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Abstract

Efforts to diagnose the risks of a changing climate often rely on downscaled and bias-corrected climate information, making it

important to understand the uncertainties and potential biases of this approach. Here, we perform a variance decomposition

to partition uncertainty in global climate projections and quantify the relative importance of downscaling and bias-correction.

We analyze simple climate metrics such as annual temperature and precipitation averages, as well as several indices of climate

extremes. We find that downscaling and bias-correction often contribute substantial uncertainty to local decision-relevant

climate outcomes, though our results are strongly heterogeneous across space, time, and climate metrics. Our results can

provide guidance to impact modelers and decision-makers regarding the uncertainties associated with downscaling and bias-

correction when performing local-scale analyses, as neglecting to account for these uncertainties may risk overconfidence relative

to the full range of possible climate futures.
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Abstract1

Efforts to diagnose the risks of a changing climate often rely on downscaled and bias-corrected2

climate information, making it important to understand the uncertainties and potential biases3

of this approach. Here, we perform a variance decomposition to partition uncertainty in global4

climate projections and quantify the relative importance of downscaling and bias-correction.5

We analyze simple climate metrics such as annual temperature and precipitation averages,6

as well as several indices of climate extremes. We find that downscaling and bias-correction7

often contribute substantial uncertainty to local decision-relevant climate outcomes, though8

our results are strongly heterogeneous across space, time, and climate metrics. Our results can9

provide guidance to impact modelers and decision-makers regarding the uncertainties associated10

with downscaling and bias-correction when performing local-scale analyses, as neglecting to11

account for these uncertainties may risk overconfidence relative to the full range of possible12

climate futures.13

Main14

Climate change is a global phenomenon that manifests on regional to local scales [1]. Managing15

the risks of a changing climate thus requires accurate, high-resolution climate projections as well16

as an understanding of the associated uncertainties. One of our primary sources of information17
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about future climate change is ensembles of coupled general circulation models (GCMs) run18

under various greenhouse gas emissions scenarios [2]. However, GCM projections of future19

climate are highly uncertain, owing to three primary factors: model uncertainty, arising from20

differences in the structures and parameters of GCMs and thus their responses to the same21

radiative forcing input; scenario uncertainty, arising from the range of possible future greenhouse22

gas emissions trajectories; and internal variability, arising from the chaotic nature of the Earth23

system.24

Understanding the relative importance of each of these sources of uncertainty can help guide25

research agendas and inform the modeling choices of end-users. Several previous studies have26

made important progress towards this goal for a variety of both climate and socioeconomic27

outcomes [3–8]. Hawkins and Sutton [3] (hereafter, HS09) use model outputs from the Cou-28

pled Model Intercomparison Project Phase 3 (CMIP3) to partition uncertainty in global and29

regional temperature projections, later extending their analysis to precipitation [5]. More re-30

cently, Lehner et al. [6] (hereafter, L20) leverage single model initial condition large ensembles31

(SMILEs) alongside CMIP6 outputs to better characterize internal variability, particularly at32

regional to local scales where its influence can be dominant. Using a similar SMILE-based33

approach, Blanusa et al. [7] (hereafter, B23) highlight the importance of internal variability in34

driving daily temperature and precipitation extremes.35

While these works have led to many useful insights, they primarily rely on GCM outputs36

that are typically viewed as unsuitable for downstream analyses owing to their coarse spatial37

resolutions and systematic biases [9]. GCM outputs often need to be downscaled (to increase38

the spatial resolution) and bias-corrected (to remove systematic biases) before being considered39

suitable for the wide variety of end-uses in which they might be employed, including impact40

assessments [10, 11], adaptation planning [12], infrastructure design [13], and financial risk dis-41

closures [14]. However, constructing a downscaled and bias-corrected ensemble requires making42

several methodological choices [15,16], including the configuration of the downscaling and bias-43

correction algorithms, the selection and temporal slicing of the underlying observational dataset,44

and the sampling of parent GCMs and greenhouse gas emissions scenarios. These choices can45

combine to produce considerable differences in the projections from various ensembles such that46

users who rely on different datasets may attain meaningfully different results [17–22]. This, in47

turn, has motivated a separate body of work aimed at quantifying the importance of downscal-48

ing and bias-correction relative to other sources of uncertainty, but these studies often report49
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mixed conclusions [23–28]. For example, Chegwidden et al. [25] analyze hydrologic variables in50

the Pacific Northwest region of North America and find that the choice of downscaling algorithm51

does not contribute meaningfully to projection spread compared to the influence of scenarios,52

