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Abstract

The oil and natural gas industry needs accurate and frequent information on methane CH4 emissions from all of their facilities

globally in order to effectively reduce emissions. Here we describe the development of requirements for a constellation of

satellites to provide frequent data on point source CH4 emissions from the oil and gas industry. Three types of sources

were examined: isolated continuous plumes with emissions rates of 50 kg hr-1, intermittent CH4 releases from activities such as

compressor start-ups, and overlapping continuous plumes. The dispersion model SCICHEM was used to simulate the dispersion

of methane plumes and intermittent releases for typical meteorology in the Permian Basin, and a plume mask and integrated

mass enhancement (IME) algorithm were applied to identify and quantify the emissions. The precision and ground sampling

distance of the future satellite instrument were varied to determine the required precision and horizontal resolution of the

satellite instrument. We find that quantifying CH4 point source emissions as small as 50 kg hr-1 by remote sensing requires a

ground sampling distance of 30-60 m and a CH4 column precision of 0.5-1.0% for the range of conditions analyzed. Detecting

intermittent sources is also possible with the above instrument specifications if the puff is observed within 15 min of emission.

Plumes of similar source strengths more than 0.5 km apart can be separated with existing plume identification approaches but

separating sources closer than that or with very different emission rates will require further development of plume identification

techniques.
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Key Points: 16 

• Quantifying CH4 point source emissions as small as 50 kg hr-1 requires a ground 17 
resolution of 30-60 m and a column precision of 0.5-1.0%.  18 

• Detecting intermittent sources with the above specifications is possible if the puff is 19 
observed within 15 min of emission.  20 

• Plumes of similar source strengths within less than 0.5 km of each other will be difficult 21 
to separate in remote sensing observations.  22 
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Abstract 23 

The oil and natural gas industry needs accurate and frequent information on methane CH4 24 
emissions from all of their facilities globally in order to effectively reduce emissions. Here we 25 
describe the development of requirements for a constellation of satellites to provide frequent data 26 
on point source CH4 emissions from the oil and gas industry. Three types of sources were 27 
examined: isolated continuous plumes with emissions rates of 50 kg hr-1, intermittent CH4 28 
releases from activities such as compressor start-ups, and overlapping continuous plumes. The 29 
dispersion model SCICHEM was used to simulate the dispersion of methane plumes and 30 
intermittent releases for typical meteorology in the Permian Basin, and a plume mask and 31 
integrated mass enhancement (IME) algorithm were applied to identify and quantify the 32 
emissions. The precision and ground sampling distance of the future satellite instrument were 33 
varied to determine the required precision and horizontal resolution of the satellite instrument. 34 
We find that quantifying CH4 point source emissions as small as 50 kg hr-1 by remote sensing 35 
requires a ground sampling distance of 30-60 m and a CH4 column precision of 0.5-1.0% for the 36 
range of conditions analyzed. Detecting intermittent sources is also possible with the above 37 
instrument specifications if the puff is observed within 15 min of emission. Plumes of similar 38 
source strengths more than 0.5 km apart can be separated with existing plume identification 39 
approaches but separating sources closer than that or with very different emission rates will 40 
require further development of plume identification techniques. 41 

Plain Language Summary 42 

In order to reduce greenhouse gas emissions from the oil and natural gas industry, and thus 43 
reduce near-term global warming, more frequent and accurate information on which of their 44 
facilities are emitting methane is needed. Satellite observations can help due to their global 45 
coverage, and recent advancements in sensor technology will make it possible to measure up to 46 
80-90% of the methane emissions from the oil and gas industry. In this work we discuss 47 
instrument requirements toward a future group of satellites that will measure methane emissions 48 
from oil and gas facilities multiple times a day. We looked at small, steady sources of methane 49 
and determined that measuring these sources would require a satellite instrument that can 50 
measure methane to within 0.5-1.0% every 30-60 m horizontally. We find that detecting small, 51 
unsteady sources, such as those from starting a natural gas compressor, is also possible, but only 52 
if the source is observed within 15 minutes after the emission. Finally, we show that current 53 
techniques can only separate neighboring sources of CH4 if they are of similar size and at least 54 
0.5 km apart.  55 

1 Introduction 56 

Emissions of methane (CH4) to the atmosphere are receiving increased attention as a 57 
method to reduce greenhouse gas radiative forcing and the resulting climatic changes (e.g., 58 
Nisbet et al., 2020). Reductions of CH4 emissions are attractive as the relatively short lifetime of 59 
CH4 in the atmosphere (9.1 ± 0.9 yr., Szopa et al., 2021) means that changes in CH4 emissions 60 
could reduce climate forcing over a 10- to 20-year horizon, delaying when a given temperature 61 
threshold will be crossed and allowing for more time to address emissions of the longer-lived 62 
greenhouse gas carbon dioxide (CO2).  63 

