the density corrections produced by the parameterization signif-272

icantly affect the SFS SST variability – as much as 40−50% change in their standard273

deviation relative to the Control – in all four regions (Fig. 2, left column). The mag-274

nitude of the change is higher for the GS and Kuroshio regions than the other two. An275

increase/decrease in variability in the form of a red/blue dipole suggests that the param-276

eterization is making dynamical adjustments by changing the positions of the mean cur-277

rents (cf. Kenigson et al., 2022). In the case of the GS, an increase in SFS variability278

is clear in the eastward extension portion of the jet between 35◦−45◦ N and 30◦−60◦W.279

This is a prominent feature of the parameterization, as several previous idealized stud-280

ies have shown that mesoscale eddying features are paramount to producing an eastward281

extension of jets (Shevchenko & Berloff, 2015; Agarwal et al., 2021). However, a min-282

imal increase to a decrease in the variability is seen around the far-east extension of the283

jet. A region of significantly reduced SFS SST variability is also spotted in the Irminger284

Sea and partly in the Labrador Sea between 50◦− 60◦N and 30◦− 50W. This is asso-285

ciated with an increase in mixed-layer depth in this region (not shown), which increases286

the heat capacity of the mixed-layer column, leading to a decrease in the variation of the287

surface temperature as more heat is now required to change the surface temperature. The288

Kuroshio extension mostly witnesses a decrease in the SFS SST variability, especially289

around the continental boundaries and around the eastward extension. A clear dipole290

is visible around the separation location, which hints at a northward shift in the course291

of the jet. In the Agulhas and BMC regions, the magnitude of the difference is much smaller292

than in the other two regions, but the percentage change is nearly the same (compare293

the color scales with the overlaid contours). The most prominent pattern is a region of294

decreased SST variability around the Brazil-Malvinas confluence between 30◦−60◦W295

and 35◦−45◦S. This is likely related to the seasonal southward shift of the South At-296

lantic Current that Kenigson et al. (2022) found when analyzing the effects of this pa-297

rameterization in a forced-ocean simulation (note, the variance attached to this seasonal298

shift would be present even though the seasonal mean is removed). We also analyzed the299

difference (Stoch-Control) in the standard deviation of SFS LHF, but they were qual-300

itatively the same (Fig. S2 in the supplementary material) as LHF variability is forced301

by SST anomalies at these scales. Note, that the patterns in Fig. 1a and 2 do not re-302

semble each other because they represent temperature variability over different ranges303

of scales and, therefore, are fundamentally different.304

Next, we analyze the difference in the SST-LHF covariance from Stoch and Con-305

trol outputs (Fig. 2, right column). The impact of the parameterization is much more306

robust and organized in the case of SST-LHF co-variability, as the patterns strongly de-307

lineate the local current systems in all four regions. Furthermore, the Stoch-Control out-308

put is predominantly positive, meaning the parameterization is increasing the SST-LHF309

co-variability globally. The magnitude of the impact is also much higher on SST-LHF310

co-variability than on the variability of the individual components, especially in the GS311

and Kuroshio regions, where several locations experience more than a doubling in their312

–8–



manuscript submitted to Geophysical Research Letters

Figure 2. Manifestation of the influence of the stochastic parameterization on SFS SST vari-

ability and SST-LHF co-variability for 500 km filter scale. The left column shows the difference

in the standard deviation of SFS SST (in ◦C) from Stoch and Control simulations in the GS,

Kuroshio, Agulhas, and BMC (top to bottom) regions. The right column shows this difference

(Stoch-Control) for the SST-LHF covariance (◦C.W/m2). The overlaid contours denote the re-

spective quantities for the Control experiment; the contour levels are [0.2, 0.6] and [2, 4] in the

left and right columns, respectively. The green stars denote the locations picked for the analysis

in section 3.2 and in the supplementary material.
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covariance magnitude. Physically this means that the parameterization is boosting the313

intrinsic SST variability and its feedback to the THF following the oceans-forcing-atmosphere314

mechanism at small scales.315

3.2 Correlations and Transition Scales316

Here we discuss the local instantaneous and tendency correlations (as described in317

section 2.3) and the associated transition scales for the low-pass fields obtained using spa-318

tial filtering with filter sizes between 200− 800 km. The transition length scale is the319

filter width at which the instantaneous and tendency correlation magnitudes intersect320