GCMs, and hydrologic models. In contrast, Wootten et al. [27] focus on meteorological variables53

in the southeastern United States and conclude that impact assessments using only a single set54

of downscaled and bias-corrected GCMs may suffer from overconfidence. Many of the conflict-55

ing results in this literature can be explained by different studies focusing on distinct and often56

small geographic regions, or on varying sets of meteorological or hydrological variables. Each57

study also relies on a unique sampling of GCMs, scenarios, and downscaling and bias-correction58

algorithms, which can lead to different uncertainty decompositions.59

In this work, we aim to address the above literature gaps by quantifying the contribution60

of downscaling and bias-correction to projection uncertainty for a variety of climate metrics61

at global scale. Following the simple variance decomposition approach of previous works [27],62

we account for scenario uncertainty, model uncertainty, downscaling and bias-correction uncer-63

tainty, and interannual variability. Our approach involves calculating the variance along each64

axis of uncertainty to obtain estimates of the time-evolving relative contribution of each source65

to the total projection spread (see Methods section). We focus on statistically downscaled and66

bias-corrected ensembles and include, to our knowledge, all global, publicly available datasets67

with parent GCMs taken from the CMIP6 repository [29]. This leads to a meta-ensemble68

comprising approximately 200 downscaled and bias-corrected model outputs across 4 emissions69

scenarios, 22 parent CMIP6 models, and 5 downscaling and bias-correction algorithms (Supple-70

mentary Table 1). Owing to data availability, we are restricted to analyzing metrics of climate71

change derived from daily maximum or minimum temperature and daily precipitation. Our72

selection of indicators includes annual temperature and precipitation averages as well as sev-73

eral indices of climate extremes due to their potential for large impacts on a broad variety of74

human-environment systems [30].75

Our uncertainty partitioning results are strongly heterogeneous across space, time, and76

climate metrics. However, in general, we find that downscaling and bias-correction contribute77

a non-negligible fraction of the total projection spread and in many cases can represent the78

primary source of uncertainty. Downscaling and bias-correction are particularly important over79

the near term (early-to-mid 21st century), in projections of precipitation, in projections of80

extremes, in regions of complex terrain, and in regions where historical observations disagree.81
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Our results indicate that in many instances, relying on a single set of downscaled and bias-82

corrected outputs may risk overconfidence. For stakeholders or impact modelers who lack the83

computational capacity to extensively sample across all four sources of uncertainty, our results84

may also assist in deciding which factors to prioritize.85

Results86

Hereafter, to improve readability, we use the terms “downscaled” or “downscaling” to encompass87

the outputs or methods of downscaled and bias-corrected ensembles, unless the distinction88

between downscaling and bias-correction is important.89

Variance decomposition of climate averages90

We begin by analyzing indicators of long-term climatic change, namely annual average temper-91

ature and annual total precipitation. Before moving to the global picture, we focus on three92

example locations: New Delhi, India; Seattle, USA; and Lagos, Nigeria. In addition to being93

populous and economically important cities with distinct climates, these locations allow a com-94

parison to previous works (L20, B23). The variance decomposition results for each city, as well95

as each individual downscaled projection, is shown in Figure 1. There is broad agreement on96

the sign of change for both temperature and precipitation, with average temperatures generally97

increasing in all locations (Fig. 1a-c) and total precipitation slightly increasing in New Delhi98

and Seattle (Fig. 1g-h) while remaining approximately constant in Lagos (Fig. 1i). However,99

there is considerable projection spread for all metrics and locations, and the resulting variance100

decompositions lead to different interpretations as to the driving factors. For temperature pro-101

jections (Fig. 1d-f), the contribution of scenario uncertainty is similar in all three locations,102

starting small and only becoming non-negligible after around 2050. The reverse is true for103

interannual variability, which is more important in the first half of the century and declines104

over time. Similarly, the relative contribution of downscaling is largest over the near term and105

declines over time. However, there are considerable differences in magnitude across the three106

cities: temperature projections in New Delhi show little dependence on the choice of downscaled107

ensemble (Fig. 1d) whereas downscaling is the dominant uncertainty in Lagos long into the 21st108

century (Fig. 1f). For precipitation projections, a qualitatively different uncertainty decom-109

position emerges (Fig. 1j-l). Interannual variability is much more important in all locations,110
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while the contribution of scenario uncertainty virtually disappears. In Seattle, downscaling111

is responsible for a substantial fraction of the variance of precipitation projections (Fig. 1k),112

model uncertainty contributes a small but perceptible fraction, and the overall decomposition113

changes little over time. This contrasts with New Delhi (Fig. 1j) and Lagos (Fig. 1l), where114

model uncertainty is relatively more important and grows over time.115

We use Figure 1 only as a demonstration of the complex and sometimes non-intuitive nature116

of the interplay among these four uncertainty sources at local scales. The results of each variance117

decomposition arise from a combination of factors unique to each location. For example, the118

importance of downscaling uncertainty for Seattle precipitation may be related to its position-119

ing in a mountainous region [19], whereas the dominance of downscaling uncertainty in Lagos120

temperature projections may be driven by disagreements among the underlying observational121

datasets used to perform the downscaling (Figs. S1-S2). Fully explaining each uncertainty122

decomposition would require expertise regarding the many physical processes affecting each lo-123

cation’s climate, an understanding of their representations in the CMIP6 GCMs, and knowledge124

of how the resulting temperature and precipitation outputs are affected by each downscaling125

methodology.126

We now apply our variance decomposition globally, continuing to focus on climate averages.127

