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Abstract

We study the upscaling and prediction of dispersion in two-dimensional

heterogeneous porous media with focus on transverse dispersion. To this end, we

study the stochastic dynamics of the motion of advective particles that move

along the streamlines of the heterogeneous flow field. While longitudinal

dispersion may evolve super-linearly with time, transverse dispersion is

characterized by ultraslow diffusion, that is, the transverse displacement variance grows asymptotically with the logarithm of

time. This remarkable behavior is linked to the solenoidal

character of the flow field, which needs to be accounted for in stochastic

models for the two-dimensional particle motion. We analyze particle velocities

and orientations through equidistant sampling along the particle trajectories

obtained from direct numerical simulations. This sampling strategy respects the flow structure, which is organized on a

characteristic length scale. Perturbation theory shows that the longitudinal particle motion is determined by the variability of

travel times, while the transverse motion is governed by the fluctuations of the space increments. The latter turns out to be

strongly anti-correlated with a correlation structure that leads to ultraslow diffusion. Based on this analysis, we derive a

stochastic model that combines a correlated Gaussian noise for the transverse

motion with a spatial Markov model for the particle speeds. The model results

are contrasted with detailed numerical simulations in two-dimensional

heterogeneous porous media of different heterogeneity variance.
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Abstract11

We study the upscaling and prediction of dispersion in two-dimensional heterogeneous12

porous media with focus on transverse dispersion. To this end, we study the stochastic13

dynamics of the motion of advective particles that move along the streamlines of the het-14

erogeneous flow field. While longitudinal dispersion may evolve super-linearly with time,15

transverse dispersion is characterized by ultraslow diffusion, that is, the transverse dis-16

placement variance grows asymptotically with the logarithm of time. This remarkable17

behavior is linked to the solenoidal character of the flow field, which needs to be accounted18

for in stochastic models for the two-dimensional particle motion. We analyze particle ve-19

locities and orientations through equidistant sampling along the particle trajectories ob-20

tained from direct numerical simulations. This sampling strategy respects the flow struc-21

ture, which is organized on a characteristic length scale. Perturbation theory shows that22

the longitudinal particle motion is determined by the variability of travel times, while23

the transverse motion is governed by the fluctuations of the space increments. The lat-24

ter turns out to be strongly anti-correlated with a correlation structure that leads to ul-25

traslow diffusion. Based on this analysis, we derive a stochastic model that combines a26

correlated Gaussian noise for the transverse motion with a spatial Markov model for the27

particle speeds. The model results are contrasted with detailed numerical simulations28

in two-dimensional heterogeneous porous media of different heterogeneity variance.29

Plain Language Summary30

The hydraulic conductivity of environmental geological formation can exhibit strong31

spatial variations. This leads to the formation of complex flow fields, whereas the flow32

tends to by-pass low conductivity areas and focuses within preferential flow paths. This33

complexity controls the transport dynamics of dissolved chemicals. Moreover, the hid-34

den nature of the subsurface environment leads to a lack of knowledge about the details35

of the formation properties requiring a stochastic approach for the prediction of the fate36

of transported solutes. We propose a stochastic model capable of capturing the salient37

features of large scale solute transport in two dimensional heterogeneous Darcy flow. We38

accomplish the latter by incorporating key physical transport mechanisms that occur in39

the direction aligned with and transverse to the preferential flow orientation.40
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1 Introduction41

Non-Fickian solute transport, that is, non-linear scaling of dispersion, non-Gaussian42

concentration distributions, early and late solute arrivals, have been documented in het-43

erogeneous porous and fractured media from the pore to the regional scale (Berkowitz44

et al., 2006; Neuman & Tartakovsky, 2009; Bijeljic et al., 2011). The quantitative un-45

derstanding of these behaviors plays a central role for the efficient modeling and predic-46

tion of large scale solute transport in environmental and industrial applications rang-47

ing from groundwater management and remediation (Domenico & Schwartz, 1998) to48

geological carbon dioxide storage (Niemi et al., 2017).49

In the present work we focus on the transport of solute in two-dimensional Darcy-50

scale porous media that are characterized by spatial variability in the hydraulic conduc-51

tivity. In this context, diffusion and mechanical dispersion control the dispersive char-52

acter of solutes at the local scale, that is on lengths smaller than the characteristic het-53

erogeneity length scale. At larger scales, solute dispersion is dominated by the hetero-54

geneity of the hydraulic conductivity field, which underpins the emergence of complex55

flow fields. Large scale applications dealing with solute transport in geological media are56

concerned with scales on the order of ten to hundred times the characteristic correlation57

length of the hydraulic conductivity, at which the advective component of the motion58

is the prevailing factor controlling the dispersive behaviour of solutes (Rubin, 2003). Thus,59

we focus on purely advective transport, which provides the backbone for mixing and re-60

action processes (Dentz et al., 2022). We consider two-dimensional Darcy flows, which61

can represent flow in shallow aquifers, three dimensional formations characterized by a62

large correlation length in one spatial direction (e.g., stratification) (Rubin, 2003), as well63

as flow in rough fractures (Zimmerman & Bodvarsson, 1996; Z. Wang et al., 2020; Kot-64

twitz et al., 2020; Kong & Chen, 2018; Hu et al., 2020). Furthermore, Lester et al. (2021,65

2022) recently highlighted the profound similarity of the flow kinematics for Darcy flow66

in three-dimensional with those in two-dimensional heterogeneous porous media, which67

indicates that insights from two dimensions may be transferred to three-dimensional me-68

dia.69

The hidden nature of geological formations, in combination with spatial variations70

in their hydraulic properties, has led to the development of stochastic models to predict71

the fate of dissolved substances (Rubin, 2003; Neuman & Tartakovsky, 2009; Berkowitz72
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Figure 1: (Left panel)Spatial distribution of Y (x) for σ2
Y = 4. (Right panel) Spatial

organization of the module of the Darcy’ velocity (logarithmic scale, blue low and green

high) considering a strongly heterogeneous geological formation. Samples of particles

trajectories are also drawn (black curves): note the emergence of preferential flow paths

characterized by meandering-like structures as we proceed downstream from the injection

location. The variance of the logarithm of K(x) is 4, its correlation length is 10 m.

et al., 2006; Frippiat & Holeyman, 2008; Dell’Oca et al., 2018, 2019). In this context,73

major efforts have been devoted to conceptualize and formalize effective stochastic mod-74

els to quantify average solute transport along the mean flow direction. These efforts in-75

clude stochastic perturbation theory (Rubin, 2003), self-consistent time-domain random76

walk formulations (Cvetkovic et al., 2014; Fiori et al., 2015, 2013) through the use of frac-77

tional advection-diffusion equations (Benson et al. (2000); Y. Zhang et al. (2009)), mul-78

tirate mass transfer approaches (Haggerty & Gorelick, 1995; Harvey & Gorelick, 2000),79

and continuous time random walks (Edery et al., 2014; Comolli et al., 2019; Dentz et al.,80

2020).81

Transverse dispersion can be measured by the displacement variance of advectively82

transported solute particles (Dagan, 1989). Using stochastic perturbation theory, it has83

been shown (Dagan, 1984) that transverse dispersion grows ballistically at short times,84

that is with the square of time, and eventually crosses over to an ultra-slow dispersive85

behavior that is characterized by a growth with the logarithm of time. As a consequence,86

the transverse dispersion coefficient, which is defined in terms of the time-derivative of87

the displacement variance, decays to zero asymptotically. This is an exact result, which88

can be derived without recourse to perturbation theory (Attinger et al., 2004), and which89

has been observed in direct numerical simulations of flow and transport in two-dimensional90

heterogeneous porous media (Bellin et al., 1992; Salandin & Fiorotto, 1998; de Dreuzy91
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et al., 2007). This ultra-slow dispersion behavior is intimately linked to the meander-92

ing of the streamlines that arise because the flow field is divergence-free. The stream-93

line meandering is illustrated in Figure 1, which shows a colormap of the flow speeds to-94

gether with a set of purely advective particle trajectories. It is interesting to note that95

ultra-slow dispersion emerges in a variety of systems characterized by crowded or con-96

fined environments such as dense colloids (Boettcher & Sibani, 2011) and colloidal hard-97

sphere system, (Sperl, 2005), for vacancy-mediated diffusive motion, (Bénichou & Os-98

hanin, 2002), and diffusion in a random force landscapes (Havlin & Ben-Avraham, 2002),99

but also in human mobility, (Song et al., 2010). In the context of flow in two-dimensional100

porous media, the confinement arises from the fact that the flow is divergence-free, which101

dictates the spatial organization of the streamlines.102

The constraint imposed by the flow topology on transverse dispersion needs to be103

reflected in large scale transport models for streamwise and transverse solute dispersion.104

The multi-dimensional CTRW approach of Dentz et al. (2004) represents transverse dis-105

persion in heterogeneous media through uncorrelated Gaussian-distributed space incre-106

ments combined with random transition times. W. Wang & Barkai (2020) derive a two-107

dimensional fractional-in-space advection-dispersion equation based on this approach to108

represent the bulk dispersion behavior in geological media. These models do not account109

for the topological constraints imposed by the divergence-free Darcy flow equation. In110

fact, this type of CTRW represents particle motion under spatially random retardation111

properties (Dentz & Castro, 2009).112

Meerschaert et al. (2001) proposed a multi-dimensional fractional diffusion model113

to capture super-diffusive anisotropic transport regimes along the longitudinal and the114

transverse directions. Y. Zhang & Benson (2013) use a two-dimensional space-time frac-115

tional approach with space-dependent diffusion coefficients to model the vertically in-116

tegrated tritium plumes of the MADE-2 experiment. Also these frameworks do not ac-117

count for the impact of topological constraints on transverse dispersion.118

Meyer & Tchelepi (2010) propose a Langevin model for the evolution of stream-119

wise and transverse particle velocities that uses drift and diffusion coefficients that are120

obtained by calibrating suitable continuous functions to Monte-Carlo simulations of the121

direct flow and transport problem. This formulation reproduces the evolution of longi-122

tudinal and transverse dispersion. The framework was used for uncertainty quantifica-123
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tion in subsurface flows (Meyer et al., 2013), and its relation to first-order perturbation124

theory was studied in view of the model parameterization (Meyer, 2017, 2018).125

In this paper we study the stochastic dynamics of particle motion in two-dimensional126

Darcy flow with focus on the evolution of particle displacements transverse to the mean127

flow direction. To this end we study particle speeds and orientations sampled equidis-128

tantly along trajectories from detailed numerical flow and transport simulations. Based129

on this analysis and using exact analytical expressions for the autocorrelation function130

of the orientation angle, we propose a stochastic approach for the two-dimensional par-131

ticle motion that explicitly accounts for the constraint imposed on transverse particle132

motion by the flow topology.133

Section 2 poses the flow and transport problem in two-dimensional heterogeneous134

porous media, defines the target variables and describes the direct numerical simulations.135

Section 3 reports on the quantification of the stochastic particle motion using pertur-136

bation theory for weak heterogeneity and in terms of a stochastic time-domain random137

walk model for strong medium heterogeneity. Section 4 validates the derived two-dimensional138

model against detailed numerical simulations.139

2 Flow and transport in heterogeneous porous media140

In this section we provide the details about the heterogeneous spatial arrangement141

of the hydraulic conductivity field, and the Darcy scale flow and transport problem. Fur-142

thermore, we define the transport-related observables.143

2.1 Darcy flow and hydraulic conductivity144

Flow in porous media is described on the continuum scale by the Darcy equation (Bear,145

