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Abstract

Carbonate-brucite chimneys are a characteristic of low- to moderate-temperature, ultramafic-hosted alkaline hydrothermal

systems, such as the Lost City hydrothermal field located on the Atlantis Massif at 30°N near the Mid-Atlantic Ridge. These

chimneys form as a result of mixing between warm, serpentinization-derived vent fluids and cold seawater. Previous work has

documented the evolution in mineralogy and geochemistry associated with the aging of the chimneys as hydrothermal activity

wanes. However, little is known about spatial heterogeneities within and among actively venting chimneys. New mineralogical

and geochemical data (87Sr/86Sr and stable C, O, and clumped isotope) indicate that brucite and calcite precipitate at elevated

temperatures in vent fluid-dominated domains in the interior of chimneys. Exterior zones dominated by seawater are brucite-

poor and aragonite is the main carbonate mineral. Carbonates form mostly out of oxygen and clumped isotope equilibrium

due to rapid precipitation upon vent fluid-seawater mixing. In contrast, the carbonates precipitate close to carbon isotope

equilibrium, with dissolved inorganic carbon in seawater as the dominant carbon source, and have δ13C values within the range

of marine carbonates. Our data suggest that calcite is a primary mineral in the active hydrothermal chimneys and does not

exclusively form as a replacement of aragonite during later alteration with seawater. Elevated formation temperatures and

lower 87Sr/86Sr relative to aragonite in the same sample suggest that calcite may be the first carbonate mineral to precipitate.
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Key Points: 17 

• The mineralogy and geochemistry of Lost City chimneys are controlled by the extent 18 

of mixing between hydrothermal fluids and seawater 19 

• Brucite and calcite precipitate in vent fluid dominated zones while aragonite forms in 20 

the exterior of the structures in seawater-rich zones 21 

• Carbonates precipitate in isotopic disequilibrium and record the O and C stable 22 

isotope composition of seawater dissolved inorganic carbon. 23 

 24 

Abstract 25 

Carbonate-brucite chimneys are a characteristic of low- to moderate-temperature, ultramafic-26 

hosted alkaline hydrothermal systems, such as the Lost City hydrothermal field located on the 27 
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Atlantis Massif at 30°N near the Mid-Atlantic Ridge. These chimneys form as a result of 28 

mixing between warm, serpentinization-derived vent fluids and cold seawater. Previous work 29 

has documented the evolution in mineralogy and geochemistry associated with the aging of 30 

the chimneys as hydrothermal activity wanes. However, little is known about spatial 31 

heterogeneities within and among actively venting chimneys. New mineralogical and 32 

geochemical data (87Sr/86Sr and stable C, O, and clumped isotope) indicate that brucite and 33 

calcite precipitate at elevated temperatures in vent fluid-dominated domains in the interior of 34 

chimneys. Exterior zones dominated by seawater are brucite-poor and aragonite is the main 35 

carbonate mineral. Carbonates form mostly out of oxygen and clumped isotope equilibrium 36 

due to rapid precipitation upon vent fluid-seawater mixing. In contrast, the carbonates 37 

precipitate close to carbon isotope equilibrium, with dissolved inorganic carbon in seawater 38 

as the dominant carbon source, and have δ13C values within the range of marine carbonates. 39 

Our data suggest that calcite is a primary mineral in the active hydrothermal chimneys and 40 

does not exclusively form as a replacement of aragonite during later alteration with seawater. 41 

Elevated formation temperatures and lower 87Sr/86Sr relative to aragonite in the same sample 42 

suggest that calcite may be the first carbonate mineral to precipitate. 43 

 44 

Plain Language Summary 45 

At the Lost City hydrothermal field, warm, alkaline fluids are discharging in uplifted mantle 46 

rocks. When vent fluids mix with seawater at the seafloor, carbonate and brucite minerals 47 

form spectacular towers up to 60 m high. Systems like Lost City are important because the 48 

reaction between water and rocks provide carbon and energy sources for microbial life. 49 

However, we still do not fully understand what controls the mineralogy and geochemistry of 50 

the Lost City hydrothermal chimneys. In this paper, we suggest that the extent of mixing 51 

between the hydrothermal fluids and seawater influence the mineralogy and geochemistry of 52 

the chimneys. Calcite, which is previously known to form only during alteration of aragonite 53 

by seawater, can also form during seawater-hydrothermal fluid mixing. Both calcite and 54 

brucite form in the interior of the chimneys where vent fluid is more dominant. Aragonite, on 55 

the other hand, forms in the exterior of the structures from seawater-rich fluids. Lastly, 56 

because minerals precipitate rapidly during fluid mixing, the stable isotope geochemistry of 57 

the carbonates mostly record the composition and temperature of seawater and not the mixed 58 

fluid. Thus, care should be exercised in interpreting geochemical data from similar systems. 59 



manuscript submitted to Geochemistry, Geophysics, Geosystems 

 

1 Introduction 60 

Since the discovery of the Lost City hydrothermal field (LCHF; Kelley et al., 2001), 61 

carbonate-brucite deposits associated with serpentinite-hosted hydrothermal systems are 62 

increasingly being recognized in different tectonic settings and are possibly widespread 63 

components of serpentinizing environments on the seafloor. Carbonate-brucite deposits occur 64 

at or near slow- and ultraslow-spreading mid-oceanic ridges (Kelley et al., 2001; Lartaud et 65 

al., 2011; Lecoeuvre et al., 2020), in subduction forearc regions (Ohara et al., 2012; Okumura 66 

et al., 2016), in magma-poor continental margins (Klein et al., 2015; Schwarzenbach, Früh-67 

Green, et al., 2013), and they are also associated with continental ophiolitic settings (Launay 68 

& Fontes, 1985; Monnin et al., 2014; Pisapia et al., 2017). Unlike high-temperature black-69 

smoker hydrothermal systems (>350°C) that are characterized by acidic (pH 2-6), metal- and 70 

sulfide-rich vent fluids (Von Damm, 1990; German & Seyfried, 2013), fluids derived from 71 

the serpentinization of ultramafic rocks are relatively cool (~30-120°C), alkaline (pH 9-11), 72 

metal- and CO2-poor, and often rich in dissolved volatiles such as H2, CH4, and other short 73 

chain hydrocarbons (Cipolli et al., 2004; Eickenbusch et al., 2019; Kelley et al., 2005; Lang 74 

et al., 2010; Monnin et al., 2014; Schwarzenbach, Lang, et al., 2013; Seyfried et al., 2015). 75 

Instead of sulfide structures typical of black-smoker systems, delicate carbonate-brucite 76 

chimneys are formed in zones where serpentinization-derived hydrothermal fluids mix with 77 

oxygenated, Mg- and CO2-rich seawater (Früh-Green et al., 2003; Kelley et al., 2001; 78 

Ludwig et al., 2006; Okumura et al., 2016; Pisapia et al., 2017): 79 𝑀𝑔ଶା + 2𝑂𝐻ି → 𝑀𝑔(𝑂𝐻)ଶ [1

