
P
os
te
d
on

27
A
p
r
20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
68
26
24
39
.9
67
89
91
8/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Peter E van Keken1 and Cian R Wilson2

1Affiliation not available
2Carnegie Institution for Science, Earth and Planets Laboratory

August 13, 2023

1



Wilson and van Keken

REVIEW

An introductory review of the thermal structure
of subduction zones: II. Numerical approach and
validation
Cian R. Wilson* and Peter E. van Keken

*Correspondence:

cwilson@carnegiescience.edu

Earth and Planets Laboratory,

Carnegie Institution for Science,

5241 Broad Branch Road, NW,

Washington DC 20015, USA.

Full list of author information is

available at the end of the article

Abstract

The thermal structure of subduction zones is fundamental to our understanding
of the physical and chemical processes that occur at active convergent plate
margins. These include magma generation and related arc volcanism, shallow and
deep seismicity, and metamorphic reactions that can release fluids.
Computational models can predict the thermal structure to great numerical
precision when models are fully described but this does not guarantee accuracy or
applicability. In a trio of companion papers the construction of thermal
subduction zone models, their use in subduction zone studies, and their link to
geophysical and geochemical observations is explored. In this part II the finite
element techniques that can be used to predict thermal structure are discussed in
an introductory fashion along with their verification and validation.

Keywords
Geodynamics, Plate tectonics, Finite element methods, Subduction zone
metamorphism, Arc volcanism1

2

1 Introduction to Part II3

This paper is a companion to van Keken and Wilson “An introductory review of4

the thermal structure of subduction zones: I–motivation and selected examples”5

(van Keken and Wilson, 2023, hereafter called Part I) and van Keken and Wilson6

“An introductory review of the thermal structure of subduction zones: III. Com-7

parison between models and observations” (hereafter referred to as part III). A8

preprint to part III is available in the Supplementary Information9

Combined these articles provide an introduction to the use of thermal models10

and observational constraints to aid our understanding of the dynamics, structure,11

and evolution of subduction zones from a geophysical, geochemical, and petrological12

perspective. In Part I we provided the motivation for these studies, fundamental con-13

straints on subduction zone geometry and thermal structure, and a limited overview14

of existing thermal models. In this article we will provide a discussion of the use15

of the finite element method to discretize partial differential equations needed for16

subduction zone modeling, present open-source software, and discuss validation &17

verification approaches to understand the reliability of the thermal models.18

Our approach will be similar to that in Part I – we strive to make this intro-19

duction accessible to advanced undergraduates, graduate students, and professionals20

from outside geodynamics. This will, hopefully, make the reader able to establish21

a fundamental understanding of what is required for numerical modeling of the22

thermal structure of subduction zones.23
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While we focus on the use of finite element methods to solve the governing equa-24

tions we acknowledge that significant and important studies have been published25

that use finite difference (FD) or finite volume (FV) methods. An introduction to26

the use of FD methods in geodynamical applications is provided by Gerya (2019).27

A broader overview of computational methods for geodynamics including FV is in28

Ismail-Zadeh and Tackley (2010). A useful overview of the use of finite element29

methods specifically for mantle convection modeling with a comparison to FD and30

FV methods is in Zhong et al. (2015). As we will see, finite element methods can be31

used to discretize complex geometries, which provides a significant advantage for32

subduction zone modeling over FD and FV methods.33

In section 2 we first describe how finite element approaches to solve common34

linear partial differential equations such as the Poisson and Stokes equations are con-35

structed. We then apply this to dynamical models that rely on solving the Stokes36

and heat equations, which include a standard convection benchmark and a new37

simplified subduction zone benchmark. The latter will be used to quantify the pre-38

cision with which we can predict the subduction zone thermal structure using a39

kinematic-dynamic approach.40

2 Finite element modeling41

2.1 General formulation of the finite element solution of partial differential equations42

The goal of the numerical models discussed here is to find the approximate solutions43

of partial differential equations (PDEs) in a spatial domain denoted by Ω, with44

boundaries ∂Ω, representing some part of the Earth, say, a cross-section through45

a subduction zone. These PDEs can be time-dependent, nonlinear, or nonlinearly46

coupled to other PDEs. To sketch out how we can discretize the PDEs with finite47

elements we will first assume that we have linear PDEs of the general form48

L(u) = f in Ω (1)49

where L is a linear differential operator, f some right-hand side function, and u =50

u(x⃗, t) the solution we seek to approximate over space x⃗ and time t. In addition to51

(1) we require boundary conditions of the form52

J(u) = g on ∂Ω (2)53

where J is a linear differential operator and g is a function describing how u and/or54

its derivatives behave on the boundary. Efficient computer solution of the linear55

differential problem (1)–(2) relies on discretizing the domain Ω into a set of de-56

grees of freedom (DOFs) or values at “nodal” points in the domain at which the57

approximate solution is sought. This discretization facilitates the translation of the58

governing equations from differential to algebraic matrix-vector form. Discretization59

schemes differ in how they organize and distribute the degrees of freedom onto a60

mesh or grid of points across the domain.61

Finite difference methods distribute DOFs at points in Ω and construct ap-62

proximate derivatives by taking the differences between the values of neighboring63
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points (along connecting lines in a mesh of points). This is made easier if the DOFs64

are organized in a regular or structured grid. Finite volume methods construct con-65

trol volumes surrounding the degrees of freedom and, rather than approximating the66

derivatives, they consider the fluxes through the control volume boundaries between67

neighboring degrees of freedom. This means that the DOFs can be distributed in68

an unstructured way, but achieving higher orders of accuracy with FV methods is69

easier on structured meshes. The finite element method (FEM), on the other hand,70

tessellates the domain with polygonal elements and then distributes DOFs relative71

to these elements. The order of accuracy is then controlled by the number and the72

distribution of DOFs within an element, which can themselves be arranged in an73

unstructured pattern.74

Formally, the FEM approximates u by ũ, the solution’s representation in a75

function space on the mesh where76

ũ(x⃗, t) =
∑
j

ϕj(x⃗)uj(t) (3)77

Here, uj are coefficients that as indicated can be time-dependent but do not depend78

on space. The shape functions ϕj are a function of space but generally independent79

of time. The index j indicates the number of the shape function on the mesh and80

is associated with the number of the nodal point or element number it is associ-81

ated with. In this manuscript, we will principally discuss so-called Lagrange shape82

functions which define ϕj as a polynomial over an element with a value of 1 at a83

single nodal point and a value of 0 at all other points associated with the degrees of84

freedom such that
∑
j ϕj=1 (see Figure 1). The shape functions can be of arbitrary85

order and can have various conditions on their continuity across or in between el-86

ements. We will focus principally on linear Lagrange shape functions (denoted by87

P1) and quadratic Lagrange shape functions (denoted by P2) that are continuous88

between mesh elements. Our choice of Lagrange shape functions means that uj are89

the actual values of the solution in (3). With other forms of the shape function90

uj are instead interpolation weights that are used to construct the solution values.91

The split of temporal and spatial dependence above is typical in geodynamic ap-92

plications but not required. Given the “trial” solution function (3), finite element93

methods pose (1) as a residual R(ũ):94

R(ũ) = L(ũ)− f (4)95

The residual is minimized in a weighted average sense by multiplying the residual96

with weighting test function, ũt, integrating over the domain of interest, and setting97

this to zero:98 ∫
ũtR(ũ)dΩ = 0 (5)99

The test functions ũt can be independent of the functions ϕj that span the func-100

tion space of the trial function, but in the widely used Galerkin approach the test101

functions are restricted to be in the same function space such that102

ũt(x⃗, t) =
∑
i

ϕi(x⃗)uti(t) (6)103
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Since the method is valid for all ũt we can dispense with the test function values at104

the DOFs, uti, and the minimization function can be written as105 ∫
ϕiR(ũ)dΩ = 0 for all i (7)106

Given a domain with n DOFs such that i, j=1, ..., n, combining (7) with (3) and107

results in a matrix-vector system of the form108

Su = f (8)109

where S is a n×n matrix, f is the right-hand side vector of length n and u is the110

solution vector of values or weights at the DOFs111

S = Sij =

∫
ϕiL(ϕj)dΩ (9)112

f = fi =

∫
fϕidΩ (10)113

u = uj (11)114
115

where we can move the solution values out of the integral in (7) due to the linear116

nature of L. For elliptic problems, S is sometimes called the stiffness matrix and f117

the load vector because the finite element method was initially used in structural118

problems where u typically represents a displacement. It expresses how for a given119

load f the stiffness of the structure, as expressed by the coefficients in the stiffness120

matrix S, limits the displacement u of nodes in a structure. Note that in the above121

summary we have glossed over the imposition of boundary conditions (2), which122

must be incorporated into the residual (4), trial (3) and test (6) functions. Assuming123

that the boundary conditions are correctly implemented, that the problem (1)–(2)124

is well-posed, and that the discretization is adequate, then the discrete approximate125

solution u (11) can be found through direct or iterative solution of (8).126

The ease with which finite elements can be used on an unstructured mesh127

gives them one of their primary advantages for subduction zone modeling - being128

able to tessellate complex geometries. This is of particular importance when, for129

example, explicitly discretizing the subducting slab surface, surface topography, or130

crustal interfaces in the overriding plate. In addition, grid refinement can be used131

where strong gradients in solutions exist (such as at the top of the slab when it132

gets in contact with the hot mantle wedge; see Figure 1b in part I) and coarse133

grids can be used where the solutions are relatively constant, leading to improved134

overall computational efficiency compared to methods that require a structured135

discretization of space. Another advantage of the finite element method, that we136

will see below, is the natural way in which boundary conditions can be implemented.137

For Lagrange bases increasing the order of the polynomial of ϕj increases the138

number of DOFs per element (see Figure 1) and increases the order of accuracy139

of the solution. The shape functions may be continuous or discontinuous between140

elements but each ϕj ideally has compact support, meaning that the basis function141
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associated with a degree of freedom only has nonzero values in the elements imme-142

diately surrounding the DOF. It is this property that ensures the matrix S (9) is143

sparse in the final discrete system of equations (8).144

We provide practical examples that show how to construct (8) using finite145

elements. Our goal is to demonstrate the flexibility and power of the FEM with-146

out giving an exhaustive introduction or rigorous mathematical derivation of the147

method. Practical introductions to the FEM can be found in Johnson (1987) and148

Logan (2017). More mathematically founded descriptions of the FEM can be found149

in Oden and Reddy (1976), Hughes (1987), and Strang and Fix (2008). Some of150

these texts are available in affordable Dover reprints.151

2.2 Construction of finite element models152

2.2.1 Examples of partial differential equations solved by the FEM153

The exact set of equations that needs to be solved to make predictions of the ther-154

mal structure of subduction zones using a kinematic-dynamic approach is provided155

in section 2.3.1. These are derived from the fundamental equations governing the156

conservation of mass, momentum, and thermal energy. The conservation of mass157

and momentum lead, under a number of simplifying assumptions (that we will not158

discuss in detail but that can be found in fundamental textbooks such as Turcotte159

and Schubert, 2002) to the nondimensional Stokes equation and the condition of160

incompressibility161

−∇ ·
(
2η

∇v⃗ +∇v⃗T

2

)
+∇P = f⃗B (12)162

∇ · v⃗ = 0 (13)163
164

Given a viscosity, η, and a buoyancy force, f⃗B , that can depend on temperature165

and composition, the Stokes equation balances viscous, pressure, and buoyancy166

forces. Further imposition of the incompressibility constraint (13) allows us to find167

the velocity, v⃗, and pressure, P . The conservation of thermal energy leads to the168

nondimensional heat advection-diffusion equation169

ρcp

(
∂T

∂t
+ v⃗ · ∇T

)
= ∇ · (k∇T ) +H (14)170

which, given the density, ρ, heat capacity, cp, and thermal conductivity, k, bal-171

ances the transport of heat by diffusion and advection with heat production, H.172

The heat equation can be modeled to be stationary (by assuming ∂T
∂t =0) and the173

Stokes equation can be nonlinear due to the dependence of the viscosity on stress.174

The Stokes equation with the incompressibility constraint are generally nonlinearly175

coupled with the heat advection-diffusion equation.176

In this section, rather than immediately solving the full nonlinear set of equa-177

tions, we will provide examples of how to solve (12)–(14) one by one, under various178

simplifying assumptions, before embarking on a fully coupled problem. We will start179

with a simple worked-out example of a 1D Poisson equation which is arguably the180

simplest form of (14) under the assumption of zero velocity, which also eliminates181
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(12)–(13) entirely. This will include the generation of shape functions, construction182

of the matrix-vector system, solution on a coarse mesh, comparisons between linear183

and quadratic elements, and convergence tests. This section is particularly intended184

for those new to finite element methodology and nomenclature. Those comfortable185

with basic FEM concepts but interested in the weak form formulation of PDEs and186

their FEM solution can skip forward to section 2.2.3 where we describe the FEM187

implementation and software availability. This is followed by the extension of the188