CH4 emissions come from a wide variety of sources, including natural sources such as 64 
wetlands and wildfires and anthropogenic sources like livestock, rice cultivation, landfills, 65 
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biofuel burning, and fossil fuel use (e.g., Saunois et al., 2020). Fossil fuel sources of CH4 66 
account for about 18% of the annual global CH4 emissions and include emissions from coal 67 
mining (33% of fossil fuel CH4 emissions for 2017) and the oil and natural gas industry (62% of 68 
fossil fuel CH4 emissions for 2017, Saunois et al., 2020).   69 

Emissions from oil and gas activities are complex as they are skewed, with a small 70 
number of sources accounting for a large fraction of emissions (Brandt et al., 2016), and have 71 
spatiotemporal variability (Allen et al., 2017; Cusworth et al, 2021). In recent years, high CH4 72 
emissions from oil and gas activities have been observed with aircraft and satellites in the US 73 
and around the world (Cusworth et al., 2021; Cusworth et al., 2022; Lauvaux et al. 2021), and 74 
they account for a disproportionate fraction of total emissions in a given region. For example, in 75 
the Permian basin, close to 90% of total emissions originate from plumes larger than 50 kg/hr 76 
(Chen et al., 2022). In order to achieve significant reductions on emissions, industry needs 77 
emission information in near-real-time for high emitter sources, such that mitigation measures 78 
can be taken to address unexpected CH4 emissions when they appear (Cardoso-Saldaña 2022). In 79 
addition, the locations of emission sources need to be identified accurately to allow mitigation 80 
activities to be performed, especially as different companies may have emitting equipment 81 
within close proximity to each other. Finally, there is a need to detect intermittent sources of 82 
CH4, as persistent emission sources account for only 29% of oil and natural gas industry 83 
emissions in areas like the Permian basin (Cusworth et al., 2021).  84 

Providing the information on CH4 emissions needed by the oil and gas industry will 85 
require a mixture of measurement approaches that combines in situ methane observations with 86 
additional information from ground-based (e.g., Pernini et al., 2022), aircraft (Duren et al., 2019; 87 
Jongaramrungruang et al., 2019; Cusworth et al., 2020), and satellite remote sensing platforms. 88 
Of these platforms, satellite observations are of particular interest due to their ability to observe 89 
methane sources globally.  90 

Jacob et al. (2022) recently reviewed satellite methods to quantify methane emissions 91 
from the global scale down to individual point sources. They separated methane monitoring 92 
satellites into two general categories, area flux mappers and point source imagers. Area flux 93 
mappers are designed to observe total emissions on global or regional scales with 0.1–10 km 94 
pixel size (Jacob et al., 2022). These include the European Space Agency TROPOspheric 95 
Monitoring Instrument (TROPOMI) instrument, which has been used to detect high-emitting 96 
CH4 sources in oil and gas fields with a low density of sites (Cusworth et al., 2018). Varon et al. 97 
(2022) created user-friendly, cloud-based facility for quantifying CH4 emissions with 98 
0.25∘ × 0.3125∘ resolution by inverse analysis of satellite observations from TropOMI. 99 

Point source imagers are fine-pixel (< 60 m) instruments designed to quantify individual 100 
point sources by imaging the plumes (Jacob et al., 2022). For example, Varon et al. (2020) used 101 
the GHGSat-D satellite instrument (50 m effective spatial resolution and 9–18% single-pass 102 
column precision) to quantify mean source rates for three coal mine vents (2320 to 5850 kg h–1). 103 
Varon et al. (2021) used data from the Sentinel-2 mission to quantify point sources down to 104 
about 3 t h−1, with Ehret et al. (2022) using similar methods to detect and quantify more than 105 
1200 CH4 emissions from Seninel-2 data. Sánchez-García et al. (2022) used data from the 106 
WorldView-3 (WV-3) satellite mission to detect point emissions over oil and gas extraction 107 
fields in Algeria and Turkmenistan.  108 
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The goal of the Scepter Monitoring Mission is to provide frequent, high-resolution data 109 
on multiple air pollutants to a variety of industrial and government entities. Here we focus on the 110 
development of requirements for a constellation of satellites to provide frequent data on point 111 
source CH4 emissions from the oil and gas industry. A systems engineering requirement flow-112 
down process was used to determine the satellite and constellation (~14 satellites) requirements 113 
to measure CH4 leak rates of 50 kg hr-1 multiple times a day, thereby meeting the needs of the oil 114 
and gas industry.  In this paper, we describe the first step of this process, where the dispersion 115 
model SCICHEM was used to simulate the dispersion of methane plumes during a typical day in 116 
the Permian Basin. The CH4 emission rates were fixed at 50 kg hr-1 for different wind speeds and 117 
meteorological conditions and the resulting column enhancements (g m-2) were calculated. A 118 
noisy background of CH4 was added to simulate the satellite observations. Then a plume mask 119 
and integrated mass enhancement (IME) algorithm based on the approach of Varon et al. (2018) 120 
was applied. The value of the noise and the ground sampling distance of the instrument were 121 
varied to determine the required precision and horizontal resolution of the satellite instrument.  122 

