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Abstract

A technique for predicting the secular variation (SV) of the geomagnetic field based on the echo state network (ESN) model is

proposed. SV is controlled by the geodynamo process in the Earth’s outer core. However, it is difficult to model the realistic

nonlinear behaviors of the geodynamo due mainly to the very small Ekman number of the actual outer core. This study

employs the ESN to represent the temporal evolution of the geomagnetic field on the Earth’s surface. The hindcast results of

SV demonstrate that the ESN enables us to predict SV for several years with satisfactory accuracy. In particular, the nonlinear

behaviors of SV is accurately predicted for the case where accurate geomagnetic data with a 1-year time resolution are available.

It is found that an increase in the number of training data does not necessarily improve prediction accuracy. The results suggest

that the information on the latest temporal variations is important for the short-term prediciton by the ESN valid for, say 5

years.
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Abstract15

A technique for predicting the secular variation (SV) of the geomagnetic field based16

on the echo state network (ESN) model is proposed. SV is controlled by the geody-17

namo process in the Earth’s outer core. However, it is difficult to model the realistic18

nonlinear behaviors of the geodynamo due mainly to the very small Ekman number19

of the actual outer core. This study employs the ESN to represent the temporal evo-20

lution of the geomagnetic field on the Earth’s surface. The hindcast results of SV21

demonstrate that the ESN enables us to predict SV for several years with satisfac-22

tory accuracy. In particular, the nonlinear behaviors of SV is accurately predicted23

for the case where accurate geomagnetic data with a 1-year time resolution are avail-24

able. It is found that an increase in the number of training data does not necessarily25

improve prediction accuracy. The results suggest that the information on the latest26

temporal variations is important for the short-term prediciton by the ESN valid for,27

say 5 years.28

1 Introduction29

The geomagnetic field is gradually and incessantly changing. This change is re-30

ferred to as secular variation (SV). The magnitude of SV can exceed 10 nT per year,31

which is comparable to or larger than that of ionospheric and magnetospheric origin.32

Hence, it is important to predict SV on a time scale of several years. The Interna-33

tional Geomagnetic Reference Field (IGRF) model (Alken, Thébault, Beggan, Amit,34

et al., 2021) includes an SV model for prediction of next 5 years. Since SV some-35

times shows nonlinear behaviors such as geomagnetic jerks (e.g., Courtillot & Mouël,36

1984; Alexandrescu et al., 1996), its accurate prediction is difficult. Accordingly, var-37

ious approaches were employed in the 14 SV candidate models which contributed to38

the latest IGRF model (Alken, Thébault, Beggan, Aubert, et al., 2021 and references39

therein). Since the geomagnetic main field is thought to be driven by a dynamo pro-40

cess in the Earth’s outer core, some candidate models assimilated ground and satel-41

lite data into numerical geodynamo models. (e.g, Minami et al., 2020; Fournier et42

al., 2021). Data assimilation is a straightforward approach to consider the nonlin-43

ear dynamics of the outer core. However, a typical geodynamo model represents the44

state of the geodynamo with millions of variables, whereas the IGRF model repre-45

sents the geomagnetic main field on the Earth’s surface using about 200 parameters.46

The computational cost of data assimilation using a geodynamo model is thus exces-47

sive for predicting the parameters for the geomagnetic field model.48

Machine learning approaches for modelling nonlinear systems have recently49

emerged. The purpose of this study is to explore a machine-learning-based method50

for predicting SV efficiently. Here, we employ an echo state network (ESN) model51

(Jaeger & Haas, 2004) for this purpose. The ESN is a kind of reservoir computing52

framework and it is a recurrent neural network in which the connections and weights53

between hidden state variables are randomly set and fixed. The ESN is therefore54

trained by optimizing the weights of only the output layer. Compared to the lat-55

est deep neural network models, the degree of freedom of the ESN is small because56

the weights of only the output layer are made variable. However, for the problem57

considered here, we have observation data for recent for only the most recent 10058

to 1000 years, whereas the convection time scale of the outer core is tens of thou-59

sands of years. The available observations are thus insufficient for optimizing the60

large number of parameters for a deep neural network. Even with its small degree61

of freedom, the ESN shows satisfactory performance in various geophysical appli-62

cations (e.g., Kataoka & Nakano, 2021; Nakano & Kataoka, 2022; Walleshauser &63

Bollt, 2022). Therefore, we apply the ESN for modelling the temporal evolution of64

the geomagnetic field in the hope of handling the nonlinear behaviors of SV includ-65

ing the geomagnetic jerks.66
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2 Method67

Following many models of the Earth’s magnetic field, including the IGRF model,
we represent the magnetic field B with a scalar potential V as

B = −∇V. (1)

The potential V is expanded into spherical harmonics:

V (r, θ, ϕ, t) = a

N∑
n=1

n∑
m=0

(a
r

)n+1

[gmn (t) cosmϕ+ hm
n (t) sinmϕ]Pm

n (cos θ) (2)

where a denotes the Earth’s mean radius. The SV of the geomagnetic field is repre-68

sented as the first time derivatives of the Gauss coefficients gmn (t) and hm
n (t).69