(Bishop et al., 2017). We compute the correlations and the transition scales for both Con-321

trol and Stoch simulations and compare them against OBS. Here, we focus only on the322

GS region, as it is dynamically rich, possesses much less systematic model bias, and shows323

the highest impact relative to the other WBC locations (they are discussed in Fig. S3-324

S4 in the supplementary material). We aim to establish the physical significance of the325

parameterized density perturbations by studying their influence on large-scale patterns’326

correlations and the associated transition length scale at which the THF variability changes327

from ocean-driven to atmospheric-driven. The local correlation relationships discussed328

here belong to the location marked by the green star in Fig. 2 top row. This and the other329

marked locations in Fig. 2 have two important properties: (i) they possess high SFS SST330

variability (cf. the SFS SST standard deviation contours in Fig. 2), and (ii) the param-331

eterization made a significant change in SFS variability at these locations. For a global332

visualization of the instantaneous and tendency correlations for differing filter sizes, the333

reader is referred to supplementary Fig. S5-S6. To mark the statistical significance of334

the local correlations and the differences therein between Control, Stoch, and OBS, we335

compare their 95% confidence intervals (CIs) – obtained using the Bootstrapping method336

(Tibshirani & Efron, 1993; Menke & Menke, 2016).337

At the chosen GS location, the median value of the instantaneous correlation for338

Stoch is equal or higher than Control for all filter lengths (Fig. 3a), whereas the ten-339

dency correlation is much lower than the Control (Fig. 3b). We checked several other340

locations in this region and found qualitatively similar results. Physically this means that341

the parameterization is indirectly boosting the ocean-intrinsic component of the THF342

variability and diminishing the atmospheric-forced fraction across various scales in this343

region. Furthermore, the augmentation of ocean-forced THF variability by the stochas-344

tic parameterization is consistent with OBS, as the Control instantaneous (tendency)345

correlations are much smaller (higher) than OBS for nearly all filter sizes at this mesoscale-346

eddy-rich location. This implies that the parameterization is steering the correlations347

in the right direction. A similar study done for covariances also provided identical re-348

sults, highlighting the comparable strength of the correlated variability resolved by Stoch349

and OBS (see Fig. S7 in the supplementary material). Modifications in the correlations350

by the stochastic parameterization are most pronounced for filter sizes up to 500 km, as351

the spatial scales beyond this filter width are nearly resolved in both Stoch and Control,352

and the associated variability is mostly atmospheric-driven.353

Finally, we analyze the transition length at which the LHF variability switches from354

ocean-driven to atmospheric-driven. Grid-point-wise transition scales were computed for355

all locations in the GS region using the Control, Stoch, and OBS outputs and are pro-356

vided in Fig. 3(c-e). The most notable distinction between Stoch and Control is that the357

induced stochastic parameterization resolves the transition lengths for several locations358

around the eastward extension of the jet (45◦−60◦ W, 40◦−45◦N), which are also com-359

parable with the OBS. For example, at the location marked by the green star, the ad-360

dition of the stochastic parameterization increases the transition scale from ≈ 70 km361

(not shown) to ≈ 350 km, which is closer to the OBS value of ≈ 550 km. Off the GS362

extension, locations are mostly atmospherically driven at the grid scale, and therefore363

the transition length scale is not defined. Despite the improvements, Stoch does not re-364
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Figure 3. Comparison of the scale dependence of local correlations, their CIs, and transition

scales for Stoch, Control, and OBS in the GS region: (a) 95% CIs of local instantaneous corre-

lations for the GS location marked by the green star in Fig. 2 top row; (b) same as (a) but for

tendency correlations; (c-e) comparison of spatial maps of the transition scales for Control, Stoch,

and OBS. Locations marked in white are atmospheric-forced at the grid scale, and therefore the

transition scale is not defined for them. In (a-b), the circles in the middle of the whiskers denote

the median values, and the green star in (c-e) denote the same GS location in Fig. 2 top row.
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solve all transition scales in the GS region as observed in the OBS, perhaps because the365

stochastic parameterization only accounts for one process (density variations), whereby366

ocean mesoscales induce variability at larger scales and in other quantities too.367