Poisson heat-diffusion problem to more than one dimension and the solution of the189

linear Stokes equation for a traditional cornerflow problem, neglecting temperature190

effects. We then combine the heat and Stokes equation in coupled problems using a191

standard mantle convection benchmark before focusing on simplified models of sub-192

duction zones. Unless explicitly mentioned otherwise we will assume in all examples193

below that the equations are in nondimensional form.194

Section 2.3 derives (12)–(14) from their dimensional form and discusses how195

they are used in kinematic-dynamic subduction zone models. Readers who are more196

interested in understanding how different modeling approaches for subduction zone197

thermal structure compare or how the models compare to observations are invited198

to skip forward to part III.199

2.2.2 1D Poisson200

As an introductory and simplified example we will solve the Poisson equation on201

a 1D domain of unit length, Ω = [0, 1]. This can be derived from the steady-state202

form of (14) by assuming zero velocity and a constant thermal conductivity, and203

seeking the approximate solution of204

−d
2T

dx2
= f (15)205

206

where we choose for this example f=H
k =

1
4π

2 sin
(
πx
2

)
. At the boundaries, x=0 and207

x=1, we apply as boundary conditions (2)208

T = 0 at x = 0 (16)209

dT

dx
= 0 at x = 1 (17)210

211

The first boundary condition is an example of an essential or Dirichlet boundary212

condition where we specify the value of the solution. The second boundary condition213

is an example of a natural or Neumann boundary condition that can be interpreted214

to mean that the solution is symmetrical around x=1. We will return to the vari-215

ous types of boundary conditions and their implementation in a later section. The216

analytical solution to (15) with given boundary conditions (16)–(17) is simply217

T = sin
(πx

2

)
(18)218

Minimization of the residual R(T̃ ) following (4) and (7) leads to219

−
∫ 1

0

ϕi
d2T̃

dx2
dx =

∫ 1

0

ϕifdx i = 1, . . . , n (19)220
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By integrating the first term by parts we find221

∫ 1

0

dϕi
dx

dT̃

dx
dx−

[
ϕi
dT̃

dx

]1
0

=

∫ 1

0

ϕifdx i = 1, . . . , n (20)222

where the second term can be dropped because at x=1 we require dT̃
dx=0 and the223

solution at x=0 is known, T̃=0, so can be lifted from the resulting matrix equation.224

We can find the solution at the DOFs, Tj , from the discrete n×n matrix-vector225

system (8) where now226

S = Sij =

∫ 1

0

dϕi
dx

dϕj
dx

dx (21)227

f = fi =

∫ 1

0

ϕif dx (22)228

u = T = Tj (23)229
230

where T has components Tj that define the continuous approximate solution231

T̃ (x) =

n∑
j=1

ϕj(x)Tj (24)232

and T0=0.

Figure 1 a) Illustration of the discretization of the 1D unit domain into four elements ek with five
nodal points xi. The two linear (P1) Lagrange shape functions ϕi are shown that are nonzero in
element e2. b) Illustration of quadratic (P2) shape functions that are nonzero on element e2. The
mesh still has four elements but each element now has internal nodal points (indicated by open
red circles).

233

The domain is divided into ne elements of equal length, ∆x= 1
ne

, with elements234

ei and degrees of freedom Ti ordered from x=0 to x=1. This introduces nodal points235

xi, 0≤i≤n (see Figure 1a). A simple assumption for the Lagrange shape functions236

ϕi is that the shape functions are linear within the elements. Such functions within237

a given element ei (xi−1≤x≤xi), 1≤i≤ne, are238

λi−1 =
xi − x

∆x
, λi =

x− xi−1

∆x
(25)239
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The functions λj are zero for all elements except ej and ej+1 (∀ei /∈{ej , ej+1}). Since240

they fit the definition of linear Lagrange functions and we can write ϕi = λi. Within241

a given element ei we can construct the interpolated approximate solution for T̃242

from T using243

T̃ (x) = Ti−1ϕi−1(x) + Tiϕi(x) (26)244

The expression is compact because all shape functions other than ϕi−1 and ϕi are245

zero within this element. Note that the derivatives of the shape functions in this246

element are simply247

dϕi−1

dx
= − 1

∆x
,

dϕi
dx

=
1

∆x
(27)248

which allows for easy evaluation of the matrix coefficients.249

Evaluation of the integrals in (21) and (22) allows us to construct (8) as250

1

∆x2


2 −1 0 · · · 0 0 0

−1 2 −1 · · · 0 0 0
...

...
...

...
...

...

0 0 0 · · · −1 2 −1

0 0 0 · · · 0 −1 1




T1

T2
...

Tn−1

Tn

 =



∫
fϕ1dx∫
fϕ2dx
...∫

fϕn−1dx∫
fϕndx


(28)251

The integral in the right-hand side vector f can be found analytically or through252

numerical integration. The matrix may look familiar to those acquainted with finite253

difference approximations to the 1D Poisson equation where d2T/dx2 is approxi-254

mated by second-order central finite differences (for a derivation see, e.g., Cuvelier255

et al., 1986, section 2.2.1). The matrix rows repeat triples (-1,2,-1) to form a tridi-256

agonal symmetric matrix for which (very) efficient solution methods exist.257

Implementation While writing out the system of equations is instructive and so-258

lutions can be constructed by manual Gaussian elimination for a small number of259

degrees of freedom n, solution of the equations governing subduction zone ther-260

mal structure requires significantly more involved code. Modern software design261

approaches have become available that allow us to develop numerical code using262

a relatively simple syntax in which the developer describes the problem in terms263

of the differential equation and boundary conditions, specifies the coefficients, the264

geometry and its discretization, and solution methods. We will provide a few exam-265

ples of high-level syntax (written in python) that can be used with the open-source266

FEniCS software (Logg et al., 2012) to produce a finite element code. We will first267

introduce this syntax and provide a more complete description of the approach that268

we use in section 2.2.3.269

1# Import the dolfin library (a component of FEniCS)270

2from dolfin import *271

3def solve_poisson_1d(ne , p=1):272

4"""273
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5A python function to solve a one -dimensional Poisson problem274

6on a unit interval domain.275

7Parameters:276

8* ne - number of elements277

9* p - polynomial order of the solution function space278

10"""279

11# Describe the domain (a one -dimensional unit interval)280

12# and also the tessellation of that domain into ne281

13# equally spaced elements282

14mesh = UnitIntervalMesh(ne)283

15# Define the solution function space using Lagrange polynomials284

16# of order p285

17V = FunctionSpace(mesh , "Lagrange", p)286

18287

19# Define the trial and test functions on the same function space (V)288

20T_a = TrialFunction(V)289

21T_t = TestFunction(V)290

22291

23# Define the location of the boundary , x=0292

24def boundary(x):293

25return x[0] < DOLFIN_EPS294

26# Specify the value and define a boundary condition (bc)295

27gD = Constant (0.0)296

28bc = DirichletBC(V, gD, boundary)297

29298

30# Define the right hand side function , rhsf299

31x = SpatialCoordinate(mesh)300

32rhsf = (pi**2)*sin(pi*x[0]/2) /4301

33302

34# Define the integral to be assembled into the stiffness matrix303

35S = inner(grad(T_t), grad(T_a))*dx304

36# Define the integral to be assembled into the forcing vector305

37f = T_t*rhsf*dx306

38307

39# Define the solution and compute it (given the boundary condition ,308

bc)309

40T_i = Function(V)310

41solve(S == f, T_i , bc)311

42312

43# Save solution to disk in XDMF format313

44ofile = XDMFFile("poisson_ {}_{}. xdmf".format(ne,p,))314

45ofile.write(T_i)315

46ofile.close ()316

47317

48# Return the solution318

49return T_i319

Listing 1 FEniCS example for the 1D Poisson FEM solution (see XDMF.org for a description of the
XDMF file format)

The one-dimensional heat diffusion problem (15)–(17) can be solved using FEniCS320

with the python function solve_poisson_1d (listing 1). Lagrange polynomials (defined321

by the keyword argument p on line 17, which defaults to 1). Test (T_t) and trial (T_a)322

functions are defined on this function space, before being used to describe the in-323

tegrals defining S and f . The Dirichlet boundary condition at x=0 is then declared324

as bc before being passed to a function solve that assembles the matrix-vector sys-325

tem, manipulates it to ensure satisfaction of the essential boundary condition, and326

solves for T_i, the function containing the vector of values of T̃ at the DOFs Tj .327

Finally the solution is returned.328

Higher order elements We will use this simple example further to show that we329

can construct shape functions of higher order that allow us to find solutions that330

are (in general) more accurate with the same number of nodal points compared to331
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solutions with lower order shape functions. We will construct quadratic Lagrange332

shape functions on the elements as shown in Figure 1b. Note that each element now333

has an internal nodal point such the number of nodal points for the fixed number of334

elements increases by nearly a factor of two compared to the linear P1 function space335

(Figure 1a). Within an element ei (xi−1≤x≤xi) there are three shape functions that336

are of quadratic form337

ϕi−1 =
2

∆x2
(x− xi)(x− xi−1,i) = 2λi−1(λi−1 − 1

2 ) (29)338

ϕi−1,i =
−4

∆x2
(x− xi−1)(x− xi) = 4λi−1λi (30)339

ϕi =
2

∆x2
(x− xi−1)(x− xi−1,i) = 2λi(λi − 1

2 ) (31)340

341

with λi and λi−1 defined in (25). We have used the notation ϕi−1,i to identify the342

internal Lagrange polynomial centered in element ei on the new internal nodal point343

xi−1,i. This also makes explicit the relation between the P1 nodal points and the344

edge nodal points (also called vertices) of the P2 elements and clarifies the relation345

between P1 and P2 shape functions through (29)–(31). Note that the nonzero values346

of a quadratic Lagrange shape function may extend beyond the neighboring DOFs347

and they can be positive or negative depending on where its nodal point is located348

within an element. Note also that the shape functions now connect more nodal349

points to the central nodal point – which suggests the matrix (28) changes form350

to have more entries per row than in the case of the P1 based matrix. In addition351

the matrix will have more rows since there are more nodal points for the same352

number of elements. Clearly the use of higher order elements comes at a greater353

computational cost since it is more expensive to solve a larger algebraic system.354

Calling the python function solve_poisson_1d with a second keyword argument355

p=2 allows us to solve the system with quadratic Lagrange shape functions. The356

script shows that only the definition of the FunctionSpace is changed by setting p=2.357

Figure 2 shows the approximate solution for linear and quadratic elements on a358

coarse grid compared to the analytical solution. Note that the P2 solution stays359

closer to the analytical solution than the P1 solution.

Figure 2 FEM solution to 1D Poisson equation. a) Approximate FEM solution obtained using a
mesh of four P1 elements compared to analytical solution (black). Discrete values from the
solution vector T are shown in red circles. The interpolated approximate solution is shown by the
green dashed line. b) Same as a) but now for four P2 elements.

360
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Convergence analysis Repeating the numerical experiments with increasing ne al-361

lows us to test the convergence of our approximate finite element solution to the362

known analytical solution (18). A key feature of any discretization technique is that363

with an increasing number of DOFs these solutions should converge, i.e. the error364

in our approximation should decrease. As an error metric we will use the L2 norm365

of the difference between the approximate, T̃ , and analytical, T , solutions366

eL2,P =

√∫
Ω

(
T̃ − T

)2
dx (32)367

where the subscript P stands for Poisson. The rate at which this decreases is known368

as the order of convergence. Numerical analysis predicts a certain order depending369

on the type of the polynomials used as finite element shape functions and other370

constraints related to the well-posedness of the problem. For piecewise linear shape371

functions we expect second-order convergence, that is that the error decreases as372

h−2 where h is the nodal point spacing. With piecewise quadratic elements we373

expect to see third-order convergence. These expectations are met by the actual374

numerical experiments (Figure 3). Convergence analysis is an essential way to test

Figure 3 Convergence analysis for the 1D Poisson problem with P1 (blue) and P2 (orange)
elements. The error following metric (32) is shown as a function of nodal point spacing h.
Symbols represent individual experiments – the lines show the trend. With P1 we find
second-order convergence whereas with P2 we find a smaller error at a given h and a faster,
third-order, convergence rate.

