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Abstract

Serpentinite subduction and associated dehydration vein formation are important for subduction zone dynamics and water

cycling. Field observations suggest that en échelon olivine veins in serpentinite mylonites formed by dehydration during

simultaneous shearing of serpentinite. Here, we test a hypothesis of shear-driven formation of dehydration veins with a two-

dimensional hydro-mechanical-chemical numerical model. We consider the reaction antigorite + brucite = forsterite + water.

Shearing is viscous and the shear viscosity decreases with increasing porosity. Total and fluid pressures are initially homogeneous

and in the serpentinite stability field. Initial perturbations in porosity, and hence viscosity, cause fluid pressure perturbations

during simple shearing. Dehydration nucleates where fluid pressure decreases locally below the thermodynamic pressure defining

the reaction boundary. During shearing, dehydration veins grow in direction parallel to the maximum principal stress and

serpentinite transforms into olivine inside the veins. Simulations show that the relation between compaction length and porosity

as well as the ambient pressure have a strong impact on vein formation, while the orientation of the initial porosity perturbation

and a pressure-insensitive yield stress have a minor impact. Porosity production associated with dehydration is controlled by

three mechanisms: solid volumetric deformation, solid density variation and reactive mass transfer. Vein formation is self-

limiting and slows down due to fluid flow decreasing fluid pressure gradients. We discuss applications to natural olivine veins

as well as implications for slow slip and tremor, transient weakening, anisotropy generation and the formation of shear-driven

high-porosity bands in the absence of a dehydration reaction.
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Key points: 16 

• During viscous simple-shearing of serpentinite, en échelon olivine veins form by 17 

dehydration and grow in direction parallel to compression 18 

• Dehydration is triggered by self-consistently modelled fluid pressure perturbations 19 

using a hydro-mechanical-chemical model 20 

• Porosity production is controlled by three mechanisms: solid volume deformation, 21 

solid density variation and reactive mass transfer 22 
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Abstract 23 

Serpentinite subduction and associated dehydration vein formation are important for 24 

subduction zone dynamics and water cycling. Field observations suggest that en échelon 25 

olivine veins in serpentinite mylonites formed by dehydration during simultaneous shearing of 26 

serpentinite. Here, we test a hypothesis of shear-driven formation of dehydration veins with a 27 

two-dimensional hydro-mechanical-chemical numerical model. We consider the reaction 28 

antigorite + brucite = forsterite + water. Shearing is viscous and the shear viscosity decreases 29 

with increasing porosity. Total and fluid pressures are initially homogeneous and in the 30 

serpentinite stability field. Initial perturbations in porosity, and hence viscosity, cause fluid 31 

pressure perturbations during simple shearing. Dehydration nucleates where fluid pressure 32 

decreases locally below the thermodynamic pressure defining the reaction boundary. During 33 

shearing, dehydration veins grow in direction parallel to the maximum principal stress and 34 

serpentinite transforms into olivine inside the veins. Simulations show that the relation 35 

between compaction length and porosity as well as the ambient pressure have a strong impact 36 

on vein formation, while the orientation of the initial porosity perturbation and a pressure-37 

insensitive yield stress have a minor impact. Porosity production associated with dehydration 38 

is controlled by three mechanisms: solid volumetric deformation, solid density variation and 39 

reactive mass transfer. Vein formation is self-limiting and slows down due to fluid flow 40 

decreasing fluid pressure gradients. We discuss applications to natural olivine veins as well as 41 

implications for slow slip and tremor, transient weakening, anisotropy generation and the 42 

formation of shear-driven high-porosity bands in the absence of a dehydration reaction. 43 

 44 

Plain language summary 45 

Serpentinite is a rock that contains water which is bound within the crystal lattice. When 46 

serpentinite is plunging together with tectonic plates into the Earth mantle, the changing 47 
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pressure and temperature conditions cause chemical reactions which releases the water bound 48 

in the crystal lattice; a process called dehydration. A typical mineral that forms by serpentine 49 

dehydration is olivine. Dehydration is important for the global deep water cycle, since much 50 

water is transferred with tectonic plates into the mantle and is migrating back to the Earth 51 

surface after dehydration. However, many aspects of the water cycle remain still unclear, 52 

since dehydration during plunging of tectonic plates involves the incompletely understood 53 

interaction of three fundamental mechanical and chemical processes: mechanical deformation 54 

of the rock, porous flow of released fluid and chemical reactions involving changes in rock 55 

density. Here, we present a new mathematical model to investigate the coupled processes of 56 

rock deformation, fluid flow and dehydration reactions. We present computer simulations 57 

which can explain why the dehydration occurs in narrow and elongated regions which are 58 

termed veins. We propose that our simulations could explain the field observation of many 59 

small olivine veins in strongly sheared serpentinite.    60 

  61 
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1. Introduction  62 

The dehydration of serpentinite at subduction zones is an important process for the 63 

global deep water cycle (e.g., Peacock, 1990; Pettke and Bretscher, 2022; Ulmer and 64 

Trommsdorff, 1995; Rupke et al., 2004), for the dynamics and seismicity at subduction zones 65 

(e.g., Bloch et al., 2018; Hacker et al., 2003) or for arc magmatism due to hydration of the 66 

mantle wedge (e.g., Hebert et al., 2009; John et al., 2012). More generally, the interaction of 67 

mineral reactions, fluid flow and rock deformation is important for a variety of geodynamic 68 

processes, such as chemical and volatile cycling (e.g., Bebout, 2014) or reaction-induced 69 

weakening of faults and shear zones (e.g., Labrousse et al., 2010; Sulem and Famin, 2009), as 70 

well as for practical applications such as natural carbon storage (e.g., Matter and Kelemen, 71 

2009) or geothermal energy exploitation (e.g., Pandey et al., 2018). However, many aspects of 72 

the coupling of mineral reactions, fluid flow and rock deformation are still unclear. 73 

Indirect observations that have been attributed to serpentinite dehydration at 74 

subduction zones are aseismic episodic tremor and slow-slip (ETS) phenomena (e.g., Behr 75 

and Bürgmann, 2021; Burlini et al., 2009; Tarling et al. 2019). These phenomena are 76 

commonly thought to result from episodic fault slip, likely facilitated or promoted by pulses 77 

of fluid release associated with fluid pressure variations (e.g., Audet et al., 2009; Connolly, 78 

1997; Frank et al., 2015; Gomberg et al., 2010; Shelly et al., 2006; Taetz et al., 2018). For 79 

example, such slow-slip occurs on the plate interface in Cascadia at 30 to 40 km depth (e.g., 80 

Gomberg et al., 2010) and for temperatures probably between 400 and 500 °C (e.g., Tarling et 81 

al., 2019 and references therein). However, how the dehydration reaction, the associated fluid 82 

release and the volumetric and shear deformation of the involved rocks are coupled and 83 

actually cause the episodic slow-slip phenomena remains elusive. 84 

Direct observation of the dehydration of serpentinite at subduction zones is not 85 

possible in nature. However, field observations in areas with abundant exposed serpentinites 86 
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at variable pressure and temperature may provide insight into incipient dehydration stages. In 87 

the European Alps, exposed serpentinites, which experienced variable peak pressures and 88 

temperatures, are abundant in many regions. Examples are the antigorite serpentinites of Saas 89 

Zermatt (Western Alps) or of the Erro-Tobbio unit (Voltri massif, Ligurian Alps, Italy; e.g., 90 

Hermann et al., 2000; Peters et al., 2020; Plümper et al., 2017; Scambelluri et al. 1991, 91 

Scambelluri et al., 1995; Kempf et al., 2020). These serpentinite bearing regions are key areas 92 

that preserve ductile and brittle structures that are related to fluid release. The antigorite 93 

serpentinites of the Erro-Tobbio unit exhibit olivine-bearing veins and the metamorphic 94 

olivine most likely results from the breakdown of antigorite and brucite (Fig. 1; e.g., Hermann 95 

et al., 2000; Plümper et al., 2017; Scambelluri et al., 2004). The serpentinites were initially 96 

formed by hydration of subcontinental mantle which was exposed to the Tethyan ocean floor 97 

during pre-Alpine extension (e.g. Scambelluri et al., 1995). Subsequently, these serpentinites 98 

transformed to antigorite serpentinites during prograde metamorphism associated with Alpine 99 

subduction (e.g. Scambelluri et al., 2004; Fig. 2). During subduction, the serpentinites, 100 

containing likely few olivine, have been sheared, which generated antigorite serpentinite 101 

mylonites (e.g. Scambelluri et al., 1995; Fig. 2). The exhumed antigorite mylonites are 102 

dissected by en-échelon olivine veins (e.g. Scambelluri et al., 1995; Fig. 1).  The olivine-103 

bearing antigorite serpentinites exposed in the Erro Tobbio region, hence, indicate that during 104 

subduction the antigorite serpentinites crossed the brucite-out reaction, enabling olivine 105 

formation, but never crossed the antigorite-out reaction before exhumation (e.g. Scambelluri 106 

et al., 1995; Fig. 2E). Most likely, the observed olivine veins were formed by the breakdown 107 

of mainly brucite when the subducting and actively deforming antigorite serpentinite crossed 108 

the pressure and temperature conditions of the brucite-out reaction (Fig. 2E). The olivine 109 