We model their temporal variations by the ESN model. The state of the sys-70

tem at time tk is represented by state vector xk. The number of state variables Mx71

is set to 1000 in this study. At time step k, the i-th element of xk, xk,i, is updated72

as follows:73

xk,i = (1− ξ)xk−1,i + ξ tanh
(
wT

i xk−1 + uT
i zk + ηi

)
(3)74

where zk denotes the input vector, wi is a weight vector for connecting among the75

state variables, ui is a weight vector for connecting with the input variables, and ξ76

is the leakage rate (Jaeger et al., 2007; Lukoševičius, 2012). We fixed the value of ξ77

at 0.5 in this study. The weights wi and ui are given in advance and are fixed. We78

set 90% of the weights {wi} and {ui} (randomly chosen) to zero. The values of the79

remaining non-zero elements of ui are drawn randomly from a normal distribution80

with mean 0 and standard deviation σu. The standard deviation σu is set to adjust81

the range of the input variables z as described later. The values of the non-zero ele-82

ments of wi are also drawn from a normal distribution. The weights {wi} are then83

rescaled such that the maximum singular value of the weight matrix, which is de-84

fined as85

W = (w1 w2 · · ·wMx
) , (4)86

becomes 0.99. This rescaling is applied to satisfy the so-called “echo state property”87

which guarantees that the state of the ESN is not affected by distant past inputs.88

The output of the ESN at time tk, yk, is then obtained from xk as follows:89

yk = ΓTxk, (5)90

where Γ denotes the weight matrix. The output yk corresponds to a prediction of91

the observation at time tk.92

Denoting the observation at time tk as dk, the matrix Γ is determined by mini-93

mizing the following objective function:94

J =

K∑
k=1

∥∥dk − ΓTxk

∥∥2
2

σ2
k

+
∥Γ∥2F
λ2

, (6)95

where the second term on the right-hand side of this equation is a regularization96

term to avoid overfitting and ∥Γ∥F denotes the Frobenius norm of the matrix Γ.97

The parameters σk and λ correspond to the scales of uncertainties for the observa-98

tions and constraints, respectively. The values of the parameters used in this study99

are described in the next section. Decomposing dk and Γ as dk =
(
dk,1, . . . , dk,My

)
100

and Γ =
(
γ1, . . . ,γMy

)
, respectively, Eq. (6) can be rewritten as:101

J =

My∑
i=1

[
K∑

k=1

(
dk,i − γT

i xk

)2
σ2
k

+
∥γi∥22
λ2

]
. (7)102
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We can thus find the optimal weight matrix Γ by obtaining the optimal value for103

each γk that minimizes the following component of J :104

Ji =

K∑
k=1

(
dk,i − γT

i xk

)2
σ2
k

+
∥γi∥22
λ2

. (8)105

For training the ESN, we use the observations as the input. Given a sequence of in-106

puts, the state vector xk for each step k is deterministically obtained via Eq. (3).107

The observation dk is also given. With dk and xk, the optimal γi that minimizes Ji108

is analytically obtained by solving the following equation:109

∇γi
Ji = −

K∑
k=1

xk

(
dk,i − xT

kγi

)
σ2
k

+
γi

λ2
= 0. (9)110

We obtain the optimal γi as111

γ̂i =

(
I

λ2
+

K∑
k=1

xkx
T
k

σ2
k

)−1 K∑
k=1

dk,ixk

σ2
k

, (10)112

where I denotes the identity matrix.113

To model the temporal evolution of the geomagnetic field with the ESN, we114

consider the temporal difference of the Gauss coefficients as follows:115

∆gmn (tk) = gmn (tk)− gmn (tk−1), (11)116

∆hm
n (tk) = hm

n (tk)− hm
n (tk−1). (12)117

118

For training the ESN, ∆gmn (tk−1) and ∆hm
n (tk−1) are fed into the ESN as the in-119

put zk in Eq. (3) and ∆gmn (tk) and ∆hm
n (tk) are used as the observation dk in Eq.120

(6). We derive the time sequence of ∆gmn (tk) and ∆hm
n (tk) from the IGRF model121

and used it for training. As ∆gmn (tk) and ∆hm
n (tk) are used as the observation, the122

trained ESN yields a prediction for ∆gmn (tk) and ∆hm
n (tk) as an output yk. When123

we use the trained ESN for future prediction, the prediction of ∆gmn (tk) and ∆hm
n (tk)124

is fed back into the ESN as the input at the next time step zk+1 and we obtain a125

prediction for ∆gmn (tk+1) and ∆hm
n (tk+1).126

3 Hindcast experiments127

We conduct hindcast experiments to reproduce the temporal evolution of the128

geomagnetic main field after training the ESN using the IGRF and Definitive Geo-129

magnetic Reference Field (DGRF) models. The IGRF model as well as the DGRF130

gives the Gauss coefficients of the scalar potential V for every 5 years. Here, we131

obtain the Gauss coefficients for every year by interpolating the IGRF and DGRF132

models with a natural cubic spline. The temporal evolution of ∆gmn (tk) and ∆hm
n (tk)133

for each year is then modelled with the ESN. When ∆gmn (tk) and ∆hm
n (tk) are ob-134

tained as the temporal difference for a 1-year interval, their typical scale is of the135

order of 10 nT. To adjust the scale of uT
i zk in Eq. (3) to be less than 1, we set the136

standard deviation of ui, σu, to 0.01 when training the ESN. The ESN requires in-137

puts for a sufficient number of time steps before its output can be compared with138

the observations. Hence, we use the observations of ∆gmn (tk) and ∆hm
n (tk) from139

