TROPOMI-derived NO2 emissions from copper/cobalt mining and other industrial activities in the Copperbelt (DRC and Zambia)

Sara Martinez-Alonso¹, Pepijn Veefkind², Barbara Klara Dix³, Benjamin Gaubert⁴, Nicolas Theys⁵, Claire Granier⁶, Antonin Soulié⁷, Sabine Darras⁸, Henk Eskes², Wenfu Tang⁹, Helen M. Worden¹, Joost A de Gouw³, and Pieternel F Levelt¹⁰

¹National Center for Atmospheric Research (UCAR)
²Royal Netherlands Meteorological Institute
³University of Colorado Boulder
⁴National Center for Atmospheric Research (NCAR)
⁵Belgian Institute for Space Aeronomy (BIRA-IASB)
⁶NOAA Aeronomy Laboratory
⁷Université de Toulouse
⁸Observatoire Midi-Pyrenees
⁹NCAR
¹⁰National Center for Atmospheric Research

April 30, 2023

Abstract

We have analyzed TROPOMI data over the Copperbelt mining region (Democratic Republic of Congo and Zambia). Despite high background values, we find that annual 2019-2022 means of TROPOMI NO2 show local enhancements consistent with six point sources (mines and cities) where high-emission industrial activities take place. We have quantified annual NO2 emissions for the six sources, identified temporal trends in these emissions, and found strong correlations with mine/refinery production data. CAMS-GLOB-ANT v5 inventory emissions are lower than TROPOMI-derived emissions by 61-96 % and lack the temporal trends observed in TROPOMI and mine/oil refinery production. Lack of TROPOMI SO2 enhancements over the point sources analyzed indicates SO2 capture and transformation into sulfuric acid, a profitable byproduct. These results demonstrate the potential for satellite monitoring of mining/oil refining activity which impacts the air quality of local communities. This is particularly important for Africa, where mining is increasing aggressively.

TROPOMI-derived NO₂ emissions from copper/cobalt mining and other industrial activities in the Copperbelt (DRC and Zambia)

S. Martínez-Alonso¹, J. P. Veefkind^{2,3}, B. Dix⁴, B. Gaubert¹, N. Theys⁵, C. Granier^{4,6,7}, A. Soulié⁶, S. Darras⁸, H. Eskes², W. Tang¹, H. Worden¹, J. de Gouw^{4,9}, and P. F. Levelt^{1,2,3}

7	¹ ACOM-NCAR, Boulder, Colorado, USA
8	² KNMI, De Bilt, The Netherlands
9	³ Department of Civil Engineering and Geosciences, Technical University of Delft, Delft, The Netherlands
0	⁴ CIRES, University of Colorado, Boulder, Colorado, USA
1	⁵ BIRÅ-IASB, Brussels, Belgium
2	⁶ Laboratoire dA erologie, CNRS, University of Toulouse UPS, Toulouse, France
3	⁷ NOAA-CSL, Boulder, Colorado, USA
4	⁸ Observatoire Midi-Pyr en ees, Toulouse, France
5	⁹ Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, USA

16 Key Points:

4 5

6

17	· We quantified annual 2019-2022 TROPOMI-derived NO ₂ emissions from six point
18	sources in the Copperbelt, despite high background emissions.
19	\cdot Annual TROPOMI-derived NO ₂ emissions from these point sources are strongly
20	correlated with annual mine/oil refinery production.
21	\cdot Lack of elevated SO ₂ at these point sources is consistent with SO ₂ capture and

²² production of sulfuric acid, a profitable byproduct.

Corresponding author: Sara Martínez-Alonso, sma@ucar.edu

23 Abstract

- ²⁴ We have analyzed TROPOMI data over the Copperbelt mining region (Democratic Re-
- ²⁵ public of Congo and Zambia). Despite high background values, we find that annual 2019-
- 26 2022 means of TROPOMI NO₂ show local enhancements consistent with six point sources
- 27 (mines and cities) where high-emission industrial activities take place. We have quan-
- tified annual NO_2 emissions for the six sources, identified temporal trends in these emis-
- ²⁹ sions, and found strong correlations with mine/refinery production data. CAMS-GLOB-
- ANT v5 inventory emissions are lower than TROPOMI-derived emissions by 61-96 %
- and lack the temporal trends observed in TROPOMI and mine/oil refinery production.
- ³² Lack of TROPOMI SO₂ enhancements over the point sources analyzed indicates SO₂
- ³³ capture and transformation into sulfuric acid, a profitable byproduct. These results demon-
- 34 strate the potential for satellite monitoring of mining/oil refining activity which impacts
- the air quality of local communities. This is particularly important for Africa, where mining is increasing aggressively.
- ³⁶ Ing is increasing aggressivery.

Plain Language Summary

We show that air pollution from copper/cobalt mines and oil refineries can be iden-38 tified and measured from satellite, even in the presence of high background pollution from 39 biomass burning and other sources; our findings may apply as well to other industries 40 that consume large quantities of fossil fuels. This is important for monitoring the air qual-41 ity of local communities, particularly when these industrial activities take place in close 42 proximity to population centers, as is the case in the Copperbelt and, in general, in other 43 African regions where mining and related industrial activities proliferate without suffi-44 cient air quality monitoring. Additionally, we show for the first time that the amount 45 of air pollution measured by TROPOMI is strongly correlated with mine/refinery pro-46 duction. Studies like this can be used to estimate mine/refinery production before com-47 panies release their annual reports or (as is the case with non-publicly traded compa-48 nies) in the absence of such reports. Insufficient emissions from mines claiming high pro-49 duction may be indicative of production from a different source. Thus, this method may 50 help improve the traceability of minerals extracted in conflict areas and smuggled into 51 the global supply chain despite existing traceability and tagging schemes. 52

53 **1 Introduction**

The Copperbelt, a mining region straddling the DRC (Democratic Republic of Congo) 54 and Zambia, is currently of great strategic interest because it is the world's largest cobalt 55 producer and holds almost half of the world reserves (Shedd, 2022). Cobalt production 56 in the Copperbelt (mostly in the DRC) has increased ~600% between 1990 and 2021 57 (U.S. Bureau of Mines, 1993; Shedd, 2022), driven by its use in lithium-ion batteries which 58 power mobile phones, laptops, and electric cars. Access to the Copperbelt's cobalt is be-59 coming a matter of national and global energy security (Gulley, 2022). Cobalt is, how-60 ever, a byproduct of copper mining; copper is the main ore (by volume) extracted in the 61 Copperbelt. Previous studies have documented the impact of cobalt and/or copper min-62 ing in the region's soils and water (Atibu et al., 2016), land use (Mwitwa et al., 2012), 63 and neonatal health (Kayembe-Kitenge et al., 2019; Van Brusselen et al., 2020). The im-64 pact on local air quality remained unknown. Here we quantify the effect of increasing 65 mining activity on the air quality of this region using TROPOMI (TROPOspheric Mon-66 67 itoring Instrument) satellite measurements (Veefkind et al., 2012) of NO₂ (nitrogen dioxide); TROPOMI SO₂ (sulfur dioxide) is also analyzed. Both gases are atmospheric pol-68 lutants (World Health Organization, 2021) relevant to air quality monitoring and fore-69 casting. They are also considered short-lived climate forcers, important for understand-70 ing climate (Myhre et al., 2013). 71

 NO_x (NO₂ + NO, two species closely intertwined by oxidation and reduction re-72 actions), has both anthropogenic (fossil fuel combustion, biomass burning) and natural 73 (microbial activity in soils, lightning, wildfires) sources. Mining-related NO_x is produced 74 by high-temperature combustion of fuel used by trucks and other heavy machinery as 75 well as by electric generators. The main sink of NO_x is the hydroxyl radical (OH), with 76 which it reacts within hours in the presence of light. NO_x has a negative impact on air 77 quality, both directly and as a precursor to tropospheric ozone and particulate matter. 78 It is damaging to human health (affecting mostly the respiratory system) and crops, and 79 contributes to the formation of smog and acid rain. Hereafter we discuss NO_{2} , the NO_{x} 80 component measurable from satellite. 81

Measuring global and regional NO2 was made possible by satellite instruments such 82 as GOME (Global Ozone Monitoring Experiment), SCIAMACHY (SCanning Imaging 83 Absorption SpectroMeter for Atmospheric CHartographY), OMI (Ozone Monitoring In-84 strument), and GOME-2, (Leue et al., 2001; Richter et al., 2005; Beirle et al., 2011; Richter 85 et al., 2011). Labzovskii et al. (2022) reported regional-scale correlation between OMI 86 NO₂ column values from heavy industry, including mining, and a coal production inter-87 annual variability index for the Siberian Kuzbass Basin. Thanks to its higher spatial resolution, TROPOMI allows for the measurement of NO_2 over smaller domains such as 89 gas and oil fields (Dix et al., 2022), cities (Goldberg et al., 2019; Pommier, 2022; de Foy 90 & Schauer, 2022), and power plants (Beirle et al., 2019, 2021; Goldberg et al., 2019; Dix 91 et al., 2022; de Foy & Schauer, 2022). 92

 SO_2 results from both anthropogenic (e.g., coal combustion, smelting of sulfur-rich 93 ores) and natural (volcanism, marine biological processes) sources. It contributes to acid 94 rain and particle formation. Exposure to SO2 is harmful to human health, damages fo-95 liage, and impedes plant growth. Previous studies showed that SO₂ emissions could be 96 estimated using satellite data from TOMS (Total Ozone Mapping Spectrometer), GOME, 97 OMI, SCIAMACHY, and OMPS (Ozone Mapping and Profiler Suite) (Krueger, 1983; 98 Carn et al., 2007; V. E. Fioletov et al., 2013; Zhang et al., 2017). V. Fioletov et al. (2020, QC 2023) reported TROPOMI-based emission estimates of SO_2 from power plants, volca-100 noes, oil and gas fields, and smelters. 101

We show that copper/cobalt mining-related activities, among others, can be identified and their NO₂ emissions quantified based on TROPOMI data even in the presence of high background values from biomass burning and other sources (BIRA-IASB, 2021). Additionally, we identify inter-annual trends in TROPOMI-derived NO₂ emissions that are strongly correlated with mining and oil refinery production. Next we describe the datasets (Sect. 2) and methodology (Sect. 3) used in this study, we present our results (Sect. 4), and discuss their relevance (Sect. 5). Conclusions are offered in Sect. 6.

109 2 Datasets

TROPOMI, onboard the European Space Agency's Sentinel-5 Precursor satellite 110 (Veefkind et al., 2012), provides quasi-global daily coverage at high spatial resolution (3.5 111 $x 5.5 \text{ km}^2$ for our species of interest). This is a nadir-viewing imaging spectrometer in 112 a sun-synchronous orbit at 824 km of altitude, with 13:30 LST Equator-crossing time, 113 and 2600 km swath width. TROPOMI measures radiances in the ultraviolet, visible, and 114 reflected infrared, from which concentrations of trace gases as well as cloud and aerosol 115 properties are derived. Here we focus on TROPOMI measurements of tropospheric NO₂ 116 and SO_2 , two pollutants produced by mining-related activities. NO₂ is retrieved from 117 TROPOMI radiance measurements in the visible portion of the spectrum (400-496 nm) 118 (van Geffen et al., 2020; H. J. Eskes & Eichmann, 2021; H. Eskes et al., 2022). We used 119 daily TROPOMI NO₂ tropospheric column data from version 2 for the period between 120 1 January 2019 and 31 December 2022. We also analyzed TROPOMI SO₂ data retrieved 121 with the Covariance-Based Retrieval Algorithm (COBRA, Theys et al. (2021)) from ultraviolet-122

visible radiances (310.5-326 nm) (Theys, 2022) for the 1 January 2019 - 31 July 2022 period; more recent data were unavailable at the time of writing.

Meteorological information needed to derive emissions from TROPOMI NO₂ VCD (vertical column density) was obtained from reanalysis data. By combining measurements and model results, reanalyses datasets provide consistent and gapless global coverage of essential climate variables. We used hourly ERA5 (ECMWF Reanalysis v5) data (Hersbach et al., 2020) provided at 0.25° x 0.25° resolution and generated by the Copernicus Climate Change Service at the European Center for Medium-Range Weather Forecasts.

¹³¹ Due to the unavailability of ground measurements, we compared inventory data to TROPOMIderived NO2 emissions. Emission inventories are compilations of amounts of air pollutants released into the atmosphere, segregated by source and time period. We used 2019-2021 data from the CAMS-GLOB-ANT (Copernicus Atmosphere Monitoring Service Global Anthropogenic) emissions inventory version 5, an extension of version 4.2 (Granier et al., 2019). Inventory emissions for 2022 were unavailable at the time of writing. We focused on monthly NOx emissions, provided at $0.1^{\circ} \times 0.1^{\circ}$ resolution.

Mine production data were obtained from the annual reports of publicly traded min ing companies; these reports are mandated by official regulatory bodies such as the Se curities and Exchange Commission in the United States and the Securities and Futures
 Commission in Hong Kong. Private mining companies are not required to disclose their
 production data. The specifics of the information available in these reports varies greatly.

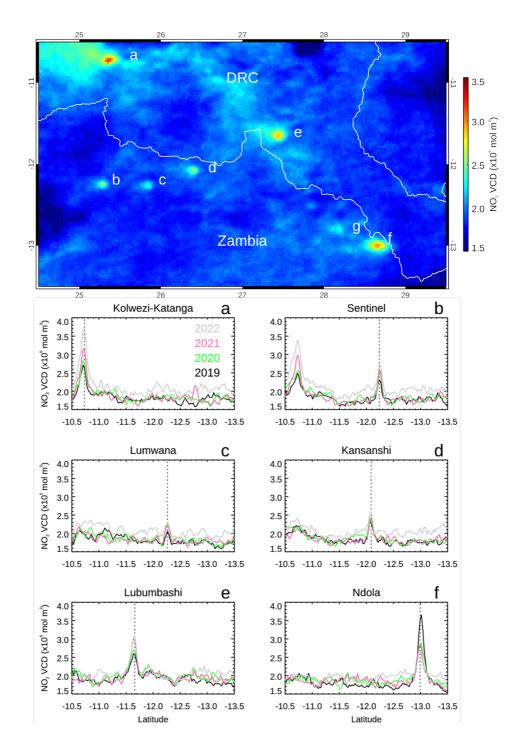
143 **3 Methodology**

To identify potential emission point sources such as mines, we produced annual means from daily TROPOMI NO₂ VCD for the Copperbelt study area (-10.5°N to -13.5°N, 24.5°E to 29.5°E). Temporal averaging enhances the signal from constantly emitting sources while dampening more sporadic, background emissions from biomass burning, soils, and lightning.