veins occur in two settings: as minimally deformed veins within little deformed, variably 110 

serpentinized peridotite and as deformed veins within strongly deformed antigorite 111 
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serpentinite, described as a serpentinite mylonite (Fig. 1; e.g., Hermann et al., 2000; Plümper 112 

et al., 2017). These serpentinite mylonites are cut by en échelon olivine veins, which in turn 113 

are dissected by multiple sets of olivine-bearing shear bands (Hermann et al., 2000). Plümper 114 

et al. (2017) suggested that the association of undeformed and sheared veins attests that 115 

dehydration-induced vein formation was synchronous with ductile deformation in the 116 

enclosing serpentinite mylonites. Furthermore, Hermann et al. (2000) hypothesized that (i) 117 

multiple sets of olivine shear bands provide evidence for continuous deformation, (ii) sheared 118 

olivine-rich veins are probably very weak due to continuous solution and precipitation in the 119 

presence of a fluid phase, (iii) fluid produced by the dehydration reaction was (partially) 120 

trapped in the serpentinite mylonite and (iv) serpentinite mylonites are not only zones with 121 

highly localized deformation but also zones of focused fluid flow. These hypotheses for 122 

olivine vein formation imply certain mechanical, hydrological and chemical mechanisms, but 123 

these hypotheses have not been tested with theoretical models based on the concepts of 124 

continuum mechanics and thermodynamics. Recently, Huber et al. (2022) presented a hydro-125 

chemical (HC) model to study the formation of olivine veins in dehydrating serpentinite. 126 

However, they do not consider any solid-mechanical aspects of olivine vein formation and do, 127 

hence, not consider volumetric or shear deformation of the serpentinite and associated fluid 128 

pressure changes. Therefore, we cannot apply their model to test the hypothesis of shear-129 

driven olivine vein formation. 130 

Here, we test the hydrological, mechanical and chemical feasibility of a hypothesis for 131 

the formation of observed olivine veins in serpentinite mylonites with a new two-dimensional 132 

(2D) hydro-mechanical-chemical (HMC) model. The hypothesis is (Fig. 2): During viscous 133 

shearing of serpentinite, the magnitudes of ambient pressure and temperature were close to 134 

the magnitudes required for triggering the dehydration reaction from serpentinite to olivine 135 

(Figs. 2E and 3A). The effective viscosity of serpentinite was spatially variable, for example 136 
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due to variable porosity or heterogeneities in mineralogy (Fig. 2A). Weak domains, with 137 

lower viscosity, cause pressure variations in the sheared serpentinite and pressure is locally 138 

smaller than the ambient pressure. If the pressure decreases locally below the reaction 139 

pressure, then the dehydration reaction is triggered in these domains. The dehydration forms 140 

olivine and signficantly increases the porosity locally, which in turn increases the size of weak 141 

domains, consisting of an olivine-fluid mixture. The dehydration region forms vein-like 142 

structures that grow in a direction parallel to the maximal compressive stress without any 143 

fracturing (Fig. 2A and B). After fluid has escaped the olivine-rich region, the olivine-rich 144 

veins, observable in the field, have formed (Fig. 2C). We test this hypothesis with a 2D HMC 145 

model because such models are suitable to theoretically study the coupling between chemical 146 

reactions, fluid flow and rock deformation (e.g., Kolditz et al., 2015; Poulet et al., 2012). Such 147 

coupled models have been applied to study a variety of geodynamic processes, for example, 148 

reaction-driven cracking during serpentinization (e.g., Evans et al., 2020), porosity evolution 149 

and clogging during serpentinization (e.g. Malvoisin et al., 2021), the impact of dehydration 150 

on earthquake nucleation (e.g., Brantut et al., 2011), the impact of shear heating and 151 

associated chemical rock decomposition on thrusting (e.g., Poulet et al., 2014) or reactive 152 

melt migration (e.g., Aharonov et al., 1997; Baltzell et al., 2015; Bessat et al., 2022; Keller 153 

and Katz, 2016; Schiemenz et al., 2011). We apply here an extension of a HMC model that 154 

was  previously used to model the dehydration reaction: brucite = periclase + water 155 

(Schmalholz et al., 2020). Here, we elaborate this HMC model and consider a simple MgO-156 

SiO2-H2O (MSH) system for the reaction: antigorite + brucite = forsterite + water (Fig. 3). For 157 

simplicity, we consider an isothermal system and a fixed chemical composition so that the 158 

reaction antigorite + brucite = forsterite + water is balanced everywhere in the model domain.     159 

The main aim of our study is to investigate the fundamental coupling of dehydration 160 

reactions, fluid flow and rock deformation, for which a simplified model is useful. Particular 161 
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aims of our study are (1) to test the hypothesis for the shear-driven formation of olivine veins 162 

in antigorite serpentinite and (2) to quantify the mechanisms that control the evolution and 163 

production of porosity during dehydration of ductily deforming rocks.  164 

 165 

2. Mathematical model 166 

2.1. Porous medium densities 167 

We consider a simple MSH system and the reaction antigorite (Mg48Si34O85(OH)62) + 168 

20 brucite (Mg(OH)2) = 34 forsterite (Mg2SiO4) +  51 water (H2O). We assume that antigorite 169 

and brucite together represent one solid rock phase with a homogeneous solid density, s  (in 170 

kg/m3), and homogeneous material properties. All model parameters and variables are 171 

presented in Table 1. The total density of the porous rock, either consisting of antigorite + 172 

brucite or forsterite + water, is 173 

 ( )1T f s    = + −   (1) 174 

with porosity   (volume ratio) and pore-fluid density f . For simplicity, we assume that the 175 

solid phase consists of two components, (1) the non-volatile components, MgO and SiO2, that 176 

remain always in the solid and (2) the volatile component, H2O, that is liberated during 177 

dehydration. We quantify the amount of the non-volatile component as a function of MgO 178 

inside the solid with its solid mass (in kg) fraction, sX , which is 0.74sX =  (68 times the 179 

molar mass of MgO / (68 times the molar mass of MgO + 51 times the molar mass of H2O) ) 180 

for the solid made of antigorite + brucite in a molar ratio of 1/20. Equivalently, 1sX =  for 181 

forsterite. We neglect the SiO2 in the calculations, because the SiO2 for the considered 182 

reaction cannot vary independently from MgO. The relative density of the solid MgO 183 

component in the solid phase is 184 
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X s sX =   (2) 185 

2.2. Hydro-chemical model 186 

The conservation of mass (per unit volume) of the solid and the fluid is frequently 187 

given by respectively (e.g., McKenzie, 1984) 188 

 
( )( )

( )
1

1
s s

s
t

 
 

 −
 + − = − 

v  (3) 189 

 
( )f f

f
t

 
 


 + =  

v   (4) 190 

where t  is time,   is the divergence operator, f
v  and s

v  are vectors of the fluid and solid 191 

barycentric velocities, respectively, and   is a mass transfer rate that quantifies the rate at 192 

which mass is transferred from the solid to the fluid phase. Concerning the symbols for vector 193 

and tensor quantities, we use indices f  and s  as superscripts, because vector and tensor 194 

components will have additional subscripts indicating the spatial direction, and scalar 195 

quantities can be easier distinguished from vector and tensor quantities. In our mathematical 196 

model, we do not use the two mass conservation equations (3), for solid mass, and (4), for 197 

fluid mass, but instead we use two different mass conservation equations: a conservation 198 

equation for total mass and a conservation equation for the total non-volatile component 199 

(MgO). The conservation equation of total mass results from the sum of equations (3) and (4) 200 

(e.g., Fowler, 1985; Beinlich et al., 2020; Malvoisin et al., 2021; Plümper et al., 2016; 201 

Schmalholz et al., 2020): 202 

 ( ) ( ) 0f s sT
f T

t


  


 + − + =
 

v v v   (5) 203 
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The relative velocity of the fluid to the solid, ( )f s −v v , in equation (5) is expressed by 204 

Darcy’s law, here for simplicity in the absence of gravity 205 

 ( )
3

f s

f

f

k
p





− = − v v   (6) 206 

where   is the gradient operator, k  is the permeability coefficient in a porosity-dependent, 207 

Kozeny-Carman-type permeability expression, f  is the fluid viscosity and fp  is the fluid 208 

pressure. The conservation equation for the total non-volatile component (MgO) is 209 

 ( ) ( )1 1 0s

X X
t
   


 − + − =    

v .  (7) 210 

There is no fluid velocity in this conservation equation because we assume that the dissolution 211 

of MgO in the fluid is negligible. The main reason why we use mass conservation equations 212 

(5) and (7), instead of equations (3) and (4), is that equations (5) and (7) do not include the 213 

term for the mass transfer rate,  , so that we do not need to specifiy  .   214 

We consider a constant temperature and a closed system with constant system 215 

composition for the entire model domain, however, H2O can migrate within our model 216 

domain. It has been experimentally demonstrated that dehydration reactions are controlled by 217 

fluid pressure (e.g., Llana-Fúnez et al., 2012) and, therefore, we approximate s , f  and sX  218 

as a function of fp , which is expressed as (Schmalholz et al., 2020): 219 

 

( )

( )

( )