4 Conclusions and Discussion368

We implemented a physics-based stochastic subgrid-scale (SGS) parameterization369

for ocean density in a CESM-MOM6 coupled climate model and studied its impact on370

air-sea turbulent heat flux (THF) variability, primarily latent heat flux (LHF). Past stud-371

ies have shown that the air-sea flux variability is driven by oceanic-intrinsic variability372

at ocean mesoscales and by synoptic-scale atmospheric processes at larger scales, e.g.,373

O(1000) km. However, due to the spatial resolution of non-eddying ocean climate mod-374

els, the air-sea flux variability due to intrinsic oceanic turbulence is not well represented.375

Here, we show that an SGS density parameterization significantly reinforces the ocean-376

intrinsic air-sea THF variability across turbulent, eddy-rich regions, such as western bound-377

ary currents and the adjacent re-circulation zones. To our knowledge, this study is the378

first to confirm the efficacy of using a systematic physics-based SGS parameterization379

to provide a source of intrinsic ocean-driven THF variability in a non-eddy-resolving com-380

prehensive coupled climate model.381

The results presented in this paper are based on a localized study around four WBC382

regions – Gulf Stream (GS), Kuroshio, Agulhas, and Brazil-Malvinas Confluence (BMC)383

– and involve subfilter-scale (SFS) fields obtained using a highly scale-selective spatial384

filter. The parameterization significantly influences SFS SST and LHF variability around385

the western boundary current regions, as several locations display more than 30% increase386

in their standard deviation (Fig. 2). The SFS SST-LHF co-variability is also significantly387

enhanced globally, with places around the mean boundary currents undergoing more than388

doubling in their SST-LHF co-variances. Instantaneous SST-LHF correlations and ∂SST/∂t389

- LHF tendency correlations as a function of the filter scale revealed the impact of the390

parameterization on large-scale SST-LHF co-variability and the associated transition scales.391

We established that the changes in the SFS SST and LHF variances produced by the pa-392

rameterization are physically sound as they inverse cascade to larger scales and yield sub-393

stantial modifications in the mean fields’ correlations and, therefore, the transition scales,394

which were found consistent with the high-resolution J-OFURO3 observations. This is395

strongly the case in the GS region; the other boundary current regions were found less396

affected by the imposed parameterization, which is likely due to the fact that the param-397

eterization has very little eddy SST variability in these regions to start with. An under-398

estimation of the surface heat flux comes as a linear response to weak mesoscale SST vari-399

ability in these regions in the parameterized run. Although the high-/low-pass fields used400

in this paper are obtained using the Taper filtering kernel following Grooms et al. (2021),401

a Gaussian filtering kernel was also tested. The latter resulted in qualitatively similar402

results with a slight drop in the instantaneous SST-LHF correlations and an increase in403

the ∂(SST)/∂t - LHF tendency correlations; therefore, our results are robust to filter-404

ing kernels. The comparison of a pre-industrial climate simulation to modern observa-405

tions is a limitation of this study. Nevertheless, the conclusion that the stochastic pa-406

rameterization leads to increases in ocean-intrinsic air-sea heat flux variability is not likely407

to be sensitive to climate changes.408

This work has significant potential for further advancements. One possible line of409

extension is a systematic study of seasonal dependence of the correlations and the tran-410

sition length scales while focusing on their physical mechanisms. Another possible re-411

finement is to make the whole study more consistent by considering a CESM-MOM6 sim-412

ulation with a spatial resolution closer to the observations (1/4◦ here). Presently the ob-413

servations have much more spatial scales resolved and higher variance across scales than414

the model output. It may also be valuable to develop a physics-based stochastic param-415

eterization for small-scale air-sea flux variability by directly manipulating bulk flux for-416
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mulas, which possess significant covariability among its constituent variables – all inter-417

acting in a nonlinear fashion.418
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understanding of the manuscript. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

2 

 

 

Figure S1. A comparison of the standard deviation of high-pass SST (left column) and LHF (right column) from 