In addition, this paper focuses on two challenging aspects of monitoring oil and natural 123 
gas industry CH4 emissions from satellites. First, intermittent, unintentional CH4 releases need to 124 
be detected and quantified. Cusworth et al. (2022) showed these intermittent sources accounted 125 
for nearly half of the total CH4 point source budget for multiple basins in the United States. To 126 
study these sources, we performed instantaneous releases in SCICHEM and applied the plume 127 
identification method of Varon et al. (2018) to the resulting puffs.  128 

Second, at oil and gas facilities the plumes from multiple sources may overlap, making it 129 
more difficult to separate their emissions. This is less of a challenge for scientific studies that 130 
aim at determining the total CH4 emission in a given region, as in those studies an accurate total 131 
emission rate is more important than separating the emissions among the individual sources. 132 
However, for our goal of providing information to operators that allow them to quickly address 133 
emissions, separating the emissions from different sources is critical to send staff to the correct 134 
location, as well as to identify which company should respond when the facilities of different 135 
companies are near each other. To address this, we simulated different configurations of 136 
overlapping plumes with the SCICHEM model, applied our plume masking algorithm, and 137 
examined how difficult it would be to separate the plumes under different wind directions, 138 
source strengths, and inter-plume distances.  139 
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2 Methods 140 

2.1 Satellite Instrument Performance 141 

We assumed a future satellite instrument operating in the 2050-2400 µm band with a 142 
signal to noise ratio (SNR) between 100-150, a spectral resolution between 1- 5 nm, and a 143 
ground sampling distance between 30-120 m. These specifications are well within the limits of 144 
current technology. We calculated the expected variance ሺ𝜎ሻ reduction due to adding a 145 
measurement to a system described by a prior information following Rodgers (2000): 146 

𝜎ିଵ = 𝐾் ൬𝑆𝑁𝑅𝑦 ൰ଶ 𝐾 + 𝑆௔ି ଵ 

where 𝑦 is the measured radiance, 𝐾 is the Jacobian (sensitivity of the radiance to changes in the 147 
CH4 profile), 𝑆𝑁𝑅 is the signal to noise ratio, and 𝑆௔ is the prior covariance matrix. The 148 
Jacobians were computed using LBLRTM v12.13 (Clough et al., 2005, Alvarado et al., 2013) 149 
based on the finite difference method using a surface albedo of 0.15, which is less than the 25th 150 
percentile of surface albedo values in the Permian basin year-round. As we are interested in 151 
detecting near-surface enhancements of CH4, the prior covariance was calculated assuming that 152 
the 1-sigma uncertainty in the CH4 concentration in the planetary boundary layer was about 10% 153 
of the total column.  154 

For an instrument with a SNR between 100-150 and a spectral resolution between 1- 5 155 
nm, the above procedure estimated a CH4 column precision of between 0.3-1.0%. However, this 156 
procedure does not account for the potential impacts of errors in other retrieved species (mainly 157 
H2O and surface reflectance) on the retrieved CH4 precision. Thus, for the plume identification 158 
and quantification studies below, we assumed a more conservative error range of 0.5-1.0%.  159 