] 

 seawate

r 

vent fluid brucite  

𝐶𝑎ଶା + 𝑂𝐻ି + 𝐻𝐶𝑂ଷି → 𝐶𝑎𝐶𝑂ଷ + 𝐻ଶ𝑂. [2

] 

 vent fluid seawater Ca-carbonate  

Serpentinization reactions, which can provide both carbon and energy sources for 80 

chemoautotrophy (Amend et al., 2011; Dick & Shock, 2021; McCollom, 2007; McCollom & 81 

Seewald, 2007), are likely to have been widespread in the early Earth (Sleep, 2010) and could 82 

potentially be occurring in other planetary bodies such as Enceladus and Europa (Glein et al., 83 
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2015; McKay et al., 2008; Waite et al., 2017). Therefore, systems like the LCHF can improve 84 

our understanding of the geochemical evolution of life on Earth and elsewhere. 85 

The LCHF is the first documented and remains one of the best studied examples of 86 

such low temperature, marine hydrothermal systems to date. It is located approximately 15 87 

km west of the Mid-Atlantic Ridge at 30°N at the inside corner of the intersection with the 88 

Atlantis Transform Fault (Figure 1). The field is at the top of a terrace on the southern wall of 89 

the Atlantis Massif at about 700-800 m below sea level. At least 30 carbonate-brucite 90 

structures (Figure 2), up to 60 m high, span across the approximately 400 m wide vent field 91 

and include actively venting and inactive spires, pinnacles, parasitic flanges, and veins 92 

(Kelley et al., 2001). Ludwig et al. (2006; 2011) extensively studied the mineralogical, 93 

geochemical, and textural transformation during ageing of the chimneys from nascent to 94 

inactive and extinct structures. They documented that young, active chimneys precipitate 95 

predominantly as aragonite and brucite, characterized by low 87Sr/86Sr and low trace element 96 

contents. Progressive reaction with seawater results in the conversion of aragonite to calcite, 97 

dissolution of brucite, as well as increases in 87Sr/86Sr and trace element concentrations 98 

(Ludwig et al., 2006). In our companion paper (Aquino et al., 2023), we show that calcite is 99 

also a primary mineral in active chimneys and does not only form from aragonite alteration. 100 

Calcite is associated with brucite and occurs in the interior of actively venting spires as well 101 

as the downward-facing side of flanges. In contrast, aragonite generally comprises the 102 

exterior of the chimneys (Figure 3).  103 
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order vent - Beehive; thin solid line, 2nd order vents - Marker C and Marker 2; thin dashed 113 

lines, 3rd order vents.114 
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structure. (j) Marker 6 spire. Images courtesy of S. Lang, UofSC / NSF / ROV Jason / 2018 123 

© WHOI 124 
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The objective of this study is to understand the controls on the spatial variations 131 

observed in the mineralogy of the active chimneys, more specifically, to determine when and 132 

where calcite or aragonite precipitates. Our geochemical data show that heterogenous 133 

precipitation conditions (e.g., pH, temperature, Mg/Ca ratios) at Lost City are largely 134 

controlled by the variability in mixing proportions of vent fluid and seawater, which affects 135 

the mineralogy and geochemistry of the resulting hydrothermal chimneys. Stable carbon and 136 

oxygen isotope data suggest that during the very rapid precipitation of carbonate upon fluid 137 

mixing, the dissolved inorganic carbon (DIC) behaves as a closed system preventing 138 

equilibration between DIC, which is mostly sourced from seawater, and H2O or OH-. As a 139 

result, the carbonates record oxygen and clumped isotope compositions that do not reflect the 140 

temperature of the formation fluid. 141 

2 Sampling sites 142 

The locations of the sampled vent structures are shown in Figure 1 and listed in Table 143 

S1. Here we only briefly summarize the morphology of the structures which has been 144 

discussed in previous studies (Früh-Green et al., 2003; Kelley et al., 2001, 2005; Ludwig et 145 

al., 2006). We use location names described in earlier studies and names of field markers 146 

deployed during previous sampling campaigns. Carbonate-brucite chimneys occur in a wide 147 

variety of morphologies. The central and most prominent part of the field is the 60-m high 148 

Poseidon structure, which is a composite of actively venting towers and spires including 149 

Marker 3 and Camel humps, and parasitic vent structures forming cone- and flange-like 150 

morphologies (Figures 1, 2). The Beehive vent is a ~1-m high, cone-like parasitic structure 151 

that vents the hottest fluid (up to 96 to 116°C; Table S1) which can be considered the 152 

primary, unaltered endmember fluid at LCHF (Aquino et al., 2022; Kelley et al., 2005; 153 

Ludwig et al., 2006). The structure itself was no longer present during our sampling in 2018, 154 

but we were able to collect chimney samples from a venting orifice, presumably representing 155 

the interior of the former structure (Table S2, Figure 2b). Marker C and Marker 2 (also called 156 

IMAX flange), are parasitic flanges on the Poseidon structure which include horizontally 157 

growing structures that trap warm vent fluids (Figure 2c, d). In some cases, chimney spires 158 

grow on the top of these flanges. We also sampled Marker 8 (Figure 2e), another parasitic 159 

flange west of Poseidon, as well as several veins or fissure filling carbonate-brucite deposits 160 

located west of Marker 8 (Figure 2f).  161 
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The eastern wall is a steep escarpment where carbonate veins and morphologically 162 

diverse chimney structures (Figure 2g) grow directly along faults or subhorizontal foliations 163 

in the serpentinites (Kelley et al., 2005). It is located along a ridge extending towards the 164 

northeast from the main vent field (Figure 1). We sampled several structures, including 165 

actively venting spires such as Calypso (Figure 2h), and others that showed no evidence of 166 

venting at the time of sampling. Veins that crosscut the relatively flat-lying, carbonate-cap 167 

sedimentary sequences at the top of the southern Atlantis Massif (Kelley et al., 2005) were 168 

also sampled. Marker 6 and Sombrero are two sites located east of Poseidon and close to the 169 

eastern wall. Sombrero is an actively venting spire with fresh growth at the top of the 170 

structure (Figure 2i). The venting structure on Marker 6 on the other hand is a small, delicate, 171 

actively venting spire that grew atop rubble of inactive chimneys (Figure 2j). Despite their 172 

location away from Poseidon at the center of the field, these vents are thought to share a 173 

common flow path with Beehive (Figure 1c; Aquino et al., 2022; Seyfried et al., 2015). 174 

3 Materials and Methods 175 

3.1 Samples 176 

Grab and suction (slurp) samples of hydrothermal chimneys and fissure-filling veins 177 

were collected with the remotely operated vehicle (ROV) Jason during the Lost City 2018 178 