1901 to 1920 for spin-up and train the ESN using the observations from 1921 to140

2005. We then predict ∆gmn (tk) and ∆hm
n (tk) from 2006 to 2015 and obtain the141

hindcast of gmn (tk) and hm
n (tk) accordingly.142

To determine γi using Eq. (10), the parameters σk and λ must be given in ad-143

vance. The parameter σk corresponds to the uncertainty of the observation dk,i. Un-144

til 2000, as the Gauss coefficients of the DGRF may contain errors of ±0.5 nT, we145
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assume the temporal difference within a 5-year interval, gmn (tk) − gmn (tk−5), have an146

uncertainty with the standard deviation of 0.5 nT, which corresponds to an uncer-147

tainty with the variance of 0.25. The variance of the uncertainty of ∆gmn (tk), which148

is the temporal difference within 1 year, would thus becomes 0.25/5 = 0.05. We thus149

estimate that the standard deviation of the uncertainty of ∆gmn (tk), σk, is about150

0.22(≈
√
0.05) until 2000. Similarly, after 2000, we assume the temporal difference151

within a 5-year interval have an uncertainty with the standard deviation of 0.05 nT,152

and estimate that σk = 0.022. Since the minimization of Ji can be regarded as a153

Bayesian estimation problem of dk,i with a Gaussian prior for γi, the parameter λ154

can be determined by the maximization of the marginal likelihood, which is often155

used in Bayesian estimation (e.g., Morris, 1983; Casella, 1985). We set the value of λ156

to 0.022 based on the marginal likelihood in this study.157

The start time of the hindcast experiments in this section was set to 2005. We158

prepare input data from the 10th-generation IGRF (IGRF-10) model (Maus et al.,159

2005), which was released in 2005, in addition to the IGRF and DGRF models from160

1900 to 2000. We then obtain the Gauss coefficients for every year since 1900 by in-161

terpolating the models. We refer to the product of this interpolation as the interpo-162

lated IGRF-10. For reference, we also prepare a model obtained by interpolating the163

IGRF and DGRF models from 1900 through 2015 plus the 13-th generation IGRF164

(IGRF-13) (Alken, Thébault, Beggan, Amit, et al., 2021), which we refer to as the165

interpolated IGRF-13. We train the ESN with the interpolated IGRF-10 and predict166

the temporal evolution of ∆gmn (tk) and ∆hm
n (tk) from 2006. The results of the pre-167

diction are then compared with those for the interpolated IGRF-13. Figure 1 shows168

the results of the hindcast for g01 , g
1
1 , h

1
1, g

0
2 , g

1
2 , h

1
2, g

2
2 , h

2
2, and g33 . In each panel,169

the blue line indicates results of the hindcast conducted with the ESN, the red line170

indicates the interpolated IGRF-13, and the green line indicates the prediction of171

the original IGRF-10. Since the interpolated IGRF-13 is based on the definitive172

model until 2015, it can be regarded as the actual SV. Since the IGRF-10 was re-173

leased in 2005, the prediction by the original IGRF-10 indicated by the green line is174

regarded as a benchmark of the prediction from 2005. Note that the prediction ob-175

tained with the ESN shown by the blue line did not use the observations after 2005;176

it used only the Gauss coefficients obtained by interpolating the DGRF and IGRF-177

10 models until 2005. Furthermore, the interpolation by the cubic spline treated178

the epoch 2005 as the end point, which forced the third time derivatives to be nil179

at 2005. This is the reason why the blue line deviates from the red line even before180

2005.181

A comparison of the ESN hindcast (blue line) and the IGRF-10 model (green182

line) indicates that the ESN provides better prediction for g01 . For g
1
1 , g

0
2 , g

1
2 , h

1
2, and183

h2
2, the performance was comparable between the ESN and the IGRF-10. However,184

the prediction of the ESN was inferior to that of the IGRF-10 model for h1
1, g

2
2 , and185

g03 . In particular, the prediction obtained by the ESN largely deviates from the ac-186

tual SV for g22 and g03 which underwent a large change in trend. The IGRF-10 model187

could not predict these two coefficients, probably because of a problem in the input188

data from 2000 to 2005. The temporal gradients of g22 and g03 in the interpolated189

IGRF-13 gradually increased during the period from 2000 to 2005 and the descend-190

ing trends became less steep in 2005. In contrast, the g22 and g03 from the ESN pre-191

diction, which used the interpolated IGRF-10 model as the input, maintained the192

descending trends in 2005, which made g22 and g03 continue to decrease after 2005.193

Although the input for the ESN in Figure 1 was obtained by the interpolation194

of the models available every 5 years, geomagnetic observations with higher time res-195

olution are actually available. To consider the case where geomagnetic observations196

can be obtained with high accuracy and high time resolution, we conducted another197

hindcast with the ESN using the Gauss coefficients of the interpolated IGRF-13 un-198
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Figure 1. Prediction obtained with ESN (blue), IGRF-13 model (red), and IGRF-10 model

(green).