1972)146

q(x) = −K(x)∇h(x), (1)147
148

where x denotes the two-dimensional space coordinate vector with components x and149

y, q is the Darcy flux vector (with components qx and qy) and h(x) is the hydraulic head,150

The hydraulic conductivity K(x) is a scalar. We do not consider sinks or sources and151

consider fluid and solid matrix as incompressible such that ∇ · q(x) = 0.152

–6–



manuscript submitted to Water Resources Research

In order to represent the spatial variability of the hydraulic conductivity we model153

K(x) as a multi-Gaussian random field with lognormal marginal distribution (Rubin,154

2003) and geometric mean KG. That is, the log-hydraulic conductivity Y (x) = ln[K(x)/KG]155

is represented as a second-order stationary multi-Gaussian random field characterized156

by zero mean and the isotropic exponential covariance function157

〈Y (x)Y (x′)〉 = σ2
Y exp (−|x− x′|/`Y ), (2)158

159

where, σ2
Y and `Y are the variance and the correlation length of Y , respectively. The an-160

gular brackets denote the ensemble average. In the following all length are non-dimensionalized161

with `Y .162

The mean hydraulic gradient is aligned with the x–direction of the coordinate sys-163

tem such that the mean Darcy velocity is 〈qi(x)〉 = δi1q. The Eulerian fluid velocity164

vector v(x) is obtained by rescaling the flux vector as v(x) = q(x)/φ, where φ is poros-165

ity. In the following, we assume that porosity is constant and set it equal to one, which166

is equivalent to rescaling time. The Eulerian mean velocity is 〈vi(x)〉 = δi1v. The char-167

acteristic advection time is defined by τv = `Y /v.168

The magnitude v(x) = |v(x)| of the Eulerian velocity denotes the flow speed. The169

Eulerian flow field is characterized by the distribution pe(v). It is obtained by spatial170

sampling as171

pe(v) = lim
V→∞

1

V

∫
Ω

dxδ[v − ve(x)], (3)172

173

where Ω is the sampling domain and V its volume. Due to ergodicity, spatial sampling174

of ve is equivalent to ensemble sampling, and thus, pe(v) = 〈δ[v − ve(x)]〉. In the fol-175

lowing, velocities and speeds are rescaled by v. This implies that 〈ve〉 = χ is equal to176

the advective tortuosity (Comolli et al., 2019).177

2.2 Particle motion178

We focus on purely advective transport due to its relevance for large-scale scenar-179

ios. We adopt a Lagrangian perspective by considering solute particles of equal mass whose180

trajectories x(t) are given by181

dx(t)

dt
= w(t), (4)182

183

where w(t) = v[x(t)] is the isochronic Lagrangian speed and t is time. The initial par-184

ticle position is denoted by x(t = 0) = x0.185

–7–
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The particle speed is given by w(t) = |w(t)|. The point PDF pt(v) of w(t) sam-186

pled over all streamlines is equal to the PDF pe(v) of Eulerian speeds (Hakoun et al.,187

2019)188

pt(v) = pe(v). (5)189
190

This is a result of the fact that the flow is volume conserving. In the following, we con-191

sider a uniform initial distribution of particle positions across the cross-section of the medium.192

This implies that the distribution p0(v) of initial speeds v0 = w0(t = 0) = v(x0) is193

p0(v) = pe(v) is equal to pe(v). That is, the initial speeds distribution is equal to the194

steady state distribution.195

For our analysis it is convenient to consider the advective particle motion as a func-196

tion of the streamwise distance (Comolli et al., 2019)197

dx̂(s)

ds
=

u(s)

u(s)
,

dt(s)

ds
=

1

u(s)
, (6)198

199

where s is the particle streamwise coordinate, u(s) = v[x̂(s)] is the s-Lagrangian ve-200

locity and u(s) = |u(s)| is the s-Lagrangian speed. The point PDF ps(v) of vs(s) is equal201

to the flux-weighted Eulerian speed PDF (Hakoun et al., 2019)202

ps(v) =
vpe(v)

〈ve〉
. (7)203

204

The distribution of initial speeds vs(s = 0) = v0 = vt(t = 0) is pe(v). This implies205

that the speed statistics evolve towards the steady state ps(v) with distance along the206

streamlines. The particle displacement in time is obtained in terms of x̂(s) as x(t) =207

x̂[s(t)], where s(t) = max[s|t(s) ≤ t].208

Our goal is to upscale the motion of solute particles that are advected in a Darcy209

scale heterogeneous flow field. As descriptors of the stochastic motion of the solute par-210

ticles, we consider the evolution of the dispersion scales along the longitudinal and the211

transverse directions, that is,212

σx(t) =
√
〈[x(t)− 〈x(t)〉]2〉, σy(t) =

√
〈y(t)2〉. (8)213

214

Note that, along the transverse direction the average particle position is zero, that is,215

〈y(t)〉 = 0, due to the uniform in the mean flow conditions. The knowledge of the dis-216

persive scales σx and σy can be insufficient to properly characterize solute transport in217

case the probability distribution of x(t) and y(t) are not Gaussian. Thus, we consider218

–8–
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also the probability distributions of the longitudinal and transverse particle positions cen-219

tered to their respective mean, that is,220

p(x, t) = 〈δ(x− [x(t)− 〈x(t)〉])〉, p(y, t) = 〈δ[y − y(t)]〉. (9)221
222

Note that, we subtract the average longitudinal particles position 〈x(t)〉 for convenience.223

Finally, we also consider the joint probability density function for the longitudinal and224

transverse particle positions, that is,225

p(x, t) = 〈δ[x− x(t)]〉. (10)226
227

2.3 Numerical Simulations228

We consider a two dimensional domain of size 600`Y × 150`Y . Different realiza-229

tions of Y (x) are generated using a sequential Gaussian simulator (Deutsch & Journel,230

1992) on a regular Cartesian grid with element size equal to `Y /10. We generate 100 Monte231

Carlo realizations of Y (x) for three different scenarios with σ2
Y = 1, 2 and 4.232

For the flow problem, we impose permeameter-like boundaries conditions, that is,233

no-flow along the bottom (y = 0) and top (y = 150`Y ) boundaries, a fixed value of234

the hydraulic head along the left (x = 0) boundary and qi = δix along the right (x =235

600`Y ) boundary. Note that, the imposed boundary conditions lead to a uniform in the236

mean flow, 〈qi〉 = δix. Thus, we identify x as the longitudinal (or mean flow) direction237

and y as the transverse direction. We use the same grid structure employed for the gen-238

eration of Y (x). The flow problem is solved numerically using a mixed-finite element solver (Younes239

et al., 2010). The flow statistics are sampled over a subregion of 560`Y×110`Y to avoid240

boundary effects.241

The numerical solution of the transport problem is based on the discretized ver-242

sion of (6),243

x̂n+1 = x̂n +
ve(x̂n)∆s

|ve(x̂n)|
, tn+1 = tn +

∆s

|ve(x̂n)|
(11)244

245

where x̂n = x̂(sn), tn = t(sn), sn = n∆s and ∆s is the constant spatial increment246

here set to ∆s = `Y /100. We inject 110 particles uniformly spaced over a straight line247

perpendicular to the mean flow direction covering 90`Y . The line is placed at at distance248

of 30`Y downstream from the x = 0 boundary and at distances of 20`Y from the lat-249

eral boundaries. A bilinear interpolation scheme is used to determine the flow velocities250

within grid cells (Pollock, 1988).251
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3 Stochastic particle motion252

In this section, we study the stochastic dynamics of two-dimensional particle mo-253

tion in random Darcy’ flow fields. In heterogeneous porous media, streamlines are tor-254

tuous as illustrated in Figure 1. Therefore, the velocity varies along the streamlines. The255

series {w(t)} of isochronously sampled Lagrangian speeds typically exhibits intermittent256

behaviour, that is, long periods of low speeds alternate with short periods of intensively257

fluctuating high speeds (Hakoun et al., 2019). This intermittent behavior is due to the258

fact that flow velocities vary on a characteristic length scale, rather than a time scale.259

Therefore, the residence time in low velocities is higher than in high velocities. As a con-260

sequence, the equidistantly sampled velocity series {u(s)} is not intermittent. Thus, we261

consider here particle motion as a function of streamline distance as expressed by Eqs. (6),262

that is, in terms of a time-domain random walk. In this context, we first recall results263

from second-order perturbation theory in the fluctuations of v(x) around its mean value,264

which is valid for low and moderate spatial heterogeneity. Then, we use a stochastic time-265

domain random walk approach to capture two-dimensional particle motion at higher de-266

gree of heterogeneity.267

3.1 Perturbation theory268

We expand the equations of motion (6) up to first order in the fluctuations of the269

random flow field v′(x) = v(x)− v. Thus, we obtain270

dx̂(s)

ds
= 1,

dŷ(s)

ds
=
vy[x̂0(s)]

v
,

dt(s)

ds
=

1

v
− v′x[x̂0(s)]

v2 , (12)271

272

where x̂0(s) = (s, 0)>. The superscript > denotes the transpose. Note that v′y(x) =273

vy(x). We consistently omit terms of quadratic order in the velocity fluctuations. From274

Eqs. (12), we obtain for x̂(s)275

x̂(s) = s, ŷ(s) =

s∫
0

ds′vy[x̂0(s)] (13)276

277

The particle displacement x(t) in time is given by x(t) = x̂[s(t)]. With s(t) = max[s|t(s) ≤278

t], the longitudinal displacement can be written as279

x(t) = max[s|t(s) ≤ t] = vt+

t∫
0

dt′v′x[x0(t′)], (14)280

281

where x0(t) = (vt, 0)>. This formulation shows that the longitudinal particle motion282

is determined by the variability of travel time t(s). The transverse displacement is given283

–10–
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Figure 2: Time behaviour of (a) the transverse σy and (b) longitudinal dispersive scale

σx considering results grounded on the direct numerical simulation (DNS - symbols) and

the perturbation theory solution of Dagan, Eq. (22) and Eq. (30) (Dagan - solid curves),

for a mildly degree of heterogeneity, i.e., σ2
Y = 1.

by284

y(t) =

vt∫
0

ds′vy[x0(s)] = ŷ(vt). (15)285

286

It is determined by the variability of the spatial increment rather than the travel time.287

288

3.1.0.1 Transverse dispersion We consider now the transverse increment pro-289

cess290

ν(s) = sin[α(s)] =
vy[x̂0(s)]

v
, (16)291

292

where α(s) is the angle between the tangent of the streamline at distance s and the x-293

direction. In first-order perturbation theory, α(s) = ν(s). That is, the statistic of ν(s)294

and α(s) are identical in this approximation. In order to determine their statistics, we295

first determine the statistics of vy(x). First-order perturbation theory in Y (x) renders296

vy(x) as a linear functional of Y (x) (Dagan, 1984),297

vy(x) = v

∞∫
−∞

dx′κy(x− x′)Y (x′). (17)298

299

The kernel κy(x) can be written as300

κy(x) =
∂2G(x)

∂x∂y
, G(x) = − 1

2π
ln(|x|). (18)301

302

–11–
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As Y (x) is a Gaussian distributed random field, the linearity of relation (17) implies that303

vy(x) is also Gaussian distributed. Since vy(x) is a Gaussian random field, also ν(s) is304

