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Abstract

Physics-informed machine learning (ML) applied to geophysical simulation is developing explosively. Recently, graph neural net

and vision transformer architectures have shown 1-7 day global weather forecast skill superior to any conventional model with

integration times over 1000 times faster, but longer simulations rapidly degrade. ML that achieves high skill in both weather and

climate applications is a tougher goal. This Commentary was inspired by \citeA{ArcomanoEtAl2023}, who show impressive

progress toward that goal using hybrid ML, combining reservoir computing to a coarse-grid climate model and coupling to a

separate data-driven reservoir computing model that interactively predicts sea-surface temperature. This opens new horizons;

where will the next ML breakthrough come from, and is conventional climate modeling about to be disrupted?
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Key Points:5

• Arcomano et al. (2023) combined reservoir computing (RC) with a coarse-grid cli-6

mate model for data-driven ocean-coupled simulations7

• By building long-term memory into predictions, RC nearly removes climate bias8

• Challenges remain with interpretability and scalability to fine-scale prediction that9
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Abstract11

Physics-informed machine learning (ML) applied to geophysical simulation is develop-12

ing explosively. Recently, graph neural net and vision transformer architectures have shown13

1-7 day global weather forecast skill superior to any conventional model with integra-14

tion times over 1000 times faster, but longer simulations rapidly degrade. ML that achieves15

high skill in both weather and climate applications is a tougher goal. This Commentary16

was inspired by Arcomano et al. (2023), who show impressive progress toward that goal17

using hybrid ML, combining reservoir computing to a coarse-grid climate model and cou-18

pling to a separate data-driven reservoir computing model that interactively predicts sea-19

surface temperature. This opens new horizons; where will the next ML breakthrough come20

from, and is conventional climate modeling about to be disrupted?21

Plain Language Summary22

Many new research groups are making rapid progress in applying diverse machine23

learning methodologies to weather forecasting and climate modeling. These new approaches24

could make simulations that are 1000x faster than conventional approaches for the same25

fidelity. One successful approach for weather forecasting has been replacing an entire con-26

ventional global atmospheric model with a machine learning emulator, but so far the cli-27

mates generated by long simulations using this approach have had substantial biases in28

average temperature or precipitation. An alternate new approach, hybrid reservoir com-29

puting, combines the conventional model with a form of machine learning that remem-30

bers the recent atmospheric evolution. It produces much better climate simulations, in-31

cluding realistic El-Nino/La Nina variability, but on a much coarser spatial grid. This32

opens new horizons; where will the next ML breakthrough come from, and is conven-33

tional climate modeling about to be disrupted?34

1 Introduction35

Over the past five years, weather and climate modeling have become hot topics in36

physics-informed machine learning (ML), as the domain science and machine learning37

communities start to cross-fertilize. One central vision is global weather and climate em-38

ulators, which use machine learning to replace or supplement conventional global atmo-39

spheric prediction models.40

The climate community has long used global weather simulators based on numer-41

ical discretizations to appropriate governing equations as part of climate models, as dis-42

cussed in textbooks such as Drake (2014). Climate, after all, is comprised of the slowly-43

varying statistics of weather, including its means and extremes (AMS, 2023). The phys-44

ical principles governing weather forecasting (including climate-relevant aspects such as45

clouds, aerosols and chemistry, surface exchange, and interactions with land and sea-ice)46

are mostly well understood and observationally tested by the instrumental record. ‘Seam-47

less’ modeling of weather and climate (Rodwell & Palmer, 2007), i.e. insisting that a cli-48

mate model accurately reproduce weather-induced variability and covariability of its pre-49

dictands, also guards against overfitting of adjustable parameters to limited time-mean50

observational constraints. The same principles apply to ML emulators, whether trained51

on observational reanalyses in the present climate, or on fine-grid reference atmosphere52

simulations across a range of climates.53

Some salient characteristics of a global atmosphere emulator for climate modeling54

are as follows:55

• Stable56

• Accurate (weather forecasts and climate means/extremes)57

• Localizable (can make accurate predictions with fine spatial resolution)58
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• Interpretable (e.g. satisfies conservation principles and physically realistic bounds)59