Return expedition (R/V Atlantis cruise AT42-01). Chimney samples were mostly obtained in 179 

sites where active venting, recognized primarily by shimmering water and increased water 180 

temperatures, was observed. During six dives (Dives 1107 to 1112), we sampled sites that 181 

had been previously investigated (Figure 1), such as Beehive and sites named after field 182 

markers laid out in 2003 (e.g., Marker 2, Marker C; Kelley et al., 2005). Most of these vents 183 

are associated with the massive Poseidon structure at the center of the field (Figure 1). Other 184 

active vents along the eastern wall were sampled for the first time in 2018. A total of 31 185 

chimneys and 6 vein samples were collected and described macroscopically. These samples 186 

were assigned a unique ID including the Jason dive number, the date and time of collection, 187 

and the sample type (e.g., J.1109.19Sep.0756 CHIM for a chimney sample collected on 188 

September 19, 2018, 07:56 GMT during Jason Dive 1109). In this paper, we use a shortened 189 

version of the sample ID which includes the dive number and time of collection (e.g., 1109-190 

0756). Each sample was subdivided onboard into aliquots and distributed among the science 191 

party members. Each of these samples were assigned a unique cruise ID (e.g., sample 1109-192 

0756 is further subdivided into samples with cruise ID LC01349, LC01353, etc.). Specimens 193 
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that exhibited heterogeneities such as distinct colors, textures, or layers were subsampled to 194 

analyze their mineralogy and geochemistry (e.g., LC01349a, LC01349b). Samples 195 

representing a general average or bulk composition of a chimney or vein were also analyzed 196 

separately. Mineral separation via hand picking was carried out on selected samples to 197 

determine texture- and/or mineralogy-specific isotopic compositions.  198 

3.2 Analytical methods 199 

A total of 76 samples from 31 chimeys and 6 carbonate veins were analysed for 200 

mineralogy, chemistry, and stable C and O isotope compositions, 33 for 87Sr/86Sr ratios, and 201 

24 for carbonate clumped isotopes (Δ47). 14 and 12 mineral separates were also measured for 202 

their 87Sr/86Sr and Δ47 values, respectively. For major and trace element analyses, powdered 203 

samples were washed with distilled water and centrifuged several times to remove salt and 204 

dirt, and subsequently freeze dried. 300 µg of sample material were then dissolved in 300 µl 205 

of 2% HNO3 and measured on an Agilent 8800 Triple Quadrupole inductively coupled 206 

plasma mass spectrometer (ICP-MS) at the Geological Institute, ETH Zürich.The 207 

reproducibility of the analyses is better than ~5% (RSD) based on repeated analyses of 208 

standards.  209 

C and O isotope analyses were conducted on 90 to 140 µg of carbonates (powdered 210 

and washed) using a GasBench II system coupled with a Delta V isotope ratio mass 211 

spectrometer (IRMS, Thermo Fischer Scientific, Bremen, Germany) at the Geological 212 

Institute, ETH Zürich following the methodology of Breitenbach & Bernasconi (2011). 213 

Results are reported in the conventional delta notation relative to the Vienna Pee-Dee 214 

Belemnite (VPDB). The average standard deviation of repeated measurements of standards 215 

during different sessions is less than 0.1‰ for both δ18O and δ13C. δ18O-based precipitation 216 

temperatures were calculated using the calibration of O’Neil et al. (1969) as recalculated by 217 

Friedman & O’Neil (1977). 218 

Carbonate clumped isotope analyses were performed with a Kiel IV carbonate device 219 

coupled to a 253Plus isotope ratio mass spectrometer (IRMS) (both Thermo Fisher Scientific) 220 

at the Geological Institute, ETH Zürich as described by Müller et al. (2017) and Meckler 221 

(2014). The carbonate samples were reacted with three drops of 104% H3PO4 at 70°C via the 222 

Kiel IV device. The CO2 gas released from this reaction was then purified in a custom-built 223 

Porapak Q resin held at -40°C to remove potential isobaric contaminations. Samples were 224 

measured with a maximum of three replicate measurements per sample and session, which 225 
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generally consists of 24 measurements of 100-120 µg sample carbonate interspersed with 5 226 

replicates each of the carbonate standards ETH-1, ETH-2 and 10 replicates of ETH-3 227 

(Bernasconi et al., 2018, 2021). The samples were analysed in LIDI mode with 400 seconds 228 

of integration of sample and reference gas. Raw data processing and background corrections 229 

were performed using the Easotope software (John & Bowen, 2016). Sample compositions 230 

are reported as the excess abundance of the CO2 isotopologue with mass 47 relative to the 231 

abundance expected from a random distribution of isotopes: 232 

𝛥ସ଻ = 𝑅ସ଻𝑅ସ଻∗ − 1, [3

] 

where R47 is the ratio of the abundance of the CO2 isotopologue with mass 47 relative to the 233 

abundance of the most common CO2 isotopologue with mass 44 and R47* is the ratio expected 234 

from a random distribution calculated from the measured δ13C and δ18O values. Sample Δ47 235 

measurements were converted to the Δ47 Intercarb-Carbon Dioxide Equilibrium Scale 236 

(ICDES) (Bernasconi et al., 2021) using the ETH-1, ETH-2 and ETH-3 carbonate standards 237 

described previously by Bernasconi et al. (2018); Meckler et al. (2014); Müller et al. (2017) 238 

with the community-derived Δ47 values reported by Bernasconi et al. (2021). Δ47 based 239 

temperatures were calculated using the calibration of Anderson et al. (2021). 240 

Radiogenic Sr isotope and Sr concentration analysis were performed at the Institute of 241 

Geochemistry and Petrology, ETH Zürich. Twenty to thirty mg of powdered carbonate (bulk 242 

samples, separated aragonite or calcite) were first reacted in 5 ml of ammonium acetate 243 

buffered to pH 5 to leach the carbonate fraction. Leached sample fractions were subsequently 244 

dried down and measured dilute for Sr concentrations by ICP-MS (Element XR, Thermo 245 

Fisher Scientific). 200 to 500 ng of Sr were separated from the carbonate matrix using Sr 246 

spec resin following the methods of Deniel & Pin (2001) and de Souza et al. (2010). 247 

Strontium isotope ratios (87Sr/86Sr) were measured at Sr concentrations of ~100 ppb on a 248 

multicollector ICP-MS (Neptune Plus, Thermo Fischer Scientific). Instrumental mass 249 

fractionation was corrected for using the exponential law and 86Sr/88Sr of 0.11940 (Nier, 250 

1938). The uncertainty of the measurements estimated from repeated measurements of Nist 251 

SRM 987 is < 24 ppm (2 SD, n = 15 per session). Sample 87Sr/86Sr values were renormalized 252 

to the accepted value of Nist SRM 987 (87Sr/86Sr = 0.710248, Thirlwall, 1991). 253 



manuscript submitted to Geochemistry, Geophysics, Geosystems 

 