Gaussian. Thus, they can be fully characterized by the mean, variance σ2
ν and correla-305

tion function ρν(s) = 〈ν(s′ + s)ν(s′)〉/σ2
ν . Its mean is 〈ν(s)〉 = 0, its variance is σ2

ν =306

σ2
Y /8 and its correlation function is ρν(s) = f(s/`Y ) where (Hsu, 1999)307

f(s) =
72

s4
− 4

s2
− 8

(
1

s
+

4

s2
+

9

s3
+

9

s4

)
exp(−s). (19)308

309

The increment process ν(s) is a stationary multi-Gaussian process. In other words, it310

is a correlated Gaussian noise. Thus, transverse particle motion describes the correlated311

random walk312

dŷ(s)

ds
= ν(s). (20)313

314

The mean transverse displacement is 〈ŷ(s)〉 = 0, and its variance σ̂2
y(s) is315

σ̂2
y(s) = 2σ2

ν

s∫
0

ds′
s′∫

0

ds′′ρν(s′′). (21)316

317

The double integral can be evaluated explicitly by inserting expression (19), which gives (Da-318

gan, 1988)319

σ̂2
y(s) = σ2

Y `
2
Y

[
ln(s/`Y )− 3

2
+ γ + E1(s/`Y ) +

`2Y
s2
− 3`2Y exp(−s/`Y )(1 + s/`Y )

s2

]
. (22)320

321

where γ is the Euler-Mascheroni constant and E1(t) the exponential integral (Abramowitz322

& Stegun, 1972). The displacement variance σ2
y(t) is obtained according to Eq. (15) by323

setting s = vt in Eq. (22). In the limit s� 1, Eq. (22) is quadratic in s,324

σ̂2
y(s) = σ2

νs
2. (23)325

326

For distances s� `Y , it evolves as327

σ̂2
y(s) = σ2

Y `
2
Y ln(s/`Y ). (24)328

329

It grows with the logarithm of time, that is, it shows ultraslow diffusion, which is due330

to the transverse confinement of the streamlines of the flow field. Figure 2 shows the evo-331

lution of σy(t) given by Eq. (22) for s = vt. The perturbation theory expression is com-332

pared to direct numerical simulations for σ2
Y = 1. While the perturbation theory pro-333

vides a good description of the overall evolution of σy(t), it underestimates σy(t) for times334

larger than τv. Nevertheless, the data confirms the predicted asymptotic ln(t) scaling335

of σ2
y(t).336
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3.1.0.2 Streamwise dispersion For completeness, we provide here also the per-337

turbation theory results for streamwise dispersion. The streamwise velocity vx(x) is given338

in perturbation theory by (Dagan, 1984)339

v′x(x) = v

∞∫
−∞

dx′κx(x− x′)Y (x′), (25)340

341

where the kernel κx(x) is defined by342

κx(x) = δ(x)− ∂2G(x)

∂x2
. (26)343

344

Thus, vx(x) is a correlated Gaussian random field. As a consquence, the Lagrangian ve-345

locity fluctuation w′x(t) ≡ vx[x0(t)] is a correlated Gaussian process and x(t) satisfies346

the correlated random walk347

dx(t)

dt
= v + w′x(t). (27)348

349

The mean of w′x(t) is zero and its variance is given by σ2
wx = 3v2σ2

Y /8. Its correlation350

function is ρwx(t) = g(t/τv) with (Hsu, 1999)351

g(t) =

20

3

1

t2
[
1− (1 + t) exp(−t)

]
− 12

3

[
6

t4
−
(

6

t4
+

6

t3
+

3

t2
+

1

t

)
exp(−t)

] . (28)352

353

The streamwise displacement variance is given by354

σ2
x(t) = 2σ2

wx

t∫
0

dt′
t′∫

0

dt′′ρwx(t′′). (29)355

356

Explicit evaluation of the double integral using expression (28) gives (Dagan, 1988)357

σ2
x(t) = σ2

Y v`Y

[
2t/τv − 3 ln(t/τv) +

3

2
− 3γ − E1(t/τv) +

τ2
v exp(−t/τv)(1 + t/τv)− 1

t2

]
.

(30)

358

359

Figure 2 shows the evolution of σx(t) from Eq. (30). Also here, the perturbation theory360

expression is a good quantitative descriptor for overall evolution of σ2
x, but underesti-361

mates the numerical data at asymptotic times. In the following, we discuss a stochas-362

tic time-domain random walk model to describe solute dispersion for strong spatial het-363

erogeneity.364

3.2 Stochastic time-domain random walk365

We use a stochastic time-domain random approach to quantify particle motion at366

large spatial heterogeneity. The time-domain random walk approach models particle mo-367

tion at equidistant displacements along streamlines based on Equations (6). This approach368
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has been used to quantify streamwise particle transport, that is, arrival time distribu-369

tions, streamwise concentration profiles and displacement moments in porous and frac-370

tured media (Painter et al., 2008; Kang et al., 2011; Comolli et al., 2019; Hyman et al.,371

2019). In the following, we briefly recapitulate the modeling of streamwise particle mo-372

tion using the approach of Comolli et al. (2019), before we analyze the dynamics of trans-373

verse motion.374

3.2.1 Streamwise motion375

The streamwise motion of solute particles is described by the following set of equa-376

tions (Dentz et al., 2016; Comolli et al., 2019),377

dx(s)

ds
= χ−1,

dt(s)

ds
=

1

vs(s)
, (31)378

379

where χ denotes the advective tortuosity (Koponen et al., 1996), which is defined as380

χ =
ve
v

=
1

〈cos[α(s)]〉
, (32)381

382

The analysis of Hakoun et al. (2019) for two-dimensional Darcy-scale heterogeneous porous383

media showed that the series of equidistant particle speeds {vs(s)} can be modeled in384

terms of an Ornstein-Uhlenbeck process for the normal scores transform ω(s) of vs(s).385

The normal score transform is defined as386

ω(s) = Φ−1{Ps[v(s)]}, (33)387
388

where Φ(w) is the cumulative unit Gaussian distribution, and Φ−1(s) its inverse, Ps(v)389

is the cumulative distribution of vs(s). The normal score transform ω(s) satisfies390

dω(s)

ds
= −ω(s)

`c
+

√
2

`c
η(s), (34)391

392

where `c denotes the correlation length, and η(s) is a Gaussian white with zero mean393

and covariance 〈η(s)η(s′)〉 = δ(s − s′). Hakoun et al. (2019) found the following em-394

pirical relationship between between `c and the statistics of the underlying hydraulic con-395

ductivity field (see also Table 1),396

`c = `Y (0.181σ2
Y + 2.221). (35)397

398

This regression is consistent with the prediction `c = 8`Y /3 of perturbation theory (Cvetkovic399

et al., 1996).400
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Figure 3: Probability distribution of the angle α obtained from (circles) spatial sampling

and (solid lines) equidistant sampling along streamlines for σ2
Y = (1, 2, 4).

3.2.2 Transverse motion401

Here, we analyze transverse particle motion in order to understand and quantify402

its stochastic dynamics. The equation of motion of solute particles in direction trans-403

verse to the mean flow can be written as404

dŷ(s)

ds
= sin[α(s)]. (36)405

406

In order to probe the transverse motion, we analyze the distribution of α(s) sampled along407

and across trajectories408

pα(a) =
1

V0

∫
Ω0

dx0
1

L

L∫
0

ds′δ[a− α(s′,x0)], (37)409

410

where α(s,x0) denotes the angle along the trajectory that starts at x0, Ω0 the set of ini-411

tial points and V0 its volume. We assume that the distribution is stationary, that is, it412

does not depend on s. We also consider sampling of the angle α(x) in space,413

p′α(a) =
1

V

∫
Ω

dxδ[a− α(x)]. (38)414

415

Figure 3 shows that the two sampling methods give approximately the same distribu-416

tion, which indicates that the angle α is independent from the velocity. This observa-417

tion is consistent with the findings of Meyer et al. (2013).418

The distribution pα(a) has zero mean and is symmetric around zero. In fact, as shown419

in Section 3.1, perturbation theory indicates that for low degree of heterogeneity α(s)420

is Gaussian distributed with variance σ2
α = σ2

Y /8. Figure 4a suggests that for increas-421

ing disorder, pα(a) follows a Gaussian distribution that is wrapped around the unit cir-422
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cle, i.e., a wrapped Gaussian distribution (Fisher, 1993). In Figure 4, data for the an-423

gle distribution is compared with the wrapped Gaussian distribution. While perturba-424

tion theory provides a good estimate for the shape of pα(x), it overestimates the width425

of pα(a) for increasing σ2
Y . Thus, we adjust σ2

α on the base of the Eulerian statistics of426

the angle α, see previous discussion of Figure 3.427

Furthermore, we consider the Lagrangian correlation function of α(s), which is de-428

fined by429

ρα(s) =
1

σ2
αV0

∫
Ω0

dx0
1

L

L∫
0

ds′α(s+ s′,x0)α(s′,x0). (39)430

431

Again, we assume that the statistics are stationary. As shown in Section 3.1, perturba-432

tion theory indicates that ρα(s) is indeed stationary and given by ρα(s) = f(s/`Y ), where433

f(s) is given by (19). Figure 4b shows ρα(s) for different σ2
Y . The correlation decays sharply434

at short distances and becomes negative for distances larger than `Y , that is, at larger435

distances, angles are persistently anti-correlated. Note that, expression (19) embeds these436

features while there is a quantitative mismatch with the numerical data. Thus, for in-437

creasing σ2
Y , we represent the correlation function by Eq. (19) as438

ρα(s) = f(s/`a), (40)439
440

where the correlation length `a is adjusted from the tail of the empirical Lagrangian cor-441

relation function to capture the long-range anti-correlation. Based on these observations,442

in the following, we first pose a Markov model for the evolution of the angle, and then443

a long-range correlated model.444

3.2.2.1 Ornstein-Uhlenbeck process Based on the observation that the correla-445

tion function ρα(s) decays rapidly to zero with lag-distance s, and that its distribution446

is Gaussian, we pose an Ornstein-Uhlenbeck process for α(s) that has both these prop-447

erties. Thus, the angle follows the Langevin equation448

dα(s)

ds
= −α(s)

`α
+

√
2
σ2
α

`α
η(s), (41)449

450

where `α denotes a characteristic fluctuation scale of α(s). In this approach, the corre-451

lation function ρα(s) is exponential (Gardiner, 1986),452

ρα(s) = exp(−|s|/`α). (42)453
454

In order to asses the validity of this approach, we compare it to the perturbation455

theory results for the displacement variance σ̂2
y(s) for s � `. Equation (24) indicates456
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Figure 4: (a) Probability distribution of α(s) grounded on (circles) the DNS, wrapped

Gaussian distributions with σ2
α parameterized by (dashed lines) perturbation theory and

(solid lines) by the Eulerian statistics of α, for σ2
Y = (1, 2, 4). (b) Correlation function of

α(s) from (circles) DNS, (thin solid lines) a Markov model, (black dashed line) perturba-

tion theory, and (thick solid lines) perturbation theory with adjusted correlation length

`a.

that σ̂2
y(s) ∼ ln(s/`Y ) increases with the logarithm of distance s. For weak heterogene-457

ity, that is, σ2
α � 1, the transverse displacement can be approximated by458

dŷ(s)

ds
= α(s), (43)459

460

and the correlation length is `α = `Y . Using expression (42) in Eq. (21) gives for s�461