–6–
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til 2005. In other words, the Gauss coefficients of the IGRF-13 indicated by red lines199

in Figure 1 were used as the input until 2005 and the temporal evolution after 2005200

was predicted. Figure 2 shows the results of the hindcast for the same nine coeffi-201

cients as those in Figure 1. In each panel, the blue line indicates the prediction ob-202

tained with the ESN which used the interpolated IGRF-13 and the red and green203

lines show the same variations as those in Figure 1. The prediction obtained with204

the ESN was remarkably improved by using the accurate input with a 1-year time205

resolution. The change in trend for g03 was successfully reproduced. The ESN also206

predicted the change in trend for h1
1, g

1
2 , and g22 , although the prediction slightly de-207

viated from the actual SV. The performance of the ESN prediction was overall supe-208

rior to that of the original IGRF-10 indicated by the green line. This result suggests209

that the ESN has potential for predicting SV with satisfactory accuracy if accurate210

geomagnetic data with a 1-year time resolution are available.211

Figure 2. Prediction obtained with ESN using IGRF-13 values until 2005 as input (blue),

IGRF-13 (red), and IGRF-10 (green).

212

The results in Figure 2 were obtained by the ESN trained with the Gauss co-213

efficients for 85 years, from 1921 to 2005. The period of the training data is short214

compared with the dominant time scales of geodynamo dynamics, which vary on215

time scales of more than 10,000 years. Although data on the past geomagnetic field216

are limited, we conducted an experiment using the CALS3k model (Korte & Con-217

stable, 2011), which provides the geomagnetic field for about 3000 years from 1000218

–7–



manuscript submitted to Earth and Space Science

BCE to 1990 CE. We obtained ∆gmn (tk) and ∆hm
n (tk) from the CALS3k model and219

used them as the observations. We used the observations from 999 BCE to 980 BCE220

for spin-up and trained the ESN using the observations from 979 BCE to 1990 CE.221

Although we trained the ESN with the CALS3k model data, the prediction was per-222

formed using the interpolated IGRF-13 data until 2005 as the input. Each panel in223

Figure 3 shows the results of the hindcast conducted with the ESN trained using the224

CALS3k data with the blue line. While the prediction obtained with the ESN was225

slightly better than the IGRF-10 (green line) for g01 and g11 , the ESN did not predict226

the change in trend of g22 and g03 even though the interpolated IGRF-13 data were227

used as the input. A comparison with the ESN trained with the IGRF-13 (Figure 2),228

indicates that training with CALS3k decreased prediction accuracy.229

Figure 3. Prediction obtained with ESN trained with CALS3k model using IGRF-13 values

until 2005 as input (blue), IGRF-13 (red), and IGRF-10 (green).

230

4 Discussion231

A comparison between Figures 1 and 2 suggests the importance of high-accuracy232

data with a 1-year or higher time resolution before starting the prediction. The233

main difference between the interpolated IGRF-10 and the interpolated IGRF-13234

is the curvature from 2000 to 2005. The gradients of g22 and g03 in the interpolated235

IGRF-13 gradually increased from 2000 to 2005, whereas those in the interpolated236

IGRF-10 remained descending in 2005. It is thus essential to detect such curva-237

–8–
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tures in the variations for predicting the nonlinear behavior of SV. The experimen-238

tal results in Figure 3 suggest that prediction accuracy is not necessarily improved239

when the number of training data is increased. Since the CALS3k model does not240

include data after 1990, the poorer prediction obtained with the ESN trained with241

the CALS3k model may indicate the impact of the latest data at the starting point242

of the prediction.243

Data-driven approaches such as machine learning techniques typically require244

a large number of data to generate a prediction for all possible cases. To predict245

the evolution of a dynamical system for all possible cases, observation of the global246

structure of the trajectory in phase space is required. This is not possible for the247

geodynamo system because the time scale of the observation is much shorter than248

the convection time scale of the geodynamo. The temporal evolution of the geody-249

namo is thus difficult to predict. Nevertheless, the results of the hindcasts presented250

in this article demonstrate that a data-driven approach is applicable for predicting251

SV for several years even in the occurrence of short-term as well as nonlinear rapid252

SVs such as the geomagnetic jerks.253

As the ESN is likely to learn a local structure of the trajectory in the vicinity254

of the starting point, simpler methods such as polynomial extrapolation might work255

for predicting SV for 5 years. However, standard geomagnetic models such as the256

IGRF model contains more than 100 parameters. It would be difficult to consider a257

polynomial of 100 variables including cross terms. Hence, the ESN is considered to258

be a useful tool for the short-term prediction of the geomagnetic field controlled by259

the geodynamo system.260

5 Summary261

This study examined the applicability of the ESN, which is a kind of recurrent262

neural network with fixed connections among hidden state variables, for predicting263

SV. We trained the ESN using the DGRF model from 1900 to 2000 and IGRF-10264

and conducted a hindcast of SV from 2005. The results demonstrate that the ESN265

can predict SV with satisfactory accuracy. In particular, if accurate geomagnetic266

data with a 1-year or higher time resolution are available, even the nonlinear behav-267

ior of SV such as the geomagnetic jerks is successfully predicted for 5 years. On the268

other hand, an increase in the number of training data does not necessarily improve269

prediction accuracy. The availability of a highly accurate temporal evolution of the270

geomagnetic field, including the curvature in time domain, for the last several years271

is thus important for predicting SV with the ESN.272

Acronyms273

SV Secular variation274

ESN Echo state network275

IGRF International Geomagnetic Reference Field276

DGRF Definitive Geomagnetic Reference Field277
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Key Points:8
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Abstract15