4 Results 254 

The mineralogy of the samples, summarized in Figure 3, is discussed in detail in the 255 

companion paper (Aquino et al., 2023). The Lost City chimneys are composed of variable 256 

mixtures of aragonite, brucite, and calcite (Figure 3a). In general, the interior of these 257 

chimneys is composed mostly of brucite and minor calcite/aragonite (Figure 3b), while the 258 

exterior is dominated by aragonite (Figure 3c). Scanning electron microscopy of samples 259 

from the interior of the chimneys highlighted the spatial association between brucite and 260 

calcite (Aquino et al., 2023). Several samples from relatively high temperature vents (e.g., 261 

Beehive and Sombrero) as well as from eastern wall sites (Calypso and carbonate veins), 262 

contain significant amounts of calcite (>20%). Many samples exhibit flow textures preserved 263 

as brucite mineral membranes upon which aragonite or calcite may precipitate on. In the 264 

following we compare the results of our geochemical analyses with previous mineralogical 265 

studies (Tables S2 and S3).  266 

4.1 Major and trace elements 267 

The major and trace element compositions of the samples are shown in Figure 4. In 268 

general, variations in Ca, Mg, and Sr concentrations (Figure 4a, b) roughly reflect the relative 269 

proportion of carbonate and brucite in the chimneys, consistent with previous studies 270 

(Ludwig et al., 2006; Vogel, 2016). The brucite-rich chimney interior contains up to 40 wt% 271 

Mg whereas the carbonate-rich exterior and inactive chimneys have up to 45 wt% Ca (Figure 272 

4a). Brucite does not appear to incorporate significant Sr because the Sr contents of the 273 

brucite-rich (>95 wt% brucite, >30 wt% Mg) samples are low (70 to 237 ppm). In 274 

comparison, the chimney exterior has more than 4000 pm Sr, reflecting a higher proportion 275 

of aragonite (Figure 4b). Inactive structures contain even more elevated amounts of Sr (up to 276 

about 19,000 ppm). Interestingly, most carbonate veins and samples from the eastern wall 277 

and Beehive show elevated Si and Al contents (>6000 ppm and 1000 ppm, respectively) 278 

relative to samples from other sites (<5000 ppm Si, < 1000 ppm Al). These values are similar 279 

to the average marine carbonate sedimentary rock and lower than those of the average marine 280 

unlithified carbonate sediments (Figure 4c, d). Most trace element (Cr, Mn, Ni, Fe, Zn, Pb) 281 

concentrations are significantly lower than those of the average marine carbonate rock and 282 

sediments (Figure S1). On the other hand, Sr, Cd, U, P, and Si have similar or slightly higher 283 

concentrations relative to the average marine carbonate rock and carbonate sediments (Figure 284 
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S1). Ba, U, P, and S show a generally increasing trend with decreasing Mg while Zn roughly 285 

increases with Mg (Figure S1).  286 

4.2 Oxygen isotopes 287 

The Lost City chimney carbonates are isotopically variable and show within-sample 288 

heterogenity at the 100 µg sample size used for the measurements (Fig. 5). The δ18O of 289 

mixed calcite and aragonite bulk samples of active chimneys  span a wide isotopic range 290 

from -12.45 to 4.67 ‰ (111 analyses of 35 samples) whereas the veins have a narrower range 291 

from 1.99 to 5.29 ‰ (116 analyses of 10 samples) (Figure 5a; Table S2). Beehive, Sombrero, 292 

and Marker 6, which belong to the vent group with the lowest dissolved sulfide 293 

concentrations of 0.3 to 0.4 mmol/kg (Aquino et al., 2022), have the lowest and most variable 294 

bulk δ18O values (-12.45 to +3.49 ‰; 62 replicates of 10 samples). The interior of the 295 

chimneys and veins from the same site have similar or lower δ18O than the bulk, whereas 296 

samples from the exterior have similar or higher δ18O than the bulk (e.g., Figures 5, S2b, e, f). 297 

The δ18O of inactive structures are generally similar to those of the active ones (Figure S2a e, 298 

i). The δ18O of calcite crystals and aggregates separated by hand picking ranges 299 

between -12.0 and +2.5‰ (n=54) whereas aragonite δ18O values are -3.8 to + 4.0‰ (n=85) 300 

(Tables S3, S4; Figure 5b, c). Within each site, calcite δ18O values are generally lower than or 301 

similar to values of the mixed samples (Figure S2a, b, d, e). δ18O values of separated 302 

aragonites are mostly similar to or slightly higher than the bulk compositions (Figure S2a-g). 303 

Except for a few fissure-filling deposits, the oxygen isotope composition of samples collected 304 

in 2018 are similar to those reported previously (Figure 5c) (Früh-Green et al., 2003; Vogel, 305 

2016). 306 
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compositions. (c) 87Sr/86Sr values and Sr concentrations of selected Lost City carbonate 343 

samples. Also shown are the range of marine calcite and aragonite from Kinsman (1969). 344 

Note: For bulk samples, carbonate Sr contents plotted here are estimated from measured Sr 345 

concentrations and the relative abundance of carbonates vs. brucite (Table S3).  346 

4.4 Clumped isotopes 347 

The bulk Δ47 values of the chimneys vary from 0.611 to 0.702‰ which correspond to 348 

temperatures of -7 to 20°C (Table S2, Figure 6a, b). Aragonite from these samples have Δ47 349 

values that lie within a slightly lower but similar range (0.604 to 0.690‰; -3 to 22°C). 350 

Calcite, on the other hand, has generally lower Δ47 than the bulk samples and aragonite 351 

(0.471 to 0.653‰; 7 to 78°C) (Tables S2, S3, Figure 6a, b). Samples from Beehive have the 352 

lowest and most variable Δ47 while the carbonate veins have the highest and least variable Δ47 353 

values. In samples where both aragonite and calcite could be measured individually, calcite 354 

has consistently lower Δ47 than aragonite (Table S3, Figure 6a).  355 

4.5 Sr isotopes 356 

Strontium concentrations and 87Sr/86Sr ratios of bulk chimney and vein samples are 357 

listed in Table S2 and plotted in Figure 6c together with literature data (Ludwig et al., 2006; 358 

Vogel, 2016). 87Sr/86Sr isotope ratios, ranging between 0.70732 and 0.70900, broadly 359 

increase with Sr concentrations (Figure 6c). Not all samples were analyzed for Sr 360 

geochemistry, nevertheless, we observe that samples from the interior have among the lowest 361 

and generally have low 87Sr/86Sr and Sr concentrations (e.g., Sombrero, eastern wall chimney 362 

Table S2, Figure 6c). The opposite is true for the exterior of the chimneys, which have among 363 

the highest 87Sr/86Sr and Sr concentrations (e.g., Marker 2, Figure 6c). There is no clear 364 

relationship between the Sr geochemistry of chimneys and veins and their location within the 365 

LCHF, and samples taken from each of the vent groups have overlapping ranges of 87Sr/86Sr 366 

and Sr concentrations. One sample taken further away from the site of active venting at 367 

Beehive (LC02454b) has a significantly higher 87Sr/86Sr and Sr concentration (87Sr/86Sr = 368 

0.70878, 3889 ppm Sr) than the samples collected directly at the vent (87Sr/86Sr = 0.70732 to 369 