• Extensible (e.g. aerosols, chemistry)60

• Naturally couplable (to ocean, land, ice)61

• Time-efficient (vs. a conventional climate model of comparable skill)62

These characteristics can be recalled by spelling out their first letters to get SALIENT.63

Arcomano et al. (2023), hereafter A23, show impressive progress toward that goal64

using hybrid ML, combining reservoir computing with a coarse-grid climate model. Reser-65

voir computing (Wikipedia, 2023) is an older type of long-short time memory ML that66

involves only linear calculations. Nevertheless, their global simulations are fast, stable,67

have reasonable weather skill, have remarkably little climate bias, and importantly can68

be coupled to a separate data-driven reservoir model with a longer memory time scale69

that interactively predicts sea-surface temperature (SST). As well as achieving low cli-70

mate bias for both the atmosphere and coupled SST, the coupled ML system sponta-71

neously simulates fairly realistic El Nino Southern Oscillation cycles, a first for this type72

of emulation.73

This commentary discusses how well A23 have already achieved ‘saliency’, followed74

by some remaining challenges for their approach. We compare their work with some other75

promising emulation approaches, and consider some general new research horizons for76

ML atmospheric emulators. Given growing research interest in this area and the prospect77

for further rapid progress, we suggest that the climate projection community may be closer78

than widely appreciated to fully embracing ML into mainstream development.79

2 A23’s achievements and upcoming challenges80

Let’s consider how well A23’s hybrid RC methodology meets the SALIENT char-81

acteristics of a good climate emulator. It satisfies S, A and T - it is stable, time-efficient,82

and accurate enough for climate modeling. It is well on the way to satisfing N, through83

its successful coupling with a RC sea-surface temperature model. It has not yet been cou-84

pled to externally developed model components such as conventional or ML-based ocean,85

land or sea-ice models, but this (as well as extensibility (E) to include other atmospheric86

components like chemistry and aerosols) could naturally be done mostly through its con-87

ventional AGCM component, SPEEDY (Molteni, 2003).88

Its current incarnation is somewhat interpretable (I). The RC updates are applied89

in localized 7.5◦×10◦ patches of grid columns, so tendency budgets of prognostic vari-90

ables could be computed over such patches. A23’s addition of precipitation as a novel91

diagnostic RC output is also a plus. However, the current version of the RC model does92

not automatically satisfy heat, moisture or momentum conservation equations in which93

a tendency can be ascribed to a flux convergence, nor does it currently correct SPEEDY’s94

predictions of radiative fluxes at the surface or top of the atmosphere.95

Perhaps the biggest shortcoming of the current hybrid RC is in localization (L).96

Unlike state-of-the-art full model emulators with 30 km horizontal grid resolutions, its97

coarse (3.75◦×5◦) horizontal grid doesn’t resolve topographic details or intense storm98

systems such as tropical cyclones. Its 8 vertical grid levels also is a factor of 10 smaller99

than many current weather and climate models. The RC implementation is memory-intensive100

and might be difficult to scale to a grid 10-fold smaller in each direction. An ML-based101

super-resolution generator for each patch or grid column based on adversarial (Leinonen102

et al., 2021) or diffusion (Wang et al., 2020) modeling might help with this issue.103
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3 Hybrid RC vs. full-model emulation104

What type of emulator is most promising for climate modeling? Numerous research105

groups have begun working on full model emulation (FME), in which an ML architec-106

ture such as a U-Net (Weyn et al., 2020, 2021), a vision transformer (Pathak et al., 2022),107

or a graph neural net (Keisler, 2022), is trained to forecast global weather. Recent FME108

papers have demonstrated forecast skill out to seven days that is superior to the world’s109

best operational forecast model, made a thousand times faster using compact, energy-110

efficient purpose-built hardware rather than expensive supercomputers (Bi et al., 2022;111