375
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the accuracy of a numerical model but it relies on having a known analytical solution376

and the ability to represent it and its boundary conditions in a discrete function377

space. We will discuss this issue in the context of other examples with increasing378

complexity below.379

2.2.3 Practical approaches, software availability, and comparison380

Traditionally, finite element methods have been implemented using Fortran or381

C/C++ based codes that, at the core, build the matrix-vector system (8) by382

numerical integration of (9) and (10) after which this system is solved by linear383

algebraic solvers. Most FEM codes provide options for time-dependence and the384

ability to solve nonlinear and nonlinearly coupled systems of PDEs. Examples of385

such codes that have been used in geodynamical applications including subduction386

zone modeling are ConMan (King et al., 1990), Sopale (Fullsack, 1995), Under-387

world (Moresi et al., 2007), CitcomS (Zhong et al., 2008), MILAMIN (Dabrowski388

et al., 2008), ASPECT (Kronbichler et al., 2013), Sepran (van den Berg et al.,389

2015), Fluidity (Davies et al., 2011), and Rhea (Burstedde et al., 2013). A num-390

ber of these are distributed as open-source software and many among those are391

currently maintained through the Computational Infrastructure for Geodynamics392

(geodynamics.org). These implementations can be shown to be accurate using in-393

tercomparisons and benchmarks (e.g., Davies et al., 2011; Euen et al., 2022; King394

et al., 2010; van Keken et al., 2008) and make use of advances in parallel computing395

and efficient linear algebra solver techniques. Yet, modifications to the existing code396

requires deep insight into the structure of the Fortran/C/C++ code which is not397

trivial for experienced, let alone beginning, users.398

In recent years an alternative approach for FEM has become available which el-399

evates the user interface to simply specifying the FEM problem and solution method400

with the high-level approach of which an example is shown in listing 1. The python401

code is used to automatically build a finite element model that can be executed in402

a variety of environments ranging from Jupyter notebooks (jupyter.org) and desk-403

top computers to massively parallel high performance computers. Two prominent404

examples of this approach are Firedrake (www.firedrakeproject.org) and FEniCS405

(www.fenicsproject.org). Examples of the use of these two approaches in geody-406

namical applications are in Davies et al. (2022) and Vynnytska et al. (2013).407

We will focus on the use of the FEniCS (“Finite Elements in Computational408

Sciences”; Alnæs et al., 2015) approach to solving FEM element equations. FEniCS409

is a suite of open-source numerical libraries for the description of finite element410

problems. Most importantly it provides a high-level, human-readable language for411

the description of equations in python (the “Unified Form Language” (UFL); Alnæs412

et al., 2014, an example of which we provided in listing 1) and a compiler (the “FEn-413

iCS Form Compiler” (FFC); Kirby and Logg, 2006) to write fast code to assemble414

the resulting discrete matrix-vector system. We will specifically use FEniCS within415

TerraFERMA (the “Transparent Finite Element Rapid Model Assembler”; Wilson416

et al., 2017). TerraFERMA provides a graphical user interface (using the “System417

for Problem Description” (SPuD); Ham et al., 2009) that allows users to describe418

the geometry, variables, and boundary conditions of their problem and construct419

physics-based solvers using PETSc (the “Portable Extensible Toolkit for Scientific420

computation”; Balay et al., 2023).421
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TerraFERMA aims to increase transparency in modeling by exposing all op-422

tions, including the equations, in a single options file that can be validated and423

automatically updated, which increases reproducibility. We provide all options files424

used in the following sections in a repository and in a docker image (see Supple-425

mentary Information) for readers to try. In addition to results from TerraFERMA426

we compare some solutions with the aforementioned finite element package Sepran427

which has been used extensively in subduction zone modeling (e.g., Syracuse et al.,428

2010; van Keken et al., 2011). Sepran is not an open-source code but allows for429

direct comparisons between independent finite element methods and establish their430

relative precision.431

2.2.4 The Poisson equation beyond 1D432

We can generalize (and formalize) the description of the Poisson equation using the433

steady-state heat diffusion equation in multiple dimensions, where (14) becomes434

−∇ · (k∇T ) = H in Ω (33)435
436

after assuming zero velocity. T is the temperature solution we are seeking, k is437

the thermal conductivity and H is a heat source. If k is constant in space we can438

simplify (33) to439

−∇2T = f in Ω (34)440
441

where f = H
k .442

Boundary conditions We supplement (34) with some combination of the boundary443

conditions (2)444

T = gD on ∂ΩD ⊂ ∂Ω (35)445

∇T · ˆ⃗n = gN on ∂ΩN ⊂ ∂Ω (36)446

aT +∇T · ˆ⃗n = gR on ∂ΩR ⊂ ∂Ω (37)447
448

where ∂ΩD, ∂ΩN and ∂ΩR are segments of the domain boundary that do not449

overlap (∂ΩD

⋂
∂ΩN =Ø, ∂ΩD

⋂
∂ΩR =Ø, ∂ΩN

⋂
∂ΩR =Ø) and that together450

span the entire boundary (∂ΩD

⋃
∂ΩN

⋃
∂ΩR = ∂Ω). The unit outward-pointing451

normal to the boundary ∂Ω is denoted by ˆ⃗n and gD = gD(x⃗, t), gN = gN (x⃗, t)452

and gR = gR(x⃗, t) are known functions of space and time. Equation (35) is known453

as a Dirichlet boundary condition and specifies the value of the solution on ∂ΩD.454

Equation (36) is a Neumann boundary condition and specifies the value of the flux455

through ∂ΩN . Finally, equation (37) is a Robin boundary condition, which describes456

a linear combination of the flux and the solution on ∂ΩR.457

Weak form The first step in the finite element discretization of (34) is to transform458

it into its weak form. Following (7), this requires multiplying the equation by a test459

function, Tt, and integrating over the domain Ω460

−
∫
Ω

Tt∇2T dx =

∫
Ω

Ttf dx (38)461
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After integrating the left-hand side by parts462 ∫
Ω

∇Tt · ∇T dx−
∫
∂Ω

Tt∇T · ˆ⃗n ds =
∫
Ω

Ttf dx (39)463

we can see that we have reduced the continuity requirements on T by only requiring464

its first derivative to be bounded across Ω (see Hughes, 1987, for a more formal465

discussion of the requirements on the solution). Integrating by parts also allows466

Neumann and Robin boundary conditions to be imposed “naturally” through the467

second integral on the left-hand side since this directly incorporates the flux com-468

ponents across the boundary. In this formulation, Dirichlet conditions cannot be469

imposed weakly and are referred to as essential boundary conditions, that are re-470

quired of the solution but do not arise naturally in the weak form. The weak form471

therefore becomes: find T such that T=gD on ∂ΩD and472 ∫
Ω

∇Tt · ∇T dx−
∫
∂ΩN

TtgN ds−
∫
∂ΩR

Tt (gR − aT ) ds =

∫
Ω

Ttf dx (40)473

for all Tt such that Tt = 0 on ∂ΩD.474

Discretization The weak (40) and strong (34)–(37) forms of the problem are equiv-475

alent so long as the solution is sufficiently smooth. We make our first approximation476

to the solution by seeking the trial function T̃ such that T̃ = gD on ∂ΩD where477

T ≈ T̃ =
∑
j

ϕjTj (41)478

for all test functions T̃t where479

Tt ≈ T̃t =
∑
i

ϕiTti (42)480

noting again that T̃t = 0 on ∂ΩD. The finite element shape functions ϕj are as481

discussed earlier. Assuming these are continuous across elements of the mesh, (41)482

and (42) can be substituted into (40) to yield483

484 ∑
i

∑
j

TtiTj
∑
k

∫
ek

∇ϕi · ∇ϕj dx+
∑
i

∑
j

TtiTj
∑
k

∫
∂ek∩∂ΩR

ϕiaϕj ds485

−
∑
i

Tti
∑
k

∫
∂ek∩∂ΩN

ϕigN ds−
∑
i

Tti
∑
k

∫
∂ek∩∂ΩR

ϕigR486

=
∑
i

Tti
∑
k

∫
ek

ϕif dx (43)487

488

where we are integrating over the whole domain by summing the integrals over489

all the elements ek (
∫
Ω
dx=

∑
k

∫
ek
dx). Note that in practice, because the shape490

functions are zero over most of the domain, only element integrals with non-zero491

values need be included in the summation. The element boundaries, ∂ek, are only of492

interest (due to the assumed continuity of the shape functions between the elements)493
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if they either intersect with ∂ΩN , ∂ek∩∂ΩN , or ∂ΩR, ∂ek∩∂ΩR. Since the solution494

of the now discretized weak form should be valid for all T̃t we can drop Tti from495

(43)496

497 ∑
j

Tj
∑
k

∫
ek

∇ϕi · ∇ϕj dx+
∑
j

Tj
∑
k

∫
∂ek∩∂ΩR

ϕiaϕj ds498

−
∑
k

∫
∂ek∩∂ΩN

ϕigN ds−
∑
k

∫
∂ek∩∂ΩR

ϕigR ds =
∑
k

∫
ek

ϕif dx (44)499

500

This represents a matrix-vector system of the form of (8) with501

S = Sij =
∑
k

∫
ek

∇ϕi · ∇ϕj dx+
∑
k

∫
∂ek∩∂ΩR

ϕiaϕj ds (45)502

f = fi =
∑
k

∫
ek

ϕif dx+
∑
k

∫
∂ek∩∂ΩN

ϕigN ds+
∑
k

∫
∂ek∩∂ΩR

ϕigR ds

(46)

503

u = T = Tj (47)504
505

The compact support of the shape functions ϕ(i,j), which limits their nonzero values506

to the elements immediately neighboring DOF i or j, means that the integrals in507

(45)–(46) can be evaluated efficiently by only considering shape functions associated508

with an element ek. It also means that the resulting matrix S is sparse, with most509

entries being zero. These properties can be seen by considering a one-dimensional510

version of (34) as discussed in section 2.2.2.511

For an example of the implementation of the 2D Poisson problem on a unit512

square see listing 2 with convergence tests and solution in Figure 4. In this case we513

use a manufactured solution (that is, one that is not necessarily an example of a514

solution to a PDE representing a naturally occurring physical problem) where we515

take a known analytical solution T (x, y) and substitute this into (34) to find f , then516

use this as the right-hand side in our numerical test. We choose T (x, y)=exp
(
x+ y

2

)
517

which is the solution to518

−∇2T = − 5
4 exp

(
x+ y

2

)
(48)519

Solving (48) numerically in a unit square, Ω = [0, 1] × [0, 1], for the approximate520

solution T̃ ≈ T , we impose the boundary conditions521

T̃ = exp
(
x+ y

2

)
on ∂Ω where x = 0 or y = 0 (49)522

∇T̃ · ˆ⃗n = exp
(
x+ y

2

)
on ∂Ω where x = 1 (50)523

∇T̃ · ˆ⃗n = 1
2 exp

(
x+ y

2

)
on ∂Ω where y = 1 (51)524

525

where (49) represents an essential Dirichlet condition on the value of T̃ and (50)–526

(51) are natural Neumann conditions on ∇T̃ .527

Listing 2 shows an implementation of this problem using FEniCS, which returns528

the approximate solution T̃ . Comparison of this to the analytical solution T using529
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the metric (32) gives the expected order of convergence for the P1 and P2 elements530

(see Figure 4).531

1from dolfin import *532

2def solve_poisson_2d(ne , p=1):533

3"""534

4A python function to solve a two -dimensional Poisson problem535

5on a unit square domain.536

6Parameters:537

7* ne - number of elements in each dimension538

8* p - polynomial order of the solution function space539

9"""540

10# Describe the domain (a unit square)541

11# and also the tessellation of that domain into ne542

12# equally spaced squares in each dimension which are543

13# subdivided into two triangular elements each544

14mesh = UnitSquareMesh(ne, ne, diagonal=’right ’)545

15# Define the solution function space using Lagrange polynomials546

16# of order p547

17V = FunctionSpace(mesh , "Lagrange", p)548

18549

19# Define the trial and test functions on the same function space (V)550

20T_a = TrialFunction(V)551

21T_t = TestFunction(V)552

22553

23# Define the location of the boundary condition , x=0 and y=0554

24def boundary(x):555

25return x[0] < DOLFIN_EPS or x[1] < DOLFIN_EPS556

26# Specify the value and define a Dirichlet boundary condition (bc)557

27gD = Expression("exp(x[0] + x[1]/2.)", degree=p)558

28bc = DirichletBC(V, gD, boundary)559

29560

30# Get the coordinates561

31x = SpatialCoordinate(mesh)562

32# Define the Neumann boundary condition function563

33gN = as_vector ((exp(x[0] + x[1]/2.) , 0.5* exp(x[0] + x[1]/2.)))564

34# Define the right hand side function , rhsf565

35rhsf = -5./4.* exp(x[0] + x[1]/2.)566

36567

37# Get the unit vector normal to the facets568

38n = FacetNormal(mesh)569

39# Define the integral to be assembled into the stiffness matrix570

40S = inner(grad(T_t), grad(T_a))*dx571

41# Define the integral to be assembled into the forcing vector ,572

42# incorporating the Neumann boundary condition weakly573

43f = T_t*rhsf*dx + T_t*inner(gN , n)*ds574

44575

45# Define the solution and compute it (given the boundary condition ,576

bc)577

46T_i = Function(V)578

47solve(S == f, T_i , bc)579

48580

49# Save solution to disk in XDMF format581

50ofile = XDMFFile("poisson_ {}_{}. xdmf".format(ne,p,))582

51ofile.write(T_i)583

52ofile.close ()584

53585

54# Return the solution586

55return T_i587

Listing 2 FEniCS script for 2D Poisson problem

2.2.5 Batchelor cornerflow problem588

The solid flow in a subduction zone is primarily driven by the motion of the down-589

going slab entraining material in the mantle wedge and dragging it down with it590

setting up a cornerflow in the mantle wedge (see, e.g., Figure 1a in part I). This591
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Figure 4 Poisson 2D example. Convergence of the error as a function of nodal point spacing h for
P1 and P2 elements. Insert: solution field T .