0.70785, 808 to 1246 ppm Sr). Aragonite separates generally have higher 87Sr/86Sr ratios 370 

(0.70722 to 0.70899) and Sr concentrations (2131 to 9988 ppm Sr) than calcite separates 371 

(0.70661 to 0.70789; 77 to 1552 ppm Sr) (Table S3, S4).  372 
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5 Discussion 373 

Our results show that the mineralogy and the isotope and element geochemistry of the 374 

Lost City hydrothermal chimneys vary spatially within individual chimneys and among 375 

different vent sites. In the following, we first discuss the effect of varying proportions of vent 376 

fluid to seawater on the mineralogy of the chimneys and veins. Then, we discuss how rapid, 377 

instantaneous precipitation during fluid mixing controls the carbonate carbon, oxygen, and 378 

clumped isotope compositions.  379 

5.1 Variable mixing of vent fluid and seawater 380 

In general, the interior of the chimneys from active vents is brucite(±calcite 381 

±aragonite)-rich, with our scanning electron microscopy data highlighting a spatial 382 

association between brucite and calcite (Aquino et al., 2023). The chimney interior displays 383 

lower 87Sr/86Sr values and Sr concentrations than the aragonite-rich exterior (Figures 3, 6). 384 

This gradient in Sr concentrations and isotopic composition reflect the dominant mineral 385 

phases and their affinity to incorporate Sr. The Sr partitioning coefficient of calcite is lower 386 

than that of aragonite (Kinsman, 1969); therefore, the aragonite-dominated chimney exterior 387 

is expected to incorporate more Sr (Figure 6c). Moreover, the 87Sr/86Sr values of carbonates 388 

record the 87Sr/86Sr of the fluids from which they precipitate (Coggon & Teagle, 2011). 389 

Given that both the endmember hydrothermal fluid (87Sr/86Sr = 0.70650, Aquino, Früh-390 

Green, Rickli, et al., 2022; Ludwig et al., 2006) and seawater (87Sr/86Sr = 0.70917, Palmer & 391 

Edmond, 1989) compositions are known, the strontium isotope composition of the carbonates 392 

can be used to calculate the mixing proportion of these two fluids during mineral 393 

precipitation. Since the temperatures of the vents and seawater are also known, the 394 

temperature of the mixed fluid can be estimated (see section 5.3.1). 87Sr/86Sr compositions of 395 

bulk chimneys and veins suggest mixing of 13 to 69% vent fluid with seawater (n=22). 396 

Carbonates from the chimney interior generally formed from higher proportions of vent fluid 397 

(32 to 65% vent fluid; n=4) compared to the exterior (6 to 46% vent fluid; n=4). Calcite is 398 

formed from a solution containing 48 to 96% vent fluid (n=5) while aragonite is formed with 399 

a relatively lower vent fluid contribution (7 to 73%; n=9). 400 

To investigate the effect of varying proportions of vent fluid and seawater on the 401 

chemistry (e.g., Mg/Ca), temperature, pH, and mineral saturation during mixing of seawater 402 

and LCHF vent fluids, we calculated a mixing model (Figure 7) using the Geochemist’s 403 

Workbench® (Bethke et al., 2020). In the model, 1 kg of Beehive endmember fluid with 404 
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96°C is mixed gradually with seawater at 10°C. The compositions of the vent fluid and 405 

seawater used in the calculation are listed in Table S5. The modeling results show that 406 

brucite, aragonite, and/or calcite are supersaturated during mixing of up to 3 kg of seawater 407 

with 1 kg of Beehive vent fluids (up to 75% seawater). Brucite, whose solubility is highly 408 

sensitive to pH (Pokrovsky & Schott, 2004), is supersaturated only at <30% seawater where 409 

the pH of the solution is predicted to be greater than 8. Note that pH decreases with 410 

increasing temperature because of the temperature dependence of the dissociation constant of 411 

water (White, 2009). Thus, the actual in-situ pH of Beehive vent fluids is lower (8.9) than the 412 

pH measured in the laboratory at 22°C which is the one commonly reported in the literature 413 

(10.8, Table S5; Aquino, Früh-Green, Rickli, et al., 2022; Kelley et al., 2005; Lang et al., 414 

2012). Calcium carbonates, on the other hand, are supersaturated at higher seawater mixing 415 

proportions, 0 to ~50% for calcite, and ~35 to ~75% seawater for aragonite. This calculation 416 

yields comparable results to other studies, which predicted the precipitation of brucite at 417 

lower seawater fractions and increasing calcium carbonate precipitation with continued 418 

seawater admixture (Allen & Seyfried, 2004; Palandri & Reed, 2004).  419 

5.2 Carbonate mineralogy 420 

The mixing calculation (Figure 7) is consistent with the observation that brucite is 421 

generally more abundant in the interior of the structures, while calcium carbonate (Figure 3) 422 

is dominant in the exterior. The model cannot be used to determine which carbonate 423 

polymorph precipitates, as both calcite and aragonite precipitate when the precipitation of the 424 

other mineral is suppressed in the calculations. Our petrographic observations suggest that 425 

calcite is an early precipitate. In the companion paper (Aquino et al., 2023), we provide 426 

mineralogical and textural evidence that the interior of at least some of the chimneys contain 427 

significant calcite whereas their exterior is dominated by aragonite, where a higher proportion 428 

of seawater is dominant. Calcite is in most cases intimately associated with brucite and 429 

occurs as euhedral, well-formed crystals (Aquino et al., 2023). These mineralogical 430 

observations are in agreement with the oxygen- and clumped isotope-derived precipitation 431 

temperatures for calcite, which are generally higher than those for aragonite (Tables S3, S4). 432 

Temperature and fluid Mg/Ca are the main controls on the calcium carbonate polymorph that 433 

precipitates from seawater (Berner, 1975; Davis et al., 2000; Morse et al., 1997, 2007; Sun et 434 

al., 2015). At 25°C, calcite precipitates when Mg/Ca is below 1.4±0.1 (Morse et al., 1997) 435 

while concurrent precipitation of aragonite and calcite is thermodynamically possible at 436 
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at higher Mg/Ca ratios. (b) Gradients in temperature, pH, and Mg/Ca ratios during mixing. 449 

Seawater and Beehive endmember fluid compostions are listed in Table S5.  450 

The model results are broadly supported by the lower 87Sr/86Sr values of calcite 451 

(Figure 6c), which imply calcite precipitates from solutions with more vent fluid, and higher 452 

temperatures (calculated from δ18O and Δ47) than the solutions leading to aragonite formation 453 