Once the point sources were identified, we calculated daily TROPOMI-derived NO₂ 1/0 emissions for the study area using the divergence method (Beirle et al., 2019; Dix et al., 150 2022) with some modifications described below. This method derives emission based on 151 a divergence term and a sink term, which account for wind dispersion effects and NO_2 152 depletion by OH, respectively. A detailed description of the derivation can be found in 153 Dix et al. (2022). To calculate daily emissions we regridded daily VCD values to a com-154 mon 0.025° x 0.025° grid. We filtered TROPOMI measurements to avoid clouds, errors, 155 and problematic retrievals by using only those with quality assurance value ≥ 0.75 (H. Es-156 kes et al., 2022); retrievals with solar zenith angle $>60^{\circ}$ were rejected. Hourly values 157 of fields (longitudinal and latitudinal horizontal wind at 100 m from the ground, pres-158 sure, and temperature) required for the emissions calculation were obtained from ERA5 159 reanalysis. All ERA5 fields were resampled to 0.025° x 0.025° spatial resolution and in-160 terpolated to the passing time of the closest (spatially and temporally) TROPOMI ob-161 servation. Fields provided on pressure levels were interpolated to an altitude of 100 m 162 above the ground. In our implementation, OH lifetime was calculated for each data point 163 based on the solar zenith angle of the closest TROPOMI retrieval. Daily emissions were averaged into annual means. 165

To calculate the actual NO₂ emissions released from each point source, background NO₂ emissions must be quantified and removed from the raw (non-background corrected) emissions. Several background removal approaches are possible: Beirle et al. (2019) subtracted from the emissions their 10th percentile value, Dix et al. (2022) removed the mode of a Gaussian curve fit to them. We find that the former is better suited to study regions with homogeneous background emissions and that results from the latter are highly dependent on how the Gaussian curve is defined. Similarly, statistics derived from two-dimensional

Gaussians fitted to the point source emissions (Beirle et al., 2019) were, in our case, highly 173 dependent on location and size of the area selected to perform the fit. Our approach con-174 sisted of calculating annual statistics (mean and standard deviation) for each point source 175 plume as well as for its local background area: $a \sim 1^{\circ} \times 1^{\circ}$ region surrounding each point 176 source, excluding the point source plume. The location and extent of the point source 177 plumes were identified based on an empirical threshold $(0.37 \text{ kg km}^{-2} \text{ h}^{-1})$ applied to 178 mean raw emissions from the 2019-2022 period. Annual means of background-removed 179 emissions were calculated for each point source by subtracting its mean background value 180 from its mean raw emission value. 181


Dix et al. (2022) described in detail the effects of individual parameters (e.g., background correction, wind level, wind data source, OH lifetime, VCD thickness) on the results obtained using this method. We investigated ERA5 wind data uncertainty effects by using the spread of its wind field 10 member ensemble to perturb 2020 NO₂ emissions. The spread provides an estimate of relative, random uncertainty; ensemble, mean, and spread are part of the ERA5 dataset. The results show that ERA5 wind uncertainty produces small changes in raw NO₂ emission (< 4 %; Table S1 and Fig. S1).

189 **4 Results**

Six distinct point sources are clearly visible in the mean 2019-2022 TROPOMI NO_2 190 VCD map (Fig. 1; Fig. S2 shows annual mean VCD maps). Four of the point sources 191 correspond to large copper (Sentinel, a.k.a. Trident; Lubumbashi; Kansanshi) or copper-192 cobalt (Kolwezi and adjacent Katanga) open-pit mines. The remaining two point sources 193 coincide with cities (Lubumbashi and Ndola) where we infer that high-emission indus-194 trial activities take place, as explained below. Latitudinal profiles of mean annual VCD 195 across each point source (Fig. 1) show that background NO_2 remains nearly constant year to year while the point sources (well defined, narrow peaks of fixed location) vary in magnitude. TROPOMI emission results (Table 1 and Fig. S3) reinforce these obser-198 vations. TROPOMI NO₂ mostly increased with time at all the point sources but one, 199 Ndola, where background-removed emissions decreased by > 70 % between 2019 and 2022. 200

To understand these inter-annual trends in NO₂ emissions, we compared background-20 removed TROPOMI-derived emissions to mine production data where available (Table 202 1 and Fig. 2). Most of the energy consumed in copper or copper-cobalt mining, includ-203 ing electricity, is generated by diesel fuel combustion. Mining equipment consumes ~ 60 204 % of the total energy; comminution \sim 36 %; flotation, filtering, and drying \sim 4 % (Allen, 205 2021). Limited data relevant to energy consumption is provided in mining company re-206 ports; we found the best proxy for energy (i.e., diesel) consumed to be amount of ore and 207 waste mined. Panels b, c, and d in Fig. 2 show strong positive correlation between an-208 nual values of total ore plus waste mined versus NO₂ emissions for the Sentinel, Lumwana, 209 and Kansanshi mines (R = 0.84, 0.74, and 0.79, respectively). Amount of copper pro-210 duced (highly dependent on ore grade, among other factors, and thus, a less-desirable 211 proxy) was used for the Kolwezi-Katanga mines (Fig. 2.a) for lack of ore and waste data 212 (R = 0.84).213

The remaining two point sources coincide with some of the largest cities in the study 214 area: Lubumbashi (DRC, population > 2.6 x 10⁶) and Ndola (Zambia, population > 0.5 215 $\times 10^{\circ}$). To discard the hypothesis that their emissions are due to urban activity alone, 216 we quantified NO₂ emissions for two additional cities of similar size: Mbuji-Mayi (DRC, 217 population > 2.7 x 10⁶), located 750 km northwest of Lubumbashi; and Kitwe (Zambia, 218 population > 0.7 x 10⁶), 50 km northwest of Ndola (labeled g in Fig. 1 map). (Popu-219 lation data are for 2022 urban areas (Population Stat, 2023).) The results (Fig. 1, Ta-220 ble S2, and Fig. S4) show that neither the magnitude of VCD or emissions, the spatial 221 extent of the plumes, or the temporal emission trends from Lubumbashi and Ndola can 222 be explained by urban activity alone. Background-removed NO₂ emissions from Lubum-223

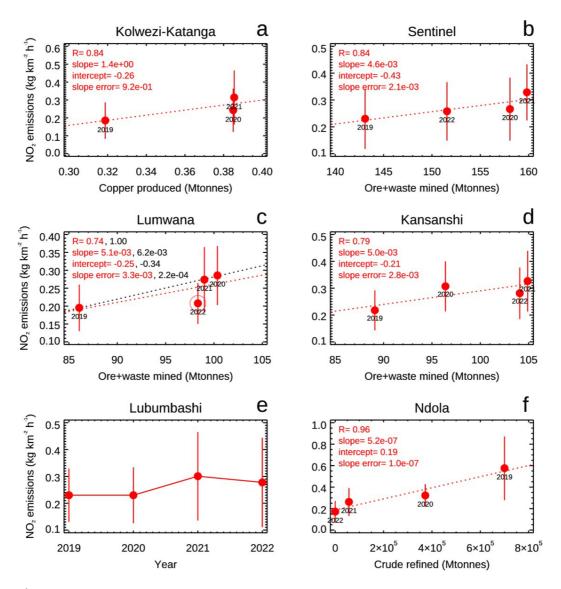

Figure 1. (Top) 2019-2022 mean of TROPOMI NO₂ VCD for the Copperbelt study region. Labels a through f show the six point sources analyzed. Label g shows the location of Kitwe City. White lines indicate country borders. (Bottom) Annual means of TROPOMI NO₂ VCD along latitudinal profiles centered at each of the six point sources, shown by vertical dotted lines. Labels as above. Profiles are color-coded according to year.

Table 1. Production and NO_2 emissions (TROPOMI background-removed, TROPOMI background, inventory) for six Copperbelt point sources. Ore, waste, and copper produced are in ktonnes; copper grade in percentage. Kansanshi reports provide separate copper grade values for sulfide, mixed, and oxide ores. Throughput (slag processed in Lubumbashi, crude refined in Ndola) are in ktonnes. All emissions and their standard deviation values (in parenthesis) are in kg km² h⁻¹.

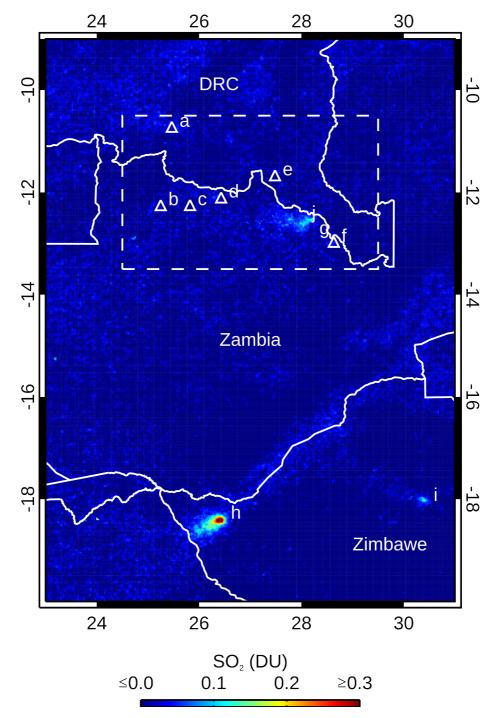
		2019	2020	2021	2022
	Ore, Waste	-, -	-, -	-, -	-, -
	Grade	4.2, -	4.17, -	2.9, -	-, -
	Copper	84.3, 234.5	114.3, 270.7	121.1, 264.4	-, 220.1
Kolwezi ^a , Katanga ^b	TROPOMI	0.19 (0.10)	0.24 (0.12)	0.31 (0.15)	0.41 (0.17)
0	Background	0.23 (0.08)	0.23 (0.10)	0.22 (0.10)	0.26 (0.10)
	Inventory	0.03	0.03	0.03	-
	Ore, Waste	50263, 92826	60098, 97970	57380, 102445	56219, 95335
	Grade	0.5	0.49	0.47	0.46
	Copper	220.006	251.216	232.688	242.451
Sentinel ^c	TROPOMI	0.23 (0.11)	0.27 (0.12)	0.33 (0.10)	0.26 (0.11)
	Background	0.20 (0.07)	0.22 (0.08)	0.21 (0.07)	0.24 (0.07)
	Inventory	0.01	0.01	0.01	-
	Ore, Waste	23230, 62837	26880, 73480	33510, 65499	20277, 78063
	Grade	0.47	0.52	0.46	0.52
	Copper	107.955	125.191	109.769	121.109
Lumwana ^d	TROPOMI	0.20 (0.06)	0.29 (0.08)	0.27 (0.09)	0.21 (0.06)
	Background	0.21 (0.07)	0.22 (0.07)	0.21 (0.07)	0.24 (0.07)
	Inventory	0.04	0.04	0.04	-
	Ore, Waste	36325, 52768	34423, 61972	35142, 69758	28205, 75878
	Grade	0.89, 1.05, 1.12	0.83, 1.00, 0.93	0.88, 0.96, 0.72	0.71, 0.63, 0.57
	Copper	232.243	221.487	202.159	146.282
Kansanshi ^c	TROPOMI	0.22 (0.07)	0.31 (0.09)	0.33 (0.11)	0.28 (0.10)
	Background	0.22 (0.07)	0.23 (0.08)	0.22 (0.07)	0.24 (0.07)
	Inventory	0.08	0.08	0.08	-
	Throughput	-	-	255.229	-
Lubumbashi ^e	TROPONI	0.23 (0.10)	0.23 (0.10)	0.30 (0.16)	0.28 (0.17)
	Background	0.25 (0.08)	0.26 (0.08)	0.25 (0.08)	0.26 (0.08)
	Inventory	0.25	0.26	0.26	-
	Throughput	700.277	372.384	56.672	0^g
NJalaf	TROPOMI	0.58 (0.30)	0.32 (0.10)	0.26 (0.13)	0.17 (0.10)
Ndola ^f	Background	0.20 (0.09)	0.21 (0.09)	0.21 (0.08)	0.23 (0.08)
	Inventory	0.22	0.22	0.22	-

-7-

^aZijin (2023). ^bGlencore (2023). ^cFirst Quantum (2023a). ^dBarrick (2023). ^eSTL (2023). ^fMwila et al. (2022). ^gInactive.

Figure 2. TROPOMI-derived, background-removed NO_2 emissions and their standard deviation versus production, except (e), where production data is unavailable. (c) Statistical values and fit line in black exclude 2022 values; see text for details.

bashi are higher than those from Mbuji-Mayi by 90 %, even though the population of 224 the former is lower by 2 %. Similarly, while its population is lower by 27 %, emissions 225 from Ndola surpass those from Kitwe by 40-80 %, depending on the year, and display 226 inter-annual variations which do not correlate with changes in population. These find-227 ings are consistent with our hypothesis that emissions from Lubumbashi and Ndola are not the result of urban activity alone. We researched other possible origins for the ex-22 cess emissions observed at these two point sources. We hypothesize that Lubumbashi's 230 high NO₂ emissions are due to reprocessing of the Lubumbashi slag heap: a 14.5×10^6 231 tonne hill of mining residue located inside the city, resulting from metallurgical activ-232 ity between 1924 and 1992 (Pe'sa, 2022). Copper, cobalt, and zinc are extracted from the 233 slag heap by La Société Congolaise du Terril de Lubumbashi (2000-present). Reports from 234 the local press attest to the pollution resulting from the operation (Africa Intelligence, 235 2021). Figure 2.e shows annual background-removed TROPOMI-derived NO₂ emissions; because production data is incomplete (STL, 2023; The Carter Center, 2023), emissions and mining-related activity cannot be compared in this case. The most plausible emis-238 sions source in Ndola is the INDENI petroleum refinery plant, located inside the city. 239 Inactive since late 2021, its declining production values (Mwila et al., 2022) match well 240 the TROPOMI-derived NO₂ emissions (R = 0.96, Fig. 2.f). 241


The six Copperbelt NO₂ emission point sources do not coincide with SO₂ enhancements, as shown by the map of mean TROPOMI SO₂ VCD values for the period between January 2019 and July 2022 (Fig. 3). The map shows SO₂ enhancements elsewhere: collocated with the Hwange coal power plant (Zimbawe), the Selous smelter (Zimbawe), and the Chingola and Mufulira smelters (Zambia).

Anthropogenic emissions from the inventory were compared to TROPOMI-derived 247 emissions from our six point sources. Monthly inventory emissions from the following 248 sectors were aggregated: power generation, industrial processes (including mining), road 249 and non-road transportation, residential, fugitive fuel emissions, solvents application and 250 production, and solid waste and wastewater handling. Emissions from the agriculture 251 livestock, agriculture soils, and agriculture waste burning sectors would be part of the 252 background over mines and cities and, thus, were excluded. Aggregated inventory emis-253 sions were converted to NO₂ ($NO_2 = NO_x / 1.32$; Beirle et al. (2019), Dix et al. (2022)). 254 The highest inventory value among the nine data points coinciding spatially with each 255 point source was selected; annual inventory means were calculated and compared to their 256 background-removed TROPOMI-derived emissions counterparts (Table 1 and Fig. S5). 257 The inventory underpredicts mine emissions by 61-96 %, generally overpredicts city emis-258 sions, and does not identify the annual trends in both TROPOMI-derived emissions and 259 mine production. 260

²⁶¹ **5 Discussion**

We have shown that NO_2 from copper/cobalt mining and other industrial activ-262 ities can be identified and emissions quantified from satellite, even in the presence of high 263 background values from biomass burning, soils, and lightening. Furthermore, we have 264 demonstrated strong positive correlations between annual TROPOMI-derived NO₂ emis-265 sions and mine production/refinery throughput. These correlations are mine-dependent 266 and cannot be extrapolated from mine to mine; differences in ore grades and equipment 267 fuel efficiency are probably the main causes. As an example, lower-than-expected 2022 emissions from Lumwana, which reduced R from 1.00 (for 2019-2021) to 0.74 (for 2019-26 2022) (Fig. 2.c), can be traced to a new fleet of trucks and shovels commissioned in 2021 270 (Barrick, 2023) and in operation during 2022 (Lusaka Times, 2022). 271

As a reference, 2019 background-removed TROPOMI-derived NO₂ emissions from Ndola (0.044kg/s, after accounting for point source area) are equivalent to NO₂ emissions from the Miami Fort or the Intermountain coal power plants, both among the ten

Figure 3. Mean TROPOMI-COBRA SO₂ VCD for January 2019 - July 2022. White triangles show the Copperbelt NO₂ emission point sources analyzed. (a) Kolwezi-Katanga. (b) Sentinel. (c) Lumwana. (d) Kansanshi. (e) Lubumbashi. (f) Ndola. (g) Kitwe. (h) Hwange coal power plant. (i) Selous smelter. (j) Chingola-Mufulira smelters. White lines show country boundaries. Dashed white lines show Copperbelt study area.

largest NO_x emitters in the USA that year (Beirle et al., 2021). Our results demonstrate
that the impact of mining/oil refining on local air quality can be quantified using satellite data; this is particularly important for African regions where mining and other industrial activities proliferate without sufficient air quality monitoring.