A technique for predicting the secular variation (SV) of the geomagnetic field based16

on the echo state network (ESN) model is proposed. SV is controlled by the geody-17

namo process in the Earth’s outer core. However, it is difficult to model the realistic18

nonlinear behaviors of the geodynamo due mainly to the very small Ekman number19

of the actual outer core. This study employs the ESN to represent the temporal evo-20

lution of the geomagnetic field on the Earth’s surface. The hindcast results of SV21

demonstrate that the ESN enables us to predict SV for several years with satisfac-22

tory accuracy. In particular, the nonlinear behaviors of SV is accurately predicted23

for the case where accurate geomagnetic data with a 1-year time resolution are avail-24

able. It is found that an increase in the number of training data does not necessarily25

improve prediction accuracy. The results suggest that the information on the latest26

temporal variations is important for the short-term prediciton by the ESN valid for,27

say 5 years.28

1 Introduction29

The geomagnetic field is gradually and incessantly changing. This change is re-30

ferred to as secular variation (SV). The magnitude of SV can exceed 10 nT per year,31

which is comparable to or larger than that of ionospheric and magnetospheric origin.32

Hence, it is important to predict SV on a time scale of several years. The Interna-33

tional Geomagnetic Reference Field (IGRF) model (Alken, Thébault, Beggan, Amit,34

et al., 2021) includes an SV model for prediction of next 5 years. Since SV some-35

times shows nonlinear behaviors such as geomagnetic jerks (e.g., Courtillot & Mouël,36

1984; Alexandrescu et al., 1996), its accurate prediction is difficult. Accordingly, var-37

ious approaches were employed in the 14 SV candidate models which contributed to38

the latest IGRF model (Alken, Thébault, Beggan, Aubert, et al., 2021 and references39

therein). Since the geomagnetic main field is thought to be driven by a dynamo pro-40

cess in the Earth’s outer core, some candidate models assimilated ground and satel-41

lite data into numerical geodynamo models. (e.g, Minami et al., 2020; Fournier et42

al., 2021). Data assimilation is a straightforward approach to consider the nonlin-43

ear dynamics of the outer core. However, a typical geodynamo model represents the44

state of the geodynamo with millions of variables, whereas the IGRF model repre-45

sents the geomagnetic main field on the Earth’s surface using about 200 parameters.46

The computational cost of data assimilation using a geodynamo model is thus exces-47

sive for predicting the parameters for the geomagnetic field model.48

Machine learning approaches for modelling nonlinear systems have recently49

emerged. The purpose of this study is to explore a machine-learning-based method50

for predicting SV efficiently. Here, we employ an echo state network (ESN) model51

(Jaeger & Haas, 2004) for this purpose. The ESN is a kind of reservoir computing52

framework and it is a recurrent neural network in which the connections and weights53

between hidden state variables are randomly set and fixed. The ESN is therefore54

trained by optimizing the weights of only the output layer. Compared to the lat-55

est deep neural network models, the degree of freedom of the ESN is small because56

the weights of only the output layer are made variable. However, for the problem57

considered here, we have observation data for recent for only the most recent 10058

to 1000 years, whereas the convection time scale of the outer core is tens of thou-59

sands of years. The available observations are thus insufficient for optimizing the60

large number of parameters for a deep neural network. Even with its small degree61

of freedom, the ESN shows satisfactory performance in various geophysical appli-62

cations (e.g., Kataoka & Nakano, 2021; Nakano & Kataoka, 2022; Walleshauser &63

Bollt, 2022). Therefore, we apply the ESN for modelling the temporal evolution of64

the geomagnetic field in the hope of handling the nonlinear behaviors of SV includ-65

ing the geomagnetic jerks.66
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2 Method67

Following many models of the Earth’s magnetic field, including the IGRF model,
we represent the magnetic field B with a scalar potential V as

B = −∇V. (1)

The potential V is expanded into spherical harmonics:

V (r, θ, ϕ, t) = a

N∑
n=1

n∑
m=0

(a
r

)n+1

[gmn (t) cosmϕ+ hm
n (t) sinmϕ]Pm

n (cos θ) (2)

where a denotes the Earth’s mean radius. The SV of the geomagnetic field is repre-68

sented as the first time derivatives of the Gauss coefficients gmn (t) and hm
n (t).69

We model their temporal variations by the ESN model. The state of the sys-70

tem at time tk is represented by state vector xk. The number of state variables Mx71

is set to 1000 in this study. At time step k, the i-th element of xk, xk,i, is updated72

as follows:73

xk,i = (1− ξ)xk−1,i + ξ tanh
(
wT

i xk−1 + uT
i zk + ηi

)
(3)74

where zk denotes the input vector, wi is a weight vector for connecting among the75

state variables, ui is a weight vector for connecting with the input variables, and ξ76

is the leakage rate (Jaeger et al., 2007; Lukoševičius, 2012). We fixed the value of ξ77

at 0.5 in this study. The weights wi and ui are given in advance and are fixed. We78

set 90% of the weights {wi} and {ui} (randomly chosen) to zero. The values of the79

remaining non-zero elements of ui are drawn randomly from a normal distribution80

with mean 0 and standard deviation σu. The standard deviation σu is set to adjust81

the range of the input variables z as described later. The values of the non-zero ele-82

ments of wi are also drawn from a normal distribution. The weights {wi} are then83

rescaled such that the maximum singular value of the weight matrix, which is de-84

fined as85

W = (w1 w2 · · ·wMx
) , (4)86

becomes 0.99. This rescaling is applied to satisfy the so-called “echo state property”87

which guarantees that the state of the ESN is not affected by distant past inputs.88