(Tables S3, S4). Overall, the geochemistry and of the petrography of calcite in the interior of 454 

the chimneys (Aquino et al., 2023) are consistent with calcite being the first carbonate 455 

mineral to precipitate in the actively venting structures. The occurrence of primary calcite is 456 

not uncommon in hydrothermal chimneys and veins. The interior of active hydrothermal 457 

chimneys from the Shinkai Seep Field in the southern Mariana forearc have also been 458 

reported to contain more calcite than aragonite (Okumura et al., 2016), and brucite-calcite 459 

hydrothermal veins were inferred to form in a fluid-mixing zone at a Lost City-type 460 

hydrothermal system at the Iberian Margin (Klein et al., 2015). Furthermore, chimneys from 461 

the Old City hydrothermal field (southwest Indian Ridge), like those from the LCHF, are 462 

composed of variable mixtures of brucite, calcite, and aragonite including a sample from an 463 

active structure comprising of brucite and calcite (Lecoeuvre et al., 2020).  464 

Calcite is also abundant in chimneys from the eastern wall and in veins (Figure 3). 465 

Veins have calcite contents of up to 39% while samples from Calypso and other small 466 

chimneys in the eastern wall contain up to 24% and 58% calcite, respectively (Table S2). We 467 

suggest that the relatively low vent temperatures (~30°C for Calypso, 11°C for the vein on 468 

the carbonate cap), may explain the abundance of calcite. Mixing of small amounts of cold 469 

seawater with these relatively low temperature vent fluids will bring the fluid temperatures to 470 

<30°C at which the minimum Mg/Ca ratio for aragonite precipitation is higher (Morse et al., 471 

1997).  472 

In addition to the effects of the variation in the mixing proportions of seawater and 473 

hydrothermal fluid, carbonate mineralogy and Sr geochemistry in the hydrothermal chimneys 474 

are also affected by the ageing of the structures. Observations from both active and inactive 475 

chimneys indicate that aragonite in young, active chimneys is converted to calcite by reaction 476 

with seawater over time (Aquino et al., 2023; Ludwig et al., 2006). Ludwig et al. (2006) and 477 

Vogel (2016) have shown that active chimneys have generally lower 87Sr/86Sr and Sr 478 

concentrations (average 6328 ppm) than inactive structures where Sr concentrations increase 479 

(average 9015 ppm) and  87Sr/86Sr ratios approach those of seawater. During aging we also 480 
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observe the addition of carbonate particles (foraminifera and coccoliths) filtered from 481 

seawater circulating through the porous structures.  482 

5.3 Multiple controls on δ13C, δ18O, and Δ47 values 483 

Dissolved inorganic carbon (DIC) in the carbonate system exists in three main forms: 484 

CO2(aq) (aqueous carbon dioxide), HCO3
- (bicarbonate), and CO3

2- (carbonate ion), with the 485 

relative proportion of these species changing with pH (Zeebe & Wolf-Gladrow, 2001). The 486 

oxygen isotope fractionation between each species and water is different for each DIC 487 

species and is dependent on temperature (Figure 8c) (Beck et al., 2005). Therefore, the 488 

overall oxygen isotope fractionation between the sum of the DIC species (denoted as S, 489 

Figure 8c) and water is a function of both pH and temperature (Zeebe, 2007). At Lost City, 490 

carbonates are formed during mixing of seawater and vent fluids with different endmember 491 

pH, temperature, and chemistry (Kelley et al., 2005; Lang et al., 2012; Ludwig et al., 2006; 492 

Proskurowski et al., 2006). Therefore, multiple factors, including variable mixing proportions 493 

of vent fluid and seawater, and the initial pH, temperature, and stable isotope compositions of 494 

the vent fluid is expected to affect the compositions of the carbonates. 495 

5.3.1 Estimation of the temperature of the mixed fluid 496 

The carbonates show a large range in δ18O and Δ47 values (Figures 5, 6). Precipitation 497 

temperatures calculated from clumped and oxygen isotope analyses range from -7°C to 78°C 498 

and -1°C to 76°C, respectively (Tables S2, S3). These calculated temperatures are below the 499 

measured vent fluid temperatures (Table S1) which is expected as the carbonates precipitate 500 

from a mixture of vent fluid and seawater (Ludwig et al., 2006; see section 5.1). However, a 501 

significant number of samples yield precipitation temperatures below that of ambient 502 

seawater (~10°C) and even below zero, indicating precipitation under disequilibrium 503 

conditions. We can estimate the temperature of the mixed fluid that produced each carbonate 504 

(Test) combining 87Sr/86Sr derived seawater and vent fluid fractions (see section 5.1) with the 505 

measured exit temperatures of the vent fluids and the temperature of ambient seawater 506 

(Figure 6c, Table S1). For veins and chimneys where venting was not observed, we use the 507 

venting temperature of 22°C, measured in an eastern wall vein northeast of Marker 7 (Aquino 508 

et al., 2022). Using this approach, we calculate the expected δ18O and Δ47 of a carbonate that 509 

precipitated in equilibrium with this mixed fluid (black line in Figure 8a, b for Beehive). 510 

Beehive carbonates have δ18O and Δ47 values that are much higher than expected at 511 
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against estimated temperatures (Test). Also shown are Δ47 values at equilibrium. Temperature 527 

is estimated from 87Sr/86Sr derived vent fluid fractions and measured vent temperatures (Test, 528 

see section 5.3.1). cUpper and lower limits for the calcite-water fractionation are from Coplen 529 

(2007) and O’Neil et al. (1969), respectively.  530 

The oxygen isotope fractionation between the carbonates and water (1000lnα(CaCO3-531 

H2O); calculated from the δ18O of the vent fluids and background seawater, Aquino et al., 532 

2022) and Δ47 values vs. Test for the samples with 87Sr/86Sr data are shown in Figure 8c, d. 533 

Also shown are the equilibrium oxygen isotope fractionation curves between water (i.e., 534 

mixture between seawater and vent fluids) and the different DIC species, the sum of all 535 

species (S), calcite, and  aragonite. Most samples have oxygen and clumped isotope 536 

compositions far from the expected equilibrium values of calcite at their estimated formation 537 

temperature (Figure 8c, d). For 1000lnα(CaCO3-H2O), most of the data fall between the 538 

equilibrium HCO3
- and CO3

2- compositions at 10°C, the temperature of background seawater 539 

at Lost City. Exception to this are several calcite samples from Beehive and Marker C which 540 

show lower values. A similar observation is made for Δ47, but for fewer samples. 541 

5.3.2 Disequilibrium precipitation 542 

Calcium carbonate minerals often precipitate under non-equilibrium conditions in 543 

laboratory and most natural settings and thus display δ18O values that deviate from 544 

equilibrium (Daëron et al., 2019; Tripati et al., 2015; Watkins et al., 2013). Disequilibrium, 545 

kinetic isotope effects are due to crystal growth reactions as well as the slow isotope 546 

exchange between DIC species and water relative to mineral precipitation (Daëron et al., 547 

2019; Watkins et al., 2013; Zeebe et al., 1999). Carbonate minerals at Lost City precipitate 548 

very rapidly whereas equilibrium between DIC and H2O may take hours to several days to be 549 

achieved especially at higher pH (Dietzel et al., 2009; Watkins et al., 2013; Zeebe et al., 550 