These results are shown in Figure 2, where uncertainty sources are shown along each column128

and each row shows a 20-year period representing the early, mid, and late 21st century. The129

global results are largely in keeping with those of the three example cities. For annual average130

temperature, across almost all regions of the globe, there is a marked increase in the contribution131

of scenario uncertainty over time and a corresponding decrease in downscaling uncertainty and132

interannual variability. This matches the behavior of each of the locations shown in Figure 1,133

even if the magnitudes differ. For example, Lagos can be seen as an outlier in terms of the134

importance of downscaling uncertainty—by the late 21st century, downscaling still contributes135

around 25% of the total variance of Lagos temperature projections (Fig. 1f), almost double136

the global average. Figure 2a also shows that in many locations, model uncertainty grows to137

become the most important driver of variance by mid-century and continues to contribute a138

substantial fraction by late-century, though scenario uncertainty typically becomes larger. For139

annual total precipitation (Fig. 2b), interannual variability remains the dominant contributor,140

usually followed by downscaling uncertainty and model uncertainty while scenario uncertainty141

is almost always negligible. As in Figure 1, the precipitation decomposition changes little over142
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Figure 1: Projections and variance decomposition of climate averages. a-c Time-
series of annual average temperature from each downscaled model output. Gray lines show
individual model outputs and colored lines of different styles show associated ensemble-scenario
means. Outputs for each city are taken from the single grid point encompassing their respective
locations. d-f Variance decomposition of annual average temperatures corresponding to the
timeseries plots in a-c. The contribution of each uncertainty source is expressed as a percentage
of the total variance. g-i Timeseries of annual total precipitation, similar to a-c. j-l Variance
decomposition of annual total precipitation, similar to d-f.
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Figure 2: Global variance decomposition of climate averages. a Variance decomposition
for annual average temperature. Each column shows the contribution from a different source
of uncertainty, measured as the fraction of total variance. Each row depicts a 20-year period
representing either the early, mid, or late 21st century. The purple dots in the upper left subplot
show the locations of New Delhi, Seattle, and Lagos. b Variance decomposition for annual total
precipitation, in the same layout as a. The gray boxes in the lower left of each subplot gives
the global average.

time.143

The global results shown in Figure 2 also reveal some important spatial patterns. Notably,144

regions of complex terrain are often associated with larger downscaling uncertainties. For both145

temperature and precipitation projections, major mountain ranges including the Rocky Moun-146

tains, the Andes, and the Himalayas exhibit comparatively large downscaling uncertainties147

with correspondingly lower contributions from other sources. This could be due to topographic148

influences on atmospheric dynamics that are not well represented in coarse-resolution GCMs,149

leading to methodological differences in the downscaling algorithms being amplified into a larger150
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spread in outcomes [31]. However, the same regions also tend to show larger disagreements in151

the historical record (Fig. S5), which can drive differences in the projections [32, 33]. There152

are other regions, such as Greenland and parts of the Sahara desert, where large downscaling153

uncertainties are likely solely driven by observational disagreements.154

Our global results broadly agree with HS09 and L20, and reproduce some aspects of the155

spatial patterns uncovered by L20. For example, we find for temperature projections that156

interannual variability is largest over the mid- and high-latitudes; for precipitation projections,157

we also find that model uncertainty is larger in the tropics compared to other regions. In158

our results, interannual variability remains considerably more important beyond the early 21st159

century, which arises because previous works apply decadal averages to each climate metric160

before performing the variance decomposition. In this study, we do not average any climate161

indices over time in order to ensure that our results remain sensitive to the entire distribution162

of possible outcomes in any given year.163

Variance decomposition of climate extremes164

While long-term averages are important indicators of climatic change, climate and weather165

extremes play an outsized role in driving environmental and socioeconomic impacts [34] and166

can be important in shaping public perceptions [35]. In this section, we therefore apply our167

variance decomposition approach to a suite of indices measuring climate extremes. We first168

focus on annual 1-day maxima for daily maximum temperature and daily precipitation. As169

with our discussion of climate averages, we focus initially on the three example cities before170

showing the global results. The 1-day maxima timeseries and variance decompositions for New171

Delhi, Seattle, and Lagos are shown in Figure 3, which adopts the same layout as Figure 1.172

There is strong agreement across models, scenarios, and downscaling methods that the mag-173

nitudes of temperature extremes are expected to increase in future (Figs. 3a-c). However, the174

associated uncertainty decompositions are qualitatively different. In New Delhi and Seattle,175

interannual variability plays an important role in driving the variance of 1-day temperature176

maxima (Figs. 3d-e), more so than for annual averages (Figs. 1d-e). In these locations, the177

temperature decompositions also show a similar temporal pattern to the annual average results,178

with a growing importance for scenario uncertainty and a declining contribution from inter-179

annual variability over time. The uncertainty partitioning for Lagos is qualitatively different180

(Fig. 3f). Here, the overwhelming contribution arises from downscaling uncertainty, which re-181
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mains almost constant throughout the century. It is worthwhile emphasizing the tremendous182

differences in Lagos extreme temperature projections that arise due to downscaling—annual183

maximum temperatures throughout the century, from the same GCM and forcing scenario, can184

differ by 10◦C depending on the downscaling algorithm applied (Fig. 3c). As we discuss in more185

detail in the Supporting Information, this is driven by sizeable (but localized) disagreements186

between observational datasets in coastal areas (Figs. S3, S12-S17).187

The partitioning for 1-day precipitation maxima is qualitatively similar in each city and188

the relative contribution from each uncertainty source remains constant over time (Figs. 3j-i).189