effect can be simulated by imposing the motion of the slab as a kinematic boundary592

condition at the base of the dynamic mantle wedge, allowing us to drop the buoy-593

ancy term from (12), f⃗B=0. With the further assumption of an isoviscous rheology,594

2η=1, the momentum and mass equations simplify to595

−∇ ·
(
∇v⃗ +∇v⃗T

2

)
+∇P = 0 in Ω (52)596

∇ · v⃗ = 0 in Ω (53)597
598

Here, v⃗ is the velocity of the mantle in the subduction zone wedge, Ω, and P is599

the pressure. Imposing isothermal conditions means that (14) has been dropped600

altogether. With these simplifications we can test our numerical solution to (52)–601

(53) against the analytical solution provided by Batchelor (1967).602

Analytical solution To more easily describe the analytical solution, we consider603

the cornerflow geometry in Figure 5a where we have rotated the mantle wedge by604

90◦ counterclockwise and assumed a 90◦ angle between the wedge boundaries. In605

this geometry Equations (52)–(53) can be transformed into a biharmonic equation606
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Figure 5 Batchelor cornerflow geometry and example model solution. a) Specification of Cartesian
(x, y) and polar (r, θ) coordinate systems as well as boundary conditions. b) Solution for ψ and v⃗
on geometry Ω = [0, 1]× [0, 1] with U=1. Stream function contours are at arbitrary intervals.

for the stream function, ψ,607

∇4ψ = 0 (54)608

where ψ = ψ(r, θ) is a function of the radius, r, and angle from the x-axis, θ, related609

to the velocity, v⃗ = v⃗(x, y) by610

v⃗ =

(
cos θ − sin θ

sin θ cos θ

)(
1
r
∂ψ
∂θ

−∂ψ
∂r

)
(55)611

612

With semi-infinite x and y axes, a rigid boundary condition, v⃗ = 0⃗, along the613

y-axis (the rotated “crust” at the top of the wedge), and a kinematic boundary614

condition on the x-axis (the “slab” surface at the base of the wedge), v⃗ = (U, 0)T ,615

the analytical solution is found as616

ψ(r, θ) =
rU

1
4π

2 − 1

(
−1

4
π2 sin θ +

1

2
πθ sin θ + θ cos θ

)
(56)617

Discretization Since it is not possible with our numerical approach to solve the618

equations in a semi-infinite domain, we discretize (52)–(53) in a unit square domain619

with unit length in the x and y domains, as in Figure 5b. We choose different func-620

tion spaces, with different shape functions, ω⃗j(x) and χj(x) for the approximations621

of v⃗ and P respectively, such that622

v⃗ ≈ ˜⃗v =
∑
j

ωkj v
k
j (57)623

P ≈ P̃ =
∑
j

χjPj (58)624

625

where vkj and Pj are the values of velocity and pressure at node j respectively and626

the superscript k represents the spatial component of v⃗. The discrete test functions627
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˜⃗vt and P̃t are similarly defined. We will discuss the choice of ω⃗j = ωkj and χj later628

but simply assume that they are continuous across elements of the mesh in the629

following.630

Boundary conditions To match the analytical solution (56) we apply essential631

Dirichlet conditions on ˜⃗v on all four sides of the domain632

˜⃗v = (0, 0)T on ∂Ω where x = 0 (59)633

˜⃗v = (U, 0)T on ∂Ω where y = 0 (60)634

˜⃗v = v⃗ on ∂Ω where x = 1 or y = 1 (61)635
636

Note that the first two conditions imply a discontinuity in the solution for ˜⃗v at637

(x, y)=(0, 0). The last boundary condition simply states that we apply the analyti-638

cal solution (obtained from (56) via (55)) at the boundaries at x=1 and y=1. One639

consequence of applying essential boundary conditions on v⃗ on all sides of the do-640

main is that P is unconstrained up to a constant value as only its spatial derivatives641

appear in the equations. The ability to add an arbitrary constant to the pressure642

is referred to as the pressure containing a null space. This makes it impossible to643

find a unique solution to (52)–(53) with (59)–(61) since an infinite number of pres-644

sure solutions exist. There are a number of ways to select an appropriate pressure645

solution. Here we arbitrarily choose one such solution by adding the condition that646

P̃ = 0 at (x, y) = (0, 0) (62)647
648

which will allow a unique solution to the discrete equations to be found.649

Weak form Multiplying (52) by v⃗t and (53) by Pt, integrating (by parts) over Ω,650

and discretizing the test and trial functions allows the discrete matrix-vector system651

of the form of (8) to be written as652

S =

(
K G

D 0

)
(63)653

K = Ki1j1 =
∑
k

∫
ek

(
∇ω⃗i1 +∇ω⃗Ti1

2

)
:

(
∇ω⃗j1 +∇ω⃗Tj1

2

)
dx (64)654

G = Gi1j2 = −
∑
k

∫
ek

∇ · ω⃗i1χj2dx (65)655

D = Di2j1 = −
∑
k

∫
ek

χi2∇ · ω⃗j1dx (66)656

u = (v,P)
T
= (v⃗j1 , Pj2)

T
(67)657

f = fi = 0 (68)658
659

Note that in (64)–(66) all surface integrals around ∂Ω arising from integration660

by parts have been dropped because the velocity solution is fully specified on all661

boundaries. Additionally, when integrating (64) by parts we have used the fact662
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that ∇ω⃗i1 :

(
∇ω⃗j1+∇ω⃗T

j1

2

)
=

(
∇ω⃗i1+∇ω⃗T

i1

2

)
:

(
∇ω⃗j1+∇ω⃗T

j1

2

)
to demonstrate the663

symmetry of K. In fact, S has been made symmetric by integrating the gradient of664

pressure term, ∇P , by parts in (65) and negating (53) in (66) such that G = DT .665

This symmetry property can be exploited when choosing an efficient method of666

solving (8).667

As before, the weak form of (63) may be described using UFL with rather668

simple python code shown in listing 3.669

1K = inner(sym(grad(v_t)), sym(grad(v_a)))*dx670

2G = -div(v_t)*p_a*dx671

3D = -p_t*div(v_a)*dx672

4S = K + G + D673

Listing 3 Weak form of Stokes system

For the sake of brevity we have assumed that the test and trial functions v_t, p_t,674

v_a and p_a have been declared. Additional code is also required to fully describe the675

boundary conditions and solve the resulting system. The full example is provided676

in the Supplementary Information as a TerraFERMA input file.677

An important aspect of S is that it describes a so-called “saddle point” system.678

The lower right block is zero, which indicates that pressure is acting in this system679

as a Lagrange multiplier, enforcing the constraint that the velocity is divergence680

free but not appearing in (53) itself. Such systems require special consideration681

of the choice of shape functions for the discrete approximations of velocity and682

pressure to ensure the stability of the solution, u. Several choices of so-called stable683

element pairs, (ω⃗j , χj) are available in the literature (e.g., Auricchio et al., 2017).684

Here we select the frequently used lowest-order Taylor-Hood element pair, in which685

ω⃗j are piecewise-quadratic and χj are piecewise-linear polynomials, referred to on686

triangular (and tetrahedral in 3D) meshes as P2P1. This fulfills a necessary (but not687

sufficient) criterion for stability that the velocity has more DOFs than the pressure.688

Solving (63)–(68) subject to the conditions (59)–(62) on a series of successively finer689

meshes and comparing the resulting solution to the analytical result given by (56)690

and (55) using the error metric691

eL2,B =

√∫
Ω

(˜⃗v − v⃗) · (˜⃗v − v⃗)dx (69)692

(where B stands for Batchelor) shows linear rather than quadratic convergence.693

We encourage the reader to convince themselves of this by running the example.694

This first-order convergence rate is lower than would be expected for piecewise695

quadratic velocity functions. This drop in convergence is caused by the boundary696

conditions at the origin being discontinuous, which cannot be represented in the697

selected function space and results in a pressure singularity at that point. This is698

an example where convergence analysis demonstrates suboptimal results due to our699

inability to represent the solution in the selected finite element function space.700
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2.2.6 Blankenbach thermal convection benchmark701

Before discussing the solution of the full governing equations for subduction zone702

thermal structure we will explore solving the equations governing a buoyancy-driven703

convection model in a square domain following the steady-state mantle convection704

benchmarks from Blankenbach et al. (1989). This example allows us to couple a705

steady-state advection-diffusion equation for temperature to the Stokes and mass706

conservation equations we have already discussed. This also provides an example707

of solving a nonlinearly coupled system and will show how we can test a model for708

which no analytical solution exists.709

Figure 6 a) Thermal convection benchmark description. b) Select model solution for case 1a from
Blankenbach et al. (1989)

The flow in the box is driven by heating from below and cooling from above710

(Figure 6). We solve (12)–(13)711

−∇ ·
(
2η

∇v⃗ +∇v⃗T

2

)
+∇P = −RaT ˆ⃗g in Ω (70)712

∇ · v⃗ = 0 in Ω (71)713
714

where variable rheology is permitted through the inclusion of the viscosity η and715

the buoyancy force vector has been defined as f⃗B=−RaT ˆ⃗g, using the tempera-716

ture T , nondimensional Rayleigh number, Ra, and unit vector in the direction of717

gravity, ˆ⃗g. The Rayleigh number arises from the nondimensionalization of the gov-718

erning equations and is a ratio that balances factors that enhance convective vigor719

(e.g., thermal expansivity, gravity) with those that retard convective vigor (e.g.,720

viscosity). In general, convective vigor increases with increasing Ra when it exceeds721

a critical value for the Rayleigh number (see, e.g., Turcotte and Schubert, 2002).722

The heat equation (14), under the assumptions of steady state (∂T∂t =0), constant723

material properties (k=1), and zero internal heating (H=0) reads724

v⃗ · ∇T = ∇2T in Ω (72)725
726

Boundary conditions We discretize the trial function spaces for temperature727

(T≈T̃ ), velocity (v⃗≈˜⃗v), and pressure (P≈P̃ ) as before using (41), (57) and (58),728
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with similarly defined discrete test functions, T̃t, ˜⃗vt and P̃t. For the Stokes problem729

we assume free-slip boundaries. These are formed by the combination of a Dirichlet730

boundary condition of zero normal velocity (vn=˜⃗v · ˆ⃗n=0) and a Neumann zero tan-731

gential stress condition (τt=(τ · ˆ⃗n)· ˆ⃗t=0). Here, ˆ⃗n is the unit normal to the boundary,732

ˆ⃗t is the unit tangent on the boundary (see Figure 6a), and τ is the deviatoric stress733

tensor734

τ = 2η
∇˜⃗v +∇˜⃗vT

2
= 2η

 ∂ṽx
∂x

1
2

(
∂ṽx
∂y +

∂ṽy
∂x

)
1
2

(
∂ṽx
∂y +

∂ṽy
∂x

)
∂ṽy
∂y

 (73)735

This set of velocity boundary conditions once again results in a pressure null space.736

We arbitrarily choose to impose the extra condition that P̃ (0, 0)=0 to force a unique737

solution to exist. For the heat equation the side boundaries are insulating (imposed738

by the Neumann boundary condition ∂T̃ /∂x=0) with Dirichlet boundary conditions739

for the top boundary (T̃=0) and bottom boundary (T̃=1).740

Figure 7 Convergence characteristics for Nu (frame a) and Vrms (frame b) for the thermal
convection benchmarks 1a–1c and 2a. Dashed lines with triangular symbols denote Sepran results.
TerraFERMA results are shown by the solid lines with circles. The difference between the original
Blankenbach “best” estimates and our new extrapolated results is shown by the diamonds at an
arbitrary point on the x-axis.