Lam et al., 2022). A pre-trained FME has been proposed as a ‘foundation’ model for weather112

and climate simulation (Nguyen et al., 2023). Further rapid progress seems inevitable.113

However, these FME approaches are generally not yet accurate or even stable over the114

longer forecast periods needed for climate. In addition, fundamental unaddressed prob-115

lems remain with FME, including coupling to other model components, extensibility to116

advection of trace species and hydrometeors, or even the physical interpretability of the117

resulting simulations.118

In contrast, A23 and underlying previous work (Wikner et al., 2020; Arcomano et119

al., 2022) adopted a hybrid approach, in which ML elements are combined with a coarse-120

grid conventional climate model to improve its skill. The speed of the resulting simu-121

lations can be no faster than that of the coarse climate model, but even a twofold coarser122

horizontal and vertical grid spacing halves the number of time steps and reduces the over-123

all computational effort ten-fold. A23 use the intermediate-complexity SPEEDY AGCM,124

which has very coarse 3.75◦×5◦ grid resolution, 8 vertical levels, and simplified phys-125

ical parameterizations. SPEEDY simulates a day per 2 seconds of execution time (Arcomano126

et al., 2022), comparable to current FME approaches (Pathak et al., 2022; Lam et al.,127

2022). The ML element (reservoir computing) with which SPEEDY is combined uses128

a much longer time step than SPEEDY, so it doesn’t significantly slow down simulations,129

while it is surprisingly effective in counteracting SPEEDY’s considerable systematic weather130

and climate biases. Thus A23 is computationally competitive with FME, though using131

a larger and less energy-efficient cluster of 1152 processors. An important trade-off is the132

lack of grid resolution, a factor of 15-20 smaller than the 0.25◦×0.25◦ grid and up to133

30 vertical grid levels used by recent FME approaches trained on the ERA5 reanalysis.134

A broader challenge with most hybrid ML is that the ML must be trained ‘offline’ with135

other model components given, but these other model components can react to the ML136

’online’ during ML-augmented simulations. Thus ’offline’ optimization of ML weights137

doesn’t guarantee improved online simulation accuracy or even stability (Brenowitz &138

Bretherton, 2019). Because RC weight optimization is linear, it partly sidesteps this prob-139

lem and currently achieves much better climate stability and skill than FME. Another140

hybrid approach trained based on nudging coarse-grid simulations to reference reanal-141

yses or fine-grid simulations also increases forecast skill and reduces climate biases of a142

coarse-grid target model (Watt-Meyer et al., 2021; Bretherton et al., 2022; Clark et al.,143

2022), but to a lesser extent than RC.144

Neither SPEEDY or a pure reservoir computing approach based on the SPEEDY145

grid are nearly as skillful in making weather forecasts or simulating the observed mean146

state of the global atmosphere (Arcomano et al., 2020). Like FME, the hybrid RC method147

works by incorporating multiple spatial scales into the learning process. SPEEDY can148

be viewed as an efficient physics-based way to handle long-range spatial interactions af-149

fecting the atmospheric state in each patch, while the reservoir computing corrects lo-150

cal systematic errors associated with parameterizations and numerical discretization er-151

ror. More so than FME approaches to date, the memory built into RC helps ensure that152

the ML also removes slowly-developing mean-state biases.153
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4 New horizons and prospects154

Whether a hybrid method like A23’s RC or a full model emulator proves most suit-155

able for seamless ML weather and climate emulation, several issues will keep the ML de-156

velopment community busy, including:157

• Reliable reference training data over a range of climates158

• Building in conservation principles159

• Out-of-sample extrapolation160

• Strategies for natural model component coupling161

• Achieving predictive locality162

• Gaining the confidence of weather and climate model domain experts and users163