Interannual variability is the primary driver of variance in New Delhi; in Seattle, interannual190

variability and downscaling contribute approximately equally; in Lagos, although interannual191

variability remains important, downscaling is the largest contributor, which again likely arises192

due to observational disagreements (Fig. S4). In New Delhi and Seattle, the decomposition193

for 1-day precipitation maxima (Figs. 3j-k) is fairly similar to the breakdown for annual total194

precipitation in those locations (Figs. 1j-k). In Lagos, downscaling plays a much more prominent195

role in driving the variance of precipitation extremes (Fig. 3l) relative to annual totals (Fig. 1l).196

In Figure 4, we show global maps of the variance decompositions for annual 1-day max-197

ima. The spatial patterns of these results share many commonalities with those of annual198

averages (Fig. 2). Specifically, regions of complex terrain and areas of relatively large observa-199

tional disagreement (Fig. S6) are often associated with larger downscaling uncertainties. The200

temporal evolutions are also broadly similar—for both average metrics and 1-day maxima, the201

precipitation decomposition remains approximately constant over time and the temperature de-202

composition shows a similar pattern of increasing relative contributions from model and scenario203

uncertainty at the expense of downscaling uncertainty and interannual variability. In terms of204

the magnitude of the contribution from each source, the decomposition for 1-day precipitation205

maxima (Fig. 4b) is very similar to that for annual totals (Fig. 2b). One of the few differences206

is that interannual variability becomes slightly more important at the expense of model uncer-207

tainty, particularly in the tropics. For temperature projections, there are notable differences.208

Downscaling and interannual variability play a more important role at longer time horizons for209

annual maximum temperatures (Figs. 4a) compared to annual average temperatures (Fig. 2a).210

Recall that for annual average temperatures, scenario and model uncertainty account for most211

of the variance by the late 21st century (around 80%, globally averaged; Fig. 2a). The corre-212

sponding late-century breakdown for maximum temperatures is qualitatively different as each213
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Figure 3: Projections and variance decomposition of annual 1-day maxima. a-c
Timeseries of annual maximum temperature from each downscaled model output and associated
ensemble-scenario means, in a similar format to Figure 1. d-f Variance decomposition of annual
maximum temperatures corresponding to the timeseries plots in a-c. The contribution of each
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Figure 4: Global variance decomposition of annual 1-day maxima. a Variance decom-
position for annual maximum temperature. As in Figure 2, columns delineate the contribution
from each uncertainty source and rows demonstrate the temporal evolution. b Variance decom-
position for annual maximum 1-day precipitation, in the same layout as a.

source contributes approximately equally (Fig. 4a).214

We find qualitatively similar results for the annual maxima of daily average temperature215

and daily minimum temperature (Fig. S18), although downscaling is slightly less important216

in both cases. We also consider how the uncertainty partitioning changes for temporally com-217

pounding extremes by repeating the calculation for 5-day maxima (Fig. S19). This made very218

little difference for temperature projections; for precipitation, it led to a small decrease in the219

contribution from downscaling uncertainty and a corresponding increase in the importance of220

interannual variability.221

There are several possible measures of climate extremes beyond annual 1-day maxima. Dif-222

ferent end-users may care about distinctive characteristics of a given extreme [36], including223

its magnitude and timing in relation to relevant human and/or environmental thresholds, its224

correlation structure across space and time, and whether it co-occurs with another hazard (i.e.,225
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a multivariate extreme) [37]. Although mindful that any set of indices will neglect many aspects226

of climate extremes that are important for specific sectors, we now define and analyze a suite of227

metrics that aim to be as broad as possible. We choose to analyze four threshold indices: the228

annual number of extremely hot days (defined as daily maximum temperature exceeding the229

local historical 99th percentile), the annual number of dry days (daily precipitation less than230

1mm), and the annual number of extremely wet days (daily precipitation exceeding the local231

historical 99th percentile). The resulting uncertainty decompositions are shown at the global232

scale in Figure 5.233

Several insights emerge from Figure 5. First, there continues to exist a clear qualitative234

difference between the precipitation- and temperature-based indices. The decomposition for235

dry days (Fig. 5b) and extremely wet days (Fig. 5c) is roughly constant over time and largely236

dominated by downscaling uncertainty and interannual variability while scenario uncertainty237

again contributes negligibly. In contrast, the results for extremely hot days (Fig. 5a) show a238

similar temporal pattern to previous temperature-derived metrics where model and scenario un-239

certainty play an increasingly important role at longer time horizons. Second, note that in many240

regions, model uncertainty is the most important factor by the late 21st century in projecting241

extremely hot days, which contrasts with our results for the non-threshold metric of tempera-242

ture extremes, annual maxima (Fig. 2a). This is likely related to the large spread in CMIP6243

climate sensitivities [38]. Since we define an extremely hot day in reference to a constant (but244

local) temperature threshold, higher-sensitivity GCMs will tend to cross that threshold earlier245

than lower-sensitivity GCMs, leading to a relative increase in model uncertainty. Third, for all246

metrics analyzed thus far, the annual number of dry days is markedly the most sensitive to the247

choice of downscaled ensemble. This may be related to observational disagreements regarding248

the historical frequency of dry days (Fig. S7) but could also be driven in part by methodologi-249

cal differences in whether and how the bias-correction algorithms adjust their outputs based on250

minimum precipitation thresholds. Finally, our results for extremely hot days and extremely251

wet days are in reasonable qualitative agreement with those of B23, notwithstanding some dif-252

ferences in the magnitudes that arise due to our inclusion of downscaling uncertainty and our253

decision not to apply decadal averaging. For extremely hot days (compare Fig. 5a with Fig. 5 of254