EQ

f f f

EQ

s s f

EQ

s s f

p

p

X X p

 

 

=

=

=

,  (8) 220 

whereby the values of 
EQ

s , EQ

f  and 
EQ

sX  for a range of values of fp  are calculated by 221 

equilibrium Gibbs free-energy minimization using the program Perple_X (e.g., Connolly, 222 
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1990, 2005, 2009; Fig. 3) with the thermodynamic dataset of Holland and Powell (1998). 223 

Newer thermodynamic datasets do not include considerably different values for the Gibbs free 224 

energies and the associated densities of the minerals considered here, which is why we still 225 

use the Holland and Powell (1998) dataset. We assume that f  always corresponds to EQ

f , 226 

as a result of its equation of state (Fig. 3C). Due to the sharp, step-like variation of 
EQ

s  and 227 

EQ

sX  with varying fp  across the dehydration reaction (Fig. 3C and D) we assume that the 228 

reaction is controlled by a kinetic reaction timescale, so that values of s  do not change 229 

instantaneously if fp  crosses the value of the reaction pressure at 12.65 kbar (Fig. 3). The 230 

kinetic reaction timescales relevant to thermodynamic equilibrium are (e.g., Omlin et al., 231 

2017) 232 

 

EQ

s s s

kin

EQ

s s s

kin

t t

X X X

t t

  −
=



 −
=



 (9) 233 

where tkin is the characteristic kinetic timescale.  234 

 235 

2.3. Mechanical model 236 

The components of the total stress tensor of the two-phase mixture, ij , are composed 237 

of the total pressure, p , and the components of the total deviatoric stress tensor, ij , by the 238 

relation ij ij ijp  = − + , with ij  being the Kronecker delta (e.g. Steeb and Renner, 2019). 239 

Subscripts i  and j  are either 1 (representing the horizontal x-direction) or 2 (representing the 240 

vertical y-direction). We assume that the contribution of fluid flow to the total deviatoric 241 

stress of the mixture is negligible and only consider the solid deformation in the calculation of 242 
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the total deviatoric stress (e.g. McKenzie, 1984; Steeb and Renner, 2019). We consider a 243 

visco-plastic solid and, hence, the effective shear viscosity, s , relates the total deviatoric 244 

stress tensor components to the deviatoric strain rate tensor components of the solid, ijD , by 245 

the equation 2ij s ijD = , with ( ) ( )/ / / 2 / / 3s s s

ij i j j i ij k kD v x v x v x=   +   −   . Some studies 246 

apply the relation ( )1 2ij s ijD  = −  to take into account that the solid deformation only 247 

contributes a part to the total deviatoric stress of the mixture (e.g. Keller et al., 2013), while 248 

other studies do not consider such porosity factor in the relation between total deviatoric 249 

stress of the mixture and partial deviatoric stress of the solid (e.g. Steeb and Renner, 2019). 250 

Here, we assume that such porosity effects are implicitely included in a porosity dependent s251 

. The porosity dependence of s  is motivated by studies on partially molten rocks (e.g., Katz 252 

et al., 2022; Mei et al., 2002; Schmeling et al., 2012). We consider here two types of porosity 253 

dependence of s , namely an exponential and a power-law dependence (e.g. Katz et al., 2006; 254 

Mei et al., 2002; Schmeling et al. 2012): 255 

 ( )0 02 2 expij s ij s ijD a D    = = −  −     (10) 256 

 ( )0 02 2
n

ij s ij s ijD D    = =   (11) 257 

where 0s  is the reference shear viscosity for a reference porosity, 0 , and a  and n  are two 258 

parameters quantifying the dependence of s  on  . We further consider a von Mises yield 259 

stress, y , to limit the maximal value of the deviatoric stresses. The square root of the second 260 

invariant of the deviatoric stress tensor, ( )2 2 20.5II xx yy xy   = + +  controls a plastic multiplier, 261 

1 /y II  = − . If 0  , then deviatoric stresses are modified using 262 

 ( )1ij ij  = − . (12) 263 
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One reason why we consider such stress limiter, is to test whether such stress limiter has a 264 

significant impact on the numerical simulations of olivine vein formation. A second reason is 265 

that this pressure insensitive yield stress can represent any strong nonlinear dependence of the 266 

shear viscosity on the deviatoric stress, such as for low-temperature plasticity or exponential 267 

creep (e.g. Karato, 2008; Schmalholz and Fletcher, 2011; Tsenn and Carter, 1987). For such 268 

exponential creep the stress increases only minor with increasing strain rate, in contrast to the 269 

linear viscosity, s , for which stresses increase linearly with strain rate, if   is constant.   270 

Furthermore, we consider a poro-visco-elastic volumetric deformation for which the 271 

divergence of the solid velocity field is a function of total pressure, p , and fluid pressure, fp  272 

(e.g., Yarushina and Podladchikov, 2015):  273 

 
( )

1

1

f fs

d

dp p pdp

K dt dt  

− 
 = − − − 

− 
v   (13) 274 

where   is the bulk viscosity, dK  is the drained bulk modulus, and 1 /d sK K = −  with sK  275 

being the solid bulk modulus. In our model, the magnitude of   will be linked to the 276 

magnitude of s  (e.g., Katz et al., 2022, and references therein) so that   is also porosity 277 

dependent. We consider elastic bulk deformation in our model to avoid potentially 278 

unrealistically large volumetric deformations. If only viscous bulk deformation is considered, 279 

then volumetric deformation, represented by the term 
sv , is essentially unlimited as long 280 

as there are differences between p  and fp .  281 

The applied equations for conservation of linear momentum (or force balance 282 

equations) without inertial forces and gravity are 283 

 0ij =  (14)   284 

  285 
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2.4. Governing system of equations 286 

 The equations above can be combined to a system of 11 equations for 11 unknowns, 287 

which are fp ,  , s , f , sX , p , 
s

xv , s

yv , xx , yy  and xy , assuming that the deviatoric 288 

stress tensor is symmetric, xy yx = . The deviatoric stress tensor components, xx , yy  and xy289 

, are calculated using equations (10). The solid and fluid densities as well as the mass fraction 290 

are calculated from the fluid pressure, using the results of thermodynamic calculations 291 

represented by equation (8) (thermodynamic relations between s , f , sX  and fp  are 292 

illustrated in Fig. 3C and D). In our numerical algorithm, described below, we will use 293 

equation (5) in combination with (6) to calculate the fluid pressure, fp , equation (13) to 294 

calculate the total pressure, p , equation (7) to calculate the porosity,  , and the two force 295 

balance equations (14) to calculate the two solid velocities, 
s

xv  and s

yv .  296 

 297 

2.5 Numerical algorithm 298 

 We discretize the governing system of equations described above using the finite 299 

difference method on a regular Cartesian staggered grid. The staggering relies on second-300 

order conservative finite differences (e.g., McKee et al., 2008; Patankar, 2018; Virieux, 301 

1986). The six unknowns xx , yy , xy , s , f  and sX  can be determined without solving a 302 

partial differential equation (PDE) whereas determining the five unknowns fp ,   , p , 
s

xv  303 

and s

yv  requires the solution of a corresponding PDE. We apply the accelerated pseudo-304 

transient (PT) method to solve the discretized system of governing PDEs in an iterative and 305 

matrix-free fashion (e.g., Chorin, 1997; Räss et al., 2022). We use a relaxation, or 306 

continuation, approach to handle the various nonlinearities, such as porosity-dependent shear 307 
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viscosity and permeablity within the iterative procedure (e.g. Räss et al., 2019a; Schmalholz 308 

et al., 2020; Wang et al., 2022). The fundamental features of the applied numerical algorithm 309 

and the iterative PT method are described in appendix A1. Furthermore, we present a 310 

numerical resultion test and a numerical accuracy test of the applied numerical algorithm in 311 

appendix A2.    312 

 313 

3. Model configuration, characterstic scales and dimensionless parameters 314 

3.1. Geodynamic scenario 315 

We describe first the geodynamic scenario which represents the motivation for the 316 

applied model configuration. We consider an antigorite serpentinite which is sheared during 317 

subduction (Fig. 2). For simplicity, the modelled serpentinite is made only of antigorite and 318 

brucite. We assume that the serpentinite is mechanically heterogenous. Such heterogeneity is 319 

mimicked here by a spatially heterogeneous porosity which causes a heterogeneous viscosity 320 

(equations (10) and (11)). The serpentinite includes small regions of higher porosity which 321 

generates small regions of lower viscosity. Such viscosity heterogeneities within a deformed, 322 

or externally stressed, viscous rock cause pressure variations around the mechanically weaker 323 

regions with lower viscosity (e.g. Schmid and Podladchikov, 2003; Moulas et al., 2014; 324 

Moulas and Schmalholz, 2020). The pressure variations generate regions with smaller and 325 

higher pressure with respect to the ambient background pressure (e.g. Moulas et al., 2014). 326 

Recently, Conoiu et al. (2019) showed with laboratory rock deformation experiments and 327 

numerical simulations that such pressure variations can cause mineral phase transformations. 328 