The output of the ESN at time tk, yk, is then obtained from xk as follows:89

yk = ΓTxk, (5)90

where Γ denotes the weight matrix. The output yk corresponds to a prediction of91

the observation at time tk.92

Denoting the observation at time tk as dk, the matrix Γ is determined by mini-93

mizing the following objective function:94

J =

K∑
k=1

∥∥dk − ΓTxk

∥∥2
2

σ2
k

+
∥Γ∥2F
λ2

, (6)95

where the second term on the right-hand side of this equation is a regularization96

term to avoid overfitting and ∥Γ∥F denotes the Frobenius norm of the matrix Γ.97

The parameters σk and λ correspond to the scales of uncertainties for the observa-98

tions and constraints, respectively. The values of the parameters used in this study99

are described in the next section. Decomposing dk and Γ as dk =
(
dk,1, . . . , dk,My

)
100

and Γ =
(
γ1, . . . ,γMy

)
, respectively, Eq. (6) can be rewritten as:101

J =

My∑
i=1

[
K∑

k=1

(
dk,i − γT

i xk

)2
σ2
k

+
∥γi∥22
λ2

]
. (7)102
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We can thus find the optimal weight matrix Γ by obtaining the optimal value for103

each γk that minimizes the following component of J :104

Ji =

K∑
k=1

(
dk,i − γT

i xk

)2
σ2
k

+
∥γi∥22
λ2

. (8)105

For training the ESN, we use the observations as the input. Given a sequence of in-106

puts, the state vector xk for each step k is deterministically obtained via Eq. (3).107

The observation dk is also given. With dk and xk, the optimal γi that minimizes Ji108

is analytically obtained by solving the following equation:109

∇γi
Ji = −

K∑
k=1

xk

(
dk,i − xT

kγi

)
σ2
k

+
γi

λ2
= 0. (9)110

We obtain the optimal γi as111

γ̂i =

(
I

λ2
+

K∑
k=1

xkx
T
k

σ2
k

)−1 K∑
k=1

dk,ixk

σ2
k

, (10)112

where I denotes the identity matrix.113

To model the temporal evolution of the geomagnetic field with the ESN, we114

consider the temporal difference of the Gauss coefficients as follows:115

∆gmn (tk) = gmn (tk)− gmn (tk−1), (11)116

∆hm
n (tk) = hm

n (tk)− hm
n (tk−1). (12)117

118

For training the ESN, ∆gmn (tk−1) and ∆hm
n (tk−1) are fed into the ESN as the in-119

put zk in Eq. (3) and ∆gmn (tk) and ∆hm
n (tk) are used as the observation dk in Eq.120

(6). We derive the time sequence of ∆gmn (tk) and ∆hm
n (tk) from the IGRF model121

and used it for training. As ∆gmn (tk) and ∆hm
n (tk) are used as the observation, the122

trained ESN yields a prediction for ∆gmn (tk) and ∆hm
n (tk) as an output yk. When123

we use the trained ESN for future prediction, the prediction of ∆gmn (tk) and ∆hm
n (tk)124

is fed back into the ESN as the input at the next time step zk+1 and we obtain a125

prediction for ∆gmn (tk+1) and ∆hm
n (tk+1).126

3 Hindcast experiments127

We conduct hindcast experiments to reproduce the temporal evolution of the128

geomagnetic main field after training the ESN using the IGRF and Definitive Geo-129

magnetic Reference Field (DGRF) models. The IGRF model as well as the DGRF130

gives the Gauss coefficients of the scalar potential V for every 5 years. Here, we131

obtain the Gauss coefficients for every year by interpolating the IGRF and DGRF132

models with a natural cubic spline. The temporal evolution of ∆gmn (tk) and ∆hm
n (tk)133

for each year is then modelled with the ESN. When ∆gmn (tk) and ∆hm
n (tk) are ob-134

tained as the temporal difference for a 1-year interval, their typical scale is of the135

order of 10 nT. To adjust the scale of uT
i zk in Eq. (3) to be less than 1, we set the136

standard deviation of ui, σu, to 0.01 when training the ESN. The ESN requires in-137

puts for a sufficient number of time steps before its output can be compared with138

the observations. Hence, we use the observations of ∆gmn (tk) and ∆hm
n (tk) from139

1901 to 1920 for spin-up and train the ESN using the observations from 1921 to140

2005. We then predict ∆gmn (tk) and ∆hm
n (tk) from 2006 to 2015 and obtain the141

hindcast of gmn (tk) and hm
n (tk) accordingly.142

To determine γi using Eq. (10), the parameters σk and λ must be given in ad-143

vance. The parameter σk corresponds to the uncertainty of the observation dk,i. Un-144

til 2000, as the Gauss coefficients of the DGRF may contain errors of ±0.5 nT, we145