`Y462

σ̂2
y(s) = 2σ2

α`Y s. (44)463
464

It increases linearly with distance. Thus, the asymptotic behavior of the Markov model (41)465

is not compatible with the true behavior at large distances. Thus, in the following, we466

consider a model that reproduces the large time behaviors predicted by perturbation the-467

ory.468

3.2.2.2 Stationary correlated Gaussian process Careful inspection of ρα(s) in Fig-469

ure 4b reveals that after the sharp initial decrease of the correlation function, a persis-470

tent degree of anti-correlation emerges. The latter is a fundamental aspect of transverse471

motion, and is a consequence of the solenoidal character of the flow field, that is, ∇·q(x) =472

0. This property leads to the meandering of the streamlines as shown in Figure 1.473

It is important to note that the negative values of ρα(s) are small. That is, while474

particles tend to persistently change the transverse direction, the magnitudes of the trans-475
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Figure 5: Time behaviour of (a) the longitudinal σx and (b) the transverse σy (inset bi-

linear scale) dispersion scales for σ2
Y = (1, 2, 4). (c) Samples of particle trajectories (black

curves) released in a Darcy’ flow field (v, logarithmic scale, blue low and green high) for

σ2
Y = 4: focusing of the trajectories in the nearest set of preferential flow paths underpins

the intense growth of σy(t) at middle times (O(t) ∼ (1 − 10)τv), while the meandering of

the trajectories sustains the logarithmic growth of σy(t) at the large scale (O(t) ∼ 100τv).

verse excursions are only weakly correlated. In other words, the asymmetry of ρα(s) in476

terms of streamwise persistence and intensity of the anti-correlation are the key elements477

underpinning the limitation of particle motion in the transverse direction that manifests478

ultraslow transverse dispersion as expressed by Eq. (24). As shown in Section 3.1, per-479

turbation theory indicates that the angle process α(s) can be described as a stationary480

correlated Gaussian noise. In full analogy, for large disorder variance we also model α(s)481

as a correlated Gaussian process characterized by the correlation function (40).482

To generate trajectories of α(s), it is convenient to introduce the covariance func-483

tion of α, which is definded by Cα(s) = σ2
αρα(s). The covariance function can be ex-484

panded as485

Cα(s) =

∞∑
n=1

λnφn(s), (45)486

487
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σ2
Y χ σ2

α `c `α

1 1.06 0.11 2.4 1.28

2 1.1 0.21 2.58 1.4

4 1.2 0.38 2.95 1.8

Table 1: Values of model parameters in the two-dimensional stochastic time-domain ran-

dom walk approach.

where the φn(s) are the eigenfunctions and the λn the respective eigenvalues of Cα(s)488

(D. Zhang & Lu, 2004; Dell’Oca & Porta, 2020). Thus the stochastic process α(s) can489

be represented by the Karhunen-Loève expansion490

α(s) =

∞∑
n=1

√
λnφn(s)ξn, (46)491

492

where the ξn are independent identically distributed Gaussian random variables of zero493

mean and unit variance. The numerical implementation is detailed in Appendix A.494

4 Transport behaviors495

In this section we compare the predictions of the stochastic time domain random496

walk model with data from direct numerical simulations for the longitudinal and trans-497

verse dispersive scales, streamwise and transverse particle distribution, as well as the full498

two-dimensional particle distributions. The direct flow and transport simulations are de-499

scribed in Section 2.3. We consider media characterized by σ2
Y = (1, 2, 4).500

The model parameters χ and σ2
α of the stochastic time-domain random walk model501

are fully constrained by the Eulerian flow properties. The correlation legnth `c is given502

by the regression in Eq. (35). The correlation length `α is adjusted from the Lagrangian503

correlation function as outlined in Section 3.2.2. Table 1 lists the values of `c, χ, σ2
α and504

`α for the different values of σ2
Y .505

4.1 Spatial variance506

Figure 5 shows the time behaviour of the streamwise and transverse dispersion scales507

σx and σy from the the direct numerical simulations and the stochastic time-domain ran-508

dom walk model. In agreement with Comolli et al. (2019), the stochastic TDRW describes509
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Figure 6: Probability distribution of particle position along the longitudinal, i.e., p(x, t),

and transverse, i.e., p(y, t) (only the positive branch of the symmetric distribution is de-

picted), directions at diverse times considering (a, d) σ2
Y = 1, (b, e) σ2

Y = 2 and (c, f)

σ2
Y = 4. Results based on the (symbols) direct numerical simulations and (solid lines)

TDRW are depicted.

the full temporal evolution of σx including the ballistic regimes for t < τv, in which σx(t) ∼510

t, and the cross-over from ballistic to the asymptotic behaviors σx ∼
√
t at times t�511

τv.512

The stochastic TDRW model captures also the full time evolution of σy(t) includ-513

ing the early time ballistic regime and the transition to ultraslow diffusion at times t�514

τv. The strong increase of σy at intermediate times reflects the focusing of solute par-515

ticles from their initial positions into flow channels as illustrated in Figure 5c. For later516

times, the transverse displacement is determined by the meandering of these flow chan-517

nels, see Figures 1 and 5c. This meandering confines transverse motion at large-scale,518

which is here qualitatively and quantitatively reproduced by the stochastic TDRW model.519
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4.2 Particle distributions520

In addition to the dispersion scales, we consider now the longitudinal and trans-521

verse particles distributions. Figure 6 depicts snapshots of p(x, t) and p(y, t) at differ-522

ent times. For p(y, t) only the positive branch of the symmetric distribution is shown.523

Figures 6a, c, and e show satisfactory agreement between the numerical data for524

p(x, t) and the stochastic TDRW model, which is able to reproduce the full transition525

from initially skewed to asymptotic Gaussian behavior for moderately to strongly het-526

erogeneous media.527

Figures 6b, d, and f highlights the satisfactory agreement between the numerical528

data for p(y, t) and the stochastic TDRW model from early to late times, and for all de-529

grees of heterogeneity under consideration. We observe a rapid expansion of p(y, t) at530

the early times (e.g., t = (1, 5, 10)τv), that is, as the solute particles tend to be focused531

towards the nearest flow channels such that larger absolute values of y become more likely.532

As time passes (t = (20, 50, 100, 200)τv), solute particles travel within flow channels char-533

acterized by a meandering structure which underpins the decreasing rate of expansion534

of p(y, t), consistent with the behavior of σy(t) shown in Figure 5. Note that, p(y, t) tends535

toward Gaussianity at late times (e.g., t = (100, 200)τv). Gotovac et al. (2009) consid-536

ered the transverse particle distribution after fixed travel distances and found that it ap-537

proaches Gaussianity already after relatively short distances of about 5`Y . Our results538

for the distribution of ŷ(s) after fixed travel distances s (not shown) confirm these find-539

ings.540

Finally, we consider the joint distribution p(x, t) of streamwise and transverse par-541

ticle positions at different times. Figure 7 depicts p(x, t) from the numerical data in the542

upper half of each panel, and the stochastic TDRW model in the lower half, at times t =543

(5, 20, 50)τv for σ2
Y = 1, 2, 4. We find an overall satisfactory agreement between the nu-544

merical data and the stochastic TDRW model, which corroborates the assumption of treat-545

ing the streamwise longitudinal and transverse transport as two independent stochas-546

tic processes (Meyer et al., 2013; Meyer & Tchelepi, 2010).547

5 Conclusions548

We analyze the stochastic dynamics of two-dimensional particle motion in Darcy-549

scale heterogeneous porous media. The spatial variability of the hydraulic conductivity550
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Figure 7: Joint probability distribution of particles locations p(x, t) at times t =

(5, 20, 50) and for diverse degree of formation heterogeneity (a, d, g) σ2
Y = 1, (b, e, h)

σ2
Y = 2 and (c, f, i) σ2

Y = 4. Results grounded on the DNS and on the stochastic model

are depicted in the top and bottom half of each panel, respectively. The colormap is in

logarithmic scale (blue low, yellow high).

is represented using a stochastic modeling approach such the K(x) is a realization of a551

lognormally distributed multi-Gaussian spatial random field. The Lagrangian particle552

dynamics are analyzed through numerical particle tracking simulations as well as per-553

turbation theory by using an equidistant sampling strategy, which acknowledges the spa-554

tial organization of the Eulerian and Lagrangian flow velocities on a characteristic length555

scale. The perturbation theory analysis reveals that longitudinal particle motion is de-556

termined by the variability of travel times along streamlines, while transverse motion is557

determined by the fluctuation structure of transverse displacements. The former can be558

captured by a Markov model for the equidistantly sampled flow speeds, that is, flow speeds559

are only weakly correlated. The latter, however, turns out to be persistently anti-correlated560

as a consequence of the solenoidal character of the flow field. This strong anticorrela-561

tion leads to an ultraslow growth of the transverse displacement variance with distance562

and time. The transverse displacements are characterized by the series of angles between563

the streamlines and the mean flow direction. Perturbation theory shows that the angle564

distribution can be represented by a wrapped Gaussian distribution, which is valid also565

for increasing heterogeneity strength. Unlike the speed series, the angle series cannot be566

represented as a Markov process. The angular increments are modeled as a correlated567

Gaussian noise, which renders the angle process as a correlated Brownian motion. The568
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Gaussian increment process is generated here using a Karhunen-Loeve expansion. For569

low medium heterogeneity, the model can be fully constrained by medium and flow prop-570

erties using perturbation theory. For increasing heterogeneity, the model can be constrained571

by Eulerian flow statistics and the characteristic length scale of the fluctuations of the572

Lagrangian angular series.573

The proposed stochastic TDRW model combines a Markov model for the particle574

speeds with a correlated Gaussian noise for transverse particle displacements. Compar-575

ison with detailed numerical simulations for the longitudinal and transverse dispersion576

scales and the full particle distributions shows that the model captures the dynamics of577

advective particle motion both qualitatively and quantitatively. This underpins the crit-578

ical importance of correctly representing the topological constraints of the underlying579

Eulerian flow field in the large scale particle dynamics (Lester et al., 2021, 2022). These580

behaviors cannot be accounted for by two-dimensional TDRW or CTRW schemes that581

model transverse displacements as Markov processes. The proposed stochastic TDRW582

model is able to quantify large scale longitudinal and transverse advective particle mo-583

tion in two-dimensional divergence-free Darcy flows as can occur on shallow and strat-584

ified aquifers as well as rough fractures. The stochastic TDRW approach can be extended585

to flow and transport in three-dimensional porous media by following the same strategy586

as proposed in this paper.587
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Appendix A Generation of long-range correlated stochastic angle se-598

ries599

The eigenvalues λn and eigenfunctions φn(s) of the covariance function Cα(s) are600

obtained from the following Fredholm equation601 ∫ ∞
0

Cα(s− s′)φn(s′)ds′ = λnφn(s). (A1)602

603

For general Cα(s), Eq. (A1) can be solved numerically as outlined in the following. Firstly,604

we discretize s into N intervals of length ∆s such that si = i∆s. Then, we define the605

symmetric N ×N covariance matrix Cij as606

Cij = Cα(si − sj)∆s. (A2)607
608

The eigenfunctions are discretized as φ
(n)
i = φn(si) and are represented by the eigen-609

vectors φ(n). Teh angle process is discretized as αi = α(si) and represented by the vec-610

tor α.611

The discrete version of Eq. (A1) is612

Cφ(n) = λnφ
(n). (A3)613

614

The eigenvalues of C are obtained from615

det (C− λI) = 0, (A4)616
617

where I is the identity matrix. The eigenvector φ(n) corresponding to the nth eigenvalue618