B23), we find very similar trends in the relative contributions from model uncertainty, scenario255

uncertainty, and interannual/internal variability. For extremely wet days (compare Fig. 5b with256

Fig. 6 of B23), both sets of results are dominated by interannual/internal variability. We also257
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Figure 5: Global variance decomposition of threshold indices of climate extremes.
Variance decomposition for: a annual number of extremely hot days, b annual number of dry
days, and c annual number of extremely wet days. As in Figures 2 & 4, columns delineate the
contribution from each uncertainty source and rows demonstrate the temporal evolution. Ex-
tremely hot days and extremely wet days are defined to occur when daily maximum temperature
and daily precipitation exceed their local 99th percentiles, respectively, where percentiles are
calculated over 1980-2014 (see Methods). Dry days are defined to occur when daily precipitation
is less than 1mm.
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find an increased role for model uncertainty in West Africa and the Amazon rainforest, although258

to a far lesser extent than B23 since downscaling also represents a significant contribution in259

those regions.260

In the Supporting Information, we test the sensitivity of these results to several different261

threshold definitions (Figs. S20-S32). Broadly, we find that downscaling becomes less impor-262

tant if daily average or minimum temperatures are considered instead of daily maximums, and263

interannual variability becomes more important if more extreme thresholds are used. Calculat-264

ing the historical quantiles from a separate observational dataset can lead to some differences in265

the contribution from downscaling uncertainty, but this does not change the qualitative results.266

We also include extensions to account for temporally compounding extremes by calculating the267

longest consecutive run of days crossing each threshold, the main effect of which is to increase268

the importance of interannual variability (Figs. S20-32). Lastly, we also investigate a simple269

multivariate metric, extremely hot and dry days (Figs. S33-S34), which shows a very similar270

decomposition to that for extremely hot days. This indicates that conditioning the occurrence271

of daily temperature extremes on concurrent low precipitation does little to alter the uncertainty272

decomposition, although it is unclear whether this result would hold over longer timescales.273

Implications for risk assessment274

Current impact analyses often rely on a single set of downscaled climate model outputs. Our275

results so far suggest that this approach may lead to overconfidence by generating an artificially276

narrow probability distribution relative to the full range of plausible climate futures. To demon-277

strate this effect, we provide a stylized example around characterizing mid-century hot and wet278

extremes in Seattle, shown in Figure 6. Using four previously defined indices of extremes,279

Figure 6 illustrates the effects of only sampling from one downscaled ensemble by comparing280

the resulting probability distribution to that obtained by using the entire meta-ensemble. For281

every metric examined, key distributional statistics such as the median and 95th percentile vary282

considerably among each downscaled ensemble as well as in relation to the full ensemble. For283

extremely hot days (Fig. 6a), extremely wet days (Fig. 6c), and maximum 1-day precipitation284

(Fig. 6d), neglecting to sample across downscaled ensembles can induce greater distributional285

changes than neglecting to sample across emissions scenarios. The distributions from different286

ensembles are most similar for annual maximum temperature (Fig. 6b), though there are still287

notable differences. Consider, for example, the extraordinary 2021 Pacific Northwest heatwave,288
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Figure 6: Hazard characterization depends on modeling choices. Comparison of the
probability distribution generated by relying on the full meta-ensemble (all downscaled outputs
and scenarios; black boxplot), any one downscaled ensemble (including all scenarios; colored
boxplots), or any one scenario (including all ensembles; gray boxplots). Distributions are con-
structed for the grid point containing Seattle over 2050-2069 for different metrics: a annual
number of extremely hot days, b annual maximum temperature, c annual number of extremely
wet days, and d annual maximum 1-day precipitation. Boxplot whiskers span the 99% range.
Details on each downscaled ensemble and the Shared Socioeconomic Pathway (SSP) scenarios
can be found in the Methods section and Supporting Information. We neglect the carbonplan
ensembles here since they contain a limited number of models.

which has been extensively studied after breaking several temperature records throughout the289

region [39–42], leading to widespread impacts across many sectors [43]. During this event,290