Nonlinearity Unlike the previous examples, which were linear problems of their741

solution variables, (70)–(72) are nonlinear. For an isoviscous rheology the equations742

are individually linear but the buoyancy contribution to (70) and the advective743

component in (72) mean that the coupled system of equations is nonlinear, with744

v⃗ depending on T and vice versa. For non-Newtonian rheologies, where η=η(v⃗),745

(70) itself becomes nonlinear too. Because of this, rather than immediately defining746

the weak forms of the linear operator S we begin by considering the weak form747

of the nonlinear residual, r. This is derived in exactly the same manner as before748

by multiplying (70) by v⃗t, (71) by Pt and (72) by Tt, discretizing the functions,749

integrating (by parts) over the domain Ω, dropping the resulting surface integrals750

(either to enforce the weak boundary conditions or because they are unnecessary751
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due to the essential boundary conditions), and defining the discrete weak forms as752

rv⃗ = rv⃗i1 :=
∑
k

∫
ek

[(
∇ω⃗i1 +∇ω⃗Ti1

2

)
: 2η

(
∇˜⃗v +∇˜⃗vT

2

)
−∇ · ω⃗i1 P̃ + ω⃗i1 · g⃗RaT̃

]
dx = 0

(74)

753

rP = rPi2
:= −

∑
k

∫
ek

χi2∇ · ˜⃗vdx = 0 (75)754

rT = rTi3
:=
∑
k

∫
ek

[
ϕi3

˜⃗v · ∇T̃ +∇ϕi3 · ∇T̃
]
dx = 0 (76)755

756

Here r = (rv⃗, rP , rT )
T

=
(
rv⃗i1 , rPi2

, rTi3

)T
is a residual vector, the root of which757

must be found in order to find an approximate solution to (70)–(72). Finding the758

exact root is not generally possible. Instead we aim to find r=0 within some toler-759

ance. For example we can use an L2 norm and an absolute ||r||2 =
√
r · r < ϵatol,760

or relative, ||r||2
||r0||2 =

√
r·r√

r0·r0
< ϵrtol, tolerance, where r0 is the residual evaluated761

using the initial guess at the solution. We will briefly discuss two commonly used762

approaches to approximately finding the residual root.763

Newton’s method To find the root, ui+1=
(
vi+1,Pi+1,Ti+1

)T
=
(
v⃗i+1
j1

, P i+1
j2

, T i+1
j3

)T
,764

we can expand the residual in a Taylor series around the current best guess at the765

solution ui=
(
vi,Pi,Ti

)T
=
(
v⃗ij1 , P

i
j2
, T ij3

)T
such that766

r
(
ui+1

)
= r

(
ui
)
+ r′

(
ui
) (

ui+1 − ui
)
+ r′′

(
ui
) (

ui+1 − ui
)2

+ ... = 0 (77)767

where r′
(
ui
)
and r′′

(
ui
)
represent the first and second order derivatives of the768

residual with respect to the solution variables, evaluated at ui. Dropping terms with769

orders higher than first, defining the Jacobian J
(
ui
)
= r′

(
ui
)
and δu = ui+1 −ui,770

and rearranging results in the matrix equation771

J
(
ui
)
δu = −r

(
ui
)

(78)772

which can be solved for δu and used to find ui+1 = ui+ δu. Since we have dropped773

terms from the Taylor expansion ui+1 will only be a first-order approximation of774

the root of r. So long as the initial guess ui is close enough to the final solution775

and (78) is solvable then ui+1 should give a better estimate of r = 0, in the sense776

that r
(
ui+1

)
< r

(
ui
)
. Repeatedly solving (78) and at each iteration updating777

ui+1 → ui will then result in a final solution where r approaches 0 in some norm778

and to some tolerance.779

For highly nonlinear problems the Jacobian matrix, J = r′, can be complicated780

and difficult to derive, let alone to code. Fortunately, modern finite element libraries,781

like FEniCS, that provide the symbolic and human-readable representation of weak782

forms seen above through UFL allow the Jacobian to be automatically evaluated783

and assembled. For (74)–(76) this results in the code snippet in listing 4.784

1rv = (inner(sym(grad(v_t)), 2*eta*sym(grad(v_i))) - div(v_t)*p_i \785

2+ inner(v_t , gravity)*Ra*T_i)*dx786
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3rp = -p_t*div(v_i)*dx787

4rT = (T_t*inner(v_i , grad(T_i)) + inner(grad(T_t), grad(T_i)))*dx788

5r = rv + rp + rT789

6J = derivative(r, u_i , u_a)790

Listing 4 Weak form of Stokes thermal convection system

For the sake of brevity we have assumed that the most recent iterated solutions, v_i,791

p_i and T_i, and test functions, v_t, p_t and T_t, have been declared. The individual792

solutions are part of a larger system solution, u_i=(v_i, p_i,T_i), and a trial function793

for the system also exists, u_a=(v_t, p_t, T_t). Additionally the unit vector in the794

direction of gravity, gravity, the Rayleigh number, Ra, and the viscosity, eta, have795

been declared with the latter either being 1 in the isoviscous case or a function of796

temperature, T_i, in the temperature-dependent case. In either case the Jacobian797

matrix, J, is easily obtained using the derivative function. Using this and the residual798

r allow (78) to be repeatedly solved for u_i until convergence is achieved and the799

root of the residual found.800

Picard’s method Convergence of the Newton iteration method depends on having801

a good initial guess, which is not always possible, especially when solving steady-802

state problems like (70)–(72). In this case an alternative approach is to use a Picard803

iteration. This splits the equations into multiple linearized subsets and solves them804

sequentially and repeatedly, updating the nonlinear terms at each iteration, until805

convergence is achieved. Equations (70)–(72) can be split into two systems of the806

form of (8), the first for the Stokes system807

Ss =

(
Ks Gs

Ds 0

)
(79)808

Ks = Ksi1j1
=
∑
k

∫
ek

(
∇ω⃗i1 +∇ω⃗Ti1

2

)
: 2η

(
∇ω⃗j1 +∇ω⃗Tj1

2

)
dx (80)809

Gs = Gsi1j2
= −

∑
k

∫
ek

∇ · ω⃗i1χj2dx (81)810

Ds = Dsi2j1
= −

∑
k

∫
ek

χi2∇ · ω⃗j1dx (82)811

us = (v,P)
T
= (v⃗j1 , Pj2)

T
(83)812

fs = fsi1 = −
∑
k

∫
ek

ω⃗i1 · ˆ⃗gRaT̃dx (84)813

814

and the second for the temperature equation815

ST = STij =
∑
k

∫
ek

(
ϕi ˜⃗v · ∇ϕj +∇ϕi · ∇ϕj

)
dx (85)816

uT = T = Tj (86)817

fT = fTi = 0 (87)818
819

For UFL code snippets of (79) and (84) see listing 5820
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1Ks = inner(sym(grad(v_t)), 2*eta*sym(grad(v_a)))*dx821

2Gs = -div(v_t)*p_a*dx822

3Ds = -p_t*div(v_a)*dx823

4Ss = Ks + Gs + Ds824

5fs = -inner(v_t , gravity)*Ra*T_i*dx825

Listing 5 Weak form of Stokes system

and for (85) see listing 6.826

1ST = (T_t*inner(v_i , grad(T_a)) + inner(grad(T_t), grad(T_a)))*dx827

Listing 6 Weak form of Stokes thermal convection system

The full system solution vector remains u=(us,uT )
T
=(v,P,T)

T
and the best828

guess at the solution is ui. Ss(u
i)ui+1

s =fs(u
i
s) is solved for ui+1

s , which is used to829

update u such that ui+1
s →uis before solving ST (u

i)ui+1
T =0 for an updated solution830

for temperature, ui+1
T . Repeating this iteration will generally find the root of the831

residuals (74)–(76) and once again the iteration is repeated until r=0 in some norm832

and to some tolerance.833

If the initial guess is sufficiently good then Newton should converge quadrat-834

ically while a Picard iteration will converge at a lower rate. However neither con-835

vergence nor the convergence rate of either method is guaranteed. Various methods836

are available for solutions that do not converge. These include finding a better ini-837

tial guess (e.g., a solution from a case with lower convective vigor), “relaxing” the838

solution by only applying a partial update at each iteration, or linearizing terms in839

the Jacobian matrix. It should also be noted that, if applied to the linear problems840

discussed in previous sections, any nonlinear iteration should converge in a single841

iteration.842

Diagnostics The geometry and expressions for the boundary conditions for the se-843

lected Blankenbach et al. (1989) cases are shown in Figure 6a and a converged model844

solution for temperature and velocity obtained for Ra=104 (benchmark case 1a from845

Blankenbach et al., 1989) is shown in Figure 6b. To quantify the precision with which846

the governing equations can be solved we focus on two measures of convective vigor.847

The first is the Nusselt number Nu which is the integrated nondimensional surface848

heatflow849

Nu = −
∫ 1

0

∂T

∂y
(x, y = 1)dx (88)850

The second is the root-mean-square velocity Vrms defined as851

Vrms =

√∫
Ω
v⃗ · v⃗dx∫
Ω
dx

(89)852

Table 9 in Blankenbach et al. (1989) specifies their best estimates for various quan-853

tities of the benchmark. We will focus on Nu and Vrms and show results for their854

steady-benchmarks 1a–1c (isoviscous, η=1, with Ra increasing from 104 to 105 and855

106) and benchmark 2a which has Ra=104 and a temperature-dependent viscosity856

η(T )=exp (−bT ) with b=ln(103) (see Table 1).857
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Discretization For the Stokes equation TerraFERMA uses the P2P1 Taylor-Hood858

Lagrange element pair for the shape functions (ω⃗j , χj) (as in section 2.2.5) and P2859

elements for the heat equation (ϕj). The choice of elements here can be tersely de-860

scribed as P2P1P2. In TerraFERMA we apply a Newton iteration to cases 1a–c with861

a harmonic perturbation to the conductive state T (x, y) = 1− y + 0.1 cosπx sinπy862

as an initial guess for temperature and the solution to Ssus=fs given the initial T863

as a first guess for velocity and pressure. We use a Picard iteration and an isoviscous864

initial velocity and pressure guess for case 2 owing to the difficulty getting Newton865

to converge without a better initial guess. Both are solved to a relative tolerance,866

ϵrtol, of 10
−9.867

We also show results obtained with Sepran using the same P2P1P2 discretiza-868

tion as in TerraFERMA. The same initial guess is used for case 1a, but for for 1b869

and 2a we use the final solution from 1a as an initial guess and for 1c we use the870

final solution of 1b. Picard iteration is used for all cases to a relative tolerance of871

10−9.872

Results We obtain results for grids with 32, 64, 128, and 256 elements on a side.873

The TerraFERMA results have grid refinement towards the edges of the domain874

to allow for better resolution of the thermal boundary layer at a lower number875

of grid points. The Sepran results are obtained on equidistant meshes where the876

computation of (88) is improved following the method of Ho-Liu et al. (1987). We877

follow Blankenbach et al. (1989) in using Richardson extrapolation to attempt to878

find the “best” estimate as shown in comparison to theirs in Table 1. We make879

estimates from the modeling approaches independently and average them to find880

the “new” results. A brief inspection suggests that the estimates made in 1989 were881

clearly rather precise!882

Figure 7 shows how our model predictions trend toward our average extrapo-883

lated values. Note that these are not convergence plots like those used previously884

when we compared the approximate solution to the analytical solution. Here, the885

best estimates do not represent metrics obtained from an analytical solution. Some886

of the flattening or ‘V’-ing in the curves is due to the change in sign of the dif-887

ference between the modeled and extrapolated values. In general the difference888

between approximate solution and extrapolated value is smaller at lower convective889

vigor (compare 1a and 1c) and larger with stronger nonlinearities (compare 1a and890

2a).891

Table 1 Best values from (Blankenbach et al., 1989) and our averaged extrapolated values from
current models for selected benchmark values (see text)

Blankenbach et al. (1989) updated estimates
case Ra η Nu Vrms Nu Vrms

1a 104 1 4.884409 42.864947 4.88440907 42.8649484
1b 105 1 10.534095 193.21454 10.53404 193.21445
1c 106 1 21.972465 833.98977 21.97242 833.9897

2a 104 e− ln(103)T 10.0660 480.4334 10.06597 480.4308

2.3 FEM determination of SZ thermal structure892

2.3.1 Recap of the governing equations893

While we already encountered examples of solution of the governing equations (12)–894

(14), we will formulate the full set of equations for subduction zone thermal structure895
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below for clarity and completeness’ sake. We will set up the parameters and equa-896

tions in a general form that we will use in part III for a global suite of models (similar897

to those in Syracuse et al. (2010) and Wada and Wang (2009)) but restrict ourselves898

in this part to applying them to a simplified benchmark problem. The equations899

will be introduced in dimensional form before nondimensionalizing them in section900