We have analyzed the point sources with the highest mean annual TROPOMI-derived emissions in the Copperbelt; our maps do, however, show a string of NO₂ enhancements along the Ndola-Lubumbashi-Kolwezi corridor (Fig. 1) where relatively smaller copper/cobalt mining operations, both industrial and artisanal, exist. Future work should explore the detection limits of this method by analyzing some of these other NO₂ enhancements.

Ground emission measurements were unavailable; thus, we compared backgroundremoved TROPOMI-derived NO₂ emissions to inventory data. Inventory values are lower (higher) for mines (cities) than their TROPOMI counterparts and do not capture the annual trends revealed by TROPOMI. The remoteness of the region, lack of field data, and relatively small size of the point sources may explain at least in part these discrepancies. NO₂ emissions derived from satellite measurements could improve the overall magnitude and temporal (seasonal, inter-annual) trends in inventory emissions. They could also be used to refine regional emission factors, which are not well defined for Africa.

We identified SO₂ enhancements coinciding with smelters and a coal power plant 292 elsewhere, but none colocated with our NO_2 point sources (Fig. 3), despite the fact that some of them either include a smelter (Kansanshi, First Quantum (2023a)) or have one 294 nearby (Lualaba, 40 km southeast of Kolwezi; Ivanhoe Mines (2021)). Lack of SO₂ en-295 hancements indicates use of technologies to convert sulfur oxides released from the ore 296 during smelting into sulfuric acid, a commercial byproduct (Hocking, 2005; Ialongo et 297 al., 2018). The use of such technologies in the Kansanshi and Lualaba smelters has been 298 documented by the mining companies involved (Gray et al., 2020; First Quantum, 2023b; 299 Wang, 2020). 300

301 6 Conclusions

Understanding the environmental effects of high-impact minerals extraction and 302 processing is of great relevance (Hund et al., 2020), particularly if the mining-related ac-303 tivities take place in close proximity to -or even inside of- population centers, as is the 304 case in the Copperbelt region. We have shown for the first time that NO₂ emissions from 305 copper and cobalt mining activities can be identified and measured using TROPOMI satellite data, even in the presence of high background NO₂; this is important in the absence 307 of local air quality monitoring. Furthermore, we have shown, also for the first time, a 308 strong positive correlation between TROPOMI-derived NO₂ emissions and mining/oil 309 refining production data. We note that these correlations are mine-dependent and that 310 changes in the mine's environment (ore grade, fuel efficiency) will affect such correlations, 311 as observed in Lumwana. The lack of SO_2 enhancements colocated with our NO_2 point 312 sources (enhancements identified, though, in power plants and smelters nearby) is con-313 sistent with SO₂ capture and transformation into sulfuric acid, which is then used in mining-314 related processes or commercialized. 315

Because the NO₂ emissions analyzed result from the combustion of fossil fuels by machinery (e.g., trucks, crushers, generators) used extensively in mining operations, these results are relevant to mining in general, regardless of the resource mined. They are also relevant to oil refineries, as shown in Ndola. We hypothesize that our findings apply to fossil-fuel intensive industries in general.

Our results show that NO₂ trend analysis can be used to predict mine production and refinery throughput before companies release their reports or in lieu of these reports in case of non-publicly traded companies, which are not required to publish their activity data. Insufficient emissions from mines claiming high production may be indicative

- of production from a different source. Thus, this method may be useful for improving
- traceability of minerals extracted in conflict areas and smuggled into the global supply
- s27 chain despite existing traceability and tagging schemes, an issue highlighted in the most
- recent releases of the United Nations Yearbook (United Nations, 2019, 2022).

329 **Open Research Section**

Atmospheric data available as follows. TROPOMI NO₂ data (L2_NO2_) are publicly available via the ESA's S5P Pre-Ops interface (<u>https://scihub.copernicus.eu/</u>) using the credentials given there. TROPOMI SO2 COBRA data:

https://distributions.aeronomie.be/?menu=68c9f961bc294141c215e3d64a6ae282#. ERA5 data: https://cds.climate.copernicus.eu/cdsapphttps://cds.climate.copernicus.eu/cdsapp#!/dataset/reanal ysis-era5-single-levels-monthly-means?tab=form (hourly data on single levels) and https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-

<u>levels?tab=form</u> (hourly data on pressure levels). CAMS-GLOB-ANT inventory data are publicly available via the https://eccad3.sedoo.fr/ interface following the instructions given there to create a free access account. Mining production data available from mining company reports as follows. First Quantum Minerals Ltd. (Sentinel, Kansanshi):

https://s24.q4cdn.com/821689673/files/doc_downloads/2019-annual-

report/First_Quantum_AR_2019.pdf (2019),

https://s24.q4cdn.com/821689673/files/doc_downloads/2020-annual-

<u>report/First_Quantum_2020_Annual_Report.pdf</u> (2020), <u>https://www.firstquantum-2021-annual-report.com/_files/ugd/acdda3_c51ed134aa184e259d61a629344f98e7.pdf</u> (2021), <u>https://www.first-quantum.com/files/doc_downloads/2022-annual-report/First-Quantum-2022- AR-online.pdf</u> (2022). Barrick Gold Corporation (Lumwana):

https://s25.q4cdn.com/322814910/files/doc_financial/annual_reports/2019/Barrick-Annual_Report-2019.pdf (2019), https://s25.q4cdn.com/322814910/files/doc_financial/annual_reports/2020/Barrick-Annual-Report-2020.pdf (2020),

https://s25.q4cdn.com/322814910/files/doc_financial/annual_reports/2021/Barrick_Annual_Rep_ort_2021.pdf (2021),

https://s25.q4cdn.com/322814910/files/doc_financial/annual_reports/2022/Barrick_Annual_Rep ort_2022.pdf (2022). Zijing Mining (Kolwezi):

https://www.zijinmining.com/upload/file/2020/09/14/9c97a89f8e9c4c59a13f2404f3bb1096.pdf (2019), https://www.zijinmining.com/upload/file/2021/06/09/538a46cc4831452e97b30cae55c9cf97.pdf (2020), https://www.zijinmining.com/upload/file/2022/06/20/771c971d76154257882f58ed03643c07.pdf (2021; no 2022 annual report available at the time of writing). Glencore (Katanga):

https://www.glencore.com/.rest/api/v1/documents/5a08fe1942f92df7f2301ac3681e23aa/glen-2019annual-report-interactive.pdf?download=true (2019),

https://www.glencore.com/.rest/api/v1/documents/3505497f3cb94b24f0c79f5ba32b293b/Glenco re_AR20_Interactive+%281%29.pdf?download=true (2020),

https://www.glencore.com/.rest/api/v1/documents/ce4fec31fc81d6049d076b15db35d45d/GLEN-

2021-annual-report-.pdf?download=true (2021),

https://www.glencore.com/.rest/api/v1/documents/ded10fa92974aa388a43aa9f86f483e9/GLEN-2022-Annual-Report.pdf (2022).

ERA5 data are produced by C3S and CAMS. Contains modified information from C3S and CAMS [2019-2021]. Neither the European Commission nor ECMWF is responsible for any use that may be made of the Copernicus information data contained in this study.

346 Acknowledgments

- ³⁴⁷ SMA thanks William Atkinson for sharing his deep knowledge of minerals and mining;
- Carol Atkinson for her insights and inspiring curiosity; Louisa Emmons for advice re-
- ³⁴⁹ garding models; David Edwards and Bill Randel for helpful NCAR in-house comments.
- ³⁵⁰ This material is based upon work supported by the National Center for Atmospheric Re-
- search, which is a major facility sponsored by the National Science Foundation under
 Cooperative Agreement No. 1852977.

353 **References**

354	Africa Intelligence. (2021). Lubumbashi slag heap locals fume over pollution. Re-
355	trieved from https://www.africaintelligence.com/central-africa/2021/
356	05/25/lubumbashi-slag-heap-locals-fume-over-pollution,109668540
357	-art (last access: 19 February 2023)
358	Allen, M. (2021). <i>Mining Energy Consumption 2021</i> (Tech. Rep.). ENGECO
359	Pte. Ltd. Retrieved from https://www.ceecthefuture.org/resources/
360	mining-energy-consumption-2021 (last access: 21 February 2023)
361	Atibu, E. K., Devarajan, N., Laffite, A., Giuliani, G., Salumu, J. A., Muteb, R. C.,
362	Pore, J. (2016). Assessment of trace metal and rare earth elements con-
363	tamination in rivers around abandoned and active mine areas. The case of
364	Lubumbashi River and Tshamilemba Canal, Katanga, Democratic Republic of
365	the Congo. CHEMIE DER ERDE-GEOCHEMISTRY, 76(3), 353-362. doi:
366	10.1016/j.chemer.2016.08.004
367	Barrick. (2023). Annual reports. Retrieved from https://www.barrick.com/
368	English/investors/default.aspx (last access: 08 February 2023)
369	Beirle, S., Boersma, K. F., Platt, U., Lawrence, M. G., & Wagner, T. (2011). Megac-
370	ity emissions and lifetimes of nitrogen oxides probed from space. SCIENCE,
371	333(6050), 1737-1739. doi: 10.1126/science.1207824
	Detals C. Denner C. Ester H. Kunner V. de Leet A. & Miles T.

Beirle, S., Borger, C., Doerner, S., Eskes, H., Kumar, V., de Laat, A., & Wagner, T.

373	(2021). Catalog of NO_x emissions from point sources as derived from the di-
374	vergence of the NO ₂ flux for TROPOMI. EARTH SYSTEM SCIENCE DATA,
375	13(6), 2995-3012. doi: 10.5194/essd-13-2995-2021
376	Beirle, S., Borger, C., Drner, S., Li, A., Hu, Z., Liu, F., Wagner, T. (2019). Pin-
377	pointing nitrogen oxide emissions from space. <i>Science Advances, 5,</i> eaax9800.
378	doi: 10.1126/sciadv.aax9800
379	BIRA-IASB. (2021). <i>Global map of nitrogen dioxide (NO₂)</i> . Retrieved from
380	https://uv-vis.aeronomie.be/data/tropomi_posters/posterTROPOMI _NO2 2018 2020.pdf (last access: 7 April 2023)
381	Carn, S. A., Krueger, A. J., Krotkov, N. A., Yang, K., & Levelt, P. F. (2007). Sulfur
382 383	dioxide emissions from Peruvian copper smelters detected by the Ozone Mon-
384	itoring Instrument. GEOPHYSICAL RESEARCH LETTERS, 34(9). doi:
385	10.1029/2006GL029020
386	de Foy, B., & Schauer, J. J. (2022). An improved understanding of NO _x emissions in
387	South Asian megacities using TROPOMI NO ₂ retrievals. ENVIRONMENTAL
388	RESEARCH LETTERS, 17(2). doi: 10.1088/1748-9326/ac48b4
389	Dix, B., Francoeur, C., Li, M., Serrano-Calvo, R., Levelt, P. F., Veefkind, J. P.,
390	de Gouw, J. (2022). Quantifying NO_x Emissions from US Oil and Gas
391	Production Regions Using TROPOMI NO_2 . ACS EARTH AND SPACE
392	<i>CHEMISTRY</i> , 6(2), 403-414. doi: 10.1021/acsearthspacechem.1c00387 Eskes, H., van Geffen, J., Boersma, F., Eichmann, KU., Apituley, A., Pedergnana,
393 394	M., Loyola, D. (2022). Sentinel-5 precursor/TROPOMI Level 2 Product
395	User Manual Nitrogen dioxide (Tech. Rep. Nos. 2.4.0, 2021-07-11). Nether-
396	lands Institute for Space Research (SRON).
397	Eskes, H. J., & Eichmann, KU. (2021). S5P mission performance centre nitrogen
398	dioxide (L2 NO ₂) readme (Tech. Rep. Nos. 2.1, 2021-11-17). Netherlands Insti-
399	tute for Space Research (SRON).
400	Fioletov, V., McLinden, C. A., Griffin, D., Abboud, I., Krotkov, N., Leonard,
401	P. J. T., Carn, S. (2023). Version 2 of the global catalogue of large an-
402	thropogenic and volcanic SO_2 sources and emissions derived from satellite
403 404	measurements. <i>EARTH SYSTEM SCIENCE DATA</i> , <i>15</i> (1), 75-93. doi: 10.5194/essd-15-75-2023
405	Fioletov, V., Mclinden, C. A., Griffin, D., Theys, N., Loyola, D. G., Hedelt, P.,
406 407	\dots Li, C. (2020). Anthropogenic and volcanic point source SO ₂ emissions derived from TROPOMI on board Sentinel-5 Precursor: first results.
408	ATMOSPHERIC CHEMISTRY AND PHYSICS, 20(9), 5591-5607. doi:
409	10.5194/acp-20-5591-2020
410	Fioletov, V. E., McLinden, C. A., Krotkov, N., Yang, K., Loyola, D. G., Valks, P.,
411	Martin, R. V. (2013). Application of OMI, SCIAMACHY, and GOME-2
412	satellite SO ₂ retrievals for detection of large emission sources. <i>JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES</i> , 118(19), 11399-11418. doi:
413 414	10.1002/jgrd.50826
415	First Quantum. (2023a). Annual reports. Retrieved from https://www.first
416	-quantum.com/English/investors/financial-information/default.aspx
417	(last access: 08 February 2023)
418	First Quantum. (2023b). Kansanshi: smelter. Retrieved from https://
419	www.first-quantum.com/English/our-operations/default.aspx#module
420	-operationkansanshi (last access: 24 March 2023)
421	Glencore. (2023). Annual reports. Retrieved from https://www.glencore.com/
422	publications (last access: 08 February 2023) Coldborg D. L. Lu, Z. Streets D. C. de Fox B. Griffin D. McLinden, C. A.
423 424	Goldberg, D. L., Lu, Z., Streets, D. G., de Foy, B., Griffin, D., McLinden, C. A., Eskes, H. (2019). Enhanced Capabilities of TROPOMI NO ₂ : Es-
424	timating NO_x from North American Cities and Power Plants. <i>ENVI</i> -
426	RONMENTAL SCIENCE & TECHNOLOGY, 53(21), 12594-12601. doi:
427	10.1021/acs.est.9b04488

Granier, C., S. Darras, H. Denier van der Gon, J. Doubalova, N. Elguindi, B. Galle, M. Gauss, 428 M. Guevara, J.-P. Jalkanen, J. Kuenen, C. Liousse, B. Quack, D. Simpson, K. Sindelarova, The Copernicus Atmosphere Monitoring Service global and regional emissions, Copernicus Atmosphere Monitoring Service (CAMS) report, doi:10.24380/d0bn-kx16, 2019 Gray, D., Lawlor, M., & Briggs, A. (2020).Kansanshi Operations, North West 429 Province, Zambia, NI 43-101 Technical Report, June 2020 (Tech. Rep.). First Quantum Minerals Ltd. 430 Gulley, A. L. (2022). One hundred years of cobalt production in the Democratic 431 Republic of the Congo. Resources Policy, 79. doi: 10.1016/j.resourpol.2022 432 .103007 433 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Munoz-Sabater, 434 J., ... Thepaut, J.-N. (2020). The ERA5 global reanalysis. QUARTERLY 435 JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 146(730), 436 1999-2049. doi: 10.1002/gj.3803 437 Hocking, M. B. (2005). Ore Enrichment and Smelting of Copper. In M. B. Hocking 438 (Ed.), Handbook of Chemical Technology and Pollution Control (Third ed., 439 San Diego: Academic Press. p. 391-420). doi: 10.1016/B978-012088796-5/ 440 50016-8 441 Hund, K., LaPorta, D., Fabregas, T., Laing, T., & Drexhage, J. (2020).Min-442 erals for climate action: The mineral intensity of the clean energy transi-443 Retrieved from https://pubdocs.worldbank.org/ The World Bank. tion. 444 en/961711588875536384/Minerals-for-Climate-Action-The-Mineral 445 -Intensity-of-the-Clean-Energy-Transition.pdf 446 Ialongo, I., Fioletov, V., McLinden, C., Jafs, M., Krotkov, N., Li, C., & Tammi-447 Application of satellite-based sulfur dioxide observations nen, J. (2018). 448