Given recent results of A23 and others, none of these issues need block the weather and164

climate modeling community from starting to operationalize ML emulators within as lit-165

tle as a year or two, given their speed and affordability and consequent transformative166

potential for large ensemble simulation, data assimilation, etc. A23’s RC model for cou-167

pling sea-surface temperature to a hybrid-RC atmosphere points the way toward emu-168

lators of full dynamical ocean, land and sea-ice model components, etc., needed to re-169

alize this vision. Hold onto your saddle for an exciting ride!170
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Abstract11

Physics-informed machine learning (ML) applied to geophysical simulation is develop-12

ing explosively. Recently, graph neural net and vision transformer architectures have shown13

1-7 day global weather forecast skill superior to any conventional model with integra-14

tion times over 1000 times faster, but longer simulations rapidly degrade. ML that achieves15

high skill in both weather and climate applications is a tougher goal. This Commentary16

was inspired by Arcomano et al. (2023), who show impressive progress toward that goal17

using hybrid ML, combining reservoir computing to a coarse-grid climate model and cou-18

pling to a separate data-driven reservoir computing model that interactively predicts sea-19

surface temperature. This opens new horizons; where will the next ML breakthrough come20

from, and is conventional climate modeling about to be disrupted?21

Plain Language Summary22

Many new research groups are making rapid progress in applying diverse machine23

learning methodologies to weather forecasting and climate modeling. These new approaches24

could make simulations that are 1000x faster than conventional approaches for the same25

fidelity. One successful approach for weather forecasting has been replacing an entire con-26

ventional global atmospheric model with a machine learning emulator, but so far the cli-27

mates generated by long simulations using this approach have had substantial biases in28

average temperature or precipitation. An alternate new approach, hybrid reservoir com-29

puting, combines the conventional model with a form of machine learning that remem-30

bers the recent atmospheric evolution. It produces much better climate simulations, in-31

cluding realistic El-Nino/La Nina variability, but on a much coarser spatial grid. This32

opens new horizons; where will the next ML breakthrough come from, and is conven-33

tional climate modeling about to be disrupted?34

1 Introduction35

Over the past five years, weather and climate modeling have become hot topics in36

physics-informed machine learning (ML), as the domain science and machine learning37

communities start to cross-fertilize. One central vision is global weather and climate em-38

ulators, which use machine learning to replace or supplement conventional global atmo-39

spheric prediction models.40

The climate community has long used global weather simulators based on numer-41

ical discretizations to appropriate governing equations as part of climate models, as dis-42

cussed in textbooks such as Drake (2014). Climate, after all, is comprised of the slowly-43

varying statistics of weather, including its means and extremes (AMS, 2023). The phys-44

ical principles governing weather forecasting (including climate-relevant aspects such as45

clouds, aerosols and chemistry, surface exchange, and interactions with land and sea-ice)46

are mostly well understood and observationally tested by the instrumental record. ‘Seam-47

less’ modeling of weather and climate (Rodwell & Palmer, 2007), i.e. insisting that a cli-48

mate model accurately reproduce weather-induced variability and covariability of its pre-49

dictands, also guards against overfitting of adjustable parameters to limited time-mean50

observational constraints. The same principles apply to ML emulators, whether trained51

on observational reanalyses in the present climate, or on fine-grid reference atmosphere52

simulations across a range of climates.53

Some salient characteristics of a global atmosphere emulator for climate modeling54

are as follows:55

• Stable56

• Accurate (weather forecasts and climate means/extremes)57

• Localizable (can make accurate predictions with fine spatial resolution)58
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• Interpretable (e.g. satisfies conservation principles and physically realistic bounds)59

• Extensible (e.g. aerosols, chemistry)60

• Naturally couplable (to ocean, land, ice)61

• Time-efficient (vs. a conventional climate model of comparable skill)62

These characteristics can be recalled by spelling out their first letters to get SALIENT.63