λn is obtained by solving Eq. (A3). Thus realizations of the correlated Gaussian process619

α are generated according to the discrete version of Eq. (46) as620

α =

Nλ∑
n=1

√
λnφ

(n)ξn. (A5)621

622

Here we set Nλ = 1000 < N modes. Furthermore, we set ∆s = lY /10 and N = 5000.623

The computation of the eigenvalues and eigenvectors is carried out with standard com-624

mands in MATLAB (MathWorks, 2015).625
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Abstract11

We study the upscaling and prediction of dispersion in two-dimensional heterogeneous12

porous media with focus on transverse dispersion. To this end, we study the stochastic13

dynamics of the motion of advective particles that move along the streamlines of the het-14

erogeneous flow field. While longitudinal dispersion may evolve super-linearly with time,15

transverse dispersion is characterized by ultraslow diffusion, that is, the transverse dis-16

placement variance grows asymptotically with the logarithm of time. This remarkable17

behavior is linked to the solenoidal character of the flow field, which needs to be accounted18

for in stochastic models for the two-dimensional particle motion. We analyze particle ve-19

locities and orientations through equidistant sampling along the particle trajectories ob-20

tained from direct numerical simulations. This sampling strategy respects the flow struc-21

ture, which is organized on a characteristic length scale. Perturbation theory shows that22

the longitudinal particle motion is determined by the variability of travel times, while23

the transverse motion is governed by the fluctuations of the space increments. The lat-24

ter turns out to be strongly anti-correlated with a correlation structure that leads to ul-25

traslow diffusion. Based on this analysis, we derive a stochastic model that combines a26

correlated Gaussian noise for the transverse motion with a spatial Markov model for the27

particle speeds. The model results are contrasted with detailed numerical simulations28

in two-dimensional heterogeneous porous media of different heterogeneity variance.29

Plain Language Summary30

The hydraulic conductivity of environmental geological formation can exhibit strong31

spatial variations. This leads to the formation of complex flow fields, whereas the flow32

tends to by-pass low conductivity areas and focuses within preferential flow paths. This33

complexity controls the transport dynamics of dissolved chemicals. Moreover, the hid-34

den nature of the subsurface environment leads to a lack of knowledge about the details35

of the formation properties requiring a stochastic approach for the prediction of the fate36

of transported solutes. We propose a stochastic model capable of capturing the salient37

features of large scale solute transport in two dimensional heterogeneous Darcy flow. We38

accomplish the latter by incorporating key physical transport mechanisms that occur in39

the direction aligned with and transverse to the preferential flow orientation.40
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1 Introduction41

Non-Fickian solute transport, that is, non-linear scaling of dispersion, non-Gaussian42

concentration distributions, early and late solute arrivals, have been documented in het-43

erogeneous porous and fractured media from the pore to the regional scale (Berkowitz44

et al., 2006; Neuman & Tartakovsky, 2009; Bijeljic et al., 2011). The quantitative un-45

derstanding of these behaviors plays a central role for the efficient modeling and predic-46

tion of large scale solute transport in environmental and industrial applications rang-47

ing from groundwater management and remediation (Domenico & Schwartz, 1998) to48

geological carbon dioxide storage (Niemi et al., 2017).49

In the present work we focus on the transport of solute in two-dimensional Darcy-50

scale porous media that are characterized by spatial variability in the hydraulic conduc-51

tivity. In this context, diffusion and mechanical dispersion control the dispersive char-52

acter of solutes at the local scale, that is on lengths smaller than the characteristic het-53

erogeneity length scale. At larger scales, solute dispersion is dominated by the hetero-54

geneity of the hydraulic conductivity field, which underpins the emergence of complex55

flow fields. Large scale applications dealing with solute transport in geological media are56

concerned with scales on the order of ten to hundred times the characteristic correlation57

length of the hydraulic conductivity, at which the advective component of the motion58

is the prevailing factor controlling the dispersive behaviour of solutes (Rubin, 2003). Thus,59

we focus on purely advective transport, which provides the backbone for mixing and re-60

action processes (Dentz et al., 2022). We consider two-dimensional Darcy flows, which61

can represent flow in shallow aquifers, three dimensional formations characterized by a62

large correlation length in one spatial direction (e.g., stratification) (Rubin, 2003), as well63

as flow in rough fractures (Zimmerman & Bodvarsson, 1996; Z. Wang et al., 2020; Kot-64

twitz et al., 2020; Kong & Chen, 2018; Hu et al., 2020). Furthermore, Lester et al. (2021,65

2022) recently highlighted the profound similarity of the flow kinematics for Darcy flow66

in three-dimensional with those in two-dimensional heterogeneous porous media, which67

indicates that insights from two dimensions may be transferred to three-dimensional me-68

dia.69

The hidden nature of geological formations, in combination with spatial variations70

in their hydraulic properties, has led to the development of stochastic models to predict71

the fate of dissolved substances (Rubin, 2003; Neuman & Tartakovsky, 2009; Berkowitz72
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Figure 1: (Left panel)Spatial distribution of Y (x) for σ2
Y = 4. (Right panel) Spatial

organization of the module of the Darcy’ velocity (logarithmic scale, blue low and green

high) considering a strongly heterogeneous geological formation. Samples of particles

trajectories are also drawn (black curves): note the emergence of preferential flow paths

characterized by meandering-like structures as we proceed downstream from the injection

location. The variance of the logarithm of K(x) is 4, its correlation length is 10 m.

et al., 2006; Frippiat & Holeyman, 2008; Dell’Oca et al., 2018, 2019). In this context,73

major efforts have been devoted to conceptualize and formalize effective stochastic mod-74

els to quantify average solute transport along the mean flow direction. These efforts in-75

clude stochastic perturbation theory (Rubin, 2003), self-consistent time-domain random76

walk formulations (Cvetkovic et al., 2014; Fiori et al., 2015, 2013) through the use of frac-77

tional advection-diffusion equations (Benson et al. (2000); Y. Zhang et al. (2009)), mul-78

tirate mass transfer approaches (Haggerty & Gorelick, 1995; Harvey & Gorelick, 2000),79

and continuous time random walks (Edery et al., 2014; Comolli et al., 2019; Dentz et al.,80

2020).81

Transverse dispersion can be measured by the displacement variance of advectively82

transported solute particles (Dagan, 1989). Using stochastic perturbation theory, it has83

been shown (Dagan, 1984) that transverse dispersion grows ballistically at short times,84

that is with the square of time, and eventually crosses over to an ultra-slow dispersive85

behavior that is characterized by a growth with the logarithm of time. As a consequence,86

the transverse dispersion coefficient, which is defined in terms of the time-derivative of87

the displacement variance, decays to zero asymptotically. This is an exact result, which88

can be derived without recourse to perturbation theory (Attinger et al., 2004), and which89

has been observed in direct numerical simulations of flow and transport in two-dimensional90

heterogeneous porous media (Bellin et al., 1992; Salandin & Fiorotto, 1998; de Dreuzy91
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et al., 2007). This ultra-slow dispersion behavior is intimately linked to the meander-92

ing of the streamlines that arise because the flow field is divergence-free. The stream-93

line meandering is illustrated in Figure 1, which shows a colormap of the flow speeds to-94

gether with a set of purely advective particle trajectories. It is interesting to note that95

ultra-slow dispersion emerges in a variety of systems characterized by crowded or con-96

fined environments such as dense colloids (Boettcher & Sibani, 2011) and colloidal hard-97

sphere system, (Sperl, 2005), for vacancy-mediated diffusive motion, (Bénichou & Os-98

hanin, 2002), and diffusion in a random force landscapes (Havlin & Ben-Avraham, 2002),99

but also in human mobility, (Song et al., 2010). In the context of flow in two-dimensional100

porous media, the confinement arises from the fact that the flow is divergence-free, which101

dictates the spatial organization of the streamlines.102

The constraint imposed by the flow topology on transverse dispersion needs to be103

reflected in large scale transport models for streamwise and transverse solute dispersion.104

The multi-dimensional CTRW approach of Dentz et al. (2004) represents transverse dis-105

persion in heterogeneous media through uncorrelated Gaussian-distributed space incre-106

ments combined with random transition times. W. Wang & Barkai (2020) derive a two-107

dimensional fractional-in-space advection-dispersion equation based on this approach to108

represent the bulk dispersion behavior in geological media. These models do not account109

for the topological constraints imposed by the divergence-free Darcy flow equation. In110

fact, this type of CTRW represents particle motion under spatially random retardation111

properties (Dentz & Castro, 2009).112

Meerschaert et al. (2001) proposed a multi-dimensional fractional diffusion model113

to capture super-diffusive anisotropic transport regimes along the longitudinal and the114

transverse directions. Y. Zhang & Benson (2013) use a two-dimensional space-time frac-115

tional approach with space-dependent diffusion coefficients to model the vertically in-116

tegrated tritium plumes of the MADE-2 experiment. Also these frameworks do not ac-117

count for the impact of topological constraints on transverse dispersion.118

Meyer & Tchelepi (2010) propose a Langevin model for the evolution of stream-119

wise and transverse particle velocities that uses drift and diffusion coefficients that are120

obtained by calibrating suitable continuous functions to Monte-Carlo simulations of the121

direct flow and transport problem. This formulation reproduces the evolution of longi-122

tudinal and transverse dispersion. The framework was used for uncertainty quantifica-123
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tion in subsurface flows (Meyer et al., 2013), and its relation to first-order perturbation124

theory was studied in view of the model parameterization (Meyer, 2017, 2018).125

In this paper we study the stochastic dynamics of particle motion in two-dimensional126

Darcy flow with focus on the evolution of particle displacements transverse to the mean127

flow direction. To this end we study particle speeds and orientations sampled equidis-128

tantly along trajectories from detailed numerical flow and transport simulations. Based129

on this analysis and using exact analytical expressions for the autocorrelation function130

of the orientation angle, we propose a stochastic approach for the two-dimensional par-131

ticle motion that explicitly accounts for the constraint imposed on transverse particle132

motion by the flow topology.133

Section 2 poses the flow and transport problem in two-dimensional heterogeneous134

porous media, defines the target variables and describes the direct numerical simulations.135

Section 3 reports on the quantification of the stochastic particle motion using pertur-136

bation theory for weak heterogeneity and in terms of a stochastic time-domain random137

walk model for strong medium heterogeneity. Section 4 validates the derived two-dimensional138

model against detailed numerical simulations.139

2 Flow and transport in heterogeneous porous media140

In this section we provide the details about the heterogeneous spatial arrangement141

of the hydraulic conductivity field, and the Darcy scale flow and transport problem. Fur-142

thermore, we define the transport-related observables.143

2.1 Darcy flow and hydraulic conductivity144

Flow in porous media is described on the continuum scale by the Darcy equation (Bear,145

1972)146

q(x) = −K(x)∇h(x), (1)147
148

where x denotes the two-dimensional space coordinate vector with components x and149

y, q is the Darcy flux vector (with components qx and qy) and h(x) is the hydraulic head,150

The hydraulic conductivity K(x) is a scalar. We do not consider sinks or sources and151

consider fluid and solid matrix as incompressible such that ∇ · q(x) = 0.152
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In order to represent the spatial variability of the hydraulic conductivity we model153