- 448 nen, J. (2018). Application of satellite-based sulfur dioxide observations
 449 to support the cleantech sector: Detecting emission reduction from cop 450 per smelters. *Environmental Technology & Innovation, 12,* 172-179. doi:
 451 10.1016/j.eti.2018.08.006
- Ivanhoe Mines. (2021). Agreement signed with nearby Lualaba Copper Smelter to
 produce 99% blister copper in the Democratic Republic of Congo. Retrieved
 from http://www.sulphuric-acid.com/sulphuric-acid-on-the-web/
 acid\%20plants/Lualaba-Copper-Smelter.htm (last access: 22 February
 2023)
- Kayembe-Kitenge, T., Lubala, T. K., Obadia, P. M., Chimusa, P. K., Nawej, C. K.,
 Nkulu, C. B. L., ... Nemery, B. (2019). Holoprosencephaly: A case series from
 an area with high mining-related pollution. *BIRTH DEFECTS RESEARCH*,
 111(19), 1561-1563. doi: 10.1002/bdr2.1583
- Krueger, A. (1983). SIGHTING OF EL-CHICHON SULFUR-DIOXIDE CLOUDS
 WITH THE NIMBUS-7 TOTAL OZONE MAPPING SPECTROMETER.
- SCIENCE, 220(4604), 1377-1379. doi: 10.1126/science.220.4604.1377
 Labzovskii, L. D., Belikov, D. A., & Damiani, A. (2022). Spaceborne NO₂ observations are sensitive to coal mining and processing in the largest coal basin of
 Russia. SCIENTIFIC REPORTS, 12(1). doi: 10.1038/s41598-022-16850-8
- Leue, C., Wenig, M., Wagner, T., Klimm, O., Platt, U., & Jahne, B. (2001). Quantitative analysis of NO_x emissions from Global Ozone Monitoring Experiment
 satellite image sequences. *JOURNAL OF GEOPHYSICAL RESEARCH- ATMOSPHERES*, *106*(D6), 5493-5505. (2nd AGU Chapman Conference on
 Water Vapor in the Climate System, POTOMAC, MD, OCT 12-15, 1999) doi: 10.1029/2000JD900572
- Lusaka Times. (2022). Barrick hoping to extend Lumwana mine to 2042. Retrieved from https://www.lusakatimes.com/2022/10/31/barrick-hoping -to-extend-lumwana-mine-to-2042/ (last access: 28 February 2023)
- ⁴⁷⁶ Mwila, A. M., et al. (Eds.). (2022). *2021 Energy Sector Report* (Tech. Rep.). Energy
 ⁴⁷⁷ Regulation Board, Zambia.
- 478Mwitwa, J., German, L., Muimba-Kankolongo, A., & Puntodewo, A.(2012).479Governance and sustainability challenges in landscapes shaped by mining:

- 400 Mining-forestry linkages and impacts in the Copper Belt of Zambia and
- 481 the DR Congo. FOREST POLICY AND ECONOMICS, 25, 19-30.
- 482 10.1016/j.forpol.2012.08.001

483	Myhre, G., Shindell, D., Bron, FM., Collins, W., Fuglestvedt, J., Huang, J.,
484	Zhang, H. (2013). Anthropogenic and natural radiative forcing. In
485	T. F. Stocker et al. (Eds.), Climate Change 2013: The Physical Science Ba-
486	sis. Contribution of Working Group I to the Fifth Assessment Report of the
487	Intergovernmental Panel on Climate Change (pp. 659–740). Cambridge, UK:
488	Cambridge University Press. doi: 10.1017/CBO9781107415324.018
489	Pe [*] sa, I. (2022). Mining, Waste and Environmental Thought on the Central African
490	Copperbelt, 1950-2000. ENVIRONMENT AND HISTORY, 28(2), 259-284.
491	doi: 10.3197/096734019X15755402985703
492	Pommier, M. (2022). Estimations of NO_x emissions, NO_2 lifetime and their tem-
493	poral variation over three British urbanised regions in 2019 using TROPOMI
494	NO ₂ observations. <i>ENVIRONMENTAL SCIENCE-ATMOSPHERES</i> . doi:
495	10.1039/d2ea00086e
496	Population Stat. (2023). <i>World statistical data</i> . Retrieved from https://
497	populationstat.com/ (last access: 18 February 2023)
498	Richter, A., Begoin, M., Hilboll, A., & Burrows, J. P. (2011). An improved NO ₂
499	retrieval for the GOME-2 satellite instrument. Atmospheric Measurement
500	<i>Techniques</i> , 4(6), 1147–1159. Retrieved from https://amt.copernicus.org/
501	articles/4/1147/2011/ doi: 10.5194/amt-4-1147-2011 Richter, A., Burrows, J., Nuss, H., Granier, C., & Niemeier, U. (2005). Increase
502	
503	in tropospheric nitrogen dioxide over China observed from space. <i>NATURE</i> , 437(7055), 129-132. doi: 10.1038/nature04092
504	
505	Shedd, K. B. (2022). Cobalt. In: 2022 Mineral Commodity Summaries. (Tech. Rep.).
506	U.S. Geological Survey.
512	STL. (2023). <i>Statistiques de production</i> . Retrieved from http://www.stlgcm.com/
513	(last access: 19 February 2023) The Carter Center (2022) Mining revealty statistics for the province of H Katanga (
514	The Carter Center. (2023). <i>Mining royalty statistics for the province of H-Katanga</i> /
515 516	<i>Cumulative 2021.</i> Retrieved from https://congomines.org/reports/ (last access: 18 February 2023)
	Theys, N. (2022). S5P COBRA Sulphur Dioxide (L2 SO2CBR) Readme (Tech. Rep.
517 518	Nos. 1.0.0, 2022-09-14). Royal Belgian Institute for Space Aeronomy (BIRA-
519	IASB).
520	Theys, N., Fioletov, V., Li, C., De Smedt, I., Lerot, C., McLinden, C.,
521	Van Roozendael, M. (2021). A sulfur dioxide Covariance-Based Retrieval
522	Algorithm (COBRA): application to TROPOMI reveals new emission sources.
523	ATMOSPHERIC CHEMISTRY AND PHYSICS, 21(22), 16727-16744. doi:
524	10.5194/acp-21-16727-2021
525	United Nations. (2019). (O. F. Summerell et al., Eds.). New York, NY, USA:
526	United Nations Department of Global Communications. Retrieved from
527	https://www.unmultimedia.org/searchers/yearbook/page _un2.jsp
528	?volume=2014&page=1
529	United Nations. (2022). New York, NY, USA: United Nations Department of
530	Global Communications. Retrieved from https://www.un.org/en/yearbook/
531	prepress
532	U.S. Bureau of Mines (Ed.). (1993). 1990 Minerals Yearbook: Mineral Industries of
533	Africa (Tech. Rep.). U.S. Bureau of Mines.
534	Van Brusselen, D., Kayembe-Kitenge, T., Mbuyi-Musanzayi, S., Kasole, T. L.,
535	Ngombe, L. K., Obadia, P. M., Nemery, B. (2020). Metal mining and
536	birth defects: a case-control study in Lubumbashi, Democratic Republic of the
537	Congo. LANCET PLANETARY HEALTH, 4(4), E158-E167.

538	van Geffen, J., Boersma, K. F., Eskesl, H., Sneep, M., ter Linden, M., Zara,
539	M., & Veefkind, J. P. (2020). S5P TROPOMI NO ₂ slant column re-
540	trieval: method, stability, uncertainties and comparisons with OMI. AT-
541	MOSPHERIC MEASUREMENT TECHNIQUES, 13(3), 1315-1335. doi:
542	10.5194/amt-13-1315-2020
543	Veefkind, J. P., Aben, I., McMullan, K., Forster, H., de Vries, J., Otter, G., Lev-
544	elt, P. F. (2012). TROPOMI on the ESA Sentinel-5 Precursor: A GMES
545	mission for global observations of the atmospheric composition for climate, air
546	quality and ozone layer applications [Article]. Remote Sensing of Environment,
547	120(SI), 70-83. doi: {10.1016/j.rse.2011.09.027}
548	Wang, R. (2020). CNMC-invested and constructed mining, copper smelting projects
549	go into production. Retrieved from http://en.sasac.gov.cn/2020/01/22/c
550	_12660.htm (last access: 24 March 2023)
551	World Health Organization. (2021). WHO global air quality guidelines: particulate
552	matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon
553	monoxide [Publications]. World Health Organization.
554	Zhang, Y., Li, C., Krotkov, N. A., Joiner, J., Fioletov, V., & McLinden, C. (2017).
555	Continuation of long-term global SO ₂ pollution monitoring from OMI to
556	OMPS. ATMOSPHERIC MEASUREMENT TECHNIQUES, 10(4). doi:
557	10.5194/amt-10-1495-2017
558	Zijin. (2023). Annual reports. Retrieved from https://www.zijinmining.com/
559	investors/Annual-Reports.jsp (last access: 08 February 2023)

TROPOMI-derived NO₂ emissions from copper/cobalt mining and other industrial activities in the Copperbelt (DRC and Zambia)

S. Martínez-Alonso¹, J. P. Veefkind^{2,3}, B. Dix⁴, B. Gaubert¹, N. Theys⁵, C. Granier^{4,6,7}, A. Soulié⁶, S. Darras⁸, H. Eskes², W. Tang¹, H. Worden¹, J. de Gouw^{4,9}, and P. F. Levelt^{1,2,3}

7	¹ ACOM-NCAR, Boulder, Colorado, USA
8	² KNMI, De Bilt, The Netherlands
9	³ Department of Civil Engineering and Geosciences, Technical University of Delft, Delft, The Netherlands
0	⁴ CIRES, University of Colorado, Boulder, Colorado, USA
1	⁵ BIRÅ-IASB, Brussels, Belgium
2	⁶ Laboratoire dA erologie, CNRS, University of Toulouse UPS, Toulouse, France
3	⁷ NOAA-CSL, Boulder, Colorado, USA
4	⁸ Observatoire Midi-Pyr en ees, Toulouse, France
5	⁹ Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, USA

16 Key Points:

4 5

6

17	· We quantified annual 2019-2022 TROPOMI-derived NO ₂ emissions from six point
18	sources in the Copperbelt, despite high background emissions.
19	\cdot Annual TROPOMI-derived NO ₂ emissions from these point sources are strongly
20	correlated with annual mine/oil refinery production.
21	\cdot Lack of elevated SO ₂ at these point sources is consistent with SO ₂ capture and

²² production of sulfuric acid, a profitable byproduct.

Corresponding author: Sara Martínez-Alonso, sma@ucar.edu

23 Abstract

- ²⁴ We have analyzed TROPOMI data over the Copperbelt mining region (Democratic Re-
- ²⁵ public of Congo and Zambia). Despite high background values, we find that annual 2019-
- 26 2022 means of TROPOMI NO₂ show local enhancements consistent with six point sources
- 27 (mines and cities) where high-emission industrial activities take place. We have quan-
- tified annual NO₂ emissions for the six sources, identified temporal trends in these emis-
- ²⁹ sions, and found strong correlations with mine/refinery production data. CAMS-GLOB-
- ANT v5 inventory emissions are lower than TROPOMI-derived emissions by 61-96 %
- and lack the temporal trends observed in TROPOMI and mine/oil refinery production.
- ³² Lack of TROPOMI SO₂ enhancements over the point sources analyzed indicates SO₂
- ³³ capture and transformation into sulfuric acid, a profitable byproduct. These results demon-
- 34 strate the potential for satellite monitoring of mining/oil refining activity which impacts
- the air quality of local communities. This is particularly important for Africa, where mining is increasing aggressively.
- ³⁶ Ing is increasing aggressivery.

Plain Language Summary

We show that air pollution from copper/cobalt mines and oil refineries can be iden-38 tified and measured from satellite, even in the presence of high background pollution from 39 biomass burning and other sources; our findings may apply as well to other industries 40 that consume large quantities of fossil fuels. This is important for monitoring the air qual-41 ity of local communities, particularly when these industrial activities take place in close 42 proximity to population centers, as is the case in the Copperbelt and, in general, in other 43 African regions where mining and related industrial activities proliferate without suffi-44 cient air quality monitoring. Additionally, we show for the first time that the amount 45 of air pollution measured by TROPOMI is strongly correlated with mine/refinery pro-46 duction. Studies like this can be used to estimate mine/refinery production before com-47 panies release their annual reports or (as is the case with non-publicly traded compa-48 nies) in the absence of such reports. Insufficient emissions from mines claiming high pro-49 duction may be indicative of production from a different source. Thus, this method may 50 help improve the traceability of minerals extracted in conflict areas and smuggled into 51 the global supply chain despite existing traceability and tagging schemes. 52

53 **1 Introduction**

The Copperbelt, a mining region straddling the DRC (Democratic Republic of Congo) 54 and Zambia, is currently of great strategic interest because it is the world's largest cobalt 55 producer and holds almost half of the world reserves (Shedd, 2022). Cobalt production 56 in the Copperbelt (mostly in the DRC) has increased ~600% between 1990 and 2021 57 (U.S. Bureau of Mines, 1993; Shedd, 2022), driven by its use in lithium-ion batteries which 58 power mobile phones, laptops, and electric cars. Access to the Copperbelt's cobalt is be-59 coming a matter of national and global energy security (Gulley, 2022). Cobalt is, how-60 ever, a byproduct of copper mining; copper is the main ore (by volume) extracted in the 61 Copperbelt. Previous studies have documented the impact of cobalt and/or copper min-62 ing in the region's soils and water (Atibu et al., 2016), land use (Mwitwa et al., 2012), 63 and neonatal health (Kayembe-Kitenge et al., 2019; Van Brusselen et al., 2020). The im-64 pact on local air quality remained unknown. Here we quantify the effect of increasing 65 mining activity on the air quality of this region using TROPOMI (TROPOspheric Mon-66 67 itoring Instrument) satellite measurements (Veefkind et al., 2012) of NO₂ (nitrogen dioxide); TROPOMI SO₂ (sulfur dioxide) is also analyzed. Both gases are atmospheric pol-68 lutants (World Health Organization, 2021) relevant to air quality monitoring and fore-69 casting. They are also considered short-lived climate forcers, important for understand-70 ing climate (Myhre et al., 2013). 71

 NO_x (NO₂ + NO, two species closely intertwined by oxidation and reduction re-72 actions), has both anthropogenic (fossil fuel combustion, biomass burning) and natural 73 (microbial activity in soils, lightning, wildfires) sources. Mining-related NO_x is produced 74 by high-temperature combustion of fuel used by trucks and other heavy machinery as 75 well as by electric generators. The main sink of NO_x is the hydroxyl radical (OH), with 76 which it reacts within hours in the presence of light. NO_x has a negative impact on air 77 quality, both directly and as a precursor to tropospheric ozone and particulate matter. 78 It is damaging to human health (affecting mostly the respiratory system) and crops, and 79 contributes to the formation of smog and acid rain. Hereafter we discuss NO_{2} , the NO_{x} 80 component measurable from satellite. 81

Measuring global and regional NO2 was made possible by satellite instruments such 82 as GOME (Global Ozone Monitoring Experiment), SCIAMACHY (SCanning Imaging 83 Absorption SpectroMeter for Atmospheric CHartographY), OMI (Ozone Monitoring In-84 strument), and GOME-2, (Leue et al., 2001; Richter et al., 2005; Beirle et al., 2011; Richter 85 et al., 2011). Labzovskii et al. (2022) reported regional-scale correlation between OMI 86 NO₂ column values from heavy industry, including mining, and a coal production inter-87 annual variability index for the Siberian Kuzbass Basin. Thanks to its higher spatial resolution, TROPOMI allows for the measurement of NO_2 over smaller domains such as 89 gas and oil fields (Dix et al., 2022), cities (Goldberg et al., 2019; Pommier, 2022; de Foy 90 & Schauer, 2022), and power plants (Beirle et al., 2019, 2021; Goldberg et al., 2019; Dix 91 et al., 2022; de Foy & Schauer, 2022). 92

 SO_2 results from both anthropogenic (e.g., coal combustion, smelting of sulfur-rich 93 ores) and natural (volcanism, marine biological processes) sources. It contributes to acid 94 rain and particle formation. Exposure to SO2 is harmful to human health, damages fo-95 liage, and impedes plant growth. Previous studies showed that SO₂ emissions could be 96 estimated using satellite data from TOMS (Total Ozone Mapping Spectrometer), GOME, 97 OMI, SCIAMACHY, and OMPS (Ozone Mapping and Profiler Suite) (Krueger, 1983; 98 Carn et al., 2007; V. E. Fioletov et al., 2013; Zhang et al., 2017). V. Fioletov et al. (2020, QC 2023) reported TROPOMI-based emission estimates of SO_2 from power plants, volca-100 noes, oil and gas fields, and smelters. 101

We show that copper/cobalt mining-related activities, among others, can be identified and their NO₂ emissions quantified based on TROPOMI data even in the presence of high background values from biomass burning and other sources (BIRA-IASB, 2021). Additionally, we identify inter-annual trends in TROPOMI-derived NO₂ emissions that are strongly correlated with mining and oil refinery production. Next we describe the datasets (Sect. 2) and methodology (Sect. 3) used in this study, we present our results (Sect. 4), and discuss their relevance (Sect. 5). Conclusions are offered in Sect. 6.