2.3.2. All dimensional variables will be indicated by a superscript ∗. Dimensional901

reference values will be indicated by the subscript 0. We assume a 2D Cartesian902

coordinate system with coordinates x⃗∗ = (x∗1, x
∗
2)
T = (x∗, y∗)T = (x∗,−z∗)T where903

z∗ is depth.904

Conservation of mass under the assumption that the fluid is incompressible905

leads to906

∇∗ · v⃗∗ = 0 (90)907

where, in two-dimensions, v⃗∗ = (v∗1 , v
∗
2)
T = (v∗x, v

∗
y)
T is the velocity vector. Assum-908

ing all flow is driven by a kinematic boundary condition, conservation of momentum909

leads to the dimensional Stokes equation without buoyancy forces910

−∇∗ · τ ∗ +∇∗P ∗ = 0 (91)911

where P ∗ is the dynamic pressure and τ ∗ is the deviatoric stress tensor given by912

τ ∗ = 2η∗ϵ̇∗ (92)913

Here, η∗ is dynamic viscosity and ϵ̇∗ is the deviatoric strain-rate tensor with com-914

ponents915

ϵ̇∗ij =
1

2

[
∂v∗i
∂x∗j

+
∂v∗j
∂x∗i

]
(93)916

The time-dependent dimensional heat equation is given by917

ρ∗cp0

(
∂T ∗

∂t∗
+ v⃗∗ · ∇∗T ∗

)
= ∇∗ · (k∗∇∗T ∗) +H∗ (94)918

while, in cases where a steady state is assumed (∂T
∗

∂t∗ =0) temperature is governed919

by920

ρ∗cp0v⃗
∗ · ∇∗T ∗ = ∇∗ · (k∗∇∗T ∗) +H∗ (95)921

where ρ∗ is density, cp0 is the heat capacity at constant pressure (assumed constant),922

T ∗ is temperature, k∗ is thermal conductivity, andH∗ is volumetric heat production.923

In this paper we will assume that the viscosity η∗ is either constant, η∗=η0, or924

is a function of temperature and strain rate following a simplified creep law for925

dislocation creep in dry olivine from Karato and Wu (1993)926

η∗disl = A∗
η exp

(
E∗

nR∗(T ∗ + T ∗
a )

)
ϵ̇
∗ 1−n

n

II (96)927
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where A∗
η is a prefactor, E∗ is the activation energy, R∗ is the gas constant, n is928

a powerlaw index, T ∗
a a linear approximation of an adiabatic temperature using a929

gradient of 0.3◦C/km with T ∗
a=0 at the top of the model (which may not be at930

z∗=0 due to assumptions of ocean bathymetry as we will see in section 2.3.3) and931

ϵ̇∗II is the second invariant of the deviatoric strain-rate tensor (also known as the932

effective deviatoric strain rate)933

ϵ̇∗II =

√
1

2
ϵ̇∗ : ϵ̇∗ (97)934

Since the dynamical range of the viscosity (96) is large over the temperature contrast935

across subduction zones it is common practice to cap the viscosity at some arbitrary936

maximum η∗max so that in the variable viscosity case937

η∗ =

(
1

η∗disl
+

1

η∗max

)−1

(98)938

Table 2 Nomenclature and reference values

Quantity Symbol Nominal value Nondimensional value
Reference temperature scale T0 1 K=1◦C -
Surface temperature T ∗

s 273 K=0◦C Ts=0
Mantle temperature T ∗

m 1623 K=1350◦C Tm=1350
Surface heat flowc q∗s

§W/m2 qs§

Reference density ρ0 3300 kg/m3 -
Crustal densityc ρ∗c 2750 kg/m3 ρc=0.833333
Mantle density ρ∗m 3300 kg/m3 ρm=1
Reference thermal conductivity k0 3.1 W/(m K) -
Crustal thermal conductivityc k∗c 2.5 W/(m K) kc=0.8064516
Mantle thermal conductivity k∗m 3.1 W/(m K) km=1
Volumetric heat production (upper crust)c H∗

1 1.3 µW/m3 H1=0.419354
Volumetric heat production (lower crust)c H∗

2 0.27 µW/m3 H2=0.087097
Age of overriding crusto A∗

c
§Myr Ac

§

Age of subductiont A∗
s

§Myr As
§

Age of subducting slab A∗ §Myr A§

Reference length scale h0 1 km -
Depth of base of upper crustc z∗1 15 km z1=15
Depth of base of lower crust (Moho) z∗2

§km z2§

Trench depth z∗trench
§km ztrench

§

Position of the coast line x∗coast
§km xcoast§

Wedge inflow/outflow transition depth z∗io
§km zio

§

Depth of domain D∗ §km D§

Width of domain L∗ §km L§

Depth of change from decoupling to coupling d∗c 80 km dc=80
Reference heat capacity cp0 1250 J/(kg K) -
Reference thermal diffusivity κ0 0.7515×10-6 m2/s -
Activation energy E 540 kJ/mol -
Powerlaw exponent n 3.5 -
Pre-exponential constant A∗

η 28968.6 Pa s1/n -
Reference viscosity scale η0 1021 Pa s -
Viscosity cap η∗max 1025 Pa s -
Gas constant R∗ 8.3145 J/(mol K) -
Derived velocity scale v0 23.716014 mm/yr -
Convergence velocity V ∗

s
§mm/yr Vs§

c ocean-continent subduction only
o ocean-ocean subduction only
t time-dependent simulations only
§ varies between models

939
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2.3.2 Nondimensionalization940

It is attractive to nondimensionalize the equations such that most quantities are941

scaled to be close to 1. This provides simple scaling arguments to allow for under-942

standing which terms in the equations are dominant, avoids computer algebra that943

mixes very large and very small numbers, and provides for the formation of a matrix-944

vector system where the condition number of the matrix (Golub and Van Loan,945

1989) is more optimal.946

Table 2 provides a list of dimensional reference values, dimensional parame-947

ters, and their nondimensional equivalents. For the nondimensionalization of (90)–948

(98) we use the diffusional time scaling with nondimensional time defined as949

t=t∗κ0/h
2
0 where h0 is the reference length scale and κ0 is the reference ther-950

mal diffusivity. With x⃗=x⃗∗/h0 it follows v⃗=v⃗∗h0/κ0, ϵ̇=ϵ̇
∗h20/κ0, and ∇=∇∗h0.951

We further introduce T=(T ∗ − T ∗
s )/T0, k=k

∗/k0, ρ=ρ
∗/ρ0, P=P

∗h20/(κ0η0), and952

H=H∗h20/(ρ0cp0T0κ0). Note that our choices of T0 and h0 in Table 2 cause the953

numerical values of dimensional position (in km) and temperature (in ◦C) to have954

the same magnitude as the corresponding nondimensional quantities. Substitution955

of the nondimensional variables and constants leads to the following set of nondi-956

mensional equations for pressure and velocity957

∇ · v⃗ = 0 (99)958

959

−∇ ·
(
2η

∇v⃗ +∇v⃗T

2

)
+∇P = 0 (100)960

and either a time-dependent equation for temperature961

ρ

(
∂T

∂t
+ v⃗ · ∇T

)
= ∇ · (k∇T ) +H (101)962

or its equivalent when a steady-state solution is assumed963

ρv⃗ · ∇T = ∇ · (k∇T ) +H (102)964

The viscosity η is either constant 1 or follows from the dislocation creep formulation965

(96) with cap (98) as966

η =
η∗

η0
(103)967

Note that for simplicity as well as clarity we form the viscosity function (98) in968

dimensional form and nondimensionalize the viscosity with the reference viscosity969

η0.970

2.3.3 Geometry, boundary conditions, and initial conditions971

A simplified version of the typical geometry used in 2D subduction zone modeling972

with a kinematically prescribed slab is shown in Figure 8a. The model is a 2D973

Cartesian box of width L and depth D. We picture a model with a straight slab974

surface here but it can also be constructed from a natural spline through a set975
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Figure 8 a) Geometry and coefficients for a simplified 2D subduction zone model specifically for
the proposed new benchmark. All coefficients and parameters in the graph are nondimensional.
The decoupling point is indicated by the star. b) Example mesh (upper frame) constituted of
triangles for the new benchmark geometry with zoom in (lower frame). This particular example is
for TerraFERMA with 83,935 degrees of freedom in the heat equation. Size of the finite elements
ranges from 1 km near the coupling point where the solution gradients are highest to up to 6 km
away from thermal boundary layers. Red solid line is the top of the slab. Dashed red line is the
slab Moho. c) Initial condition for the time-dependent benchmark problem.

of control points as in Syracuse et al. (2010) or connected linear segments with976

different angles with respect to the horizontal as in Wada and Wang (2009). In977

the models following the geometries of Syracuse et al. (2010) described in part III978

this simplified geometry is modified by including a curved slab and a coastline. At979

x=0 the top of the model is at (0, ztrench)
T , for a given depth of the trench, ztrench.980

Between x=0 and x=xcoast, the presumed horizontal position of the coast, the top981

of the model shallows linearly to (xcoast, 0)
T . For x > xcoast the top of the model982

is at z=0. Actual choices for these parameters are provided in the Supplementary983

Information. The kinematic slab approach requires at a minimum that the slab984

surface velocity with magnitude Vs is prescribed. The velocity in the slab, v⃗s, can985

be determined from the solution of (99)–(100) in the slab (resulting in an extra986

Stokes equation owing to the discontinuity in velocity and pressure required across987

the slab above the coupling depth). Alternatively, the velocity in the slab can also988

be simply prescribed by defining the internal slab velocity to be parallel to and of989

same magnitude as that of the point on the slab surface closest to the point internal990

to the slab. For a straight-dipping slab we have found that either approach leads991

to very similar temperature solutions; for a curved slab the use of temperature-992

dependent viscosity also yields very similar temperature solution at the top of the993

slab for these two approaches. Here, we take the approach of solving for the velocity994

in the slab, solving (101) for temperature T in the whole domain and two Stokes995

equations (99)–(100), one in the wedge for v⃗ and P and one in the slab for v⃗=v⃗s996

and P=Ps. The velocity in the overriding plate, above the slab and down to z=z2,997

is always prescribed as v⃗=0 and the Stokes equation is not solved here.998

We use an unstructured mesh of triangular elements to discretize the domain. A999

typical example, with 1 km element resolution in the region with the most activity is1000

shown in Figure 8b. On this mesh we define discrete approximate discrete solutions1001
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for velocity, pressure and temperature as1002

v⃗ ≈ ˜⃗v =
∑
j

ωkj v
k
j (104)1003

P ≈ P̃ =
∑
j

χjPj (105)1004

T ≈ T̃ =
∑
j

ϕjTj (106)1005

1006

with similarly defined discrete test functions, ˜⃗vt, P̃t and T̃t using the same shape1007

functions ω⃗j=ω
k
j , χj and ϕj for velocity, pressure and temperature at each DOF1008

j respectively. In the results presented using TerraFERMA we use a P2P1P2 dis-1009

cretization where ω⃗j are piecewise-quadratic, χj are piecewise linear and ϕj are1010

piecewise-quadratic continuous Lagrange functions. The results from Sepran use1011

either the same P2P1P2 discretization (indicated by TH) or a penalty function1012

method (indicated by PF) with quadratic P2 Crouzeix-Raviart (rather than La-1013

grange) shape functions for the velocity (ω⃗j). In this method the dynamic pressure1014

is eliminated from the Stokes equation (70) by a perturbation of the incompress-1015

ibility constraint, that is, ∇· v⃗ = ϵPP where ϵP is a small number. We use ϵP=10−6
1016

here; see Cuvelier et al. (1986) or King et al. (1990) for details on the elimination1017

process. This method leads to a smaller stiffness matrix compared to that when1018

using Taylor-Hood elements since the pressure unknowns are eliminated. It also1019

results in a positive definite matrix for which more efficient direct solution methods1020

exist. For the temperature shape functions (ϕj) Sepran also uses quadratic Lagrange1021

polynomials (resulting in a combined P2P2 discretization). In the penalty function1022

approach pressure is eliminated from the equations so χj are not used.1023

For the heat equation (101) we assume homogeneous natural (or Neumann)1024

boundary conditions along the geometry where the velocity vector points out of1025

the box (i.e., an outflow boundary). At the trench inflow boundary we assume a1026

half-space cooling model Ttrench(z) given by1027

T̃ (x = 0, z) = Ttrench(z) = Ts + (Tm − Ts)erf
(
z−ztrench

zd

)
(107)1028

where Ts is the nondimensional surface temperature, Tm the nondimensional mantle1029

temperature, ztrench is the nondimensional depth of the trench, and the nondimen-1030

sional scale depth zd is proportional to the dimensional age of the incoming litho-1031

sphere A∗ via zd = 2
√
κ0A∗

h0
.1032

Details of the backarc temperature depend on whether we are modeling ocean-1033

continent or ocean-ocean subduction. In the ocean-continent case we assume a con-1034

stant surface heat flow qs and radiogenic heat production H. We use a two-layer1035

crustal model with density ρ=ρc, thermal conductivity k=kc and heat production1036