Seattle-Tacoma airport recorded a temperature of 42.2◦C [44]. Figure 6b shows that estimates291

of the likelihood of surpassing this record by mid-century depend strongly on the choice of292

downscaled ensemble, as two from three ensembles project that this record is unlikely to be293

broken by mid-century even under extreme emissions scenarios.294

Figure 6 presents a highly simplified example that neglects many of the challenges of imple-295

menting risk and decision analyses in a nonstationary climate [45, 46]. It nonetheless serves to296

illustrate how modeling choices surrounding downscaled data sources can induce substantively297

different hazard characterizations. The consequences of relying on a single downscaled ensemble298

may be more or less severe in other locations and for other hazards, but these results suggest299

that careful consideration should be given to the role of downscaling uncertainty within any300
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broader risk assessment.301

Discussion302

Our main finding, that downscaling and bias-correction often contribute considerable uncer-303

tainty in local climate projections, is robust to a number of methodological checks that we304

outline in the Methods section and Supporting Information, though there are several possible305

avenues of future research. First, note that despite our simplified treatment of internal vari-306

ability (see associated discussion in the Methods section), we nonetheless find that interannual307

variability is an important driver of uncertainty for many metrics. For several precipitation-308

based metrics and indices of extremes, the combined contribution of interannual variability and309

downscaling drive a large share of the variance. This would suggest that future work char-310

acterizing uncertainties around the role of internal variability at local scales would be highly311

valuable. The framework presented here could be extended to include downscaled initial condi-312

tion ensembles [47], but to our knowledge such an ensemble does not yet exist at global scale.313

Independent estimates of internal variability at local scales, potentially derived from hybrid314

statistical techniques [48], could also be used to test for potential biases in the model-derived315

representation used here.316

Second, we sample only a subset of the many different methods that can be used to down-317

scale and bias-correct climate data. Many GCMs in our meta-ensemble are only downscaled in318

two different ways, and thus our estimate of the downscaling uncertainty (the variance across319

downscaling methods) likely suffers from biases associated with low sample size. We partially320

mitigate this bias by averaging each individual estimate across GCMs but expanding the meta-321

ensemble to include more downscaling algorithms should lead to more robust estimates. Most322

of the downscaling algorithms we consider are univariate approaches that do not adjust their323

outputs for spatial correlations (Supplementary Table 2), so expanding the meta-ensemble in324

a targeted manner that accounts for these aspects of the downscaling procedure could be par-325

ticularly beneficial. We also do not include any dynamical downscaling approaches, which may326

provide some advantages over statistical methods [49]. In general, adding more ensembles to327

the uncertainty decomposition could result in an increase or decrease in the relative importance328

of downscaling, depending on whether the additional ensembles exhibit similar projections [27].329

Third, we again highlight that our selection of climate metrics is necessarily limited. Since330
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all of the indices we analyze are calculated annually, we are unable to probe extremes that331

manifest on longer timescales (for example, the magnitude of a 10-year return period event) and332

we aggregate over seasonal information that is important for many sectors. A useful extension333

to this work could test how these aspects of climate hazards alter the variance decompositions.334

Additionally, moving beyond standardized meteorological indices to analyze targeted metrics335

that are relevant for specific sectors may lead to qualitatively different results [50].336

Finally, note that variance decomposition is only one of many possible approaches to char-337

acterize uncertainty. More formal sensitivity analysis techniques can be applied to understand338

specific aspects of the outcome space [51], including user-defined binary responses [52], and en-339

sure that inferences are relevant for downstream decision analyses [53]. We also stress that for340

many analyses, projections of future climate represent only one source of uncertainty. Climate341

projections are often used to drive sectoral models that contain their own structural and para-342

metric uncertainties [54–57]. Socioeconomic outcomes of interest may well be more sensitive343

to the representation of these environmental and/or human system dynamics, and sound risk344

management strategies should account for the uncertainty in each relevant system as well as345

their interactions [58].346

Our results have important implications for many users of downscaled climate products.347

Across almost all locations, time horizons, and indices of climatic change that we analyze, down-348

scaling rarely represents a negligible source of uncertainty. This would imply that a strategy of349

sampling from more than one downscaled ensemble is advisable during risk or impact analyses350

that are sensitive to low-probability climate hazards, as has been suggested elsewhere [27, 59].351

Such a sampling may represent a substantial increase in data and computational requirements,352

so we emphasize that it may not be necessary in all cases. Our results can provide some ini-353

tial heuristic guidance in this regard—they suggest that downscaling uncertainty is particularly354

important over the near term, in projections involving precipitation or climate extremes, and355

in regions of complex topography or observational disagreement. In general, we urge end-users356

to follow existing recommendations regarding the use of downscaled climate products [16, 60],357

including taking a process-informed approach and relying on expert knowledge of local weather358

and climate phenomena [61]. End-users may also consider whether downscaled projections are359

the most appropriate method of generating future climate information; other complementary360

approaches might include applying GCM-simulated changes to gridded historical data [62] or361

developing a statistical model based on pointwise observations [63].362
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This work also adds to a growing body of literature applying an increasingly diverse set of363

tools to characterize the uncertainties of a changing climate and the resulting environmental364

and socioeconomic impacts. Deliberate efforts to coordinate methodological comparisons would365

help build confidence in the insights derived from this line of research, which in turn will be366

necessary to guide best practices for the increasing number of both public and private actors367

who are incorporating climate projections into their decision-making processes.368

Methods369

Data sources370

We leverage five ensembles of statistically downscaled and bias-corrected GCM outputs: NASA371