109 2 Datasets

TROPOMI, onboard the European Space Agency's Sentinel-5 Precursor satellite 110 (Veefkind et al., 2012), provides quasi-global daily coverage at high spatial resolution (3.5 111 $x 5.5 \text{ km}^2$ for our species of interest). This is a nadir-viewing imaging spectrometer in 112 a sun-synchronous orbit at 824 km of altitude, with 13:30 LST Equator-crossing time, 113 and 2600 km swath width. TROPOMI measures radiances in the ultraviolet, visible, and 114 reflected infrared, from which concentrations of trace gases as well as cloud and aerosol 115 properties are derived. Here we focus on TROPOMI measurements of tropospheric NO₂ 116 and SO_2 , two pollutants produced by mining-related activities. NO₂ is retrieved from 117 TROPOMI radiance measurements in the visible portion of the spectrum (400-496 nm) 118 (van Geffen et al., 2020; H. J. Eskes & Eichmann, 2021; H. Eskes et al., 2022). We used 119 daily TROPOMI NO₂ tropospheric column data from version 2 for the period between 120 1 January 2019 and 31 December 2022. We also analyzed TROPOMI SO₂ data retrieved 121 with the Covariance-Based Retrieval Algorithm (COBRA, Theys et al. (2021)) from ultraviolet-122

visible radiances (310.5-326 nm) (Theys, 2022) for the 1 January 2019 - 31 July 2022 period; more recent data were unavailable at the time of writing.

Meteorological information needed to derive emissions from TROPOMI NO₂ VCD (vertical column density) was obtained from reanalysis data. By combining measurements and model results, reanalyses datasets provide consistent and gapless global coverage of essential climate variables. We used hourly ERA5 (ECMWF Reanalysis v5) data (Hersbach et al., 2020) provided at 0.25° x 0.25° resolution and generated by the Copernicus Climate Change Service at the European Center for Medium-Range Weather Forecasts.

¹³¹ Due to the unavailability of ground measurements, we compared inventory data to TROPOMIderived NO2 emissions. Emission inventories are compilations of amounts of air pollutants released into the atmosphere, segregated by source and time period. We used 2019-2021 data from the CAMS-GLOB-ANT (Copernicus Atmosphere Monitoring Service Global Anthropogenic) emissions inventory version 5, an extension of version 4.2 (Granier et al., 2019). Inventory emissions for 2022 were unavailable at the time of writing. We focused on monthly NOx emissions, provided at $0.1^{\circ} \times 0.1^{\circ}$ resolution.

Mine production data were obtained from the annual reports of publicly traded min ing companies; these reports are mandated by official regulatory bodies such as the Se curities and Exchange Commission in the United States and the Securities and Futures
 Commission in Hong Kong. Private mining companies are not required to disclose their
 production data. The specifics of the information available in these reports varies greatly.

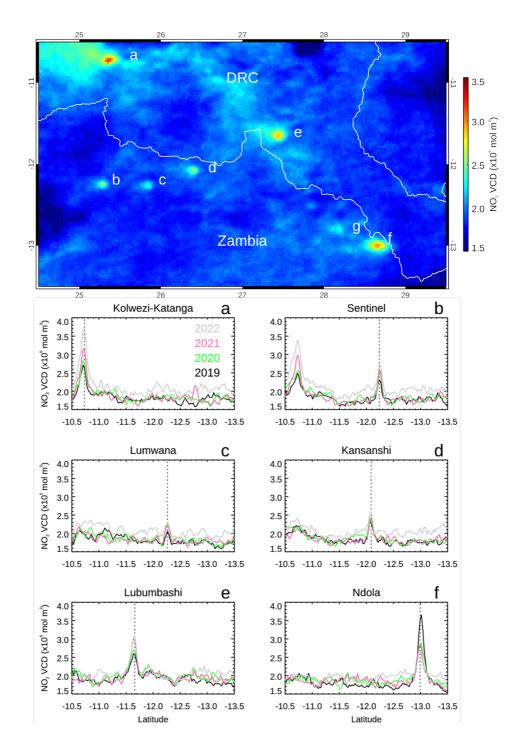
143 **3 Methodology**

To identify potential emission point sources such as mines, we produced annual means from daily TROPOMI NO₂ VCD for the Copperbelt study area (-10.5°N to -13.5°N, 24.5°E to 29.5°E). Temporal averaging enhances the signal from constantly emitting sources while dampening more sporadic, background emissions from biomass burning, soils, and lightning.

Once the point sources were identified, we calculated daily TROPOMI-derived NO₂ 1/0 emissions for the study area using the divergence method (Beirle et al., 2019; Dix et al., 150 2022) with some modifications described below. This method derives emission based on 151 a divergence term and a sink term, which account for wind dispersion effects and NO_2 152 depletion by OH, respectively. A detailed description of the derivation can be found in 153 Dix et al. (2022). To calculate daily emissions we regridded daily VCD values to a com-154 mon 0.025° x 0.025° grid. We filtered TROPOMI measurements to avoid clouds, errors, 155 and problematic retrievals by using only those with quality assurance value ≥ 0.75 (H. Es-156 kes et al., 2022); retrievals with solar zenith angle $>60^{\circ}$ were rejected. Hourly values 157 of fields (longitudinal and latitudinal horizontal wind at 100 m from the ground, pres-158 sure, and temperature) required for the emissions calculation were obtained from ERA5 159 reanalysis. All ERA5 fields were resampled to 0.025° x 0.025° spatial resolution and in-160 terpolated to the passing time of the closest (spatially and temporally) TROPOMI ob-161 servation. Fields provided on pressure levels were interpolated to an altitude of 100 m 162 above the ground. In our implementation, OH lifetime was calculated for each data point 163 based on the solar zenith angle of the closest TROPOMI retrieval. Daily emissions were averaged into annual means. 165

To calculate the actual NO₂ emissions released from each point source, background NO₂ emissions must be quantified and removed from the raw (non-background corrected) emissions. Several background removal approaches are possible: Beirle et al. (2019) subtracted from the emissions their 10th percentile value, Dix et al. (2022) removed the mode of a Gaussian curve fit to them. We find that the former is better suited to study regions with homogeneous background emissions and that results from the latter are highly dependent on how the Gaussian curve is defined. Similarly, statistics derived from two-dimensional

Gaussians fitted to the point source emissions (Beirle et al., 2019) were, in our case, highly 173 dependent on location and size of the area selected to perform the fit. Our approach con-174 sisted of calculating annual statistics (mean and standard deviation) for each point source 175 plume as well as for its local background area: $a \sim 1^{\circ} \times 1^{\circ}$ region surrounding each point 176 source, excluding the point source plume. The location and extent of the point source 177 plumes were identified based on an empirical threshold $(0.37 \text{ kg km}^{-2} \text{ h}^{-1})$ applied to 178 mean raw emissions from the 2019-2022 period. Annual means of background-removed 179 emissions were calculated for each point source by subtracting its mean background value 180 from its mean raw emission value. 181


Dix et al. (2022) described in detail the effects of individual parameters (e.g., background correction, wind level, wind data source, OH lifetime, VCD thickness) on the results obtained using this method. We investigated ERA5 wind data uncertainty effects by using the spread of its wind field 10 member ensemble to perturb 2020 NO₂ emissions. The spread provides an estimate of relative, random uncertainty; ensemble, mean, and spread are part of the ERA5 dataset. The results show that ERA5 wind uncertainty produces small changes in raw NO₂ emission (< 4 %; Table S1 and Fig. S1).

189 **4 Results**

Six distinct point sources are clearly visible in the mean 2019-2022 TROPOMI NO_2 190 VCD map (Fig. 1; Fig. S2 shows annual mean VCD maps). Four of the point sources 191 correspond to large copper (Sentinel, a.k.a. Trident; Lubumbashi; Kansanshi) or copper-192 cobalt (Kolwezi and adjacent Katanga) open-pit mines. The remaining two point sources 193 coincide with cities (Lubumbashi and Ndola) where we infer that high-emission indus-194 trial activities take place, as explained below. Latitudinal profiles of mean annual VCD 195 across each point source (Fig. 1) show that background NO_2 remains nearly constant year to year while the point sources (well defined, narrow peaks of fixed location) vary in magnitude. TROPOMI emission results (Table 1 and Fig. S3) reinforce these obser-198 vations. TROPOMI NO₂ mostly increased with time at all the point sources but one, 199 Ndola, where background-removed emissions decreased by > 70 % between 2019 and 2022. 200

To understand these inter-annual trends in NO₂ emissions, we compared background-20 removed TROPOMI-derived emissions to mine production data where available (Table 202 1 and Fig. 2). Most of the energy consumed in copper or copper-cobalt mining, includ-203 ing electricity, is generated by diesel fuel combustion. Mining equipment consumes ~ 60 204 % of the total energy; comminution \sim 36 %; flotation, filtering, and drying \sim 4 % (Allen, 205 2021). Limited data relevant to energy consumption is provided in mining company re-206 ports; we found the best proxy for energy (i.e., diesel) consumed to be amount of ore and 207 waste mined. Panels b, c, and d in Fig. 2 show strong positive correlation between an-208 nual values of total ore plus waste mined versus NO₂ emissions for the Sentinel, Lumwana, 209 and Kansanshi mines (R = 0.84, 0.74, and 0.79, respectively). Amount of copper pro-210 duced (highly dependent on ore grade, among other factors, and thus, a less-desirable 211 proxy) was used for the Kolwezi-Katanga mines (Fig. 2.a) for lack of ore and waste data 212 (R = 0.84).213

The remaining two point sources coincide with some of the largest cities in the study 214 area: Lubumbashi (DRC, population > 2.6 x 10⁶) and Ndola (Zambia, population > 0.5 215 $\times 10^{\circ}$). To discard the hypothesis that their emissions are due to urban activity alone, 216 we quantified NO₂ emissions for two additional cities of similar size: Mbuji-Mayi (DRC, 217 population > 2.7 x 10⁶), located 750 km northwest of Lubumbashi; and Kitwe (Zambia, 218 population > 0.7 x 10⁶), 50 km northwest of Ndola (labeled g in Fig. 1 map). (Popu-219 lation data are for 2022 urban areas (Population Stat, 2023).) The results (Fig. 1, Ta-220 ble S2, and Fig. S4) show that neither the magnitude of VCD or emissions, the spatial 221 extent of the plumes, or the temporal emission trends from Lubumbashi and Ndola can 222 be explained by urban activity alone. Background-removed NO₂ emissions from Lubum-223

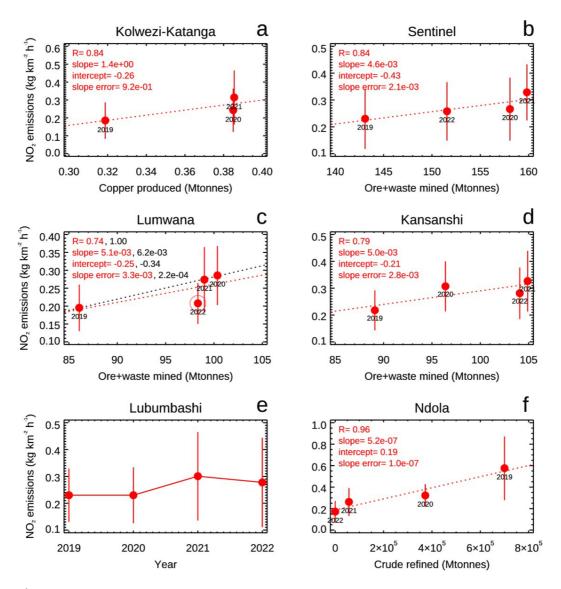

Figure 1. (Top) 2019-2022 mean of TROPOMI NO₂ VCD for the Copperbelt study region. Labels a through f show the six point sources analyzed. Label g shows the location of Kitwe City. White lines indicate country borders. (Bottom) Annual means of TROPOMI NO₂ VCD along latitudinal profiles centered at each of the six point sources, shown by vertical dotted lines. Labels as above. Profiles are color-coded according to year.

Table 1. Production and NO_2 emissions (TROPOMI background-removed, TROPOMI background, inventory) for six Copperbelt point sources. Ore, waste, and copper produced are in ktonnes; copper grade in percentage. Kansanshi reports provide separate copper grade values for sulfide, mixed, and oxide ores. Throughput (slag processed in Lubumbashi, crude refined in Ndola) are in ktonnes. All emissions and their standard deviation values (in parenthesis) are in kg km² h⁻¹.