1999; Zeebe & Wolf-Gladrow, 2001).  551 

  552 
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Oxygen atoms that are incorporated into the carbonate minerals at Lost City are 553 

sourced from seawater DIC and/or vent fluid-derived OH-
(aq): 554 𝐶𝑂ଶ + 𝑂𝐻ି ⇆ 𝐻𝐶𝑂ଷି , [4] 

seawater vent fluid  𝐻𝐶𝑂ଷି + 𝑂𝐻ି ⇆ 𝐶𝑂ଷଶି + 𝐻ଶ𝑂, [5] 

seawater vent fluid  𝐶𝑎ଶା + 𝐶𝑂ଷଶି → 𝐶𝑎𝐶𝑂ଷ. [6] 

As described above, the carbonates record oxygen and clumped isotope compositions that are 555 

mostly higher than the equilibrium values for calcite (Figure 8c, d). Kinetic isotope effects 556 

during CO2 hydroxylation (equation 4) reported in terrestrial hyperalkaline systems 557 

(including natural springs and laboratory experiments) where atmospheric CO2 is the 558 

principal source of carbon produce strong depletions in 18O and 13C (e.g., Clark et al., 1992; 559 

Schwarzenbach, Lang, et al., 2013) which is the opposite of what we observe at Lost City. In 560 

contrast to terrestrial hyperalkaline springs, seawater DIC which is mostly in the form of  561 

HCO3
- is the principal source of carbon at Lost City. 562 

Quantitative precipitation of seawater DIC at 10°C and pH = 7.8 will produce a 563 

carbonate with a 1000lnα(CaCO3-H2O) value of 34.5 (Figure 8c). A number of samples, 564 

especially from relatively low temperature vents (e.g., eastern wall, Calypso, Marker 8), seem 565 

to record the δ18O of DIC of background seawater with little variability in 1000lnα(CaCO3-H2O) 566 

across many vents (Figure 8c). Addition of warm (~20 to 96°C) Ca-OH vent fluids to an 567 

isotopically equilibrated seawater at 10°C will increase the temperature and pH of the 568 

solution and will promote the forward reaction in equation 5 forming CO3
2- that can be 569 

rapidly incorporated into a growing crystal prior to isotope equilibration at the new fluid 570 

temperature. Our data show, especially for the samples from the lower temperature vents, that 571 

seawater DIC behaves as a generally closed system, and that there is no or very limited 572 

reaction between DIC and H2O or OH- preceeding carbonate precipitation. In addition, since 573 

Ca concentrations (10 to 40 mmol/kg) are significantly higher than DIC contents (0 to 2 574 

mmol/kg), quantitative precipitation of the DIC may occur. Thus, the carbonates may directly 575 

record the δ18O and Δ47 composition of the starting seawater DIC.  576 

The samples from the relatively higher temperature vents (e.g., Beehive, Sombrero), 577 

on the other hand, display lower values which can be explained by a combination of multiple 578 
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processes (Figure 8c). Carbonates forming at relatively higher temperatures generally also 579 

form at relatively higher pH (Figure 7b). At higher pH, the oxygen isotope fractionation 580 

between DIC and water decreases (Zeebe, 2007) and the equilibration time for oxygen 581 

isotopes in DIC increases (Figure S3; Watkins et al., 2013; Zeebe, 1999). However, time 582 

required for oxygen isotope equilibration also decreases with increasing temperature 583 

(Watkins et al., 2013). At 96°C and pH = 8.9 (e.g., Beehive vent fluid), oxygen isotope 584 

equilibration time is relatively short and may take about 17 seconds (Figure S3). We suggest 585 

that the carbonates from higher temperature, higher pH vents have formed at conditions 586 

closer to equilibrium, which explains the overall lower δ18O compositions, especially for 587 

calcite formed from vent fluid-rich fluids. In contrast, carbonates formed at lower 588 

temperatures, either because they are from lower temperature vents or they formed from 589 

extensive mixing with seawater, need more time to achieve equilibrium (Figure S3). 590 

In contrast to oxygen isotopes, carbon isotopes achieve equilibrium at time scales on 591 

the order of less than 30 seconds (Zeebe & Wolf-Gladrow, 2001). Serpentinite-hosted 592 

systems such as the Lost City are characterized by fluids that are DIC-poor because of 593 

precipitation of carbonate minerals along the flow paths at depth due to the increased pH 594 

and/or reduction to hydrocarbons (Cipolli et al., 2004; Delacour et al., 2008; Kelley et al., 595 

2005; Monnin et al., 2014; Proskurowski et al., 2008; Ternieten et al., 2021a, 2021b). Thus, 596 

upon mixing with seawater, C is dominantly sourced from seawater DIC. As a result, 597 

carbonates collected from actively venting structures at Lost City predominantely record δ13C 598 

within the range of marine carbonates (-2‰ to +2‰; Wefer & Berger, 1991) (Table S2; 599 

Figure 5). However, δ13C values as low as -7‰ and as high as +13‰ have been previously 600 

reported from samples collected near the eastern wall (e.g., active chimney from Wall Marker 601 

H; vein near Marker 7; (Früh-Green et al., 2003; Kelley et al., 2005; Vogel, 2016). We did 602 

not observe such low δ13C values, instead our samples from the eastern wall generally record 603 

the highest δ13C and δ18O values. Low δ13C values observed in the some carbonate samples 604 

have been explained by methane oxidation and/or incorporation of mantle-derived carbon 605 

(Früh-Green et al., 2003; Vogel, 2016).  606 

An interesting aspect of the data is the strong correlation between δ18O and Δ47 values 607 

(R2 = 0.75) which indicates a similar control on these isotope systems. As discussed above, 608 

most of the samples record the oxygen and carbon isotope composition of seawater DIC. In 609 

contrast, most of the samples have Δ47 values that are higher than seawater bicarbonate Δ47, 610 

dominating the clumped isotope signal. We do not have an explanation for these elevated Δ47. 611 
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A significantly lower background seawater temperature than what has been measured for 612 

more than a decade at Lost City (~10°C, Aquino, Früh-Green, Rickli, et al., 2022; Lang et al., 613 

2012; Ludwig et al., 2006) is unlikely. It is worth noting that the Δ47 of the individual DIC 614 

species, especially HCO3
-, are not very well constrained. In particular, experimentally derived 615 

Δ47 values for HCO3
- determined by Tripati et al. (2015) are 0.03‰ higher than values 616 

predicted from theory in the same study. Other factors may also affect the temperature 617 

dependence of the equilibrium Δ47 values of the DIC species. For example, the presence of 618 

cations may slightly increase equilibrium clumped isotope compositions (Hill et al., 2020). 619 

Uchikawa et al. (2021) also noted a discrepancy in Δ47 values of up to 0.106‰ and 0.081‰ 620 

for HCO3
- and CO3

2-, respectively, between values derived from ab initio calculations by Hill 621 

et al. (2020) which consider the presence of Na+ in the solution and experimental results of 622 