–4–



manuscript submitted to Earth and Space Science

assume the temporal difference within a 5-year interval, gmn (tk) − gmn (tk−5), have an146

uncertainty with the standard deviation of 0.5 nT, which corresponds to an uncer-147

tainty with the variance of 0.25. The variance of the uncertainty of ∆gmn (tk), which148

is the temporal difference within 1 year, would thus becomes 0.25/5 = 0.05. We thus149

estimate that the standard deviation of the uncertainty of ∆gmn (tk), σk, is about150

0.22(≈
√
0.05) until 2000. Similarly, after 2000, we assume the temporal difference151

within a 5-year interval have an uncertainty with the standard deviation of 0.05 nT,152

and estimate that σk = 0.022. Since the minimization of Ji can be regarded as a153

Bayesian estimation problem of dk,i with a Gaussian prior for γi, the parameter λ154

can be determined by the maximization of the marginal likelihood, which is often155

used in Bayesian estimation (e.g., Morris, 1983; Casella, 1985). We set the value of λ156

to 0.022 based on the marginal likelihood in this study.157

The start time of the hindcast experiments in this section was set to 2005. We158

prepare input data from the 10th-generation IGRF (IGRF-10) model (Maus et al.,159

2005), which was released in 2005, in addition to the IGRF and DGRF models from160

1900 to 2000. We then obtain the Gauss coefficients for every year since 1900 by in-161

terpolating the models. We refer to the product of this interpolation as the interpo-162

lated IGRF-10. For reference, we also prepare a model obtained by interpolating the163

IGRF and DGRF models from 1900 through 2015 plus the 13-th generation IGRF164

(IGRF-13) (Alken, Thébault, Beggan, Amit, et al., 2021), which we refer to as the165

interpolated IGRF-13. We train the ESN with the interpolated IGRF-10 and predict166

the temporal evolution of ∆gmn (tk) and ∆hm
n (tk) from 2006. The results of the pre-167

diction are then compared with those for the interpolated IGRF-13. Figure 1 shows168

the results of the hindcast for g01 , g
1
1 , h

1
1, g

0
2 , g

1
2 , h

1
2, g

2
2 , h

2
2, and g33 . In each panel,169

the blue line indicates results of the hindcast conducted with the ESN, the red line170

indicates the interpolated IGRF-13, and the green line indicates the prediction of171

the original IGRF-10. Since the interpolated IGRF-13 is based on the definitive172

model until 2015, it can be regarded as the actual SV. Since the IGRF-10 was re-173

leased in 2005, the prediction by the original IGRF-10 indicated by the green line is174

regarded as a benchmark of the prediction from 2005. Note that the prediction ob-175

tained with the ESN shown by the blue line did not use the observations after 2005;176

it used only the Gauss coefficients obtained by interpolating the DGRF and IGRF-177

10 models until 2005. Furthermore, the interpolation by the cubic spline treated178

the epoch 2005 as the end point, which forced the third time derivatives to be nil179

at 2005. This is the reason why the blue line deviates from the red line even before180

2005.181

A comparison of the ESN hindcast (blue line) and the IGRF-10 model (green182

line) indicates that the ESN provides better prediction for g01 . For g
1
1 , g

0
2 , g

1
2 , h

1
2, and183

h2
2, the performance was comparable between the ESN and the IGRF-10. However,184

the prediction of the ESN was inferior to that of the IGRF-10 model for h1
1, g

2
2 , and185

g03 . In particular, the prediction obtained by the ESN largely deviates from the ac-186

tual SV for g22 and g03 which underwent a large change in trend. The IGRF-10 model187

could not predict these two coefficients, probably because of a problem in the input188

data from 2000 to 2005. The temporal gradients of g22 and g03 in the interpolated189

IGRF-13 gradually increased during the period from 2000 to 2005 and the descend-190

ing trends became less steep in 2005. In contrast, the g22 and g03 from the ESN pre-191

diction, which used the interpolated IGRF-10 model as the input, maintained the192

descending trends in 2005, which made g22 and g03 continue to decrease after 2005.193

Although the input for the ESN in Figure 1 was obtained by the interpolation194

of the models available every 5 years, geomagnetic observations with higher time res-195

olution are actually available. To consider the case where geomagnetic observations196

can be obtained with high accuracy and high time resolution, we conducted another197

hindcast with the ESN using the Gauss coefficients of the interpolated IGRF-13 un-198

–5–



manuscript submitted to Earth and Space Science

Figure 1. Prediction obtained with ESN (blue), IGRF-13 model (red), and IGRF-10 model

(green).
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til 2005. In other words, the Gauss coefficients of the IGRF-13 indicated by red lines199

in Figure 1 were used as the input until 2005 and the temporal evolution after 2005200

was predicted. Figure 2 shows the results of the hindcast for the same nine coeffi-201

cients as those in Figure 1. In each panel, the blue line indicates the prediction ob-202

tained with the ESN which used the interpolated IGRF-13 and the red and green203

lines show the same variations as those in Figure 1. The prediction obtained with204

the ESN was remarkably improved by using the accurate input with a 1-year time205

resolution. The change in trend for g03 was successfully reproduced. The ESN also206

predicted the change in trend for h1
1, g

1
2 , and g22 , although the prediction slightly de-207

viated from the actual SV. The performance of the ESN prediction was overall supe-208

rior to that of the original IGRF-10 indicated by the green line. This result suggests209

that the ESN has potential for predicting SV with satisfactory accuracy if accurate210

geomagnetic data with a 1-year time resolution are available.211

Figure 2. Prediction obtained with ESN using IGRF-13 values until 2005 as input (blue),

IGRF-13 (red), and IGRF-10 (green).