During subduction and shearing, such pressure variations cause no metamorphic reactions as 329 

long as the ambient pressure of the serpentinite is well within the antigorite + brucite stability 330 

field and pressure variations do not generate locally pressure magnitudes that are below the 331 
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reaction pressure (see potential prograde pressure-temperature path in Fig. 3A). However, if 332 

the ambient pressure in the sheared serpentinite is close to the reaction pressure, then pressure 333 

variations can generate locally pressures that are below the reaction pressure and trigger 334 

dehydration (Fig. 2B). We consider here such scenario where the ambient pressure is close to 335 

the reaction pressure in order to investigate dehydration reactions which are triggered by 336 

shearing-induced pressure variations. This scenario is motivated by field observations from 337 

the Erro Tobbio region (Fig. 1). In this region, the exhumed antigorite serpentinite exhibits 338 

locally metamorphic olivine veins which indicate that the serpentinite has locally crossed the 339 

brucite-out reaction during subduction (Fig. 2E). However, before exhumation back to the 340 

surface, the antigorite serpentinite has never crossed the antigorite-out reaction, because this 341 

reaction would have generated peridotite (Fig. 2E). Therefore, the olivine veins in the 342 

exhumed antigorite serpentinites, exposed in the Erro Tobbio region, have likely formed in a 343 

relatively narrow ambient pressure and temperature range (Fig. 2E).      344 

 345 

3.2. Model configuration    346 

We assume that fp  and p  are initially identical and correspond to the ambient 347 

pressure, 
ap . The ambient porosity, a , is 2%, except in an elliptical region in the model 348 

center where the porosity exhibits a Gaussian distribution (Fig. 4). The initial Gaussian 349 

distribution of the porosity is: ( ) ( )
2 2

0 exp / / 2a A x r y r   = + − −
 

. A  is the amplitude of 350 

the initial porosity perturbation and the distance r  controls the width, or variance, of the 351 

porosity distribution (Fig. 4). We apply here an elliptical form of the Gaussian distribution 352 

with an axis ratio of 2 and with the long axis either parallel to the vertical y-direction or at 45° 353 

to the vertical direction (see the two blue dashed lines in Fig. 4). The origin of the coordinate 354 

system is at the center of the elliptical region with positive coordinates indicating towards the 355 
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right side and upwards (Fig. 4). We will also present two simulations with a random initial 356 

perturbation of the porosity. The shear and bulk viscosities are smaller in the central region of 357 

the model due to the higher porosity. We assume a constant temperature of 500 °C for which 358 

the thermodynamic reaction pressure in our model is at 12.65 kbar (Fig. 3). The exact 359 

temperature value is not essential for our study, because the variation of the solid and fluid 360 

densities with varying fluid pressure is similar for temperatures between 450 and 550 °C (Fig. 361 

3A and B). We apply far-field simple shear for the boundary velocities (Fig. 4) so that the 362 

divergence, or volume change, of the entire model domain is zero. Shearing is parallel to the 363 

horizontal x-direction and the orientations of the maximal and minimal principal stresses, 1  364 

and 
3  respectively, associated with the far-field shearing are oriented at 45 ° to the shearing 365 

direction (Fig. 4). Boundary conditions for   and fp  are of Dirichlet type, with boundary 366 

values fixed to the initial ambient values.  367 

 368 

3.3. Compaction length, characteristic time and dimensionless parameters    369 

In our simulations, we always consider the same dehydration reaction with its 370 

associated fluid pressure versus density relations (Fig. 3C). Therefore, the characteristic 371 

pressure for our simulations is fixed and corresponds to the reaction pressure of 12.65 kbar. 372 

Hence, we present the results for pressures and densities in dimensional form. However, the 373 

magnitudes of other quantities such as ambient permeability, shear viscosities, far-field 374 

shearing rate or size of the initial porosity perturbation are arbitrary in our model, as long as 375 

they are within a range that is realistic for natural conditions. Therefore, we will describe the 376 

performed simulations with a set of dimensionless numbers and not with a table including 377 

specific dimensional magnitudes for each model parameter. Furthermore, we will present the 378 
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spatial and temporal evolution of the simulations with dimensionless coordinates and a 379 

dimensionless time, respectively, to emphasize their general applicability.      380 

To describe the hydro-mechanical features of the model configuration, we will use a 381 

characteristic length scale,  , and a characteristic time scale, Ct . In a viscously deformable 382 

porous medium, the compaction of the poro-viscous medium and associated spatial variations 383 

in solid and fluid velocities occur over a characteristic length scale which is termed the 384 

compaction length (e.g. McKenzie, 1984). We use this compaction length as  . Similarly, the 385 

compaction and associated porous fluid flow occurs over a characteristic time scale, which we 386 

use as Ct . The   and Ct  are given by:   387 

 
( ) ( )

( )

3

2 3

4

3

/

s

f

C f s

k

t r k K


    



 

 
= + 

 

=

 (15) 388 

In our model with porosity dependent effective permeability as well as porosity 389 

dependent shear and bulk viscosities, both   and Ct  depend on  . We consider two different 390 

relations between s  and   (equations (10) and (11)) which control the relation between   391 

and   (Fig. 5). We make   dimensionless by dividing it by r  and discuss in the following 392 

the relation between / r  and   applied in the simulations. For simplicity, the porosity 393 

exponent in the effective permeabilty is always 3 in the simulations (equation (6)). To 394 

quantify and label the applied / r ‒  relations we introduce the dimensionless parameter 1  395 

that represents the value of / r  for the ambient porosity a , that is: 396 

 1

a
r  



=

 = . (16)      397 
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For simulations with an exponential dependence of s  on   (equation (10)) we 398 

employ 6 different values of 1 , ranging approximately between 0.008 and 0.2 (legend in 399 

Fig. 5A). We use mostly 1/ 2.5a = , but also present two simulations with 1/1.65a =  400 

(equation (10); Fig. 5A and C). With increasing  , values of / r  first increase and then 401 

decrease (Fig. 5A). The maximum value of / r  is approximately 25 times larger than the 402 

minimum value of / r  for each displayed / r ‒  curve (Fig. 5A). The variation of s , 403 

normalized by the viscosity for the ambient porosity, sa , with increasing   is displayed in 404 

figure 5C. For comparison, we illustrate representative values for experimentally determined 405 

shear viscosities for partially molten rock as function of porosity (experimental data is taken 406 

from the compilation of Katz et al., 2022; see figure caption for all references). The 407 

experimental data shows that the effective shear viscosity of a porous medium can vary 3 to 4 408 

orders of magnitude when the porosity varies between approximately 2 and 25%.  409 

For s  with power-law dependence on   (equation (11)) we use three values for the 410 

power-law exponent, namely n = 2, 3 and 4, (Fig. 5C) in order to obtain values of / r  that 411 

are increasing, constant or decreasing, respectively, with increasing   (Fig. 5B). For all three 412 

/ r  versus   relations the values of 
1 0.035  (Fig. 5B).  413 

For all applied / r ‒  relations, the values of 1  are approximately between 0.01 414 

and 0.1 which means that r  is approximately 10 to 100 times larger than   for the poro-415 

viscous medium with ambient porosity. Such values for 1  are suitable, because deformation 416 

associated with compaction occurs over a distance which is several times larger than   (e.g. 417 

McKenzie, 1984). If 
1 0.01 , then compaction occurs over a distance much smaller than 418 

the porosity distribution, the compaction is essentially spatially unrelated to the porosity 419 

perturbation and it is unfeasible to numerically resolve both the porosity perturbation and the 420 
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compaction which occurs on a much smaller length scale. If, on the other hand, 
2 0.1 , 421 

then compaction occurs on spatial scales larger or equal to the size of the porosity 422 

perturbation and it is difficult to generate significant fluid pressure perturbations within small 423 

areas around the weak region with increased porosity. Similar values for 1 , as applied here, 424 

are also typically used in simulations of porosity waves (e.g. Simpson and Spiegelman, 2011; 425 

Dohmen and Schmeling, 2021). Hence, we chose the applied values of 1  because they are 426 

suitable to model poro-viscous deformation and associated pressure perturbations caused by 427 

the initial porosity perturbations.       428 

To describe the presented numerical simulations, we use several more dimensionless 429 

ratios:    430 
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  (17) 431 

where w  is the model width and xyD  is the applied far-field simple shear rate (Fig. 4). All 432 

dimensionless ratios that are dependent on the porosity are specifed for the applied ambient 433 

porosity, a  = 2%. In most of the presented simulations with an initial Gaussian porosity 434 

distribution, we apply 2 0.11 = , which means that the shear stress resulting from the applied 435 

far-field simple shear is approximately one order of magnitude smaller than the ambient 436 

pressure. We further apply 3 40 =  to have a model domain significantly larger than the 437 

applied porosity perturbation, 
4 2 = , which is supported by theoretical models and 438 
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experiments (e.g. Katz et al., 2022), and 
5 0.0025 = , so that the kinetic time scale is 439 

significantly faster than the hydraulic diffusion time scale. If a different dimensionless 440 

parameter was applied, it will be mentioned in the description of the results. The applied 441 

values of 1  will be given when the simulations are discussed below. 442 

Furthermore, we will discuss the magnitudes of   and Ct  as well as the applied 443 

dimensional ratios with respect to realistic quantities below. In the figures, physical units are 444 

displayed in square braces, for example 3/kg m   . The horizontal, x , and vertical, y , 445 

coordinates are normalized by r  and the simulation time as well as all displayed rates, e.g. 446 

sv , will be normalized by Ct  , whereby Ct  is calculated for the ambient porosity, a . 447 