H=H1 from depth 0 to z1 and heat production H=H2 between depths z1 and z2,1037

where z1 and z2 vary between subduction zones. The mantle portion of the model1038

(in both the slab and the wedge) is assumed to have density ρ=ρm, conductivity1039

k=km, and zero heat production H=0. At the backarc the wedge inflow boundary1040

condition on temperature is chosen to be a geotherm Tbackarc(z) consistent with1041
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these parameters, that is1042

T̃ (x = L, z) = Tbackarc,c(z) =


Ts − H1z

2

2kc
+ qs

kc
z : 0 ≤ z ≤ z1

Tbackarc,c(z = z1)− H2(z−z1)2
2kc

+ q1
kc
(z − z1) : z1 < z ≤ z2

min(Tm, Tbackarc,c(z = z2) +
q2
km

(z − z2)) : z2 < z ≤ zio

(108)1043

The discrete heat flow values qi are the heat flow at the crustal boundaries at depth1044

z=zi that can be found as q1=qs−H1z1 and q2=q1−H2(z2−z1). In the ocean-ocean1045

case we use a one-layer crustal model (z1 is not defined), heat production is zero1046

(H=0) and the density and thermal conductivity are set to respectively ρ=ρm and1047

k=km everywhere. The wedge inflow boundary condition on temperature down to1048

zio is then1049

T̃ (x = L, z) = Tbackarc,o(z) = Ts + (Tm − Ts)erf
(
z
zc

)
(109)1050

where zc is related to the dimensional age of the overriding plate A∗
c minus the age1051

of subduction A∗
s via zc = 2

√
κ0(A∗

c−A∗
s)

h0
. Below zio we assume again a homogeneous1052

Neumann boundary condition for temperature.1053

For the two Stokes equations we assume homogeneous (zero stress) Neumann1054

boundary condition on ˜⃗v and P̃ for the wedge in and outflow and on ˜⃗vs and P̃s for1055

the slab in and outflow. The top of the wedge at z=z2 is a rigid boundary, ˜⃗v=0,1056

consistent with the imposition of zero flow in the overriding plate. The wedge flow,1057

˜⃗v, is driven by the coupling of the slab to the wedge below a coupling depth. This1058

is implemented by a Dirichlet boundary condition along the slab surface. Above1059

the coupling depth we impose zero velocity. Below the coupling depth the velocity1060

is parallel to the slab and has magnitude Vs. It has been found that a smooth1061

transition from zero to full speed over a short depth interval enhances the accuracy1062

of the Stokes solution (see discussion in van Keken et al. (2002) and equations1063

(13)–(15) in van Keken et al. (2008)) so here coupling begins at z=dc and ramps up1064

linearly until full coupling is reached at z=dc+2.5. For improved numerical accuracy1065

we specify nodal points at these depths in all models presented here and in part III.1066

At the top of the wedge we imposed a rigid Dirichlet boundary condition at the1067

base of the Moho on the wedge velocity, v⃗=0. The slab flow, ˜⃗vs, is driven by the1068

imposition of a Dirichlet boundary condition parallel to the slab with magnitude1069

Vs along the entire length of the slab surface, resulting in a discontinuity between1070

˜⃗v and ˜⃗vs above z=dc+2.5.1071

In the case of time-dependent simulations we require an initial condition T 0.1072

We use an initial condition where the temperature on the slab side is given by1073

Ttrench (107). Above the slab we use Tbackarc,c (108) for ocean-continent subduction1074

or Tbackarc,o (109) for ocean-ocean subduction. Figure 8c shows the initial condition1075

used in the time-dependent benchmark comparison below.1076

2.3.4 Solution strategy1077

Sections 2.3.2–2.3.3 describe a set of nonlinear, potentially time-dependent equa-1078

tions and boundary conditions for the temperature, velocity, and dynamic pressure1079
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in a subduction zone. To find their solution we wish to find the root of the residual1080

r = rv⃗ + rP + rv⃗s + rPs
+ rT , where1081

rv⃗ = rv⃗i1 :=

∫
Ωwedge

[(
∇ω⃗i1 +∇ω⃗Ti1

2

)
: 2η

(
∇˜⃗v +∇˜⃗vT

2

)
−∇ · ω⃗i1 P̃

]
dx = 0

(110)

1082

rP = rPi2
:= −

∫
Ωwedge

χi2∇ · ˜⃗vdx = 0 (111)1083

rv⃗s = rv⃗si3 :=

∫
Ωslab

[(
∇ω⃗i3 +∇ω⃗Ti3

2

)
: 2η

(
∇˜⃗vs +∇˜⃗vTs

2

)
−∇ · ω⃗i3 P̃s

]
dx = 0

(112)

1084

rPs
= rPsi4

:= −
∫
Ωslab

χi4∇ · ˜⃗vsdx = 0 (113)1085
1086

and, in the time-dependent case1087

rT = rTi5
:=

∫
Ωwedge

[
ϕi5ρ

∂T̃

∂t
+ ϕi5

˜⃗v · ∇T̃ +∇ϕi5 · k∇T̃

]
dx1088

+

∫
Ωslab

[
ϕi5ρ

∂T̃

∂t
+ ϕi5

˜⃗vs · ∇T̃ +∇ϕi5 · k∇T̃

]
dx1089

+

∫
Ωcrust

[
ϕi5ρ

∂T̃

∂t
+∇ϕi5 · k∇T̃ − ϕi5H

]
dx = 0 (114)1090

1091

Here, Ωwedge, Ωslab and Ωcrust are subsets of the domain corresponding to the1092

mantle wedge, slab and overriding crust respectively. We have yet to discretize the1093

time derivative ∂T̃
∂t in (114). Here we choose to do this using finite differences,1094

approximating the derivative by the difference between two discrete time levels1095

∂T̃

∂t
≈ T̃n+1 − T̃n

∆tn
(115)1096

where ∆tn = tn+1 − tn is the time-step, the difference between the old and new1097

times, and T̃n+1 and T̃n represent the solution at these time levels. It then only1098

remains to define at what time level the other coefficients in (114) are evaluated1099

and we do this using a “theta”- scheme such that1100

rT = rTi5
:=

∫
Ωwedge

[
ϕi5ρ

(
T̃n+1 − T̃n

∆tn

)
+ ϕi5

˜⃗vθ · ∇T̃ θ +∇ϕi5 · k∇T̃ θ
]
dx1101

+

∫
Ωslab

[
ϕi5ρ

(
T̃n+1 − T̃n

∆tn

)
+ ϕi5

˜⃗vθs · ∇T̃ θ +∇ϕi5 · k∇T̃ θ
]
dx1102

+

∫
Ωcrust

[
ϕi5ρ

(
T̃n+1 − T̃n

∆tn

)
+∇ϕi5 · k∇T̃ θ − ϕi5H

]
dx = 0

(116)

1103

1104
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where ˜⃗vθ = θv ˜⃗v
n+1 + (1− θv)˜⃗v

n, ˜⃗vθs = θv ˜⃗v
n+1
s + (1− θv)˜⃗v

n
s , and T̃

θ = θT̃n+1 + (1−1105

θv)T̃
n, and θv, θ∈[0, 1] are parameters controlling what time level the coefficients1106

are evaluated at. The parameter θ controls the stability and accuracy of the time-1107

integration scheme. Common choices are θ=0 (explicit Euler), θ=1 (implicit Euler),1108

and θ=0.5 (Crank-Nicolson).1109

At each time level (110)–(113) and (116) represent a nonlinear problem, which1110

we solve using a Picard iteration, first solving (116) then solving (110)–(113)1111

using the most up to date temperature, T̃n+1, and repeating until the root of1112

the residual, r, is found to some tolerance. The time level and all solution vari-1113

ables are then updated and a new time level and new Picard iteration com-1114

menced. The time-step ∆tn is chosen such that the maximum Courant number,1115

cnmax=max

(
max(˜⃗vn)∆tn

he
,
max(˜⃗vns )∆t

n

he

)
, where he is a measure of the local element1116

size, does not exceed some critical value, cnmax≤ccrit. This procedure is repeated1117

until the final time (the age of subduction, A∗
s) is reached.1118

If we are seeking the steady-state solution (∂T∂t =0), we solve (110)–(113) but1119

(114) becomes1120

rT = rTi5
:=

∫
Ωwedge

[
ϕi5

˜⃗v · ∇T̃ +∇ϕi5 · k∇T̃
]
dx1121

+

∫
Ωslab

[
ϕi5

˜⃗vs · ∇T̃ +∇ϕi5 · k∇T̃
]
dx1122

+

∫
Ωcrust

[
∇ϕi5 · k∇T̃ − ϕi5H

]
dx = 0 (117)1123

1124

where a theta-scheme approach is no longer required because no time levels exist.1125

A Picard iteration is used to approximately find r=0, this time solving (110)–(113)1126

first followed by (117). At the beginning of the simulation we find an isoviscous1127

(η=1) solution to (110)–(113) to initialize the velocity and pressure.1128

2.3.5 An optimized subduction zone benchmark1129

The community subduction zone benchmark in van Keken et al. (2008) provides a1130

set of simplified models well suited to test the accuracy of the solution of the gov-1131

erning equations that are relevant for subduction zones. Unfortunately, the model1132

geometry and assumptions that were chosen at the time are such that they intro-1133

duce a few artifacts that do not occur, as best as we know, in any subduction zone1134

on Earth. These artifacts include a slab that dips at a constant angle of 45◦ to1135

600 km depth, an overriding plate that excludes continental heat production, and1136

imposes slab-wedge coupling at 50 km rather than at 75–80 km depth. The lack of1137

crustal heating and the large width of the model, combined with the assumption1138

of steady state, lead in the cases with temperature-dependent rheology to a very1139

thick top boundary layer. This is caused by the cooling in the lithosphere, which1140

results in a gradual thickening of the overriding lid in regions of the model that are1141

far away from the arc-side boundary condition. While this is less of a problem in1142

time-dependent problems (where time may not be sufficient for significant growth1143

of the boundary layer), it shows up dramatically as a “viscous belly” in steady-state1144

cases when the model domain is large (as it was in van Keken et al., 2008). In time-1145

dependent models it can show up if integration time is very long compared to the1146
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typical age of subduction zones (Hall, 2012). The models in Syracuse et al. (2010)1147

avoided this issue by using time integration to only ∼20–40 Myr. The models in1148

Wada and Wang (2009) avoided it using steady-state models in a domain that is1149

both narrower and shallower than that of the van Keken et al. (2008) benchmark.1150

To mitigate the artifacts of the previous benchmark we propose a new bench-1151

mark model. Modifications include a more shallowly dipping slab that only extends1152

to a depth of 200 km, the incorporation of radiogenic heating in the overriding crust1153

and a deeper slab-wedge coupling point. We will also replace some of the requested1154

model outputs from van Keken et al. (2008) with proper integrals. We will use the1155

simplified geometry as in Figure 8 with constant slab dip ∆=tan−1(1/2)=26.56505◦1156

with respect to the horizontal. The maximum depth D=200 defines L=400. Crustal1157

depths z1 and z2 are chosen as 15 and 40 respectively. zio depends on wedge ge-1158

ometry and rheology and is therefore variable between models. To find this we1159

performed a simple iteration in the modeling by setting zio first to a constant value,1160

finding the solution to the nonlinear system, determining the actual value of zio1161

from the wedge flow, and then imposing this value in a subsequent solution of the1162

nonlinear system. While this approach guarantees appropriate implementation of1163

the switch from Dirichlet to Neumann boundary condition for the heat equation1164

as stated above, we have found that as long as zio is larger than the depth where1165

the actual switch between inflow and outflow occurs nearly identical solutions are1166

obtained.1167

We will assume the reference values in Table 2 with case-specific parameters1168

given in Table 3. The benchmark assumes ocean-continent subduction with heat1169

production in a two-layer crust with crustal density and thermal conductivity (ρc1170

and kc respectively) distinct from the mantle (ρm and km) and a backarc boundary1171

condition on temperature given by Tbackarc,c(z) (108). We will solve (110)–(113)1172

either with constant viscosity (η=1, case 1) or with temperature- and strain-rate-1173

dependent viscosity following (103) (case 2). The heat equation will be solved un-1174

der the assumption of steady state (117) for the benchmark, but we will also dis-1175

cuss some time-dependent results below. For the incoming lithosphere we will as-1176

sume zd = 97.397 (corresponding to a dimensional age of the incoming lithosphere1177

A∗=100 Myr) and convergence speed Vs=4.2166 (corresponding to a dimensional1178

speed of 10 cm/yr).1179

Table 3 Benchmark parameter values.

case type η q∗s qs A∗ z2 zio ztrench xcoast D L Vs
(W/m2) (Myr)

1 c 1 0.065 20.96774 100 40 139 0 0 200 400 4.2166
2 c η∗/η0 0.065 20.96774 100 40 154 0 0 200 400 4.2166

c: ocean-continent subduction

1180

2.3.6 Benchmark comparison TerraFERMA - Sepran1181

In the benchmark comparison we focus on dimensional metrics representing the1182

averaged thermal and velocity structures near the coupling point where gradients1183

in velocity and temperature are high. The first metric is the slab temperature at1184

100 km depth, T ∗
(200,−100)1185

T ∗
(200,−100) = T0T̃ (x = 200, y = −100) (118)1186
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Figure 9 Steady-state thermal structure for the updated subduction zone benchmark.
a) Temperature predicted by TF for case 1; b) Temperature difference between TF and Sepran
using the penalty function (PF) method for case 1 at fm=1 where fm represents the smallest
element sizes in the finite element grids near the coupling point; c) Slab top temperature
comparison for case 1. d)–f) As a)–c) but now for case 2. The star indicates the position or
temperature conditions at the coupling point.