NEX-GDDP-CMIP6 [64] (which we refer to as NEX-GDDP), CIL-GDPCIR [65], ISIMIP3BASD372

[66, 67] (which we refer to as ISIMIP3b), and two ensembles from carbonplan [68]: GARD-373

SV [69] and DeepSD-BC [70]. Some details on the configurations of each approach can be found374

in Supplementary Table 2. Each ensemble is filtered to ensure: (1) parent GCMs are available in375

at least 2 ensembles, (2) downscaled outputs are available for at least 3 Shared Socioeconomic376

Pathways (SSPs) [71], (3) downscaled outputs are missing no more than one variable (from377

tasmax, tasmin, and pr), and (4) downscaling is performed on the same simulation member of378

the parent GCM. Satisfying these requirements results in dropping 13 of 35 NEX-GDDP parent379

models and 8 of 25 CIL-GDPCIR parent models. All ISIMIP3b outputs are used. Additional380

outputs from different downscaling techniques are available in the carbonplan dataset but do381

not satisfy the above requirements. After calculating each metric in each ensemble, all outputs382

are conservatively re-gridded to a common 0.25◦ grid.383

For the threshold metrics that require comparing projection outputs to historical quantiles,384

we rely on two observational datasets: the Global Meteorological Forcing Dataset (GMFD) for385

Land Surface Modeling [72] and the ERA5 reanalysis from the European Centre for Medium-386

Range Weather Forecasts [73]. These products are chosen because they are available globally at387

0.25◦ spatial resolution. GMFD is the training dataset for the NEX-GDDP ensemble, and ERA5388

is the training dataset for the CIL-GDPCIR ensemble and both carbonplan ensembles, although389

with different temporal extents. The ISIMIP3b ensemble is trained on W5E5 v2.0 [74,75], which390

is only available at 0.5◦ spatial resolution. The quantiles are calculated from daily data over391

1980-2014. We conservatively re-grid both observational datasets to the native grid of each392
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downscaled ensemble before calculating the threshold metrics. Our definition of extremely hot393

days and extremely wet days in the main results is based on daily maximum temperature and394

daily total precipitation exceeding the local 99th percentile from GMFD, respectively. In the395

Supporting Information, we compare the GMFD-calculated quantiles to those obtained from396

ERA5 (Figs. S8-S11).397

Uncertainty Partitioning398

Following previous works, we employ a simple variance decomposition approach to calculate399

the relative uncertainty arising from four sources: scenario uncertainty, model/GCM uncer-400

tainty, downscaling uncertainty, and interannual variability. Additionally, in a similar manner401

to Wootten et al. [27], we employ a weighting strategy that accounts for data coverage. Our402

method is as follows: let x(t, s,m, d) represent a given climate metric in some location at year403

t from scenario s, parent GCM m, and downscaling method d. We first estimate the forced404

response x̂(t, s,m, d) by fitting a 4th order polynomial over 2015-2100. Interannual variability405

is then estimated as the centered rolling 11-year variance of the residuals between the extracted406

forced response and the raw outputs. The assumption of constant interannual variability was407

highlighted as one shortcoming of HS09, so in this work we allow the magnitude of interannual408

variability to evolve over time. The contribution of each remaining uncertainty source is cal-409

culated based on the forced response. Scenario uncertainty is estimated as the variance over410

scenarios of the multi-model, multi-method mean,411

Us(t) = vars

 1

N(s)

∑
m,d

x̂(t, s,m, d)

 , (1)

where N(s) is the total number of downscaled outputs available for scenario s. The above412

definition may underestimate the true scenario uncertainty when the multi-model, multi-method413

response is weak. Brekke and Barsugli [76] propose taking the variance over scenarios before414

averaging to circumvent this issue:415

U bb13
s (t) =

1

NmNd

∑
m,d

vars [x̂(t, s,m, d)] . (2)

Here, Nm and Nd are the number of distinct GCMs and downscaling methods in our meta-416

ensemble, respectively. Our main results are based on the former definition of scenario uncer-417
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tainty, following much of the existing literature. In the Supporting Information we show that418

scenario uncertainty is indeed larger under the Brekke and Barsugli definition, although this419

does not change the qualitative results (Figs. S35-S41). Model uncertainty is estimated as the420

weighted mean of the variance across models,421

Um(t) =
1

NsNd

∑
s,d

ws,dvarm [x̂(t, s,m, d)] (3)

where Ns is the number of distinct scenarios in the meta-ensemble. The weights ws,d are chosen422

such that if more parent GCMs are available for a given downscaling method and scenario (i.e.,423

if the variance is calculated across more GCMs), those methods and scenarios are weighted424

higher:425

ws,d =
m(s, d)∑
s,dm(s, d)

. (4)

Here, m(s, d) indicates the number of parent models that have been downscaled using method426

d for scenario s. Downscaling uncertainty is estimated as the weighted mean of the variance427

across methods:428

Ud(t) =
1

NsNm

∑
s,m

ws,mvard [x̂(t, s,m, d)] , (5)

where the weights ws,m are chosen such that if more downscaled outputs are available for a429

given GCM and scenario, those GCMs and scenarios are weighted higher:430

ws,m =
d(s,m)∑
s,m d(s,m)