 448 

4. Results 449 

4.1 Overview 450 

The result section is structured in two general parts. In the first part, we investigate the 451 

impact of ambient pressure, compaction length, yield stress and geometry of the initial 452 

porosity distribution on the formation of dehydration veins. In the second part, we focus on 453 

one simulation to quantify the mechanisms which cause the production and evolution of 454 

porosity during deformation and dehydration. 455 

   456 

4.2. Impact of ambient pressure on dehydration vein formation 457 

 With the first three simulations we test the impact of the ambient pressure, 
ap , on the 458 

formation of dehydration veins (Fig. 6). We apply 
1 0.033 =  and an exponential relation 459 

between s  ( a =1/2.5) and   (Fig. 5A and C). The amplitude of the initial   perturbation is 460 
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12A =  and the maximal   in the model center is 24%. Hence, the minimum initial s  in the 461 

model center is approximately 100 times smaller than sa  (Fig. 5C). The long axis of the 462 

initial Gaussian   distribution is oriented 45° with respect to the vertical y-direction so that 463 

the long axis is parallel to the maximal principal stress for the applied far-field simple shear (464 

1  in Fig. 4). We apply 
ap  of 14.5 (Fig. 6A to D), 13.5 (Fig. 6E to H) and 12.75 kbar (Fig. 6I 465 

to L). If in the simulations fp  decreases below 12.7 kbar, then an increase of s  begins due 466 

to the dehydration reaction in our discretized model (Fig. 3C). For 
ap  of 14.5 kbar, fp  does 467 

not decrease below 12.7 kbar in the model domain (Fig. 6A to D). During significant simple 468 

shearing, the   perturbation is sheared and rotated (see red porosity contours in Fig. 6A to D) 469 

and fp  perturbations are always present around the region with higher   (Fig. 6A to D). No 470 

vein-like structure with increased  , oriented parallel to 1 , develops in the model when no 471 

dehydration reaction takes place. For 
ap  of 13.5 kbar, fp  decreases locally below 12.7 kbar 472 

after some shearing (black contour lines in Fig. 6F to H; see contour labels in panel Fig. 6I) 473 

and two separate, elongated regions with decreased fp  and increased   develop (Fig. 6F to 474 

H).   in these regions is increased with respect to the a  (change of red contour line in Fig. 475 

6E to H). For 
ap  of 12.75 kbar, a single elongated region with fp  < 12.7 kbar develops in 476 

which   is increased with respect to a  (Fig. 6I to L). In summary, the results show that (i) if 477 

no dehydration reaction takes place, no elongated, or vein-like, region with increased   478 

develops, (ii) for the applied model configuration, 
ap  of 13.5 kbar is sufficiently close to the 479 

reaction pressure of 12.65 kbar so that shear-driven perturbations in fp  can trigger 480 

dehydration and (iii) dehydration during shearing generates elongated, vein-like regions of 481 

increased   which are oriented parallel to 1  (Fig. 6).   482 



23 

 

 483 

4.4. Impact of porosity dependence of compaction length       484 

We apply 
ap  of 12.75 kbar, the same configuration as for the simulation displayed in 485 

figure 6I to L, and use 1 = 0.0082, 0.033 and 0.082 for an exponential dependence of s on 486 

  (Fig. 5A). For 1 = 0.0082, two elongated, separate regions with s  > 3000 kg/m3 487 

developed during shearing, indicating the reaction from serpentinite to olivine (Fig. 7A to D). 488 

This simulation was run until it failed to converge, which was caused by extremely sharp 489 

gradients in material properties around the two vein tips. For 1 = 0.033, one continuous 490 

elongated region with s  > 3000 kg/m3 develops (Fig. 7E to H), showing the formation of an 491 

olivine vein. For 1 = 0.082, also one continuous elongated region with increased values of 492 

s  develops, but maximal values of s  are slightly below 3000 kg/m3 (Fig. 7I to L). The time 493 

evolution of maximal values of s , minimal values of fp  and relative increase of   will be 494 

discussed further below.       495 

 We perform three additional simulations for the same configuration as for the 496 

simulations presented in figure 7, but for a power-law dependence of s  on   (see  Fig. 5B) 497 

with three different values of the power-law exponent, n . For n  = 4 and 1  = 0.033, values 498 

of / r  monotoneously decrease with increasing   (Fg. 5B). In this simulation, an elongated 499 

region with increased s  and decreased fp  develops (Fig. 8A to D). However, maximal 500 

values of s  <  2850 kg/m3. For n  = 3 and 1  = 0.036, values of / r  are constant with 501 

increasing  , and also an elongated region with increased s  and decreased fp   develops 502 

(Fig. 8E to H). Maximal values of s  are just slightly larger than 2900 kg/m3. For n  = 2 and 503 

1  = 0.033, values of / r  monotoneously increase with increasing  , and two separate, 504 
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elongated regions with increased s  and decreased fp   develop (Fig. 8I to L). For this 505 

simulation, maximal values of s  > 3000 kg/m3. 506 

 The temporal evolution of the dehydration and olivine formation depends on the 507 

applied / r  ‒    relations and the value of 1  (Figs. 7 and 8). We performed a total of 508 

seven simulations for an exponential dependence of s  on   and with different values of 1509 

(Fig. 9) to study the temporal evolution of maximal values of s  (Fig. 9A), minimal values of 510 

fp  (Fig. 9B) and the maximal relative increase of   (Fig. 9C). The presented maximal or 511 

minimal values correspond to the maximal or minimal value in the entire model domain at 512 

one particular numerical time step. Maximal values of s  start to increase faster for smaller 513 

values of 1  (Fig. 9A) and corresponding minimal values of fp  are smaller for smaller 1  514 

(Fig. 9B). Smaller 1  favor the development of larger perturbations of fp , however, these 515 

perturbations for smaller 1  also decay faster compared to simulations with larger 1  (Fig. 516 

9B). For larger 1 , the perturbations of fp  become smaller and, hence, maximal s  reach 517 

smaller values (Fig. 9A). For the largest 1  of 0.16, maximal s  < 2875 kg/m3, which is the 518 

average density between the density of antigorite+brucite and forsterite in our model (Fig. 519 

3C). If we run the same simulation with 1  = 0.16 again, but now with 
ap  of 12.71 kbar, 520 

then maximal s  > 3000 kg/m3, which confirms that the closer 
ap  is to the reaction pressure, 521 

the more intense is the dehydration and progress of the reaction (compare with Fig. 6). To 522 

investigate the relative evolution of  , we store at each numerical grid point the ratio of the 523 

initial to the current value of  . For each numerical time step, we determine the maximal 524 

value of this porosity ratio and plot its evolution with progressive simulation time (Fig. 9C). 525 

In all simulations the maximal porosity ratio is continuously increasing, showing that 526 

dehydration is continuously ongoing. At the end of the simulations, maximal values of the 527 
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porosity ratio are between 10 and 25, showing that   increases more than an order of 528 

magnitude during the simulations.      529 

For the three simulations with a power-law dependence of s  on  , maximal values of 530 

s  start to increase faster for larger values of n , but maximal s  during the simulations is 531 

smaller for larger n  (Fig. 9D). Only for n  = 2 the simulation generates s  > 3000 kg/m3. 532 

Minimal values of fp  are smallest for n  = 4 and similar for n  = 3 and 2 (Fig. 9E). The larger 533 

the n , the faster the minimum fp  develops during the simulations (Fig. 9D). In simulations 534 

with n  = 4 and 3, the increase of the maximal porosity ratio is considerably slowing down 535 

with time and this ratio is even decreasing towards the end of the simulation for n  = 4 (Fig. 536 

9F). This decrease of the porosity ratio with shearing indicates that the progress of the 537 

dehydration reaction slows down in the simulation, in agreement with the decrease of 538 

maximal s  (Fig. 9D).  539 

 In summary, the simulations (Figs. 7, 8 and 9) described above confirm that the 540 

relation between / r  and   has a strong impact on the development of the dehydrating 541 

region, the progress of olivine formation and the geometry of olivine veins. For our model 542 

configuration, the most suitable conditions for the formation of a single olivine vein are for an 543 

exponential dependence of s  on   and for values of 1  approximately between 0.016 and 544 

0.1.      545 

 546 

4.5. Impact of plasticity and orientation of porosity perturbation       547 

 In regions with constant  , s  is also constant and the modelled poro-viscous medium 548 

flows like a linear viscous fluid. To test the impact of significant nonlinear flow, we apply a 549 
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pressure-insensitive yield stress, y , corresponding to a von Mises type yield criterion 550 

(equation (12)). We perform the simulation with 1  = 0.033, for which results are shown in 551 

figure 6I to L and 7E to H, with y  = 100 MPa, that is approximately a factor of 0.08 of the 552 

reaction pressure magnitude (Fig. 10A to D). Without application of y , the maximal shear 553 

stresses in this simulation correspond to approximately 150 MPa. Overall, the simulation with 554 

y  = 100 MPa is similar to simulations without the application of a yield stress, y . The 555 

application of a yield stress, y , and the associated nonlinear viscous flow, or creep, does, 556 

hence, not significantly impact the formation of olivin veins.  557 

A similar result is obtained for two simulations, with and without y , for which the 558 

initial orientation of the long axis of the elliptical Gaussian porosity distribution was vertical 559 