2.2 SCICHEM Dispersion Modeling 160 

We used the SCICHEM dispersion model to simulate both continuous and instantaneous releases 161 
of CH4. Hourly surface meteorological data were obtained from the Pine Springs, Guadalupe 162 
Mountains National Park (KGDP) weather station (31.83 °N, 104.81 °W) and upper air 163 
meteorological data was obtained from the Midland, TX station (WBAN 23023, 31.93 °N, 102.2 164 
°W).  The SCICHEM preprocessor METSCI was used to prepare the meteorological inputs, with 165 
the terrain preprocessor TERSCI used to simulate the terrain based on digital elevation model 166 
(DEM) data. Concentrations were calculated within a horizontal domain of 1 km with a spatial 167 
resolution of 30 m, and a vertical domain between 0-3 km agl at a vertical resolution of 25 m in 168 
the lowest 1 km and a 1 km resolution above. We determined the vertical resolution through 169 
initial SCICHEM runs (not shown) that demonstrated that the non-buoyant CH4 emissions 170 
examined here rarely extended above 1 km in altitude before leaving the 1 km horizontal 171 
domain, but that a vertical resolution of greater than 25 m in the lowest 1 km led to > 0.1% errors 172 
in the calculated CH4 column. We assumed a stack temperature of 30 oC and a stack exit velocity 173 
of 0.5 m s-1, giving the plumes negligible buoyancy. CH4 emissions from flares and compressor 174 
exhaust can be buoyant, but since the satellite measures vertically integrated CH4 columns we 175 
expect the effects of buoyancy on our results to be minimal. We also expect most sources to be 176 
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 200 

Figure 1. (a) Quadrant used to calculate mean and standard deviation of the background 201 
distribution. (b) Simulated plume from a point source of CH4 with an emission rate of 50 202 
kg hr-1. (c) Addition of noisy background (13.3 g m-2 ± 0.5%). (d) Result of t-test plume 203 
identification. (e) Result of applying the median filter on (d). (f) Result of applying the 204 
Gaussian filter on (e). 205 

Once the plume pixels have been identified, the IME (g CH4) is defined as the area-206 
weighted sum of the column enhancement of methane above background (Figure 2), following 207 
the equation 208 𝐼𝑀𝐸 = ∑ ൫𝛺஼ுସ,௣௜௫௘௟ − Ω௕൯𝐴௣௜௫௘௟ே೛೔ೣ೐೗௣௜௫௘௟ୀଵ       (1) 209 

where 210 
• 𝛺஼ுସ,௣௜௫௘௟ is the measured methane column for a single pixel from the Level 2 211 

product converted to units of g m-2 212 
• Ω௕ is the background methane column in units of g m-2 estimated as discussed 213 

below 214 
• 𝐴௣௜௫௘௟ is the area of the pixel in units of m2 215 

• 𝑁௣௜௫௘௟ is the number of pixels in a single plume 216 

The IME is combined with the effective plume length: 217 𝐿௘௙௙ = ඥ𝐴௣௟௨௠௘ = ට∑ 𝐴௣௜௫௘௟ே௣௜௫௘௟௣௜௫௘௟ୀଵ    (2) 218 

and an effective wind speed Ueff (m/s) to estimate the emission rate (Q, g/s) via the equation: 219 𝑄 = ௎೐೑೑௅೐೑೑ 𝐼𝑀𝐸     (3) 220 𝑈௘௙௙ is calculated from the 10-m wind speed 𝑈ଵ଴ using an equation of the form (Varon et 221 
al., 2018): 222 𝑈௘௙௙ = 𝑎 𝑙𝑜𝑔𝑈ଵ଴ + 𝑏     (4) 223 

Varon et al. (2018) used 𝑎 = 0.9 and 𝑏 = 0.6 m sିଵ, and we use the same values for our 224 
continuous release tests.  225 
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2.4 Overlapping Continuous Sources 230 

To simulate overlapping continuous sources, we took the simulation shown in Figure 2 231 
and added a second source to the east at distances of 0.25, 0.5, and 0.75 km. The wind direction 232 
for the two plumes were rotated, such that a wind direction of 0o simulated the wind being 233 
perpendicular to the line connecting the point sources and thus has the least overlap, while a 234 
wind direction of 90o has the wind parallel to the line connecting the sources and thus has the 235 
most overlap. We also simulated the intermediate case of 45o. Two cases were simulated for 236 
emission rates, one where both sources had an emission rate of 50 kg hr-1, and one where the 237 
western source has a much larger release rate of 500 kg hr-1 while the eastern source remains at 238 
50 kg hr-1.  239 

3 Results 240 

3.1 Continuous Sources 241 

Figure 2 shows the plume mask results for a fairly dispersive plume under low wind 242 
speed conditions (2.6 m s-1) and an instrument precision of 0.5%. The plume mask for this case 243 
does identify the central core of the plume but is too conservative to identify the full extent of the 244 
plume. This suggests that there is room for improvement in the plume identification algorithm. 245 