K(x) as a multi-Gaussian random field with lognormal marginal distribution (Rubin,154

2003) and geometric mean KG. That is, the log-hydraulic conductivity Y (x) = ln[K(x)/KG]155

is represented as a second-order stationary multi-Gaussian random field characterized156

by zero mean and the isotropic exponential covariance function157

〈Y (x)Y (x′)〉 = σ2
Y exp (−|x− x′|/`Y ), (2)158

159

where, σ2
Y and `Y are the variance and the correlation length of Y , respectively. The an-160

gular brackets denote the ensemble average. In the following all length are non-dimensionalized161

with `Y .162

The mean hydraulic gradient is aligned with the x–direction of the coordinate sys-163

tem such that the mean Darcy velocity is 〈qi(x)〉 = δi1q. The Eulerian fluid velocity164

vector v(x) is obtained by rescaling the flux vector as v(x) = q(x)/φ, where φ is poros-165

ity. In the following, we assume that porosity is constant and set it equal to one, which166

is equivalent to rescaling time. The Eulerian mean velocity is 〈vi(x)〉 = δi1v. The char-167

acteristic advection time is defined by τv = `Y /v.168

The magnitude v(x) = |v(x)| of the Eulerian velocity denotes the flow speed. The169

Eulerian flow field is characterized by the distribution pe(v). It is obtained by spatial170

sampling as171

pe(v) = lim
V→∞

1

V

∫
Ω

dxδ[v − ve(x)], (3)172

173

where Ω is the sampling domain and V its volume. Due to ergodicity, spatial sampling174

of ve is equivalent to ensemble sampling, and thus, pe(v) = 〈δ[v − ve(x)]〉. In the fol-175

lowing, velocities and speeds are rescaled by v. This implies that 〈ve〉 = χ is equal to176

the advective tortuosity (Comolli et al., 2019).177

2.2 Particle motion178

We focus on purely advective transport due to its relevance for large-scale scenar-179

ios. We adopt a Lagrangian perspective by considering solute particles of equal mass whose180

trajectories x(t) are given by181

dx(t)

dt
= w(t), (4)182

183

where w(t) = v[x(t)] is the isochronic Lagrangian speed and t is time. The initial par-184

ticle position is denoted by x(t = 0) = x0.185
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The particle speed is given by w(t) = |w(t)|. The point PDF pt(v) of w(t) sam-186

pled over all streamlines is equal to the PDF pe(v) of Eulerian speeds (Hakoun et al.,187

2019)188

pt(v) = pe(v). (5)189
190

This is a result of the fact that the flow is volume conserving. In the following, we con-191

sider a uniform initial distribution of particle positions across the cross-section of the medium.192

This implies that the distribution p0(v) of initial speeds v0 = w0(t = 0) = v(x0) is193

p0(v) = pe(v) is equal to pe(v). That is, the initial speeds distribution is equal to the194

steady state distribution.195

For our analysis it is convenient to consider the advective particle motion as a func-196

tion of the streamwise distance (Comolli et al., 2019)197

dx̂(s)

ds
=

u(s)

u(s)
,

dt(s)

ds
=

1

u(s)
, (6)198

199

where s is the particle streamwise coordinate, u(s) = v[x̂(s)] is the s-Lagrangian ve-200

locity and u(s) = |u(s)| is the s-Lagrangian speed. The point PDF ps(v) of vs(s) is equal201

to the flux-weighted Eulerian speed PDF (Hakoun et al., 2019)202

ps(v) =
vpe(v)

〈ve〉
. (7)203

204

The distribution of initial speeds vs(s = 0) = v0 = vt(t = 0) is pe(v). This implies205

that the speed statistics evolve towards the steady state ps(v) with distance along the206

streamlines. The particle displacement in time is obtained in terms of x̂(s) as x(t) =207

x̂[s(t)], where s(t) = max[s|t(s) ≤ t].208

Our goal is to upscale the motion of solute particles that are advected in a Darcy209

scale heterogeneous flow field. As descriptors of the stochastic motion of the solute par-210

ticles, we consider the evolution of the dispersion scales along the longitudinal and the211

transverse directions, that is,212

σx(t) =
√
〈[x(t)− 〈x(t)〉]2〉, σy(t) =

√
〈y(t)2〉. (8)213

214

Note that, along the transverse direction the average particle position is zero, that is,215

〈y(t)〉 = 0, due to the uniform in the mean flow conditions. The knowledge of the dis-216

persive scales σx and σy can be insufficient to properly characterize solute transport in217

case the probability distribution of x(t) and y(t) are not Gaussian. Thus, we consider218
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also the probability distributions of the longitudinal and transverse particle positions cen-219

tered to their respective mean, that is,220

p(x, t) = 〈δ(x− [x(t)− 〈x(t)〉])〉, p(y, t) = 〈δ[y − y(t)]〉. (9)221
222

Note that, we subtract the average longitudinal particles position 〈x(t)〉 for convenience.223

Finally, we also consider the joint probability density function for the longitudinal and224

transverse particle positions, that is,225

p(x, t) = 〈δ[x− x(t)]〉. (10)226
227

2.3 Numerical Simulations228

We consider a two dimensional domain of size 600`Y × 150`Y . Different realiza-229

tions of Y (x) are generated using a sequential Gaussian simulator (Deutsch & Journel,230

1992) on a regular Cartesian grid with element size equal to `Y /10. We generate 100 Monte231

Carlo realizations of Y (x) for three different scenarios with σ2
Y = 1, 2 and 4.232

For the flow problem, we impose permeameter-like boundaries conditions, that is,233

no-flow along the bottom (y = 0) and top (y = 150`Y ) boundaries, a fixed value of234

the hydraulic head along the left (x = 0) boundary and qi = δix along the right (x =235

600`Y ) boundary. Note that, the imposed boundary conditions lead to a uniform in the236

mean flow, 〈qi〉 = δix. Thus, we identify x as the longitudinal (or mean flow) direction237

and y as the transverse direction. We use the same grid structure employed for the gen-238

eration of Y (x). The flow problem is solved numerically using a mixed-finite element solver (Younes239

et al., 2010). The flow statistics are sampled over a subregion of 560`Y×110`Y to avoid240

boundary effects.241

The numerical solution of the transport problem is based on the discretized ver-242

sion of (6),243

x̂n+1 = x̂n +
ve(x̂n)∆s

|ve(x̂n)|
, tn+1 = tn +

∆s

|ve(x̂n)|
(11)244

245

where x̂n = x̂(sn), tn = t(sn), sn = n∆s and ∆s is the constant spatial increment246

here set to ∆s = `Y /100. We inject 110 particles uniformly spaced over a straight line247

perpendicular to the mean flow direction covering 90`Y . The line is placed at at distance248

of 30`Y downstream from the x = 0 boundary and at distances of 20`Y from the lat-249

eral boundaries. A bilinear interpolation scheme is used to determine the flow velocities250

within grid cells (Pollock, 1988).251
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3 Stochastic particle motion252

In this section, we study the stochastic dynamics of two-dimensional particle mo-253

tion in random Darcy’ flow fields. In heterogeneous porous media, streamlines are tor-254

tuous as illustrated in Figure 1. Therefore, the velocity varies along the streamlines. The255

series {w(t)} of isochronously sampled Lagrangian speeds typically exhibits intermittent256

behaviour, that is, long periods of low speeds alternate with short periods of intensively257

fluctuating high speeds (Hakoun et al., 2019). This intermittent behavior is due to the258

fact that flow velocities vary on a characteristic length scale, rather than a time scale.259

Therefore, the residence time in low velocities is higher than in high velocities. As a con-260

sequence, the equidistantly sampled velocity series {u(s)} is not intermittent. Thus, we261

consider here particle motion as a function of streamline distance as expressed by Eqs. (6),262

that is, in terms of a time-domain random walk. In this context, we first recall results263

from second-order perturbation theory in the fluctuations of v(x) around its mean value,264

which is valid for low and moderate spatial heterogeneity. Then, we use a stochastic time-265

domain random walk approach to capture two-dimensional particle motion at higher de-266

gree of heterogeneity.267

3.1 Perturbation theory268

We expand the equations of motion (6) up to first order in the fluctuations of the269

random flow field v′(x) = v(x)− v. Thus, we obtain270

dx̂(s)

ds
= 1,

dŷ(s)

ds
=
vy[x̂0(s)]

v
,

dt(s)

ds
=

1

v
− v′x[x̂0(s)]

v2 , (12)271

272

where x̂0(s) = (s, 0)>. The superscript > denotes the transpose. Note that v′y(x) =273

vy(x). We consistently omit terms of quadratic order in the velocity fluctuations. From274

Eqs. (12), we obtain for x̂(s)275

x̂(s) = s, ŷ(s) =

s∫
0

ds′vy[x̂0(s)] (13)276

277

The particle displacement x(t) in time is given by x(t) = x̂[s(t)]. With s(t) = max[s|t(s) ≤278

t], the longitudinal displacement can be written as279

x(t) = max[s|t(s) ≤ t] = vt+

t∫
0

dt′v′x[x0(t′)], (14)280

281

where x0(t) = (vt, 0)>. This formulation shows that the longitudinal particle motion282

is determined by the variability of travel time t(s). The transverse displacement is given283
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Figure 2: Time behaviour of (a) the transverse σy and (b) longitudinal dispersive scale

σx considering results grounded on the direct numerical simulation (DNS - symbols) and

the perturbation theory solution of Dagan, Eq. (22) and Eq. (30) (Dagan - solid curves),

for a mildly degree of heterogeneity, i.e., σ2
Y = 1.

by284

y(t) =

vt∫
0

ds′vy[x0(s)] = ŷ(vt). (15)285

286

It is determined by the variability of the spatial increment rather than the travel time.287

288

3.1.0.1 Transverse dispersion We consider now the transverse increment pro-289

cess290

ν(s) = sin[α(s)] =
vy[x̂0(s)]

v
, (16)291

292

where α(s) is the angle between the tangent of the streamline at distance s and the x-293

direction. In first-order perturbation theory, α(s) = ν(s). That is, the statistic of ν(s)294

and α(s) are identical in this approximation. In order to determine their statistics, we295

first determine the statistics of vy(x). First-order perturbation theory in Y (x) renders296

vy(x) as a linear functional of Y (x) (Dagan, 1984),297

vy(x) = v

∞∫
−∞

dx′κy(x− x′)Y (x′). (17)298

299

The kernel κy(x) can be written as300

κy(x) =
∂2G(x)

∂x∂y
, G(x) = − 1

2π
ln(|x|). (18)301

302
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As Y (x) is a Gaussian distributed random field, the linearity of relation (17) implies that303

vy(x) is also Gaussian distributed. Since vy(x) is a Gaussian random field, also ν(s) is304

Gaussian. Thus, they can be fully characterized by the mean, variance σ2
ν and correla-305

tion function ρν(s) = 〈ν(s′ + s)ν(s′)〉/σ2
ν . Its mean is 〈ν(s)〉 = 0, its variance is σ2