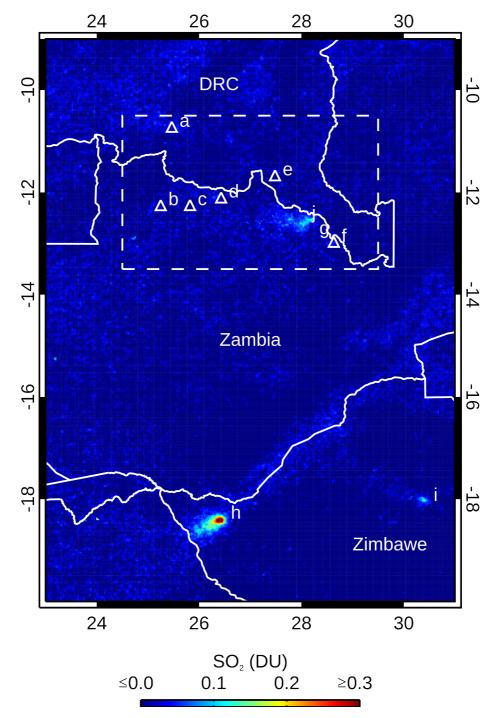
		2019	2020	2021	2022
	Ore, Waste	-, -	-, -	-, -	-, -
	Grade	4.2, -	4.17, -	2.9, -	-, -
	Copper	84.3, 234.5	114.3, 270.7	121.1, 264.4	-, 220.1
Kolwezi ^a , Katanga ^b	TROPOMI	0.19 (0.10)	0.24 (0.12)	0.31 (0.15)	0.41 (0.17)
0	Background	0.23 (0.08)	0.23 (0.10)	0.22 (0.10)	0.26 (0.10)
	Inventory	0.03	0.03	0.03	-
	Ore, Waste	50263, 92826	60098, 97970	57380, 102445	56219, 95335
	Grade	0.5	0.49	0.47	0.46
	Copper	220.006	251.216	232.688	242.451
Sentinel ^c	TROPOMI	0.23 (0.11)	0.27 (0.12)	0.33 (0.10)	0.26 (0.11)
	Background	0.20 (0.07)	0.22 (0.08)	0.21 (0.07)	0.24 (0.07)
	Inventory	0.01	0.01	0.01	-
	Ore, Waste	23230, 62837	26880, 73480	33510, 65499	20277, 78063
	Grade	0.47	0.52	0.46	0.52
	Copper	107.955	125.191	109.769	121.109
Lumwana ^d	TROPOMI	0.20 (0.06)	0.29 (0.08)	0.27 (0.09)	0.21 (0.06)
	Background	0.21 (0.07)	0.22 (0.07)	0.21 (0.07)	0.24 (0.07)
	Inventory	0.04	0.04	0.04	-
	Ore, Waste	36325, 52768	34423, 61972	35142, 69758	28205, 75878
	Grade	0.89, 1.05, 1.12	0.83, 1.00, 0.93	0.88, 0.96, 0.72	0.71, 0.63, 0.57
	Copper	232.243	221.487	202.159	146.282
Kansanshi ^c	TROPOMI	0.22 (0.07)	0.31 (0.09)	0.33 (0.11)	0.28 (0.10)
	Background	0.22 (0.07)	0.23 (0.08)	0.22 (0.07)	0.24 (0.07)
	Inventory	0.08	0.08	0.08	-
	Throughput	-	-	255.229	-
Lubumbashi ^e	TROPONI	0.23 (0.10)	0.23 (0.10)	0.30 (0.16)	0.28 (0.17)
	Background	0.25 (0.08)	0.26 (0.08)	0.25 (0.08)	0.26 (0.08)
	Inventory	0.25	0.26	0.26	-
	Throughput	700.277	372.384	56.672	0^g
NJalaf	TROPOMI	0.58 (0.30)	0.32 (0.10)	0.26 (0.13)	0.17 (0.10)
Ndola ^f	Background	0.20 (0.09)	0.21 (0.09)	0.21 (0.08)	0.23 (0.08)
	Inventory	0.22	0.22	0.22	-

-7-

^aZijin (2023). ^bGlencore (2023). ^cFirst Quantum (2023a). ^dBarrick (2023). ^eSTL (2023). ^fMwila et al. (2022). ^gInactive.

Figure 2. TROPOMI-derived, background-removed NO_2 emissions and their standard deviation versus production, except (e), where production data is unavailable. (c) Statistical values and fit line in black exclude 2022 values; see text for details.

bashi are higher than those from Mbuji-Mayi by 90 %, even though the population of 224 the former is lower by 2 %. Similarly, while its population is lower by 27 %, emissions 225 from Ndola surpass those from Kitwe by 40-80 %, depending on the year, and display 226 inter-annual variations which do not correlate with changes in population. These find-227 ings are consistent with our hypothesis that emissions from Lubumbashi and Ndola are not the result of urban activity alone. We researched other possible origins for the ex-22 cess emissions observed at these two point sources. We hypothesize that Lubumbashi's 230 high NO₂ emissions are due to reprocessing of the Lubumbashi slag heap: a 14.5×10^{6} 231 tonne hill of mining residue located inside the city, resulting from metallurgical activ-232 ity between 1924 and 1992 (Pe'sa, 2022). Copper, cobalt, and zinc are extracted from the 233 slag heap by La Société Congolaise du Terril de Lubumbashi (2000-present). Reports from 234 the local press attest to the pollution resulting from the operation (Africa Intelligence, 235 2021). Figure 2.e shows annual background-removed TROPOMI-derived NO₂ emissions; because production data is incomplete (STL, 2023; The Carter Center, 2023), emissions and mining-related activity cannot be compared in this case. The most plausible emis-238 sions source in Ndola is the INDENI petroleum refinery plant, located inside the city. 239 Inactive since late 2021, its declining production values (Mwila et al., 2022) match well 240 the TROPOMI-derived NO₂ emissions (R = 0.96, Fig. 2.f). 241


The six Copperbelt NO₂ emission point sources do not coincide with SO₂ enhancements, as shown by the map of mean TROPOMI SO₂ VCD values for the period between January 2019 and July 2022 (Fig. 3). The map shows SO₂ enhancements elsewhere: collocated with the Hwange coal power plant (Zimbawe), the Selous smelter (Zimbawe), and the Chingola and Mufulira smelters (Zambia).

Anthropogenic emissions from the inventory were compared to TROPOMI-derived 247 emissions from our six point sources. Monthly inventory emissions from the following 248 sectors were aggregated: power generation, industrial processes (including mining), road 249 and non-road transportation, residential, fugitive fuel emissions, solvents application and 250 production, and solid waste and wastewater handling. Emissions from the agriculture 251 livestock, agriculture soils, and agriculture waste burning sectors would be part of the 252 background over mines and cities and, thus, were excluded. Aggregated inventory emis-253 sions were converted to NO₂ ($NO_2 = NO_x / 1.32$; Beirle et al. (2019), Dix et al. (2022)). 254 The highest inventory value among the nine data points coinciding spatially with each 255 point source was selected; annual inventory means were calculated and compared to their 256 background-removed TROPOMI-derived emissions counterparts (Table 1 and Fig. S5). 257 The inventory underpredicts mine emissions by 61-96 %, generally overpredicts city emis-258 sions, and does not identify the annual trends in both TROPOMI-derived emissions and 259 mine production. 260

²⁶¹ **5 Discussion**

We have shown that NO_2 from copper/cobalt mining and other industrial activ-262 ities can be identified and emissions quantified from satellite, even in the presence of high 263 background values from biomass burning, soils, and lightening. Furthermore, we have 264 demonstrated strong positive correlations between annual TROPOMI-derived NO₂ emis-265 sions and mine production/refinery throughput. These correlations are mine-dependent 266 and cannot be extrapolated from mine to mine; differences in ore grades and equipment 267 fuel efficiency are probably the main causes. As an example, lower-than-expected 2022 emissions from Lumwana, which reduced R from 1.00 (for 2019-2021) to 0.74 (for 2019-26 2022) (Fig. 2.c), can be traced to a new fleet of trucks and shovels commissioned in 2021 270 (Barrick, 2023) and in operation during 2022 (Lusaka Times, 2022). 271

As a reference, 2019 background-removed TROPOMI-derived NO₂ emissions from Ndola (0.044kg/s, after accounting for point source area) are equivalent to NO₂ emissions from the Miami Fort or the Intermountain coal power plants, both among the ten

Figure 3. Mean TROPOMI-COBRA SO₂ VCD for January 2019 - July 2022. White triangles show the Copperbelt NO₂ emission point sources analyzed. (a) Kolwezi-Katanga. (b) Sentinel. (c) Lumwana. (d) Kansanshi. (e) Lubumbashi. (f) Ndola. (g) Kitwe. (h) Hwange coal power plant. (i) Selous smelter. (j) Chingola-Mufulira smelters. White lines show country boundaries. Dashed white lines show Copperbelt study area.

largest NO_x emitters in the USA that year (Beirle et al., 2021). Our results demonstrate
that the impact of mining/oil refining on local air quality can be quantified using satellite data; this is particularly important for African regions where mining and other industrial activities proliferate without sufficient air quality monitoring.

We have analyzed the point sources with the highest mean annual TROPOMI-derived emissions in the Copperbelt; our maps do, however, show a string of NO₂ enhancements along the Ndola-Lubumbashi-Kolwezi corridor (Fig. 1) where relatively smaller copper/cobalt mining operations, both industrial and artisanal, exist. Future work should explore the detection limits of this method by analyzing some of these other NO₂ enhancements.

Ground emission measurements were unavailable; thus, we compared backgroundremoved TROPOMI-derived NO₂ emissions to inventory data. Inventory values are lower (higher) for mines (cities) than their TROPOMI counterparts and do not capture the annual trends revealed by TROPOMI. The remoteness of the region, lack of field data, and relatively small size of the point sources may explain at least in part these discrepancies. NO₂ emissions derived from satellite measurements could improve the overall magnitude and temporal (seasonal, inter-annual) trends in inventory emissions. They could also be used to refine regional emission factors, which are not well defined for Africa.

We identified SO₂ enhancements coinciding with smelters and a coal power plant 292 elsewhere, but none colocated with our NO_2 point sources (Fig. 3), despite the fact that some of them either include a smelter (Kansanshi, First Quantum (2023a)) or have one 294 nearby (Lualaba, 40 km southeast of Kolwezi; Ivanhoe Mines (2021)). Lack of SO₂ en-295 hancements indicates use of technologies to convert sulfur oxides released from the ore 296 during smelting into sulfuric acid, a commercial byproduct (Hocking, 2005; Ialongo et 297 al., 2018). The use of such technologies in the Kansanshi and Lualaba smelters has been 298 documented by the mining companies involved (Gray et al., 2020; First Quantum, 2023b; 299 Wang, 2020). 300

301 6 Conclusions

Understanding the environmental effects of high-impact minerals extraction and 302 processing is of great relevance (Hund et al., 2020), particularly if the mining-related ac-303 tivities take place in close proximity to -or even inside of- population centers, as is the 304 case in the Copperbelt region. We have shown for the first time that NO₂ emissions from 305 copper and cobalt mining activities can be identified and measured using TROPOMI satellite data, even in the presence of high background NO₂; this is important in the absence 307 of local air quality monitoring. Furthermore, we have shown, also for the first time, a 308 strong positive correlation between TROPOMI-derived NO₂ emissions and mining/oil 309 refining production data. We note that these correlations are mine-dependent and that 310 changes in the mine's environment (ore grade, fuel efficiency) will affect such correlations, 311 as observed in Lumwana. The lack of SO_2 enhancements colocated with our NO_2 point 312 sources (enhancements identified, though, in power plants and smelters nearby) is con-313 sistent with SO₂ capture and transformation into sulfuric acid, which is then used in mining-314 related processes or commercialized. 315

Because the NO₂ emissions analyzed result from the combustion of fossil fuels by machinery (e.g., trucks, crushers, generators) used extensively in mining operations, these results are relevant to mining in general, regardless of the resource mined. They are also relevant to oil refineries, as shown in Ndola. We hypothesize that our findings apply to fossil-fuel intensive industries in general.

Our results show that NO₂ trend analysis can be used to predict mine production and refinery throughput before companies release their reports or in lieu of these reports in case of non-publicly traded companies, which are not required to publish their activity data. Insufficient emissions from mines claiming high production may be indicative

- of production from a different source. Thus, this method may be useful for improving
- traceability of minerals extracted in conflict areas and smuggled into the global supply
- s27 chain despite existing traceability and tagging schemes, an issue highlighted in the most
- recent releases of the United Nations Yearbook (United Nations, 2019, 2022).

329 **Open Research Section**

Atmospheric data available as follows. TROPOMI NO₂ data (L2_NO2_) are publicly available via the ESA's S5P Pre-Ops interface (<u>https://scihub.copernicus.eu/</u>) using the credentials given there. TROPOMI SO2 COBRA data:

https://distributions.aeronomie.be/?menu=68c9f961bc294141c215e3d64a6ae282#. ERA5 data: https://cds.climate.copernicus.eu/cdsapphttps://cds.climate.copernicus.eu/cdsapp#!/dataset/reanal ysis-era5-single-levels-monthly-means?tab=form (hourly data on single levels) and https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-

<u>levels?tab=form</u> (hourly data on pressure levels). CAMS-GLOB-ANT inventory data are publicly available via the https://eccad3.sedoo.fr/ interface following the instructions given there to create a free access account. Mining production data available from mining company reports as follows. First Quantum Minerals Ltd. (Sentinel, Kansanshi):

https://s24.q4cdn.com/821689673/files/doc_downloads/2019-annual-

report/First_Quantum_AR_2019.pdf (2019),

https://s24.q4cdn.com/821689673/files/doc_downloads/2020-annual-

<u>report/First_Quantum_2020_Annual_Report.pdf</u> (2020), <u>https://www.firstquantum-2021-annual-report.com/_files/ugd/acdda3_c51ed134aa184e259d61a629344f98e7.pdf</u> (2021), <u>https://www.first-quantum.com/files/doc_downloads/2022-annual-report/First-Quantum-2022- AR-online.pdf</u> (2022). Barrick Gold Corporation (Lumwana):

https://s25.q4cdn.com/322814910/files/doc_financial/annual_reports/2019/Barrick-Annual_Report-2019.pdf (2019), https://s25.q4cdn.com/322814910/files/doc_financial/annual_reports/2020/Barrick-Annual-Report-2020.pdf (2020),

https://s25.q4cdn.com/322814910/files/doc_financial/annual_reports/2021/Barrick_Annual_Rep_ort_2021.pdf (2021),

https://s25.q4cdn.com/322814910/files/doc_financial/annual_reports/2022/Barrick_Annual_Rep ort_2022.pdf (2022). Zijing Mining (Kolwezi):

https://www.zijinmining.com/upload/file/2020/09/14/9c97a89f8e9c4c59a13f2404f3bb1096.pdf (2019), https://www.zijinmining.com/upload/file/2021/06/09/538a46cc4831452e97b30cae55c9cf97.pdf (2020), https://www.zijinmining.com/upload/file/2022/06/20/771c971d76154257882f58ed03643c07.pdf (2021; no 2022 annual report available at the time of writing). Glencore (Katanga):

https://www.glencore.com/.rest/api/v1/documents/5a08fe1942f92df7f2301ac3681e23aa/glen-2019annual-report-interactive.pdf?download=true (2019),

https://www.glencore.com/.rest/api/v1/documents/3505497f3cb94b24f0c79f5ba32b293b/Glenco re_AR20_Interactive+%281%29.pdf?download=true (2020),

https://www.glencore.com/.rest/api/v1/documents/ce4fec31fc81d6049d076b15db35d45d/GLEN-

2021-annual-report-.pdf?download=true (2021),

https://www.glencore.com/.rest/api/v1/documents/ded10fa92974aa388a43aa9f86f483e9/GLEN-2022-Annual-Report.pdf (2022).

ERA5 data are produced by C3S and CAMS. Contains modified information from C3S and CAMS [2019-2021]. Neither the European Commission nor ECMWF is responsible for any use that may be made of the Copernicus information data contained in this study.

346 Acknowledgments

- ³⁴⁷ SMA thanks William Atkinson for sharing his deep knowledge of minerals and mining;
- Carol Atkinson for her insights and inspiring curiosity; Louisa Emmons for advice re-
- ³⁴⁹ garding models; David Edwards and Bill Randel for helpful NCAR in-house comments.
- ³⁵⁰ This material is based upon work supported by the National Center for Atmospheric Re-
- search, which is a major facility sponsored by the National Science Foundation under
 Cooperative Agreement No. 1852977.

353 **References**

354	Africa Intelligence. (2021). Lubumbashi slag heap locals fume over pollution. Re-
355	trieved from https://www.africaintelligence.com/central-africa/2021/
356	05/25/lubumbashi-slag-heap-locals-fume-over-pollution,109668540
357	-art (last access: 19 February 2023)
358	Allen, M. (2021). <i>Mining Energy Consumption 2021</i> (Tech. Rep.). ENGECO
359	Pte. Ltd. Retrieved from https://www.ceecthefuture.org/resources/
360	mining-energy-consumption-2021 (last access: 21 February 2023)
361	Atibu, E. K., Devarajan, N., Laffite, A., Giuliani, G., Salumu, J. A., Muteb, R. C.,
362	Pore, J. (2016). Assessment of trace metal and rare earth elements con-
363	tamination in rivers around abandoned and active mine areas. The case of
364	Lubumbashi River and Tshamilemba Canal, Katanga, Democratic Republic of
365	the Congo. CHEMIE DER ERDE-GEOCHEMISTRY, 76(3), 353-362. doi:
366	10.1016/j.chemer.2016.08.004
367	Barrick. (2023). Annual reports. Retrieved from https://www.barrick.com/
368	English/investors/default.aspx (last access: 08 February 2023)
369	Beirle, S., Boersma, K. F., Platt, U., Lawrence, M. G., & Wagner, T. (2011). Megac-
370	ity emissions and lifetimes of nitrogen oxides probed from space. SCIENCE,
371	333(6050), 1737-1739. doi: 10.1126/science.1207824
	Detals C. Denner C. Ester H. Kunner V. de Leet A. & Miles T.