Arcomano et al. (2023), hereafter A23, show impressive progress toward that goal64

using hybrid ML, combining reservoir computing with a coarse-grid climate model. Reser-65

voir computing (Wikipedia, 2023) is an older type of long-short time memory ML that66

involves only linear calculations. Nevertheless, their global simulations are fast, stable,67

have reasonable weather skill, have remarkably little climate bias, and importantly can68

be coupled to a separate data-driven reservoir model with a longer memory time scale69

that interactively predicts sea-surface temperature (SST). As well as achieving low cli-70

mate bias for both the atmosphere and coupled SST, the coupled ML system sponta-71

neously simulates fairly realistic El Nino Southern Oscillation cycles, a first for this type72

of emulation.73

This commentary discusses how well A23 have already achieved ‘saliency’, followed74

by some remaining challenges for their approach. We compare their work with some other75

promising emulation approaches, and consider some general new research horizons for76

ML atmospheric emulators. Given growing research interest in this area and the prospect77

for further rapid progress, we suggest that the climate projection community may be closer78

than widely appreciated to fully embracing ML into mainstream development.79

2 A23’s achievements and upcoming challenges80

Let’s consider how well A23’s hybrid RC methodology meets the SALIENT char-81

acteristics of a good climate emulator. It satisfies S, A and T - it is stable, time-efficient,82

and accurate enough for climate modeling. It is well on the way to satisfing N, through83

its successful coupling with a RC sea-surface temperature model. It has not yet been cou-84

pled to externally developed model components such as conventional or ML-based ocean,85

land or sea-ice models, but this (as well as extensibility (E) to include other atmospheric86

components like chemistry and aerosols) could naturally be done mostly through its con-87

ventional AGCM component, SPEEDY (Molteni, 2003).88

Its current incarnation is somewhat interpretable (I). The RC updates are applied89

in localized 7.5◦×10◦ patches of grid columns, so tendency budgets of prognostic vari-90

ables could be computed over such patches. A23’s addition of precipitation as a novel91

diagnostic RC output is also a plus. However, the current version of the RC model does92

not automatically satisfy heat, moisture or momentum conservation equations in which93

a tendency can be ascribed to a flux convergence, nor does it currently correct SPEEDY’s94

predictions of radiative fluxes at the surface or top of the atmosphere.95

Perhaps the biggest shortcoming of the current hybrid RC is in localization (L).96

Unlike state-of-the-art full model emulators with 30 km horizontal grid resolutions, its97

coarse (3.75◦×5◦) horizontal grid doesn’t resolve topographic details or intense storm98

systems such as tropical cyclones. Its 8 vertical grid levels also is a factor of 10 smaller99

than many current weather and climate models. The RC implementation is memory-intensive100

and might be difficult to scale to a grid 10-fold smaller in each direction. An ML-based101

super-resolution generator for each patch or grid column based on adversarial (Leinonen102

et al., 2021) or diffusion (Wang et al., 2020) modeling might help with this issue.103
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3 Hybrid RC vs. full-model emulation104

What type of emulator is most promising for climate modeling? Numerous research105

groups have begun working on full model emulation (FME), in which an ML architec-106

ture such as a U-Net (Weyn et al., 2020, 2021), a vision transformer (Pathak et al., 2022),107

or a graph neural net (Keisler, 2022), is trained to forecast global weather. Recent FME108

papers have demonstrated forecast skill out to seven days that is superior to the world’s109

best operational forecast model, made a thousand times faster using compact, energy-110

efficient purpose-built hardware rather than expensive supercomputers (Bi et al., 2022;111

Lam et al., 2022). A pre-trained FME has been proposed as a ‘foundation’ model for weather112

and climate simulation (Nguyen et al., 2023). Further rapid progress seems inevitable.113