ν =306

σ2
Y /8 and its correlation function is ρν(s) = f(s/`Y ) where (Hsu, 1999)307

f(s) =
72

s4
− 4

s2
− 8

(
1

s
+

4

s2
+

9

s3
+

9

s4

)
exp(−s). (19)308

309

The increment process ν(s) is a stationary multi-Gaussian process. In other words, it310

is a correlated Gaussian noise. Thus, transverse particle motion describes the correlated311

random walk312

dŷ(s)

ds
= ν(s). (20)313

314

The mean transverse displacement is 〈ŷ(s)〉 = 0, and its variance σ̂2
y(s) is315

σ̂2
y(s) = 2σ2

ν

s∫
0

ds′
s′∫

0

ds′′ρν(s′′). (21)316

317

The double integral can be evaluated explicitly by inserting expression (19), which gives (Da-318

gan, 1988)319

σ̂2
y(s) = σ2

Y `
2
Y

[
ln(s/`Y )− 3

2
+ γ + E1(s/`Y ) +

`2Y
s2
− 3`2Y exp(−s/`Y )(1 + s/`Y )

s2

]
. (22)320

321

where γ is the Euler-Mascheroni constant and E1(t) the exponential integral (Abramowitz322

& Stegun, 1972). The displacement variance σ2
y(t) is obtained according to Eq. (15) by323

setting s = vt in Eq. (22). In the limit s� 1, Eq. (22) is quadratic in s,324

σ̂2
y(s) = σ2

νs
2. (23)325

326

For distances s� `Y , it evolves as327

σ̂2
y(s) = σ2

Y `
2
Y ln(s/`Y ). (24)328

329

It grows with the logarithm of time, that is, it shows ultraslow diffusion, which is due330

to the transverse confinement of the streamlines of the flow field. Figure 2 shows the evo-331

lution of σy(t) given by Eq. (22) for s = vt. The perturbation theory expression is com-332

pared to direct numerical simulations for σ2
Y = 1. While the perturbation theory pro-333

vides a good description of the overall evolution of σy(t), it underestimates σy(t) for times334

larger than τv. Nevertheless, the data confirms the predicted asymptotic ln(t) scaling335

of σ2
y(t).336
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3.1.0.2 Streamwise dispersion For completeness, we provide here also the per-337

turbation theory results for streamwise dispersion. The streamwise velocity vx(x) is given338

in perturbation theory by (Dagan, 1984)339

v′x(x) = v

∞∫
−∞

dx′κx(x− x′)Y (x′), (25)340

341

where the kernel κx(x) is defined by342

κx(x) = δ(x)− ∂2G(x)

∂x2
. (26)343

344

Thus, vx(x) is a correlated Gaussian random field. As a consquence, the Lagrangian ve-345

locity fluctuation w′x(t) ≡ vx[x0(t)] is a correlated Gaussian process and x(t) satisfies346

the correlated random walk347

dx(t)

dt
= v + w′x(t). (27)348

349

The mean of w′x(t) is zero and its variance is given by σ2
wx = 3v2σ2

Y /8. Its correlation350

function is ρwx(t) = g(t/τv) with (Hsu, 1999)351

g(t) =

20

3

1

t2
[
1− (1 + t) exp(−t)

]
− 12

3

[
6

t4
−
(

6

t4
+

6

t3
+

3

t2
+

1

t

)
exp(−t)

] . (28)352

353

The streamwise displacement variance is given by354

σ2
x(t) = 2σ2

wx

t∫
0

dt′
t′∫

0

dt′′ρwx(t′′). (29)355

356

Explicit evaluation of the double integral using expression (28) gives (Dagan, 1988)357

σ2
x(t) = σ2

Y v`Y

[
2t/τv − 3 ln(t/τv) +

3

2
− 3γ − E1(t/τv) +

τ2
v exp(−t/τv)(1 + t/τv)− 1

t2

]
.

(30)

358

359

Figure 2 shows the evolution of σx(t) from Eq. (30). Also here, the perturbation theory360

expression is a good quantitative descriptor for overall evolution of σ2
x, but underesti-361

mates the numerical data at asymptotic times. In the following, we discuss a stochas-362

tic time-domain random walk model to describe solute dispersion for strong spatial het-363

erogeneity.364

3.2 Stochastic time-domain random walk365

We use a stochastic time-domain random approach to quantify particle motion at366

large spatial heterogeneity. The time-domain random walk approach models particle mo-367

tion at equidistant displacements along streamlines based on Equations (6). This approach368
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has been used to quantify streamwise particle transport, that is, arrival time distribu-369

tions, streamwise concentration profiles and displacement moments in porous and frac-370

tured media (Painter et al., 2008; Kang et al., 2011; Comolli et al., 2019; Hyman et al.,371

2019). In the following, we briefly recapitulate the modeling of streamwise particle mo-372

tion using the approach of Comolli et al. (2019), before we analyze the dynamics of trans-373

verse motion.374

3.2.1 Streamwise motion375

The streamwise motion of solute particles is described by the following set of equa-376

tions (Dentz et al., 2016; Comolli et al., 2019),377

dx(s)

ds
= χ−1,

dt(s)

ds
=

1

vs(s)
, (31)378

379

where χ denotes the advective tortuosity (Koponen et al., 1996), which is defined as380

χ =
ve
v

=
1

〈cos[α(s)]〉
, (32)381

382

The analysis of Hakoun et al. (2019) for two-dimensional Darcy-scale heterogeneous porous383

media showed that the series of equidistant particle speeds {vs(s)} can be modeled in384

terms of an Ornstein-Uhlenbeck process for the normal scores transform ω(s) of vs(s).385

The normal score transform is defined as386

ω(s) = Φ−1{Ps[v(s)]}, (33)387
388

where Φ(w) is the cumulative unit Gaussian distribution, and Φ−1(s) its inverse, Ps(v)389

is the cumulative distribution of vs(s). The normal score transform ω(s) satisfies390

dω(s)

ds
= −ω(s)

`c
+

√
2

`c
η(s), (34)391

392

where `c denotes the correlation length, and η(s) is a Gaussian white with zero mean393

and covariance 〈η(s)η(s′)〉 = δ(s − s′). Hakoun et al. (2019) found the following em-394

pirical relationship between between `c and the statistics of the underlying hydraulic con-395

ductivity field (see also Table 1),396

`c = `Y (0.181σ2
Y + 2.221). (35)397

398

This regression is consistent with the prediction `c = 8`Y /3 of perturbation theory (Cvetkovic399

et al., 1996).400
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Figure 3: Probability distribution of the angle α obtained from (circles) spatial sampling

and (solid lines) equidistant sampling along streamlines for σ2
Y = (1, 2, 4).

3.2.2 Transverse motion401

Here, we analyze transverse particle motion in order to understand and quantify402

its stochastic dynamics. The equation of motion of solute particles in direction trans-403

verse to the mean flow can be written as404

dŷ(s)

ds
= sin[α(s)]. (36)405

406

In order to probe the transverse motion, we analyze the distribution of α(s) sampled along407

and across trajectories408

pα(a) =
1

V0

∫
Ω0

dx0
1

L

L∫
0

ds′δ[a− α(s′,x0)], (37)409

410

where α(s,x0) denotes the angle along the trajectory that starts at x0, Ω0 the set of ini-411

tial points and V0 its volume. We assume that the distribution is stationary, that is, it412

does not depend on s. We also consider sampling of the angle α(x) in space,413

p′α(a) =
1

V

∫
Ω

dxδ[a− α(x)]. (38)414

415

Figure 3 shows that the two sampling methods give approximately the same distribu-416

tion, which indicates that the angle α is independent from the velocity. This observa-417

tion is consistent with the findings of Meyer et al. (2013).418

The distribution pα(a) has zero mean and is symmetric around zero. In fact, as shown419

in Section 3.1, perturbation theory indicates that for low degree of heterogeneity α(s)420

is Gaussian distributed with variance σ2
α = σ2

Y /8. Figure 4a suggests that for increas-421

ing disorder, pα(a) follows a Gaussian distribution that is wrapped around the unit cir-422
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cle, i.e., a wrapped Gaussian distribution (Fisher, 1993). In Figure 4, data for the an-423

gle distribution is compared with the wrapped Gaussian distribution. While perturba-424

tion theory provides a good estimate for the shape of pα(x), it overestimates the width425

of pα(a) for increasing σ2
Y . Thus, we adjust σ2

α on the base of the Eulerian statistics of426

the angle α, see previous discussion of Figure 3.427

Furthermore, we consider the Lagrangian correlation function of α(s), which is de-428

fined by429

ρα(s) =
1

σ2
αV0

∫
Ω0

dx0
1

L

L∫
0

ds′α(s+ s′,x0)α(s′,x0). (39)430

431

Again, we assume that the statistics are stationary. As shown in Section 3.1, perturba-432

tion theory indicates that ρα(s) is indeed stationary and given by ρα(s) = f(s/`Y ), where433

f(s) is given by (19). Figure 4b shows ρα(s) for different σ2
Y . The correlation decays sharply434

at short distances and becomes negative for distances larger than `Y , that is, at larger435

distances, angles are persistently anti-correlated. Note that, expression (19) embeds these436

features while there is a quantitative mismatch with the numerical data. Thus, for in-437

creasing σ2
Y , we represent the correlation function by Eq. (19) as438

ρα(s) = f(s/`a), (40)439
440

where the correlation length `a is adjusted from the tail of the empirical Lagrangian cor-441

relation function to capture the long-range anti-correlation. Based on these observations,442

in the following, we first pose a Markov model for the evolution of the angle, and then443

a long-range correlated model.444

3.2.2.1 Ornstein-Uhlenbeck process Based on the observation that the correla-445

tion function ρα(s) decays rapidly to zero with lag-distance s, and that its distribution446

is Gaussian, we pose an Ornstein-Uhlenbeck process for α(s) that has both these prop-447

erties. Thus, the angle follows the Langevin equation448

dα(s)

ds
= −α(s)

`α
+

√
2
σ2
α

`α
η(s), (41)449

450

where `α denotes a characteristic fluctuation scale of α(s). In this approach, the corre-451

lation function ρα(s) is exponential (Gardiner, 1986),452

ρα(s) = exp(−|s|/`α). (42)453
454

In order to asses the validity of this approach, we compare it to the perturbation455

theory results for the displacement variance σ̂2
y(s) for s � `. Equation (24) indicates456
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Figure 4: (a) Probability distribution of α(s) grounded on (circles) the DNS, wrapped

Gaussian distributions with σ2
α parameterized by (dashed lines) perturbation theory and

(solid lines) by the Eulerian statistics of α, for σ2
Y = (1, 2, 4). (b) Correlation function of

α(s) from (circles) DNS, (thin solid lines) a Markov model, (black dashed line) perturba-

tion theory, and (thick solid lines) perturbation theory with adjusted correlation length

`a.

that σ̂2
y(s) ∼ ln(s/`Y ) increases with the logarithm of distance s. For weak heterogene-457

ity, that is, σ2
α � 1, the transverse displacement can be approximated by458

dŷ(s)

ds
= α(s), (43)459

460

and the correlation length is `α = `Y . Using expression (42) in Eq. (21) gives for s�461

`Y462

σ̂2
y(s) = 2σ2

α`Y s. (44)463
464

It increases linearly with distance. Thus, the asymptotic behavior of the Markov model (41)465

is not compatible with the true behavior at large distances. Thus, in the following, we466

consider a model that reproduces the large time behaviors predicted by perturbation the-467

ory.468

3.2.2.2 Stationary correlated Gaussian process Careful inspection of ρα(s) in Fig-469

ure 4b reveals that after the sharp initial decrease of the correlation function, a persis-470

tent degree of anti-correlation emerges. The latter is a fundamental aspect of transverse471

motion, and is a consequence of the solenoidal character of the flow field, that is, ∇·q(x) =472