(Fig. 8E to L). For these two smulations with an exponential relation between s  and  , a  = 560 

1/1.65 (see Fig. 5A and C), 1  = 0.016, 2  = 0.16 and 12A =  so that the minimum initial 561 

s  in the model center is again approximately 100 times smaller than sa , similar to the 562 

simulations with a  = 1/2.5. For this initial geometrical   perturbation, the olivine veins with 563 

s   3000 kg/m3 are also parallel to 1 , but the veins are curved in their center, resulting 564 

from the initial   perturbation. Compared to the simulation without y  (Fig. 10E to H), the 565 

simulation with y  = 125 MPa is shorter and slightly thicker at comparable simulation stages 566 

(Fig. 10I to L). 567 

       We finally apply initially a random   perturbation and y  = 100 MPa to test 568 

whether olivine veins associated with dehydration occur for more realistic   perturbation and 569 

nonlinear creep (Fig. 11). We generated the initial porosity distribution with the random field 570 

generator presented in Räss et al. (2019). All other parameters are the same as for the 571 
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simulation presented in figures 6I to L and 7E to H. With progressive shearing, several veins 572 

with s  >3000 kg/m3 (Fig. 11A to D) and   >0.5 (Fig. 11E to H) develop. The long axes of 573 

these veins are oriented parallel to 1  and have an orientation similar to an en échelon 574 

geometry. The values of 
II  are smallest inside the veins due to the low, porosity-dependent 575 

s . Due to this porosity dependence of s , the magnitudes of 
II  are very heterogeneous 576 

throughout the model. The area-averaged value of 
II  in the model for each time step is a 577 

proxy for the area-averaged shear strength and effective viscosity of the model domain, if a 578 

constant far-field shearing rate is applied, as done here. The increase of the areas with smaller 579 

II  with progressive shearing (Fig. 11) indicates, hence, a decrease of the average viscosity 580 

and, consequently, a weakening of the rock unit represented by the model domain (e.g. 581 

Schmalholz et al., 2020).   582 

  In summary, the simulations with different initial   perturbations and nonlinear 583 

creep, modelled here in a simple way by the application of y  show that (i) the geometry of 584 

the initial   perturbation and the type of flow law for the solid deformation do not strongly 585 

impact the dehydration and olivine vein formation and (ii) olivine veins are formed in our 586 

model also for more realistic model configurations considering random initial   perturbations 587 

and nonlinear flow laws for the solid. 588 

 589 

4.6. Mechanisms of porosity production        590 

In the presented simulations, the modelled dehydration reaction, the porous fluid flow 591 

and the solid deformation all can affect the production and evolution of  . However, which 592 

mechanisms exactly produce   and their relative importance is unclear. One reason is that in 593 

our coupled HMC model, most quantities, such as solid and fluid densities, porosity, fluid 594 
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pressure, shear and bulk viscosities and solid and fluid velocities, vary in space and time. We, 595 

therefore, first investigate the evolution of several quantities for a particular simulation, which 596 

is the one displayed in figure 6I to L and 7E to H. Due to the point symmetry of the vein with 597 

respect to the coordinate origin, we only show the upper, left half of the vein (Fig. 12). The 598 

divergence of the solid velocity, / /s s s

x yv x v y =   +  v , indicates a volumetric change 599 

associated with dehydration vein formation (Fig. 12). A positive value of sv  indicates 600 

volume increase, or dilation (Bordeaux colors in Fig. 12). The solid velocities indicate mainly 601 

the applied far-field simple shear deformation (black arrows in Fig. 12), with some deviations 602 

around the dehydrating region. The fluid velocities (blue arrows in Fig. 12) are completely 603 

different compared to the solid velocities. For the first time step, fluid flow only occurs in the 604 

central region where the porosity, and hence permeability, is high (Fig. 12A). During 605 

dehydration vein formation, fluid flow mainly is localized along the boundaries of the veins 606 

which are characterized by higher values of sv  (Fig. 12B to D). The fluid velocities 607 

indicate fluid flow from the boundary of the dehydrating region towards the centre of the vein 608 

(Fig. 12B to D). For the first time step, the   distribution indicates the initial, oblique 609 

Gaussian geometry (blue contour in Fig. 12). With progressive deformation and vein 610 

formation, the region with higher   grows in direction parallel to the dehydration vein. At the 611 

beginning of shearing, there is a small region with fp  <12.7 kbar (red contours in Fig. 12A) 612 

and this region is growing in a direction parallel to the vein (Fig. 7A). The region with s  > 613 

2700 kg/m3 (dashed grey contours in Fig. 12) also increases in direction parallel to the vein. 614 

In the early stages of shearing, nowhere in the model s  > 2700 kg/m3, since there are no 615 

contours for s  = 2700 kg/m3 (Fig. 12A).     616 

 To quantify the relative contribution of the mechanisms controlling the temporal 617 

variation of  , we post-process our numerical results (i.e. calculate values from saved 618 
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numerical results). We quantify the mass transfer rate,  , associated with the dehydration 619 

reaction, which can be expressed by (using equation (3)): 620 
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Note that in equation (18) the material time derivative ( /d dt , including the advection term, 622 

( )1s

s  −  v ) is used and, hence, the divergence term is different compared to equation 623 

(3). Therefore, equation (18) represents an approximation of   since the advective term is not 624 

taken into account, here for simplicity of the post-processing. Equation (18) can be rearranged 625 

to provide an expression for the temporal variation of the porosity: 626 
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Equation (19) shows that the temporal variation of the porosity is controlled by three 628 

mechanisms: (1) volumetric deformation of the solid (i.e. divergence of solid velocity field; 629 

first term on right-hand side of equation (19)), (2) temporal variation of solid density (second 630 

term) and (3) mass transfer of H2O from the solid to the fluid phase associated with the 631 

dehydration reaction (third term). We display the spatial distribution of the four terms in 632 

equation (19) for the simulation displayed in figure 12 at a dimensionless time of 0.008 (Fig. 633 

13). All four terms represent rates, have units of 1/s, such as the unit of solid volumetric 634 

deformation rate 
sv , and are normalized by multiplying with Ct  for a . The rate of  , 635 

quantified by the term on the left-hand side of equation (19), is positive and largest in the 636 

region of increased  , indicating an increase of   with time (Fig. 8A). The sum of the three 637 

terms on the right-hand side of equation (19) provides essentially the same result as the term 638 

on the left-hand side of equation (19), indicating the accuracy of equation (19) (Fig. 13A and 639 

B). The magnitudes of the relative contributions of solid volumetric deformation (Fig. 13C), 640 
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solid density variation (Fig. 13D) and mass transfer (Fig. 13E) to the temporal variation of 641 

porosity are similar, because the spatial distribution and magnitude of these three terms are 642 

similar (Fig. 13 D to E). Therefore, solid volumetric deformation, solid density variation and 643 

reactive mass transfer equally contribute to the porosity variation and, hence, to the evolution 644 

of the dehydration veins.  645 

 To investigate the temporal variation of the relative importance of solid volumetric 646 

deformation rate, solid density rate and mass transfer rate on the rate of  , we record the 647 

maximum value of each rate for each numerical time step and plot these maximum rates 648 

versus the dimensionless model time (Fig. 14). All rates first increase and then decrease. 649 

During the initial stages of vein formation, the mass transfer rate is fastest and the volumetric 650 

deformation rate is slowest. Subsequently, there is a time interval where the mass transfer rate 651 

is still fastest, but the solid density rate is slowest. Afterwards, until the end of the simulation, 652 

the solid volumetric deformation rate is fastest and the solid density rate is slowest. In 653 

summary, the results indicate that all three rates always contribute to   production, but with 654 

varying relative importance as function of time.          655 

 656 

5. Discussion 657 

5.1. Shear-driven dehydration and olivine vein formation  658 

Field observations have led previous authors to hypothesize that en échelon 659 

metamorphic olivine veins have been caused by shear deformation, but this hypothesis has not 660 

been tested with a HMC model. Our simulations show that it is hydrologically, mechanically 661 

and chemically feasible to form olivine veins by dehydration reactions which are triggered 662 

during ductile shearing of serpentinite. A thermodynamic reaction, such as the dehydration 663 

reaction considered here, is typically controlled by a narrow zone in pressure-temperature 664 
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space (e.g. Fig. 2E and 3). In isothermal models, such as the one presented here, the reaction 665 

occurs, therefore, across a narrow pressure range (Fig. 3C). In our model, the fluid pressure, 666 

fp , controls the reaction which is supported by theoretical and experimental studies (e.g. 667 

Dahlen, 1992; Llana-Fúnez et al., 2012). The fp  is initially homogeneous and everywhere in 668 

the model domain within the serpentinite stability field, and represents the ambient fluid 669 

pressure, 
ap . Only if 

ap  is close to the reaction pressure and if the shear-driven fp  670 

perturbations are significant, then fp  can decrease locally below the reaction pressure during 671 

shearing and trigger the dehydration reaction (Fig. 6). For our model configuration, 
ap  of 672 