The retrieved emissions for the true 50 kg hr-1 rate vary between 25-200 kg hr-1 for the 24 246 
hours (and thus 24 meteorological conditions) simulated. Figure 3 shows the mean estimated 247 
source rates for daytime hours (yellow bars), all hours (grey bars), and only hours with wind 248 
speed less than 5 m s-1 (blue bars) when 0.5% or 1.0% noise is added to the CH4 background 249 
column. When data from all hours are averaged, the IME approach used here returns estimates 250 
with small positive biases (5-20 kg hr-1). However, our assumed satellite instrument will only be 251 
able to make measurements in the daytime. Looking at only daytime hours leads to a positive 252 
bias of 25-50 kg hr-1. The difference between the all-hours cases and the daylight-hours cases is 253 
that the all-hours cases include more cases with a stable atmosphere, suppressing vertical mixing.  254 

 Somewhat surprisingly, the higher noise case tends to have a lower positive bias. We 255 
believe this is a case of compensating errors: the positive bias comes from our 𝑈௘௙௙ 256 
parameterization, but the higher noise level leads to an underestimate of the plume extent, and 257 
thus IME, reducing the high noise bias.  258 

The positive bias increases further (50-75 kg hr-1) if only hours with wind speeds below 5 259 
m s-1 are considered. As the plume mask tends to miss plume pixels, it is unlikely that the source 260 
of this bias is the plume mask or the IME calculation, which suggested that addressing these 261 
biases requires further refinement of the Ueff parameterization, potentially to include other 262 
meteorological inputs than just U10 wind speed.  263 
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0.5%, the plume identification algorithm is generally able to separate the two overlapping 309 
sources if they are 0.5 km apart or more, regardless of the wind direction, but is not able to 310 
separate them if they are only 0.25 km apart. Figure 6 shows the most challenging case, where 311 
the wind is parallel with the line connecting the sources and so the upwind plume covers the 312 
downwind one (90-degree wind rotation from the original case in Figure 2). When the sources 313 
are only 0.25 km apart (top row), the plumes are merged in the plume mask. However, at 0.5 km 314 
(middle row) and 0.75 km (bottom row), the plume identification algorithm is able to distinguish 315 
the two plumes. Note that the horizontally dispersive case chosen here likely contributes to the 316 
ability to separate these plumes, as the centerline concentrations of the upwind plume have fallen 317 
to background levels before the second source is reached. Results for winds perpendicular to the 318 
line connecting the sources (zero-degree wind rotation) and the 45-degree rotation case, are 319 
shown in Supplemental Figures S1 and S2, respectively. The perpendicular shows two separate 320 
plumes when they are spaced 0.5 km and 0.75 km apart. At 0.25 km the two plumes merge into a 321 
single feature, with a small near-source bifurcation in the plume mask being the only indication 322 
of overlapping sources.   323 
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bias suggests the need for improvements in the Ueff parameterization used in the IME method. 363 
The plume mask performed the best at a horizontal resolution of 30-60 m, with the performance 364 
degrading significantly at horizontal resolution greater than 90 m.  365 

As the instantaneous releases disperse in both horizontal directions, the CH4 columns fall 366 
off as the square of distance/time downwind, rather than the linear decrease seen with continuous 367 
releases. This limits the time downwind that a puff from an instantaneous release is visible. With 368 
a 0.5% CH4 column precision, a 33.5 kg CH4 release is visible for 15 minutes after release. Thus, 369 
the typical compressor start-up, compressor blow-down, and liquid unloading with a plunger lift 370 
(7-200 kg, Allen et al., 2015) would have to be observed shortly after release to be detected by 371 
satellite. Liquid unloadings without plunger lifts tend to have larger releases (400-700 kg, Allen 372 
et al., 2015, Pacsi et al., 2020), and so may be visible for up to one hour after release. Thus, the 373 
releases larger than 50 kg/hr would be detected by satellite. Oil well completions tend to be a 374 
factor of 10 smaller (e.g., Cardoso-Saldaña and Allen, 2021), and so only the largest emitters 375 
would be detected.  376 

Overlapping plumes of similar small source strength were difficult to separate if they 377 
were only 0.25 km apart but were separable by the plume identification algorithm if they were 378 
0.5 km apart or more. This result was independent of whether the wind was perpendicular or 379 
parallel to the line connecting the two sources. However, when one source was much larger than 380 
the other, the resulting plumes tended to merge together downwind, although the sources were 381 
generally separable near the source. This suggests that a modified plume identification algorithm 382 
could be able to better separate these plumes. 383 

Future work will focus on further refinement of the plume identification algorithm to 384 
better identify the full plume and to better separate overlapping plumes from neighboring 385 
sources. Further work is also needed to separate the puffs from intermittent sources from 386 
statistical fluctuations in the retrieved background columns. In addition, improvements in the 387 
parameterization of Ueff, potentially incorporating additional data beyond the U10 wind speed, 388 
should be explored. 389 
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