Beirle, S., Borger, C., Doerner, S., Eskes, H., Kumar, V., de Laat, A., & Wagner, T.

373	(2021). Catalog of NO_x emissions from point sources as derived from the di-
374	vergence of the NO ₂ flux for TROPOMI. EARTH SYSTEM SCIENCE DATA,
375	13(6), 2995-3012. doi: 10.5194/essd-13-2995-2021
376	Beirle, S., Borger, C., Drner, S., Li, A., Hu, Z., Liu, F., Wagner, T. (2019). Pin-
377	pointing nitrogen oxide emissions from space. <i>Science Advances, 5,</i> eaax9800.
378	doi: 10.1126/sciadv.aax9800
379	BIRA-IASB. (2021). <i>Global map of nitrogen dioxide (NO₂)</i> . Retrieved from
380	https://uv-vis.aeronomie.be/data/tropomi_posters/posterTROPOMI _NO2 2018 2020.pdf (last access: 7 April 2023)
381	Carn, S. A., Krueger, A. J., Krotkov, N. A., Yang, K., & Levelt, P. F. (2007). Sulfur
382 383	dioxide emissions from Peruvian copper smelters detected by the Ozone Mon-
384	itoring Instrument. GEOPHYSICAL RESEARCH LETTERS, 34(9). doi:
385	10.1029/2006GL029020
386	de Foy, B., & Schauer, J. J. (2022). An improved understanding of NO _x emissions in
387	South Asian megacities using TROPOMI NO ₂ retrievals. ENVIRONMENTAL
388	RESEARCH LETTERS, 17(2). doi: 10.1088/1748-9326/ac48b4
389	Dix, B., Francoeur, C., Li, M., Serrano-Calvo, R., Levelt, P. F., Veefkind, J. P.,
390	de Gouw, J. (2022). Quantifying NO_x Emissions from US Oil and Gas
391	Production Regions Using TROPOMI NO_2 . ACS EARTH AND SPACE
392	<i>CHEMISTRY</i> , 6(2), 403-414. doi: 10.1021/acsearthspacechem.1c00387 Eskes, H., van Geffen, J., Boersma, F., Eichmann, KU., Apituley, A., Pedergnana,
393 394	M., Loyola, D. (2022). Sentinel-5 precursor/TROPOMI Level 2 Product
395	User Manual Nitrogen dioxide (Tech. Rep. Nos. 2.4.0, 2021-07-11). Nether-
396	lands Institute for Space Research (SRON).
397	Eskes, H. J., & Eichmann, KU. (2021). S5P mission performance centre nitrogen
398	dioxide (L2 NO ₂) readme (Tech. Rep. Nos. 2.1, 2021-11-17). Netherlands Insti-
399	tute for Space Research (SRON).
400	Fioletov, V., McLinden, C. A., Griffin, D., Abboud, I., Krotkov, N., Leonard,
401	P. J. T., Carn, S. (2023). Version 2 of the global catalogue of large an-
402	thropogenic and volcanic SO_2 sources and emissions derived from satellite
403 404	measurements. <i>EARTH SYSTEM SCIENCE DATA</i> , <i>15</i> (1), 75-93. doi: 10.5194/essd-15-75-2023
405	Fioletov, V., Mclinden, C. A., Griffin, D., Theys, N., Loyola, D. G., Hedelt, P.,
406 407	\dots Li, C. (2020). Anthropogenic and volcanic point source SO ₂ emissions derived from TROPOMI on board Sentinel-5 Precursor: first results.
408	ATMOSPHERIC CHEMISTRY AND PHYSICS, 20(9), 5591-5607. doi:
409	10.5194/acp-20-5591-2020
410	Fioletov, V. E., McLinden, C. A., Krotkov, N., Yang, K., Loyola, D. G., Valks, P.,
411	Martin, R. V. (2013). Application of OMI, SCIAMACHY, and GOME-2
412	satellite SO ₂ retrievals for detection of large emission sources. <i>JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES</i> , 118(19), 11399-11418. doi:
413 414	10.1002/jgrd.50826
415	First Quantum. (2023a). Annual reports. Retrieved from https://www.first
416	-quantum.com/English/investors/financial-information/default.aspx
417	(last access: 08 February 2023)
418	First Quantum. (2023b). Kansanshi: smelter. Retrieved from https://
419	www.first-quantum.com/English/our-operations/default.aspx#module
420	-operationkansanshi (last access: 24 March 2023)
421	Glencore. (2023). Annual reports. Retrieved from https://www.glencore.com/
422	publications (last access: 08 February 2023) Coldborg D. L. Lu, Z. Streets D. C. de Fox B. Griffin D. McLinden, C. A.
423 424	Goldberg, D. L., Lu, Z., Streets, D. G., de Foy, B., Griffin, D., McLinden, C. A., Eskes, H. (2019). Enhanced Capabilities of TROPOMI NO ₂ : Es-
424	timating NO_x from North American Cities and Power Plants. <i>ENVI</i> -
426	RONMENTAL SCIENCE & TECHNOLOGY, 53(21), 12594-12601. doi:
427	10.1021/acs.est.9b04488

Granier, C., S. Darras, H. Denier van der Gon, J. Doubalova, N. Elguindi, B. Galle, M. Gauss, 428 M. Guevara, J.-P. Jalkanen, J. Kuenen, C. Liousse, B. Quack, D. Simpson, K. Sindelarova, The Copernicus Atmosphere Monitoring Service global and regional emissions, Copernicus Atmosphere Monitoring Service (CAMS) report, doi:10.24380/d0bn-kx16, 2019 Gray, D., Lawlor, M., & Briggs, A. (2020).Kansanshi Operations, North West 429 Province, Zambia, NI 43-101 Technical Report, June 2020 (Tech. Rep.). First Quantum Minerals Ltd. 430 Gulley, A. L. (2022). One hundred years of cobalt production in the Democratic 431 Republic of the Congo. Resources Policy, 79. doi: 10.1016/j.resourpol.2022 432 .103007 433 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Munoz-Sabater, 434 J., ... Thepaut, J.-N. (2020). The ERA5 global reanalysis. QUARTERLY 435 JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 146(730), 436 1999-2049. doi: 10.1002/gj.3803 437 Hocking, M. B. (2005). Ore Enrichment and Smelting of Copper. In M. B. Hocking 438 (Ed.), Handbook of Chemical Technology and Pollution Control (Third ed., 439 San Diego: Academic Press. p. 391-420). doi: 10.1016/B978-012088796-5/ 440 50016-8 441 Hund, K., LaPorta, D., Fabregas, T., Laing, T., & Drexhage, J. (2020).Min-442 erals for climate action: The mineral intensity of the clean energy transi-443 Retrieved from https://pubdocs.worldbank.org/ The World Bank. tion. 444 en/961711588875536384/Minerals-for-Climate-Action-The-Mineral 445 -Intensity-of-the-Clean-Energy-Transition.pdf 446 Ialongo, I., Fioletov, V., McLinden, C., Jafs, M., Krotkov, N., Li, C., & Tammi-447 Application of satellite-based sulfur dioxide observations nen, J. (2018). 448

- 448 nen, J. (2018). Application of satellite-based sulfur dioxide observations
 449 to support the cleantech sector: Detecting emission reduction from cop 450 per smelters. *Environmental Technology & Innovation, 12,* 172-179. doi:
 451 10.1016/j.eti.2018.08.006
- Ivanhoe Mines. (2021). Agreement signed with nearby Lualaba Copper Smelter to
 produce 99% blister copper in the Democratic Republic of Congo. Retrieved
 from http://www.sulphuric-acid.com/sulphuric-acid-on-the-web/
 acid\%20plants/Lualaba-Copper-Smelter.htm (last access: 22 February
 2023)
- Kayembe-Kitenge, T., Lubala, T. K., Obadia, P. M., Chimusa, P. K., Nawej, C. K.,
 Nkulu, C. B. L., ... Nemery, B. (2019). Holoprosencephaly: A case series from
 an area with high mining-related pollution. *BIRTH DEFECTS RESEARCH*,
 111(19), 1561-1563. doi: 10.1002/bdr2.1583
- Krueger, A. (1983). SIGHTING OF EL-CHICHON SULFUR-DIOXIDE CLOUDS
 WITH THE NIMBUS-7 TOTAL OZONE MAPPING SPECTROMETER.
- SCIENCE, 220(4604), 1377-1379. doi: 10.1126/science.220.4604.1377
 Labzovskii, L. D., Belikov, D. A., & Damiani, A. (2022). Spaceborne NO₂ observations are sensitive to coal mining and processing in the largest coal basin of
 Russia. SCIENTIFIC REPORTS, 12(1). doi: 10.1038/s41598-022-16850-8
- Leue, C., Wenig, M., Wagner, T., Klimm, O., Platt, U., & Jahne, B. (2001). Quantitative analysis of NO_x emissions from Global Ozone Monitoring Experiment
 satellite image sequences. *JOURNAL OF GEOPHYSICAL RESEARCH- ATMOSPHERES*, *106*(D6), 5493-5505. (2nd AGU Chapman Conference on
 Water Vapor in the Climate System, POTOMAC, MD, OCT 12-15, 1999) doi: 10.1029/2000JD900572
- Lusaka Times. (2022). Barrick hoping to extend Lumwana mine to 2042. Retrieved from https://www.lusakatimes.com/2022/10/31/barrick-hoping -to-extend-lumwana-mine-to-2042/ (last access: 28 February 2023)
- ⁴⁷⁶ Mwila, A. M., et al. (Eds.). (2022). *2021 Energy Sector Report* (Tech. Rep.). Energy
 ⁴⁷⁷ Regulation Board, Zambia.
- 478Mwitwa, J., German, L., Muimba-Kankolongo, A., & Puntodewo, A.(2012).479Governance and sustainability challenges in landscapes shaped by mining:

- 400 Mining-forestry linkages and impacts in the Copper Belt of Zambia and
- 481 the DR Congo. FOREST POLICY AND ECONOMICS, 25, 19-30.
- 482 10.1016/j.forpol.2012.08.001

483	Myhre, G., Shindell, D., Bron, FM., Collins, W., Fuglestvedt, J., Huang, J.,
484	Zhang, H. (2013). Anthropogenic and natural radiative forcing. In
485	T. F. Stocker et al. (Eds.), Climate Change 2013: The Physical Science Ba-
486	sis. Contribution of Working Group I to the Fifth Assessment Report of the
487	Intergovernmental Panel on Climate Change (pp. 659–740). Cambridge, UK:
488	Cambridge University Press. doi: 10.1017/CBO9781107415324.018
489	Pe [*] sa, I. (2022). Mining, Waste and Environmental Thought on the Central African
490	Copperbelt, 1950-2000. ENVIRONMENT AND HISTORY, 28(2), 259-284.
491	doi: 10.3197/096734019X15755402985703
492	Pommier, M. (2022). Estimations of NO_x emissions, NO_2 lifetime and their tem-
493	poral variation over three British urbanised regions in 2019 using TROPOMI
494	NO ₂ observations. <i>ENVIRONMENTAL SCIENCE-ATMOSPHERES</i> . doi:
495	10.1039/d2ea00086e
496	Population Stat. (2023). <i>World statistical data</i> . Retrieved from https://
497	populationstat.com/ (last access: 18 February 2023)
498	Richter, A., Begoin, M., Hilboll, A., & Burrows, J. P. (2011). An improved NO ₂
499	retrieval for the GOME-2 satellite instrument. Atmospheric Measurement
500	<i>Techniques</i> , 4(6), 1147–1159. Retrieved from https://amt.copernicus.org/
501	articles/4/1147/2011/ doi: 10.5194/amt-4-1147-2011 Richter, A., Burrows, J., Nuss, H., Granier, C., & Niemeier, U. (2005). Increase
502	
503	in tropospheric nitrogen dioxide over China observed from space. <i>NATURE</i> , 437(7055), 129-132. doi: 10.1038/nature04092
504	
505	Shedd, K. B. (2022). Cobalt. In: 2022 Mineral Commodity Summaries. (Tech. Rep.).
506	U.S. Geological Survey.
512	STL. (2023). <i>Statistiques de production</i> . Retrieved from http://www.stlgcm.com/
513	(last access: 19 February 2023) The Carter Center (2022) Mining revealty statistics for the province of H Katanga (
514	The Carter Center. (2023). <i>Mining royalty statistics for the province of H-Katanga</i> /
515 516	<i>Cumulative 2021.</i> Retrieved from https://congomines.org/reports/ (last access: 18 February 2023)
	Theys, N. (2022). S5P COBRA Sulphur Dioxide (L2 SO2CBR) Readme (Tech. Rep.
517 518	Nos. 1.0.0, 2022-09-14). Royal Belgian Institute for Space Aeronomy (BIRA-
519	IASB).
520	Theys, N., Fioletov, V., Li, C., De Smedt, I., Lerot, C., McLinden, C.,
521	Van Roozendael, M. (2021). A sulfur dioxide Covariance-Based Retrieval
522	Algorithm (COBRA): application to TROPOMI reveals new emission sources.
523	ATMOSPHERIC CHEMISTRY AND PHYSICS, 21(22), 16727-16744. doi:
524	10.5194/acp-21-16727-2021
525	United Nations. (2019). (O. F. Summerell et al., Eds.). New York, NY, USA:
526	United Nations Department of Global Communications. Retrieved from
527	https://www.unmultimedia.org/searchers/yearbook/page _un2.jsp
528	?volume=2014&page=1
529	United Nations. (2022). New York, NY, USA: United Nations Department of
530	Global Communications. Retrieved from https://www.un.org/en/yearbook/
531	prepress
532	U.S. Bureau of Mines (Ed.). (1993). 1990 Minerals Yearbook: Mineral Industries of
533	Africa (Tech. Rep.). U.S. Bureau of Mines.
534	Van Brusselen, D., Kayembe-Kitenge, T., Mbuyi-Musanzayi, S., Kasole, T. L.,
535	Ngombe, L. K., Obadia, P. M., Nemery, B. (2020). Metal mining and
536	birth defects: a case-control study in Lubumbashi, Democratic Republic of the
537	Congo. LANCET PLANETARY HEALTH, 4(4), E158-E167.