Tripati et al. (2015). Overall, despite uncertainties in the clumped isotope composition of 623 

DIC, our data indicate that a large number of our samples record a similar Δ47 composition 624 

which may imply a common DIC source pool for most samples, just like for δ18O and δ13C.  625 

5.3.3 Other effects 626 

There is no significant difference in δ13C between aragonite and calcite, although 627 

calcite tends to be slightly depleted in 13C relative to aragonite (Tables S3, S4; Figure 5b). 628 

This can be attributed to the lower isotopic fractionation between calcite and DIC compared 629 

to aragonite (Lécuyer et al., 2012; Romanek et al., 1992). Similarly, calcite records lower 630 

δ18O and Δ47 values than aragonite (Tables S3, S4, Figure S2a, b, e), reflecting higher 631 

temperatures of precipitation. Calcite and aragonite crystals taken from the same sample 632 

show very heterogeneous isotopic compositions. Individual calcite crystals from Beehive 633 

have δ18O ranging from -12.0 to -3.1‰ and δ13C between -1.1 to 2.0‰ (Figure S2a). In 634 

general, there is a positive correlation between δ18O and δ13C, especially in calcite (Figure 635 

S2a, b, d, e). We attribute this correlation to local Rayleigh fractionation during progressive 636 

carbonate precipitation. Carbonates generally have a lower δ18O and δ13C than the DIC they 637 

precipitate from, resulting in a slight enrichment in the isotopic composition of the remaining 638 

DIC. Carbonate crystals that subsequently precipitate from this residual mixed fluid are then 639 

slightly enriched in δ18O and δ13C relative to the earlier-formed carbonate. However, we 640 

observe a significantly larger variation in δ18O relative to δ13C (~9 vs. ~1‰) in calcite. Vent 641 

fluids from Beehive have a pH of 10.7 at 25°C which is equivalent to about 0.45 mmol/kg of 642 

OH-. We estimate that mixing with less than 20% of seawater is enough to consume the vent 643 

fluid derived OH- and can locally decrease the pH. The oxygen isotope fractionation between 644 
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seawater and DIC increases with decreasing pH (Tripati et al., 2015; Zeebe, 2007). Overall, 645 

Rayleigh fractionation combined with a local decrease in pH during progressive carbonate 646 

precipitation may explain the trend we observe in composition of the mineral separates 647 

collected from the same sample.  648 

5.4 Relationship between mineralogy and geochemistry of the Lost City chimneys 649 

Here, we link our geochemical results with previous mineralogical and textural 650 

investigation of the Lost City chimneys (Aquino et al., 2023; Ludwig et al., 2006). The 651 

chimneys and veins are characterized by channel wall flow structures which serve as 652 

paleofluid flow paths. These mineral channel walls have been shown to be initially composed 653 

of brucite in young and active chimneys (Figure 9a; Aquino, Früh-Green, Bernasconi, et al., 654 

2022; Ludwig et al., 2006). Brucite is stable at relatively higher pH (Pokrovsky & Schott, 655 

2004) and precipitates only from solutions dominated by vent fluids predominantly in the 656 

interior of the chimneys (Figures 3, 7). With continued addition of seawater, carbonates may 657 

precipitate on the pre-existing brucite layer. Calcite will form at lower Mg/Ca ratios, i.e. from 658 

high proportions of vent fluid, in the interior of chimney structures and/or channel walls 659 

(Figures 7, 9). The coprecipitation of brucite and calcite from vent fluid-rich solutions is 660 

consistent with the observed association of these minerals at multiple vent locations (Aquino 661 

et al., 2023). Aragonite, in contrast, precipitates from solutions with higher Mg/Ca ratios and 662 

nucleates more commonly toward the exterior of brucite mineral channel walls from a 663 

seawater-dominated fluid (Figure 9a). Our interpretation that primary calcite and aragonite 664 

precipitate from distinct solutions is supported by the textural investigation of a fresh spire 665 

from the actively venting site Calypso. In this sample, both aragonite and calcite were 666 

observed to be present, but they precipitated on opposite sides of the brucite channel walls 667 

(Figure 9a). Mineral separates were unavailable for this sample because of the small size of 668 

the crystals (<50 µm). Nevertheless, calcite in most samples has overall lower 87Sr/86Sr, δ18O, 669 

and Δ47 values, indicating formation from more pristine hydrothermal fluid at higher 670 

temperatures, than coexisting aragonite (Figures 5b, 6). Overall, these suggest that the 671 

channel walls separate the chimney structure into distinct domains which may allow solutions 672 

of different compositions to flow and distinct carbonate minerals to precipitate.  673 
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Aquino, Früh-Green, Bernasconi, et al. (2022) also reported brucite minerals that 681 

nucleated upon earlier formed aragonite or calcite crystals. As brucite is only supersaturated 682 

at vent-fluid rich solutions, this brucite may form from a new influx of vent fluid (Figure 9b), 683 

showing a dynamic fluid circulation through the chimneys. The mineral channel walls 684 

thicken as mineral precipitation continues with the mineral assemblage being controlled by 685 

the changing composition of the fluid (Figure 9c). Overtime, as hydrothermal activity wanes, 686 

brucite and calcite are no longer thermodynamically stable and only aragonite precipitates. 687 

After hydrothermal fluid circulation strops, previously formed aragonite is converted to 688 

secondary calcite (Ludwig et al., 2006). 689 

6 Conclusions 690 

Hydrothermal chimneys collected from actively venting structures at the LCHF are 691 

composed of variable mixtures of brucite, calcite, and aragonite. Brucite is the first mineral to 692 

form upon mixing of the hydrothermal fluid with seawater forming an intricate channel 693 

system bounded by mineral membrane walls. During continued formation of the chimney, 694 

carbonate minerals precipitate on the preexisting channel walls from fluids of varying 695 

composition that impart a strong inhomogeneity to the mineralogy and isotope geochemistry 696 

of the towers. The mineralogy of the carbonate depends on the Mg/Ca ratio of the mixed fluid 697 

which is controlled by variation in the amount of vent fluid and seawater in the mixed fluid, 698 

which can be estimated using 87Sr/86Sr. Vent fluid-dominated solutions have low Mg/Ca 699 

ratios and primarily precipitate brucite and calcite. In contrast, in seawater-dominated 700 

environments, chimney structures are often dominated by aragonite. Most carbonates, 701 

especially those from relatively lower temperature vents, record the δ18O of seawater 702 

bicarbonate at background seawater temperature (~10°C) and have δ13C compositions within 703 

the range of marine carbonates. The clumped isotope compositions, on the other hand, are 704 

within a narrow range above the composition of seawater bicarbonate. Overall, our stable 705 

isotope data suggest that at Lost City, dissolved inorganic carbon (DIC) is often 706 

quantitatively precipitated during fluid mixing and equilibration between DIC and H2O or 707 

OH- does not occur. As a result, the carbonates record oxygen and clumped isotope 708 

compositions that do not reflect the temperature of the formation. 709 
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