13.5 kbar was close enough to trigger dehydration for a reaction pressure of 12.65 kbar 673 

(pressure difference of 0.85 kbar; Fig. 6). Assuming an average density of the overlying rock 674 

of 3000 kg/m3 for this pressure difference, the dehydration can be triggered in our model 675 

when the rocks are within a vertical distance of approximately 2.5 to 3 km to the depth at 676 

which the reaction would occur with respect to a lithostatic pressure. 677 

Our model for shear-driven dehydration is different to published models of similar 678 

dehydration reactions, because in these published models an initially heterogeneous 679 

distribution of fp  is applied such that initial values of fp  involve already different values 680 

that correspond to the stability fields on both sides of the reaction (e.g. Huber et al., 2022; 681 

Malvoisin et al., 2015; Schmalholz et al., 2020). Therefore, the initial condition in these 682 

models guarantees that the initial fp  will trigger the dehydration reaction. In contrast, in our 683 

model also the evolution of a heterogeneous fp  distribution is simulated (Fig. 6). Whether 684 

this evolving fp  distribution can trigger dehydration and eventually generate an olivine vein, 685 

depends on the applied value of 
ap  and model parameters, such as the applied / r ‒  686 

relation (Figs. 6, 7 and 8). Only if the fluid pressure decreases locally below the reaction 687 
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pressure, an olivine vein can form. Consequently, our model predicts mechanical deformation 688 

as a potential mechanism by which dehydration veins can be formed locally. An alternative 689 

possibility for triggering locally dehydration, is an initially heterogeneous chemical 690 

composition of the serpentinite in which some regions, having for example brucite, dehydrate 691 

while other regions, for example exclusively composed of antigorite, do not dehydrate (e.g. 692 

Plümper et al., 2017). Such chemical mechanism does not require any solid deformation. 693 

However, for such mechanism the orientation of the olivine veins is entirely controlled by the 694 

initial chemical composition. The specific en échelon geometry of olivine veins is most likely 695 

not caused by initial chemical heterogeneity in a non-deforming rock, especially since these 696 

veins are formed in a strongly sheared antigorite serpentinite.         697 

Field data show that in the Erro Tobbio region the olivine in the studied veins is 698 

indeed metamorphic olivine, which is also supported by geochemical studies (e.g., Peters et 699 

al., 2020). Furthermore, in all presented simulations, the formation of dehydration veins is not 700 

a run-away process, but a self-limiting process (Fig. 9). In the low-pressure regions, where 701 

dehydration takes place, fp  first decreases and then increases again which slows down the 702 

dehydration reaction (Fig. 9B and E). Hence, the simulation with initial random porosity 703 

perturbation shows the formation of several veins with similar length, which stop growing 704 

after some amount of shear (Fig. 11). The simulation does not show the formation of a single 705 

vein which grows across the entire model domain (Fig. 11). The formation of many veins of 706 

similar size and orientation, and the absence of few, large veins is in agreement with natural 707 

observations (Fig. 1). Therefore, based on published geochemical studies, structural 708 

observations and our modelling results, we propose that the formation of observed olivine 709 

veins was the result of a coupled deformation-reaction process that accelerated mineral 710 

dehydration along particular orientations, controlled by the local stress field in the sheared 711 
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serpentinite. Similar veins made of metamorphic olivine have been described from subducted 712 

serpentinite, such as in the Zermatt-Saas unit in the Central Alps (e.g., Kempf et al., 2020).   713 

 714 

5.2. Rescaling to dimensional parameters   715 

We consider here one specific dehydration reaction which controls the relation 716 

between fluid pressure and densities (Fig. 3). We did, hence, not rearrange the governing 717 

system of equations into a dimensionless system of equations for which model parameters are 718 

commonly clustered in dimensionless numbers, such as Damköhler or Péclet numbers (e.g. 719 

Jones and Katz, 2018). However, most model parameters, such as shear viscosities, 720 

permeabilities or far-field shearing rate, are arbitrary in our model. Therefore, we did not 721 

perform the simulations for a specific set of parameter magnitudes, but we used dimensionless 722 

ratios to quantify the relations between model parameters (equations (16) and (17)). We 723 

assume now particular values for the model parameters and discuss the applicability and 724 

consequences of the chosen dimensionless ratios for the natural situation. We applied 4  = 725 

/ s   = 2, which is based on theoretical and experimental results (see Katz et al., 2022 and 726 

references therein), and we assume s  = 1017 Pa s. Despite the importance of antigorite 727 

serpentinite, its rheology at lithospheric-scale pressure and temperature conditions remains 728 

not well constrained (e.g. David et al., 2018; Hirauchi et al., 2020, and references therein). 729 

However, for the ambient pressure and temperature conditions considered here, viscosities of 730 

antigorite serpentinite of approximately 1017 Pa s seem feasible based on experimental studies 731 

(e.g., Chernak and Hirth, 2010; Hilairet et al., 2007). We further assume f  = 10-3 Pa s, a  = 732 

0.02 and r  = 10 cm. Applied values of 1  range between 0.0082 and 0.16 (Fig. 9). For the 733 

values assumed above, values of 1  between 0.0082 and 0.16 require values for the product 734 
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3

ak , which represents the ambient permeability, approximately between 10-27 and 10-24 m2, 735 

respectively. Note, that we could have used also the permeability formulation 736 

( ) ( )
3 33 3

0/ /a a ak k k     = =  and then 0k  would represent the ambient permeability. Such 737 

values for 
3

ak  indicate that the serpentinite should be essentially impermeable in the regions 738 

where the olivine veins form. Experimental studies suggest that serpentinite permeability 739 

decreases exponentially with depth and is in the order of 10-23 and 10-21 m2 at a depth of 7 km 740 

below seafloor (e.g. Hatakeyama et al., 2017). Permeabilities at much greater depth and 741 

ambient pressure, as the 12.75 kbar ambient pressure considered here, could hence be smaller 742 

than 10-23 m2. The extrapolation of Hatakeyama et al. (2017) (their equation 1), for their 743 

sepertinite termed Sengen-03, suggests a permeability of 10-26 m2 already for a confining 744 

pressure of approximately 6 kbar. Therefore, permeabilites between 10-24 and 10-26 m2, or in 745 

other words an effectively impermeable antigorite serpentinite as required in our models, is 746 

not unrealistic for natural antigorite serpentinite under a confining pressure of approximately 747 

12.75 kbar and the assumed temperature of 500 °C. Furthermore, s  could have potentially 748 

been smaller than 1017 Pa s during significant shearing, for example due to a strongly 749 

nonlinear deformation behavior as mimicked here with a pressure-insensitive yield stress, so 750 

that required values for 
3

ak  could also have been larger than 10-24 m2, keeping values of 1  751 

the same.       752 

For 2  we applied a value of 0.11 which requires a value of xyD  of approximately 10-753 

9 s-1. For a typical subduction velocity of 3 cm/yr, a shear zone must be 1 m thick so that a 754 

relative shear velocity across the shear zone generates a shearing rate of 10-9 s-1. Such strain 755 

rate and s  = 1017 Pa s generates a shear stress in the order of 100 MPa and we also applied a 756 

yield stress in some simulations to limit shear stresses to 100 MPa (Figs. 10A to D and 11). 757 

Such stress magnitudes agree with recent estimates of England and Smye (2023), who suggest 758 
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shear stresses of up to 100 MPa at subduction interfaces. Fast shearing rates of 10-9 s-1 are 759 

presumably more likely achieved during aseismic slow slip events, whereby shearing 760 

velocities are larger than a few centimeters per year. For example, typical slip velocities 761 

associated with long term slow slip events are between 35 and 70 cm/yr (1 to 2 mm/day; see 762 

review of Behr and Bürgmann, 2021, and references therein) and for such faster slip velocities 763 

strain rates of 10-9 s-1 are achievable in shear zones with thicknesses of up to approximately 764 

20 m.  765 

For the parameters assumed above, for 
3

ak  = 10-25 m2 and for a typical solid bulk 766 

modulus sK  = 1011 Pa, the characterstic time ( Ct , equation (15)) for a  is approximately 30 767 

years. A typical dimensionless duration, normalized by Ct , of a simulation is in the order of 768 

0.03 (Fig. 9), which corresponds to a natural duration of approximately 1 year. If the value of  769 

3

ak  = 10-24 m2, then the duration is in the order of one month. The applied value of 5  = 770 

0.0025 means that the characteristic kinetic time, or duration, should be at least one order of 771 

magnitude faster than the duration of the vein formation.   772 

In summary, the rescaled dimensional quantities suggest that if our model is 773 

approximating the natural process of shear-driven olivine vein formation, then the serpentinite 774 

should have been effectively impermeable and the shear deformation should have been fast, 775 

potentially related to aseismic slow slip events.   776 

 777 

5.3. Shear-driven high-porosity fluid bands without dehydration  778 

In our simulation with 
ap  = 14.5 kbar, in which no dehydration reaction ocurrs (Fig. 779 

6A to D), one might expect the formation of elongated regions with increased   due to a  780 

process similar to the process that forms localized melt bands during simple shearing of 781 
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partially molten rock (e.g. Holtzman et al., 2003; Katz et al., 2006; Spiegelman, 2003; 782 