. (6)

Here, d(s,m) indicates the number of downscaled outputs available from parent GCM m and431

scenario s. The weighting strategy can be made more intuitive with an example: from Supple-432

mentary Table 1, there are 5 different downscaled outputs available from the CanESM5 parent433

GCM whereas only 2 different downscaled outputs are available from CMCC-ESM2 (neglecting434

SSP availability). The weighting strategy assumes that the estimated downscaling uncertainty435

from CanESM5 provides more information about the true uncertainty than the estimate from436

CMCC-ESM2. In this illustrative example, our estimate for the true downscaling uncertainty437

would be a weighted average of the two individual estimates, where the CanESM5 estimate is438

weighted higher by a factor of 5/2. In the Supporting Information, we recalculate our main439

results without performing any weighting and show that the qualitative interpretations are440
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unchanged (Figs. S42-S48).441

We assume that the total variance in each year is given by the sum of each individual442

variance estimate. Our main results show the relative contribution of each uncertainty source443

measured as a fraction of the total variance. Thus, while it is possible and indeed common for444

the absolute uncertainty of each source to grow over time, the relative importance of any one445

source can decline if the others grow faster (Figs. S55-S61).446

In general, the assumption that all uncertainty sources are independent is false. Our assumed447

total uncertainty, as the sum of each individual term, can thus be larger or smaller than true448

total uncertainty, given by the variance across all outputs:449

U true
total(t) = vars,m,d [x(t, s,m, d)] . (7)

In the Supporting Information we compare the true total uncertainty with our assumed total450

uncertainty for each metric to show that our assumption of independence generally leads to451

small errors, although the discrepancy can reach 20% at some locations for the extreme metrics452

(Figs. S52-S54).453

Methodological caveats454

Here we outline some methodological caveats associated with our main results. First, the 4th455

order polynomial fit used to separate the forced response from interannual variability likely leads456

to an underestimate of the true extent of internal variability since the fit will interpret unforced457

fluctuations as being part of the forced response. L20 show that for coarse-resolution GCM458

outputs, this bias can be particularly acute at regional scales and for noisy output variables459

such as precipitation, reaching 50% of the total uncertainty in some cases. One approach to460

mitigate this bias is to average over large spatial scales but this would considerably reduce461

the influence of downscaling, which is our primary focus in this work. Alternatively, using a462

large number of model outputs may achieve a more robust averaged estimate. Our inclusion463

of 55 downscaled model outputs across 22 GCMs may be sufficient in many cases, but this is464

difficult to verify within the current framework. As noted in L20, more sophisticated methods465

of extracting the forced response could also be used (e.g., ref. [77]).466

Second, our main results neglect interactions among uncertainty sources, which previous467

studies have shown to be significant in some instances [78]. To estimate the importance of468
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interaction effects, we implement an ANOVA-based variance decomposition (described in the469

Supporting Information) for all metrics across our three example cities. We find that interac-470

tions are small for projections of climate averages (Fig. S50) but can sometimes be important for471

extremes (Fig. S51). B23 note that accounting for the interaction between model and scenario472

uncertainty may alter their results, but we find this effect to be small—the interaction be-473

tween model and downscaling uncertainty is typically larger. Future research could investigate474

interaction effects in more detail and across more locations.475

Finally, we do not evaluate model outputs against historical observations and instead make476

an implicit assumption that the outputs from each scenario, GCM, and downscaling method477

represent equally plausible realizations of future climate. There is an increasing number of GCM478

weighting techniques [79, 80] that account for historical performance while guarding against479

overfitting, some of which can induce significant changes in CMIP6 projections [81]. Future work480

might investigate how the application of such techniques alters the variance decompositions.481

However, note that what constitutes an appropriate weighting of downscaled outputs remains an482

area of active research [82]. Additionally, given the presence of large observational disagreements483

at local scales, particular care should be given to evaluating historical performance if different484

downscaling algorithms are trained on conflicting observational datasets [83].485

Data availability486

The NEX-GDDP ensemble is available from the NASA Center for Climate Simulation:487

https://ds.nccs.nasa.gov/thredds/catalog/AMES/NEX/GDDP-CMIP6/catalog.html.488

The CIL-GDPCIR ensemble is available on Microsoft Planetary Computer:489

https://planetarycomputer.microsoft.com/dataset/group/cil-gdpcir.490

The ISIMIP3b ensemble is available from the ISIMIP repository:491

https://data.isimip.org/.492

Both carbonplan ensembles are hosted on Microsoft Azure. Example code showing how to493

access the data can be found at the following GitHub repository:494

https://github.com/carbonplan/cmip6-downscaling/.495

The GMFD observational dataset is available from the National Center for Atmospheric Re-496

search:497

https://rda.ucar.edu/datasets/ds314.0/.498
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The ERA5 reanalysis product is available from the Copernicus Climate Change Service:499

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5.500

Code availability501

Code to reproduce this analysis is available at the following GitHub repository:502

https://github.com/david0811/lafferty-sriver_inprep_tbd.503
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