212

The results in Figure 2 were obtained by the ESN trained with the Gauss co-213

efficients for 85 years, from 1921 to 2005. The period of the training data is short214

compared with the dominant time scales of geodynamo dynamics, which vary on215

time scales of more than 10,000 years. Although data on the past geomagnetic field216

are limited, we conducted an experiment using the CALS3k model (Korte & Con-217

stable, 2011), which provides the geomagnetic field for about 3000 years from 1000218
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BCE to 1990 CE. We obtained ∆gmn (tk) and ∆hm
n (tk) from the CALS3k model and219

used them as the observations. We used the observations from 999 BCE to 980 BCE220

for spin-up and trained the ESN using the observations from 979 BCE to 1990 CE.221

Although we trained the ESN with the CALS3k model data, the prediction was per-222

formed using the interpolated IGRF-13 data until 2005 as the input. Each panel in223

Figure 3 shows the results of the hindcast conducted with the ESN trained using the224

CALS3k data with the blue line. While the prediction obtained with the ESN was225

slightly better than the IGRF-10 (green line) for g01 and g11 , the ESN did not predict226

the change in trend of g22 and g03 even though the interpolated IGRF-13 data were227

used as the input. A comparison with the ESN trained with the IGRF-13 (Figure 2),228

indicates that training with CALS3k decreased prediction accuracy.229

Figure 3. Prediction obtained with ESN trained with CALS3k model using IGRF-13 values

until 2005 as input (blue), IGRF-13 (red), and IGRF-10 (green).

230

4 Discussion231

A comparison between Figures 1 and 2 suggests the importance of high-accuracy232

data with a 1-year or higher time resolution before starting the prediction. The233

main difference between the interpolated IGRF-10 and the interpolated IGRF-13234

is the curvature from 2000 to 2005. The gradients of g22 and g03 in the interpolated235

IGRF-13 gradually increased from 2000 to 2005, whereas those in the interpolated236

IGRF-10 remained descending in 2005. It is thus essential to detect such curva-237
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tures in the variations for predicting the nonlinear behavior of SV. The experimen-238

tal results in Figure 3 suggest that prediction accuracy is not necessarily improved239

when the number of training data is increased. Since the CALS3k model does not240

include data after 1990, the poorer prediction obtained with the ESN trained with241

the CALS3k model may indicate the impact of the latest data at the starting point242

of the prediction.243

Data-driven approaches such as machine learning techniques typically require244

a large number of data to generate a prediction for all possible cases. To predict245

the evolution of a dynamical system for all possible cases, observation of the global246

structure of the trajectory in phase space is required. This is not possible for the247

geodynamo system because the time scale of the observation is much shorter than248

the convection time scale of the geodynamo. The temporal evolution of the geody-249

namo is thus difficult to predict. Nevertheless, the results of the hindcasts presented250

in this article demonstrate that a data-driven approach is applicable for predicting251

SV for several years even in the occurrence of short-term as well as nonlinear rapid252

SVs such as the geomagnetic jerks.253

As the ESN is likely to learn a local structure of the trajectory in the vicinity254

of the starting point, simpler methods such as polynomial extrapolation might work255

for predicting SV for 5 years. However, standard geomagnetic models such as the256

IGRF model contains more than 100 parameters. It would be difficult to consider a257

polynomial of 100 variables including cross terms. Hence, the ESN is considered to258

be a useful tool for the short-term prediction of the geomagnetic field controlled by259

the geodynamo system.260

5 Summary261

This study examined the applicability of the ESN, which is a kind of recurrent262

neural network with fixed connections among hidden state variables, for predicting263

SV. We trained the ESN using the DGRF model from 1900 to 2000 and IGRF-10264

and conducted a hindcast of SV from 2005. The results demonstrate that the ESN265

can predict SV with satisfactory accuracy. In particular, if accurate geomagnetic266

data with a 1-year or higher time resolution are available, even the nonlinear behav-267

ior of SV such as the geomagnetic jerks is successfully predicted for 5 years. On the268

other hand, an increase in the number of training data does not necessarily improve269

prediction accuracy. The availability of a highly accurate temporal evolution of the270

geomagnetic field, including the curvature in time domain, for the last several years271

is thus important for predicting SV with the ESN.272

Acronyms273

SV Secular variation274

ESN Echo state network275

IGRF International Geomagnetic Reference Field276

DGRF Definitive Geomagnetic Reference Field277
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Courtillot, V., & Mouël, J.-L. L. (1984). Geomagnetic secular variation impulses:297

A review of observational evidence and geophysical consequences. Nature, 311 ,298

709–716. doi: 10.1186/s40623-020-01313-z299

Fournier, A., Aubert, J., Lesur, V., & G., R. (2021). A secular variation candidate300

model for IGRF-13 based on Swarm data and ensemble inverse geodynamo mod-301

elling. Earth Planets Space, 73 , 43. doi: 10.1186/s40623-020-01309-9302

Jaeger, H., & Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic systems303

and saving energy in wireless communication. Science, 304 , 78–80. doi: 10.1126/304

science.1091277305
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