The second metric is the average integrated temperature T
∗
s along the slab surface1187

between depths zs,1=70 and zs,2=120, that is1188

T
∗
s = T0

∫ s2
s1
T̃ ds∫ s2

s1
ds

(119)1189

where s is distance along the slab top from the trench and s1=
√

5z2s,1=156.52481190

and s2=
√
5z2s,2=268.32816. The third metric is the volume-averaged temperature1191

T
∗
w in the mantle wedge corner below the Moho, z=z2 and above where the slab1192

surface, z=zslab(x), is between zs,1 and zs,2 as defined above1193

T
∗
w = T0

∫ x=240

x=140

∫ z=zslab(x)
z=z2

T̃ dzdx∫ x=240

x=140

∫ z=zslab(x)
z=z2

dzdx
(120)1194

where zslab(x)=x/2. The final metric is the root-mean-squared averaged velocity1195

V ∗
rms,w in the same volume as the third metric, that is1196

V ∗
rms,w = v0

√√√√√∫ x=240

x=140

∫ z=zslab
z=z2

(
˜⃗v · ˜⃗v

)
dzdx∫ x=240

x=140

∫ z=zslab(x)
z=z2

dzdx
. (121)1197

Figure 9 shows the temperature fields obtained with TerraFERMA and temperature1198

differences between the TerraFERMA and Sepran models. Convergence behavior on1199

a series of finer meshes as a function of the number of degrees of freedom in the1200

heat equation using the metrics (118)–(121) are shown in Tables 4 and 5.1201

Note that even on the coarser grids the metrics are generally within less than1202

1% from those at the finest grids. The TerraFERMA and Sepran results tend to1203
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converge towards the same limit to reasonable precision for case 1. There seems1204

to be a slight, but systematic difference particularly for T
∗
w and V ∗

rms,w for case 2.1205

Inspection of Figure 9e shows the likely reason for the differences – a systematic1206

bubble shows in ∆T right above the coupling point. We attribute this to how the1207

two methods treat pressure and we will see more examples of this in part III.

Table 4 Convergence of various metrics describing the solution to the new subduction zone
benchmark as a function of degrees of freedom in the heat equation Tndof. The employed meshes have
grid refinement in the wedge above and near the coupling point. The factor fm is representative of
the element size near the coupling point. TH=Taylor-Hood; PF=penalty function method. P2P1P2
indicates a discretization that has quadratic shape functions (P2) for velocity and temperature and
linear shape functions for pressure (P1). P2P2 is for velocity and temperature only because pressure is
eliminated from the Stokes equation in the penalty function method (Cuvelier et al., 1986). In this
case zio=139.

fm Tndof T ∗
(200,−100)

T
∗
s T

∗
w V ∗

rms,w

(◦C) (◦C) (◦C) (mm/yr)
TerraFERMA TH P2P1P2

2.0 21403 517.17 451.83 926.62 34.64
1.0 83935 516.95 451.71 926.33 34.64
0.5 332307 516.86 451.63 926.15 34.64

Sepran TH P2P1P2
2.0 17585 514.83 450.74 925.47 34.29
1.5 30851 515.37 451.07 925.71 34.36
1.0 68633 516.08 451.31 926.34 34.45
0.75 121366 516.24 451.31 926.30 34.50
0.5 270348 516.47 451.40 926.30 34.54

Sepran PF P2P2
2.0 17585 515.07 450.92 926.03 34.28
1.5 30851 515.54 451.20 926.11 34.35
1.0 68633 516.17 451.37 926.56 34.45
0.75 121366 516.29 451.34 926.44 34.50
0.5 270348 516.48 451.40 926.37 34.54

Table 5 As Table 4 but now for case 2 with stress- and temperature-dependent viscosity. In this case
zio=154.

fm Tndof T ∗
(200,−100)

T
∗
s T

∗
w V ∗

rms,w

(◦C) (◦C) (◦C) (mm/yr)
TerraFERMA TH P2P1P2

2.0 21403 683.05 571.58 936.65 40.89
1.0 83935 682.87 572.23 936.11 40.78
0.5 332307 682.80 572.05 937.37 40.77

Sepran TH P2P1P2
2.0 17581 681.28 570.26 935.47 41.05
1.5 30947 682.48 570.73 937.11 40.91
1.0 68713 683.07 571.23 940.47 40.92
0.75 121574 682.97 571.62 941.23 41.00
0.5 270668 682.92 572.04 941.28 41.06

Sepran PF P2P2
2.0 17585 682.38 567.96 936.52 40.67
1.5 30851 683.67 569.60 942.73 40.63
1.0 68633 683.61 571.86 941.18 40.87
0.75 121366 683.03 571.77 940.32 40.98
0.5 270348 682.38 571.44 939.73 41.06

1208

2.3.7 Comparison of the time-dependent solution to that assuming steady state1209

Solving for the time-dependent solution given the same geometry, boundary con-1210

ditions and parameters demonstrates how similar the steady-state and time-1211

dependent solutions are after sufficient time in this optimized benchmark. The1212

time-dependent slab top temperature evolution until t∗=A∗
s=25 Myr is shown in1213

Figure 10a and that at the Moho is in Figure 10b. In both cases we plot the tem-1214

perature to the depth that the subducting slab will have reached after a given time1215
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interval. The temperature curves show a gradual convergence to the steady-state1216

solution (the dashed line). The temperature at 25 Myr is given in Figure 10c (com-1217

pare with Figure 9d) and the temperature difference between that at 25 Myr and1218

the steady-state case is shown in Figure 10d – clearly the forearc thermal structure1219

is the slowest part of the model to adjust to steady state.1220

The benchmark has been designed to give a near-steady-state solution close to1221

the time-dependent solution after 25 Myr. However this similarity is not generally1222

the case in other geometries so time-dependent solutions remain necessary when1223

considering a larger suite of models and therefore form the bulk of the results1224

presented in part III. Due to the slow evolution of the subduction system we found1225

in the time-dependent version of the benchmark that fully converging the residual,1226

r, was not necessary for an accurate solution, making extremely minor differences1227

after 25 Myr of evolution. Linearizing the problem and only taking a single Picard1228

iteration at each time level represents a considerable computational cost saving1229

so we adopt that approach in part III. TerraFERMA results are presented using1230

θv=θ=0.5. Sepran uses θv=θ=1 and both use ccrit = 1 in all time-dependent results1231

shown there.1232

3 Conclusions1233

By constructing a series of demonstration problems we have shown how finite ele-1234

ment models can be constructed, tested, and validated. Once validated these simpler1235

systems of equations can be used as building blocks to develop a kinematic-dynamic1236

model of subduction zone thermal structure. We propose a new benchmark problem1237

for subduction zones that incorporates more of the physical complexity associated1238

with their thermal structure while avoiding some of the pitfalls associated with1239

nonphysical geometries and assumptions of the original van Keken et al. (2008)1240

benchmark. This has been demonstrated with two independent finite element ap-1241

proaches (TerraFERMA and Sepran) that also use different discretization strate-1242

gies. In part III we will use these models and apply the discretization and solution1243

strategies described here to a global suite of subduction zones. We will discuss where1244

they agree and disagree, both with each other and with published observations of1245

subduction zone thermal structure.1246
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Euen, G.T, Liu, S, Gassmöller, R, Heister, T, King, S.D (2022) A comparison of 3-D spherical shell thermal1296

convection results at low to moderate Rayleigh number using ASPECT (version 2.2.0) and CitComS1297

(version 3.3.1). Geosci Model Devel Disc. doi:10.5194/gmd-2022-2521298

Fullsack, P (1995) An arbitrary Lagrangian-Eulerian formulation for creeping flows and its application in tectonic1299

models. Geophys J Int 120, 1–23. doi:10.1111/j.1365-246X.1995.tb05908.x1300

Gerya, T (2019) Introduction to Numerical Geodynamical Modelling, Second Edition. Cambridge University Press,1301

Cambridge, UK1302

Golub, G.H, Van Loan, C.F (1989) Matrix Computations, 2nd Edition. Johns Hopkins University Press, Baltimore,1303

MD, USA1304

Hall, P.S (2012) On the thermal evolution of the mantle wedge at subduction zones. Phys Earth Planet Int1305

198–199, 9–27. doi:10.0116/j.pepi.2012.03.0041306

Ham, D.A, Farrell, P.E, Gorman, G.J, Maddison, J.R, Wilson, C.R, Kramer, S.C, Shipton, J, Collins, G.S, Cotter,1307

C.J, Piggott, M.D (2009) Spud 1.0: Generalizing and automating the user interfaces of scientific computer1308

models. Geosci Model Dev 2, 33–42. doi:10.5194/gmd-2-33-20091309

Ho-Liu, P, Hager, B.H, Raefsky, A (1987) An improved method of Nusselt number calculation. Geophys J Int 88,1310

205–215. doi:10.1111/j.1365-246X.1987.tb01375.x1311

Hughes, T.J.R (1987) The Finite Element Method. Prentice-Hall, Inc., Englewood Cliffs, NJ, USA1312

Ismail-Zadeh, A, Tackley, P (2010) Computational Methods for Geodynamics. Cambridge University Press,1313

Cambridge, UK1314

Johnson, C (1987) Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge1315

University Press, Cambridge, UK1316

Karato, S-I, Wu, P (1993) Rheology of the upper mantle: A synthesis. Science 260, 771–778.1317

doi:10.1126/science.260.5109.7711318

King, S.D, Raefsky, A, Hager, B.H (1990) Conman: vectorizing a finite element code for incompressible1319

two-dimensional convection in the Earth’s mantle. Phys Earth Planet Inter 59, 195–207.1320

doi:10.1016/0031-9201(90)90225-M1321

King, S.D, Lee, C, van Keken, P.E, Leng, W, Zhong, S, Tan, E, Tosi, N, Kameyama, M.C (2010) A community1322

benchmark for 2-D Cartesian compressible convection in the Earth’s mantle. Geophys J Int 180, 73–87.1323

doi:10.1111/j.1365-246X.2009.04413.x1324

Kirby, R.C, Logg, A (2006) A compiler for variational forms. ACM Trans Math Softw 32, 417–444.1325

doi:10.1145/1163641.11636441326

Kronbichler, M, Heister, T, Bangerth, W (2013) High accuracy mantle convection simulation through modern1327

numerical methods. Geophys J Int 191, 12–29. doi:10.1111/j.1365-246X.2012.05609.x1328

Logan, D.L (2017) A First Course in the Finite Element Method, Sixth Edition. Cengage, Boston, MA, USA1329

Logg, A, Mardal, K-A, Wells, G (2012) Automated Solution of Differential Equations by the Finite Element1330

Method. Springer, Berlin, Germany1331

Moresi, L, Quenette, S, Lemiale, V, Mériaux, C, Appelbe, B, Mühlhaus, H-B (2007) Computational approaches to1332
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Figure 10 Time-dependent example based on the new subduction zone benchmark. a) Evolution
of slab top temperature as a function of time – curves are plotted only to the depth that the slab
tip has reached at each time; b) As a) but now for the slab Moho; c) Temperature at 25 Myr
(compare to steady-state thermal structure in Figure 9d); d) Difference between temperature of
the time-dependent solution after 25 Myr and the steady-state solution – while the slab thermal
structure is nearly identical, the cold corner is still evolving at 25 Myr towards the steady-state
structure. Star indicates the location of the coupling point or its steady-state temperature.