538	van Geffen, J., Boersma, K. F., Eskesl, H., Sneep, M., ter Linden, M., Zara,
539	M., & Veefkind, J. P. (2020). S5P TROPOMI NO ₂ slant column re-
540	trieval: method, stability, uncertainties and comparisons with OMI. AT-
541	MOSPHERIC MEASUREMENT TECHNIQUES, 13(3), 1315-1335. doi:
542	10.5194/amt-13-1315-2020
543	Veefkind, J. P., Aben, I., McMullan, K., Forster, H., de Vries, J., Otter, G., Lev-
544	elt, P. F. (2012). TROPOMI on the ESA Sentinel-5 Precursor: A GMES
545	mission for global observations of the atmospheric composition for climate, air
546	quality and ozone layer applications [Article]. Remote Sensing of Environment,
547	120(SI), 70-83. doi: {10.1016/j.rse.2011.09.027}
548	Wang, R. (2020). CNMC-invested and constructed mining, copper smelting projects
549	go into production. Retrieved from http://en.sasac.gov.cn/2020/01/22/c
550	_12660.htm (last access: 24 March 2023)
551	World Health Organization. (2021). WHO global air quality guidelines: particulate
552	matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon
553	monoxide [Publications]. World Health Organization.
554	Zhang, Y., Li, C., Krotkov, N. A., Joiner, J., Fioletov, V., & McLinden, C. (2017).
555	Continuation of long-term global SO ₂ pollution monitoring from OMI to
556	OMPS. ATMOSPHERIC MEASUREMENT TECHNIQUES, 10(4). doi:
557	10.5194/amt-10-1495-2017
558	Zijin. (2023). Annual reports. Retrieved from https://www.zijinmining.com/
559	investors/Annual-Reports.jsp (last access: 08 February 2023)

TROPOMI NO₂ emissions from mining and other industrial activities in the Copperbelt (DRC and Zambia)

2

4

5

6

7

8

9 10 11

17

SUPPLEMENT

S. Martínez-Alonso¹, P. Veefkind^{2,3}, B. Dix⁴, B. Gaubert¹, N. Theys⁵, C. Granier^{4,6,7}, A. Soulié⁶, S. Darras⁸, H. Eskes², W. Tang¹, H. Worden¹, J. de Gouw^{4,9}, and P. Levelt^{1,2,3}

¹ACOM-NCAR, Boulder, Colorado, USA ²KNMI, De Bilt, The Netherlands ³Department of Civil Engineering and Geosciences, Technical University of Delft, Delft, The Netherlands ⁴CIRES, University of Colorado, Boulder, Colorado, USA
 ⁵BIRA-IASB, Brussels, Belgium
 ⁶Laboratoire dAérologie, CNRS, University of Toulouse UPS, Toulouse, France
 ⁷NOAA-CSL, Boulder, Colorado, USA
 ⁸Observatoire Midi-Pyrénées, Toulouse, France

⁹Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, USA

S1 Effect on TROPOMI Emissions of ERA5 Wind Data Uncertainty 18

We have quantified the error in TROPOMI-derived NO_2 raw emissions (i.e., emis-19 sions before background removal) due to uncertainties in the ERA5 wind data. Wind 20 uncertainty was estimated from the spread of the 10-member ensemble of ERA5 data 21 assimilation. We recalculated annual TROPOMI emissions for 2020 over the Copper-22 belt study area $(-10.5^{\circ}\text{N to } -13.5^{\circ}\text{N}, 24.5^{\circ}\text{E to } 29.5^{\circ}\text{E})$ after perturbing the wind data 23 by first adding and then subtracting the wind spread. These two sets of perturbed re-24 sults were then compared to unperturbed TROPOMI emissions for the same year and 25 region. Results are shown in Fig. S1 and summarized in Table S1. Differences between 26 unperturbed and perturbed emissions are in all cases below 4 %. 27

S2 Annual TROPOMI Maps of VCD and Emissions 28

Annual maps of TROPOMI NO₂ VCD (Vertical Column Density) were produced 29 for the years between 2019 and 2022 from daily TROPOMI VCD data (Fig. S2). The 30 maps show six distinct emission point sources which coincide with copper or copper-cobalt 31 mines (points a to d) and cities (points e and f). The VCD maps show inter-annual vari-32 ability in VCD among the point sources, while background VCD values remain close-33 to-constant between 2019 and 2021. Background values appear to be higher in 2022. 34

Figure S3 shows annual maps of raw TROPOMI emissions. These maps show that 35 the magnitude of the emissions released from each point source changes from year to year. 36 Background emissions do not show strong changes. 37

S3 Are Lubumbashi and Ndola Emissions from Urban Activity Alone? 38

To test the hypothesis that background-removed TROPOMI emissions from Lubum-39 bashi and Ndola were not produced by urban activity alone, we identified two nearby 40 cities of similar population: Mbuji-Mayi and Kitwe, respectively. We calculated annual 41

Corresponding author: Sara Martínez-Alonso, sma@ucar.edu

emissions for these two cities using the methodology described in Section 3. Results are
summarized in Fig. S4 and Table S2.

Background-removed NO₂ emissions from Lubumbashi are higher than those from Mbuji-Mayi by ~ 90 %, even though the population of the former is lower by ~ 2 %. Similarly, while its population is lower by ~ 27 %, emissions from Ndola surpass those from Kitwe by 40-80 %, depending on the year, and display inter-annual variations which do not correlate with changes in population.

These findings are consistent with our hypothesis that emissions from Lubumbashi
 and Ndola are not the result of urban activity alone.

51 S4 TROPOMI Emissions versus CAMS-GLOB-ANT v5 Inventory Emis-52 sions

We compared CAMS-GLOB-ANT v5 inventory data to TROPOMI-derived NO₂ 53 emissions. Only 2019-2021 inventory data were analyzed because those from 2022 were 54 unavailable at the time of writing. The inventory includes emissions from the following 55 sectors: power generation, industrial processes (including mining), road and non-road 56 transportation, residential, fugitive fuel emissions, solvents application and production, 57 solid waste and wastewater handling, agriculture livestock, agriculture soils, and agri-58 culture waste burning. In order to compare inventory emissions to background-removed 59 TROPOMI emission, we aggregated the emissions from all sectors excluding agriculture 60 livestock, agriculture soils, and agriculture waste burning, since those would be part of 61 the background in mines and cities. We could not compare inventory to raw (i.e., non 62 background-removed) TROPOMI emissions because the inventory does not include other 63 possible background emissions (from wildfires, non-agriculture soils, and lightning). 64

⁶⁵ We aggregated monthly inventory emission values as explained above and converted ⁶⁶ them from NO_x (the original) into NO₂ ($NO_2 = NO_x / 1.32$; Beirle et al. (2019), Dix ⁶⁷ et al. (2022)). The highest inventory value among the nine data points coinciding spa-⁶⁸ tially with each point source was selected. The selected inventory values were used to ⁶⁹ calculate annual means for each point source. Results are presented in Table 1 in the main ⁷⁰ body of this paper and summarized in Fig. S5.

Emissions from the Copperbelt mines analyzed are not well represented in the in-71 ventory (Table 1 and panels a to d in Fig. S5). Inventory values are consistently lower 72 than the TROPOMI emissions (by between 61 and 96 %) and do not show the annual 73 trends identified by TROPOMI. Differences between inventory and TROPOMI emissions 74 for cities (Table 1 and panels e to h in Fig. S5) are between -62 to +1869 %. The in-75 ventory overpredicts emissions for Mbuji-Mayi and Kitwe, two cities that we infer have 76 no additional industrial emissions, and most years underpredicts emissions for Lubum-77 bashi and Ndola, where we hypothesize that highly-emittant industrial processes take 78 place. 79

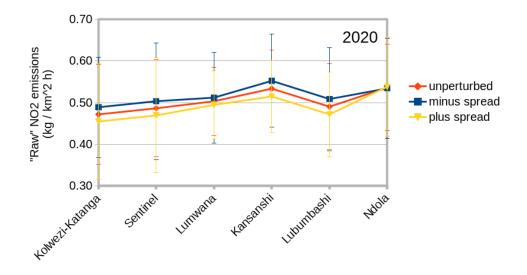


Figure S1. Effect of wind uncertainty (i.e., the spread of the ERA5 10-member wind ensemble) on raw TROPOMI-derived NO₂ emissions for the six point sources analyzed. For 2020 only. Vertical bars show standard deviation of emissions.

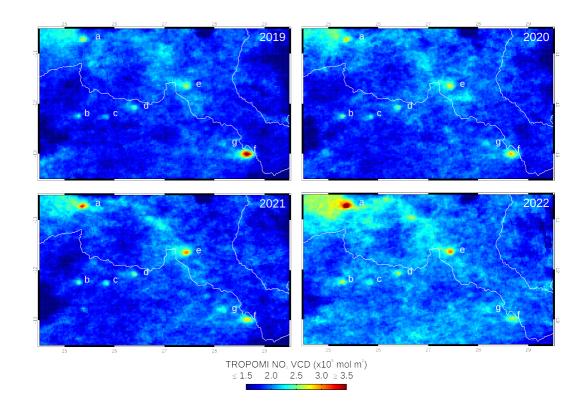
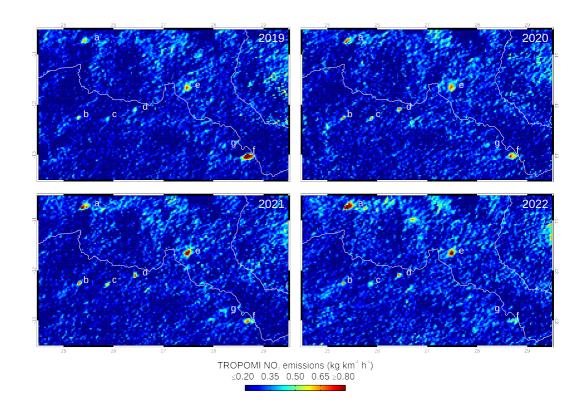



Figure S2. Annual means of TROPOMI NO_2 VCD for the Copperbelt study region. Labels a through f show the six point sources analyzed. a: Kolwezi-Katanga Mines, b: Sentinel Mine, c: Lumwana Mine, d: Kansanshi Mine, e: Lubumbashi City, f: Ndola City. Label g shows location of Kitwe City. White line indicates border between the DRC and Zambia.

Figure S3. Annual means of TROPOMI-derived NO₂ raw emissions for the Copperbelt study region. Labels a through f show the six point sources analyzed. a: Kolwezi-Katanga Mines, b: Sentinel Mine, c: Lumwana Mine, d: Kansanshi Mine, e: Lubumbashi City, f: Ndola City. Label g shows location of Kitwe City. White lines indicate border between the DRC and Zambia.

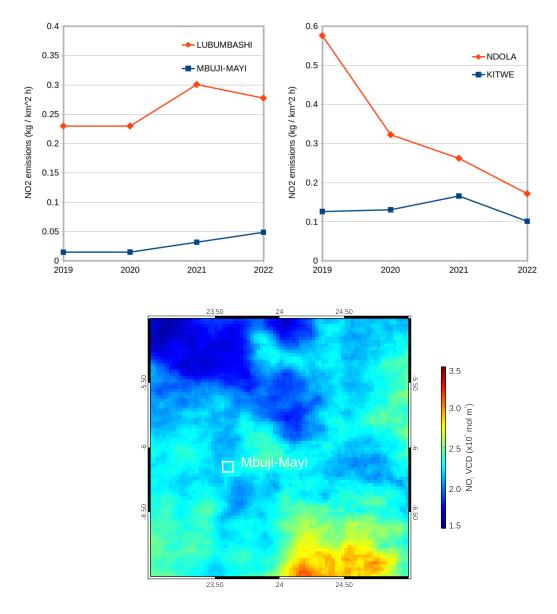


Figure S4. (Top) Time series of annual TROPOMI-derived, background-removed NO₂ emissions for two Copperbelt point sources corresponding to cities (Lubumbashi and Ndola) paired with cities of similar population (Mbuji-Mayi and Kitwe, respectively). The magnitude of the emissions from the two point sources amply surpasses that of the reference cities. The interannual trends in emissions from the two point sources cannot be explained by population changes (Table S2). (Bottom) TROPOMI NO₂ VCD shows no plume or enhancement at Mbuji-Mayi which, despite its large population, is a remote and isolated enclave.

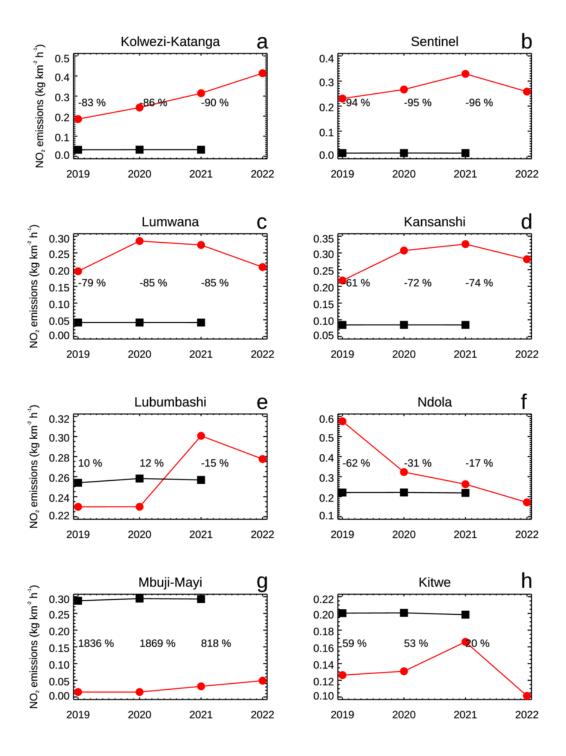


Figure S5. Annual means of NO_2 emissions from TROPOMI (red circles) and the inventory (black squares) for mines (panels a to d) and cities (panels e to h). Percent differences between the two datasets are shown in each panel. TROPOMI emissions have been background-removed. Inventory emissions include all anthropogenic sectors except for agriculture livestock, agriculture soils, and agriculture waste burning, which would be part of the background emissions. Inventory data unavailable for 2022.

Table S1. Effect of wind uncertainty (i.e., ERA5 10 member ensemble spread) on TROPOMIderived mean NO₂ raw emissions for 2020. Emission values and their standard deviation (in parenthesis) are in kg km² h⁻¹.

	Wind - spread	No perturbation	Wind $+$ spread
Kolwezi-Katanga	0.49(0.12)	0.47(0.12)	0.45(0.14)
Sentinel	0.50(0.14)	0.49(0.12)	0.47(0.14)
Lumwana	$0.51 \ (0.11)$	$0.50 \ (0.08)$	0.49(0.08)
Kansanshi	0.55(0.11)	0.53(0.09)	0.51(0.09)
Lubumbashi	0.51(0.12)	0.49(0.10)	0.47(0.10)
Ndola	0.53(0.12)	0.54(0.10)	0.54(0.12)

Table S2. TROPOMI-derived NO₂ emission data for two Copperbelt city point sources (Lubumbashi and Ndola) and two additional cities of similar population to each of them (Mbuji-Mayi and Kitwe, respectively). TROPOMI emissions (background-removed, background) as well as their standard deviation values (in parenthesis) are in kg km² h⁻¹. Population in million inhabitants.

		2019	2020	2021	2022
	TROPOMI	0.23(0.10)	0.23(0.10)	0.30(0.16)	0.28(0.17)
Lubumbashi	Background	0.25(0.08)	0.26(0.08)	0.25(0.08)	0.26(0.08)
	Population	2.377	2.478	2.584	2.695
	TROPOMI	0.01 (0.05)	0.01 (0.04)	0.03(0.04)	0.05(0.05)
Mbuji-Mayi	Background	0.28(0.06)	0.29(0.06)	0.30(0.06)	0.32(0.07)
	Population	2.413	2.525	2.643	2.765
	TROPOMI	0.58(0.30)	0.32(0.10)	0.26(0.13)	0.17(0.10)
Ndola	Background	0.20(0.09)	0.21(0.09)	0.21(0.08)	0.23(0.08)
	Population	0.531	0.542	0.556	0.571
	TROPOMI	0.13(0.07)	0.13(0.07)	0.17(0.04)	0.10(0.06)
Kitwe	Background	0.23(0.09)	0.24(0.08)	0.24(0.08)	0.25(0.08)
	Population	0.663	0.686	0.710	0.735

80 References

Beirle, S., Borger, C., Drner, S., Li, A., Hu, Z., Liu, F., ... Wagner, T. (2019). Pin pointing nitrogen oxide emissions from space. *Science Advances*, 5, eaax9800.
 doi: 10.1126/sciadv.aax9800

⁸⁴ Dix, B., Francoeur, C., Li, M., Serrano-Calvo, R., Levelt, P. F., Veefkind, J. P., ...

de Gouw, J. (2022). Quantifying nox emissions from us oil and gas production regions using tropomi no2. ACS EARTH AND SPACE CHEMISTRY, 6(2), 403-414. doi: 10.1021/acsearthspacechem.1c00387