However, these FME approaches are generally not yet accurate or even stable over the114

longer forecast periods needed for climate. In addition, fundamental unaddressed prob-115

lems remain with FME, including coupling to other model components, extensibility to116

advection of trace species and hydrometeors, or even the physical interpretability of the117

resulting simulations.118

In contrast, A23 and underlying previous work (Wikner et al., 2020; Arcomano et119

al., 2022) adopted a hybrid approach, in which ML elements are combined with a coarse-120

grid conventional climate model to improve its skill. The speed of the resulting simu-121

lations can be no faster than that of the coarse climate model, but even a twofold coarser122

horizontal and vertical grid spacing halves the number of time steps and reduces the over-123

all computational effort ten-fold. A23 use the intermediate-complexity SPEEDY AGCM,124

which has very coarse 3.75◦×5◦ grid resolution, 8 vertical levels, and simplified phys-125

ical parameterizations. SPEEDY simulates a day per 2 seconds of execution time (Arcomano126

et al., 2022), comparable to current FME approaches (Pathak et al., 2022; Lam et al.,127

2022). The ML element (reservoir computing) with which SPEEDY is combined uses128

a much longer time step than SPEEDY, so it doesn’t significantly slow down simulations,129

while it is surprisingly effective in counteracting SPEEDY’s considerable systematic weather130

and climate biases. Thus A23 is computationally competitive with FME, though using131

a larger and less energy-efficient cluster of 1152 processors. An important trade-off is the132

lack of grid resolution, a factor of 15-20 smaller than the 0.25◦×0.25◦ grid and up to133

30 vertical grid levels used by recent FME approaches trained on the ERA5 reanalysis.134

A broader challenge with most hybrid ML is that the ML must be trained ‘offline’ with135

other model components given, but these other model components can react to the ML136

’online’ during ML-augmented simulations. Thus ’offline’ optimization of ML weights137

doesn’t guarantee improved online simulation accuracy or even stability (Brenowitz &138

Bretherton, 2019). Because RC weight optimization is linear, it partly sidesteps this prob-139

lem and currently achieves much better climate stability and skill than FME. Another140

hybrid approach trained based on nudging coarse-grid simulations to reference reanal-141

yses or fine-grid simulations also increases forecast skill and reduces climate biases of a142

coarse-grid target model (Watt-Meyer et al., 2021; Bretherton et al., 2022; Clark et al.,143

2022), but to a lesser extent than RC.144

Neither SPEEDY or a pure reservoir computing approach based on the SPEEDY145

grid are nearly as skillful in making weather forecasts or simulating the observed mean146

state of the global atmosphere (Arcomano et al., 2020). Like FME, the hybrid RC method147

works by incorporating multiple spatial scales into the learning process. SPEEDY can148

be viewed as an efficient physics-based way to handle long-range spatial interactions af-149

fecting the atmospheric state in each patch, while the reservoir computing corrects lo-150

cal systematic errors associated with parameterizations and numerical discretization er-151

ror. More so than FME approaches to date, the memory built into RC helps ensure that152

the ML also removes slowly-developing mean-state biases.153
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4 New horizons and prospects154

Whether a hybrid method like A23’s RC or a full model emulator proves most suit-155

able for seamless ML weather and climate emulation, several issues will keep the ML de-156

velopment community busy, including:157

• Reliable reference training data over a range of climates158

• Building in conservation principles159

• Out-of-sample extrapolation160

• Strategies for natural model component coupling161

• Achieving predictive locality162

• Gaining the confidence of weather and climate model domain experts and users163

Given recent results of A23 and others, none of these issues need block the weather and164

climate modeling community from starting to operationalize ML emulators within as lit-165

tle as a year or two, given their speed and affordability and consequent transformative166

potential for large ensemble simulation, data assimilation, etc. A23’s RC model for cou-167

pling sea-surface temperature to a hybrid-RC atmosphere points the way toward emu-168

lators of full dynamical ocean, land and sea-ice model components, etc., needed to re-169

alize this vision. Hold onto your saddle for an exciting ride!170
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