0. This property leads to the meandering of the streamlines as shown in Figure 1.473

It is important to note that the negative values of ρα(s) are small. That is, while474

particles tend to persistently change the transverse direction, the magnitudes of the trans-475
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Figure 5: Time behaviour of (a) the longitudinal σx and (b) the transverse σy (inset bi-

linear scale) dispersion scales for σ2
Y = (1, 2, 4). (c) Samples of particle trajectories (black

curves) released in a Darcy’ flow field (v, logarithmic scale, blue low and green high) for

σ2
Y = 4: focusing of the trajectories in the nearest set of preferential flow paths underpins

the intense growth of σy(t) at middle times (O(t) ∼ (1 − 10)τv), while the meandering of

the trajectories sustains the logarithmic growth of σy(t) at the large scale (O(t) ∼ 100τv).

verse excursions are only weakly correlated. In other words, the asymmetry of ρα(s) in476

terms of streamwise persistence and intensity of the anti-correlation are the key elements477

underpinning the limitation of particle motion in the transverse direction that manifests478

ultraslow transverse dispersion as expressed by Eq. (24). As shown in Section 3.1, per-479

turbation theory indicates that the angle process α(s) can be described as a stationary480

correlated Gaussian noise. In full analogy, for large disorder variance we also model α(s)481

as a correlated Gaussian process characterized by the correlation function (40).482

To generate trajectories of α(s), it is convenient to introduce the covariance func-483

tion of α, which is definded by Cα(s) = σ2
αρα(s). The covariance function can be ex-484

panded as485

Cα(s) =

∞∑
n=1

λnφn(s), (45)486

487
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σ2
Y χ σ2

α `c `α

1 1.06 0.11 2.4 1.28

2 1.1 0.21 2.58 1.4

4 1.2 0.38 2.95 1.8

Table 1: Values of model parameters in the two-dimensional stochastic time-domain ran-

dom walk approach.

where the φn(s) are the eigenfunctions and the λn the respective eigenvalues of Cα(s)488

(D. Zhang & Lu, 2004; Dell’Oca & Porta, 2020). Thus the stochastic process α(s) can489

be represented by the Karhunen-Loève expansion490

α(s) =

∞∑
n=1

√
λnφn(s)ξn, (46)491

492

where the ξn are independent identically distributed Gaussian random variables of zero493

mean and unit variance. The numerical implementation is detailed in Appendix A.494

4 Transport behaviors495

In this section we compare the predictions of the stochastic time domain random496

walk model with data from direct numerical simulations for the longitudinal and trans-497

verse dispersive scales, streamwise and transverse particle distribution, as well as the full498

two-dimensional particle distributions. The direct flow and transport simulations are de-499

scribed in Section 2.3. We consider media characterized by σ2
Y = (1, 2, 4).500

The model parameters χ and σ2
α of the stochastic time-domain random walk model501

are fully constrained by the Eulerian flow properties. The correlation legnth `c is given502

by the regression in Eq. (35). The correlation length `α is adjusted from the Lagrangian503

correlation function as outlined in Section 3.2.2. Table 1 lists the values of `c, χ, σ2
α and504

`α for the different values of σ2
Y .505

4.1 Spatial variance506

Figure 5 shows the time behaviour of the streamwise and transverse dispersion scales507

σx and σy from the the direct numerical simulations and the stochastic time-domain ran-508

dom walk model. In agreement with Comolli et al. (2019), the stochastic TDRW describes509
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Figure 6: Probability distribution of particle position along the longitudinal, i.e., p(x, t),

and transverse, i.e., p(y, t) (only the positive branch of the symmetric distribution is de-

picted), directions at diverse times considering (a, d) σ2
Y = 1, (b, e) σ2

Y = 2 and (c, f)

σ2
Y = 4. Results based on the (symbols) direct numerical simulations and (solid lines)

TDRW are depicted.

the full temporal evolution of σx including the ballistic regimes for t < τv, in which σx(t) ∼510

t, and the cross-over from ballistic to the asymptotic behaviors σx ∼
√
t at times t�511

τv.512

The stochastic TDRW model captures also the full time evolution of σy(t) includ-513

ing the early time ballistic regime and the transition to ultraslow diffusion at times t�514

τv. The strong increase of σy at intermediate times reflects the focusing of solute par-515

ticles from their initial positions into flow channels as illustrated in Figure 5c. For later516

times, the transverse displacement is determined by the meandering of these flow chan-517

nels, see Figures 1 and 5c. This meandering confines transverse motion at large-scale,518

which is here qualitatively and quantitatively reproduced by the stochastic TDRW model.519
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4.2 Particle distributions520

In addition to the dispersion scales, we consider now the longitudinal and trans-521

verse particles distributions. Figure 6 depicts snapshots of p(x, t) and p(y, t) at differ-522

ent times. For p(y, t) only the positive branch of the symmetric distribution is shown.523

Figures 6a, c, and e show satisfactory agreement between the numerical data for524

p(x, t) and the stochastic TDRW model, which is able to reproduce the full transition525

from initially skewed to asymptotic Gaussian behavior for moderately to strongly het-526

erogeneous media.527

Figures 6b, d, and f highlights the satisfactory agreement between the numerical528

data for p(y, t) and the stochastic TDRW model from early to late times, and for all de-529

grees of heterogeneity under consideration. We observe a rapid expansion of p(y, t) at530

the early times (e.g., t = (1, 5, 10)τv), that is, as the solute particles tend to be focused531

towards the nearest flow channels such that larger absolute values of y become more likely.532

As time passes (t = (20, 50, 100, 200)τv), solute particles travel within flow channels char-533

acterized by a meandering structure which underpins the decreasing rate of expansion534

of p(y, t), consistent with the behavior of σy(t) shown in Figure 5. Note that, p(y, t) tends535

toward Gaussianity at late times (e.g., t = (100, 200)τv). Gotovac et al. (2009) consid-536

ered the transverse particle distribution after fixed travel distances and found that it ap-537

proaches Gaussianity already after relatively short distances of about 5`Y . Our results538

for the distribution of ŷ(s) after fixed travel distances s (not shown) confirm these find-539

ings.540

Finally, we consider the joint distribution p(x, t) of streamwise and transverse par-541

ticle positions at different times. Figure 7 depicts p(x, t) from the numerical data in the542

upper half of each panel, and the stochastic TDRW model in the lower half, at times t =543

(5, 20, 50)τv for σ2
Y = 1, 2, 4. We find an overall satisfactory agreement between the nu-544

merical data and the stochastic TDRW model, which corroborates the assumption of treat-545

ing the streamwise longitudinal and transverse transport as two independent stochas-546

tic processes (Meyer et al., 2013; Meyer & Tchelepi, 2010).547

5 Conclusions548

We analyze the stochastic dynamics of two-dimensional particle motion in Darcy-549

scale heterogeneous porous media. The spatial variability of the hydraulic conductivity550
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Figure 7: Joint probability distribution of particles locations p(x, t) at times t =

(5, 20, 50) and for diverse degree of formation heterogeneity (a, d, g) σ2
Y = 1, (b, e, h)

σ2
Y = 2 and (c, f, i) σ2

Y = 4. Results grounded on the DNS and on the stochastic model

are depicted in the top and bottom half of each panel, respectively. The colormap is in

logarithmic scale (blue low, yellow high).

is represented using a stochastic modeling approach such the K(x) is a realization of a551

lognormally distributed multi-Gaussian spatial random field. The Lagrangian particle552

dynamics are analyzed through numerical particle tracking simulations as well as per-553

turbation theory by using an equidistant sampling strategy, which acknowledges the spa-554

tial organization of the Eulerian and Lagrangian flow velocities on a characteristic length555

scale. The perturbation theory analysis reveals that longitudinal particle motion is de-556

termined by the variability of travel times along streamlines, while transverse motion is557

determined by the fluctuation structure of transverse displacements. The former can be558

captured by a Markov model for the equidistantly sampled flow speeds, that is, flow speeds559

are only weakly correlated. The latter, however, turns out to be persistently anti-correlated560

as a consequence of the solenoidal character of the flow field. This strong anticorrela-561

tion leads to an ultraslow growth of the transverse displacement variance with distance562

and time. The transverse displacements are characterized by the series of angles between563

the streamlines and the mean flow direction. Perturbation theory shows that the angle564

distribution can be represented by a wrapped Gaussian distribution, which is valid also565

for increasing heterogeneity strength. Unlike the speed series, the angle series cannot be566

represented as a Markov process. The angular increments are modeled as a correlated567

Gaussian noise, which renders the angle process as a correlated Brownian motion. The568
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Gaussian increment process is generated here using a Karhunen-Loeve expansion. For569

low medium heterogeneity, the model can be fully constrained by medium and flow prop-570

erties using perturbation theory. For increasing heterogeneity, the model can be constrained571

by Eulerian flow statistics and the characteristic length scale of the fluctuations of the572

Lagrangian angular series.573

The proposed stochastic TDRW model combines a Markov model for the particle574

speeds with a correlated Gaussian noise for transverse particle displacements. Compar-575

ison with detailed numerical simulations for the longitudinal and transverse dispersion576

scales and the full particle distributions shows that the model captures the dynamics of577

advective particle motion both qualitatively and quantitatively. This underpins the crit-578

ical importance of correctly representing the topological constraints of the underlying579

Eulerian flow field in the large scale particle dynamics (Lester et al., 2021, 2022). These580

behaviors cannot be accounted for by two-dimensional TDRW or CTRW schemes that581

model transverse displacements as Markov processes. The proposed stochastic TDRW582

model is able to quantify large scale longitudinal and transverse advective particle mo-583

tion in two-dimensional divergence-free Darcy flows as can occur on shallow and strat-584

ified aquifers as well as rough fractures. The stochastic TDRW approach can be extended585

to flow and transport in three-dimensional porous media by following the same strategy586

as proposed in this paper.587
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Appendix A Generation of long-range correlated stochastic angle se-598

ries599

The eigenvalues λn and eigenfunctions φn(s) of the covariance function Cα(s) are600

obtained from the following Fredholm equation601 ∫ ∞
0

Cα(s− s′)φn(s′)ds′ = λnφn(s). (A1)602

603

For general Cα(s), Eq. (A1) can be solved numerically as outlined in the following. Firstly,604

we discretize s into N intervals of length ∆s such that si = i∆s. Then, we define the605

symmetric N ×N covariance matrix Cij as606

Cij = Cα(si − sj)∆s. (A2)607
608

The eigenfunctions are discretized as φ
(n)
i = φn(si) and are represented by the eigen-609

vectors φ(n). Teh angle process is discretized as αi = α(si) and represented by the vec-610

tor α.611

The discrete version of Eq. (A1) is612

Cφ(n) = λnφ
(n). (A3)613

614

The eigenvalues of C are obtained from615

det (C− λI) = 0, (A4)616
617

where I is the identity matrix. The eigenvector φ(n) corresponding to the nth eigenvalue618

λn is obtained by solving Eq. (A3). Thus realizations of the correlated Gaussian process619

α are generated according to the discrete version of Eq. (46) as620

α =

Nλ∑
n=1

√
λnφ

(n)ξn. (A5)621

622

Here we set Nλ = 1000 < N modes. Furthermore, we set ∆s = lY /10 and N = 5000.623

The computation of the eigenvalues and eigenvectors is carried out with standard com-624

mands in MATLAB (MathWorks, 2015).625
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