OBS (top row), Stoch (middle row), and Control (bottom row) for 500 km filter scale. OBS is band-pass filtered to 

retain the scales between the MOM6 grid size and 500 km. MOM6 simulations (both Stoch and Control) lack a 

significant proportion of the high-frequency variability inherent to mesoscale eddies along the boundary currents 

compared to the OBS. 
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Figure S2. (a) Difference in the standard deviation of high-pass SST from Stoch and Control simulations for 500 

km filter size; (b) same as (a) but for LHF. Note: this figure is essentially the subtraction of bottom row from the 

middle row in Fig. S1. The most notable changes are present along the Labrador and Irminger seas, which are 

strongly correlated to the changes in the wintertime mixed layer depths in these regions. Furthermore, both 

panels exhibit almost the same pattern, inferring that the SST anomalies (i.e., oceans) force the THF variability (or 

atmosphere) at mesoscales. 
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Figure S3. Plots of 95% confidence interval (CI) for SST-LHF (left column) and 𝜕(𝑆𝑆𝑇)/𝜕𝑡-LHF (right column) 

correlation using the low-pass components from various filter sizes. These belong to the Kuroshio, Agulhas, and 

BMC locations (top to bottom) marked by green stars in Fig. 2 in the main text. In general, Stoch CIs are closer 

to OBS than Control for filter sizes up to 500 km. The Agulhas location is an exception, as it lacks a large extent 

of SST-LHF covariability for both Stoch and Control compared to the OBS. An enhanced SST-LHF correlation for 
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Stoch proves that we are augmenting SST-LHF feedback inherent to mesoscale eddies, which the stochastic 

density parameterization focuses on. 

 

 

Figure S4. Spatial maps of the transition length scale for Kuroshio, Agulhas, and BMC regions (top to bottom) for 

Control, Stoch, and OBS (left to right). In the Kuroshio region (top row), subtle differences between Stoch and 

Control exist about east of Japan, but the Kuroshio extension is shifted far north in both Control and Stoch 

compared to the OBS. This is why we do not study these differences further. The Stoch and Control outputs are 

nearly identical in the Agulhas and BMC regions except for minor changes in the magnitude of the transition 

scales resolved in the two experiments. There are also changes around the Antarctic Circumpolar Current (ACC) 

boundary, i.e., between 55° − 60° S, but this is not an area of focus in this study. 
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Figure S5. Global maps of the instantaneous SST-LHF correlation for low-pass SST and LHF from 200 km (left 

column), 500 km (middle column), and 800 km (right column) filter scales; the three rows belong to OBS (top), 

Stoch (middle), and Control (bottom). Coherent spatial patterns of positive correlations exist over high SST/THF 

variability regions, e.g., Gulf Stream, Kuroshio, and Agulhas. Because the instantaneous SST-LHF correlations 

quantify the oceans-forcing-atmosphere case -- inherent to small-scale oceanic eddies, we witness a general 

decrease in the correlations in these regions as we move from low to high filter scales. This is clearer in the panels 

for OBS. The strong correlations in the tropical Pacific are due to the ENSO effects. 
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Figure S6. Same as S5 but for 𝜕(𝑆𝑆𝑇)/𝜕𝑡 - LHF correlation. The correlation magnitude increases globally as we 

move from low to high filter size (i.e., left to right) because the atmosphere-forcing-oceans case holds most 

strongly for synoptic scales. It is worth noting that around the major boundary currents, the sign of the 

correlations here is opposite to those in Fig. S5. This is due to the difference in the physical processes they 

represent (discussed in detail in Sec. 1 in the main text.) 
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Figure S7. Same as Fig. S3 but for covariance (with an additional panel for the GS location). The GS location 

stands out, as the Stoch outputs (both SST-LHF and 𝜕(𝑆𝑆𝑇)/𝜕𝑡 -LHF covariances) are closest to the OBS in this 

case. The Kuroshio location also shows significant impact, but the Stoch SST-LHF covariance outputs are more 
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ocean-forced beyond the 400 km filter size. The Agulhas location again remains nearly insensitive to the imposed 

parameterization. The BMC location shows incredible improvements in the SST-LHF covariance up to 400 km 

filter size but underestimates it beyond this filter width. The changes in 𝜕(𝑆𝑆𝑇)/𝜕𝑡 - LHF covariance are marginal 

for all filter widths at this location. 
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