Stevenson, 1989). However, in the simulation with 
ap  = 14.5 kbar no such bands with high   783 

formed (Fig. 6A to D). One reason might be that the characteristic time scale of fluid flow, Ct , 784 

is too short with respect to the duration of shearing, because the final dimensionless time of 785 

the simulation with 
ap  = 14.5 kbar is 0.176 (Fig. 6D). This means that Ct  is approximately a 786 

factor of 5 larger than the duration of the simulation. To test the impact of Ct , we performed 787 

the same simulation with 
ap  = 14.5 kbar, but now for a value of 

3

ak  that is 100 times larger, 788 

so that Ct  is 100 times shorter and the corresponding 1  is 10 times larger, namely 1  = 0.33 789 

(Fig. 15A to D). For such values of Ct  and 1 , the simulation shows indeed the formation of 790 

an elongated region with high   which is oriented parallel to the orientation of 1  (Fig. 15A 791 

to D). We also performed the simulation with an initially random perturbation (Fig. 11) for 792 

ap  = 14.5 kbar and for the same values of Ct  and 1  = 0.33 as for the simulation shown in 793 

figure 15A to D. This simulation also shows the formation of elongated regions of high  , 794 

oriented parallel to 1  (Fig. 15E to H). For both simulations shown in figure 15 the final 795 

dimensionless time is now > 1, indicating that Ct  is shorter than the duration of shearing so 796 

that significant fluid flow can occur during the shearing. The two simulations with 
ap  = 14.5 797 

kbar and 1  = 0.33 show that during shearing of serpentinite without reaction, that is during 798 

the formation of serpentinite mylonites, elongated high-porosity regions, with lower shear 799 

viscosity might have formed. The formation of such elongated high-porosity regions could 800 

have been one mechanism causing the formation of shear bands in the antigorite serpentinite 801 

which are frequently observed in the Erro Tobbio region. Once 
ap  will become close to the 802 

reaction pressure, due to continued burial, these high-porosity, low-viscosity fluid bands 803 
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might then have favored the generation of olivine veins, similar to our simulations with an 804 

oblique initial Gaussian   distribution.   805 

 806 

5.4. Simplifications 807 

The modelled process involves the coupling of a metamorphic reaction, porous fluid 808 

flow and rock deformation and, hence, the studied process and the applied HMC model are 809 

already quite complex. On the other hand, we needed to simplify each of the hydraulic, 810 

mechanical and chemical processes to develop the mathematical model. 811 

For the hydraulic process, we consider a standard Darcy flow model with a specific 812 

porosity dependent (cubic dependence using 3k ), isotropic permeabilty. This exponent of   813 

can also differ from 3 and values between 1 and 25 have been reported (e.g. David et al., 814 

1994). Furthermore, this exponent can also vary during a compaction process (e.g., Hommel 815 

et al., 2018), the porosity-permeability relations could be more complex (e.g. Costa, 2006; 816 

Hommel et al., 2018) and/or the porosity-permeability relation could also be spatially variable 817 

in the serpentinite. Therefore, there is considerable uncertainty concerning the natural 818 

porosity-permeability relation in the serpentnite, especially at 12.75 kbar and 500 °C ambient 819 

pressure and temperature, respectively.        820 

For the mechanical shearing process, we consider a flow law in which the shear 821 

viscosity is only a function of porosity. In a natural serpentinite with constant porosity, the 822 

relationship between deviatoric stress and strain rate could be nonlinear due to an effective 823 

shear viscosity that depends on the stress magnitude, the mineral grain size and the chemical 824 

composition. Such nonlinearity can be mathematically represented by a power-law 825 

relationship between deviatoric stress,  , and strain rate, D , of the form m D   (e.g. 826 

Montesi and Zuber, 2002). If 1m , then   increases insignificantly with increasing D . To 827 
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test the impact of such nonlinear stress-strain rate relationships, we have performed also 828 

simulations with a pressure-insensitive yield stress, in which stress remains constant for 829 

increasing strain rate and which represents a considerably nonlinear flow law for 1m . 830 

Concerning the effective shear viscosities: During olivine vein formation, s  changes 831 

continuously from s  for serpentinite to s  for olivine indicating a transient transformation 832 

from brucite to olivine (Fig. 9). Furthermore, in modelled regions with s  > 3000 kg/m3, 833 

values of   > 0.4 (Fig. 11). In nature, the fluid is likely distributed along mineral grain 834 

boundaries and we assume that a mixture of transforming brucite-olivine grains and fluid with 835 

  > 0.4 has a low effective shear viscosity. An individual, fully transformed olivine grain has 836 

a much larger shear viscosity and could potentially also deform in a frictional-plastic manner 837 

at 500 °C. Moreover, we apply a constant value of a  for the exponential s ‒  relationship 838 

(equation (10)) over the entire   range between 0.02 and ~0.6. However, a  could also vary 839 

with  , especially for higher values of   > ~0.2. 840 

For the chemical process, we consider, for simplicity, a fixed chemical composition 841 

for which forsterite + water results from dehydration of antigorite + brucite + a small amount 842 

of free water. We consider this small amount of free water simply to be able to apply the 843 

governing two-phase equations for solid-fluid mixtures in the entire model domain and to 844 

calculate thermodynamically the fluid density in the stability field of antigorite + brucite (Fig. 845 

3C). Natural chemical compositions, in for example the Erro-Tobbio unit, are more complex 846 

and feature a higher chemical variability as considered in our model. However, the main aim 847 

of our study is to investigate the fundamental coupling between dehydration reactions, fluid 848 

flow and rock deformation, justifying the use of a simplified MSH system. A more elaborated 849 

system would be the FMASH system which also considers aluminium, Al, and iron, Fe (e.g., 850 

Padrón-Navarta et al., 2013). One effect of the FMASH system, applied to our isothermal 851 
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model, would be that both brucite and olivine could be stable at the same pressure over a 852 

range of pressure, within a so-called divariant field (e.g., Padrón-Navarta et al., 2013). 853 

Consequently, the H2O liberation would not be controlled by a specific pressure, but would 854 

rather occur over a pressure interval. Such pressure interval is already considered in our 855 

model, because the modelled reaction does not occur sharply at one specific fluid pressure, 856 

but over an interval between 12.6 and 12.7 kbar. Considering a FMASH system would allow 857 

to constrain this pressure interval better. Furthermore, our model suggests that natural areas of 858 

serpentinite dehydration, consisting of olivine and water, are mechanically weak due to their 859 

high, up to 0.6, porosity and water content; as proposed by Hermann et al. (2000). After the 860 

formation of the dehydration veins, the water eventually escapes the dehydration region, so 861 

that finally only olivine is left in the veins.  862 

 863 

5.5. Potential applications to deep-seated slow slip and tremor 864 

The presented model could potentially be applied to investigate fluid-related processes 865 

causing episodic tremor and slow-slip events (ETS; e.g., Behr and Bürgmann, 2021; Peng & 866 

Gomberg 2010). Despite the lack of consensus on the inter-relationships between mineral 867 

dehydration, fluid flow, critical stress and ETS, the coincidence of the location of low-868 

frequency earthquakes to regions with high Vp/Vs ratios requires the consideration of fluid 869 

flow and mineral dehydration in these settings (e.g., Behr and Bürgmann 2021; Burlini et al. 870 

2009; Kato et al. 2010; Shelly et al. 2006; Van Avendonk et al., 2010). For example, Van 871 

Avendonk et al. (2010) infer a zone of very high Vp/Vs of 6 at the top of the subducting 872 

Cocos slab between 35 and 55 km depth, lying downdip of the seismogenic zone. They 873 

propose that these high Vp/Vs ratios are due to several-meter thick shear zones under high 874 

pore pressure and that the hydrous pore fluids were generated by prograde dehydration 875 

reactions. The 35 to 55 km depth range with inferred high Vp/Vs ratios corresponds to the 876 
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depth range and ambient pressure considered in our model. In addition, the correlation of 877 

rapid-tremor migration to pore-pressure waves suggests that this coincidence can be explained 878 

by the coupled processes of dehydration, fault weakening and tremor migration (e.g., Van 879 

Avendonk et al. 2010; Cruz-Atienz et al. 2018). Thus, the formation of fluid-filled veins, as 880 

modelled here, can be correlated to the transient weakening that is inferred in regions of 881 

mineral dehydration. Furthermore, the dehydration reaction, generating olivine-fluid bearing 882 

veins, and the subsequent fluid escape, leaving behind olivine-only veins, will cause a 883 

viscosity inversion: when significant fluid is present in the olivine bearing veins, then the 884 

effective viscosity of the olivine-fluid veins is smaller than the viscosity of the serpentinite; 885 

but once the fluid has escaped the veins the effective viscosity of the olivine-only veins is 886 

larger than the viscosity of the serpentinte. Such viscosity variation and inversion likely 887 

strongly impacts the spatial and temporal evolution of the stress in the serpentinites. We 888 

predict that, under the presence of a general anisotropic stress field, the vein formation will 889 

lead to an increase of the anisotropic effective viscosity of the subducted mantle rocks as a 890 

result of the different effective viscosities of serpentinite and olivine + fluid assemblages. 891 

When the fluid is completely drained from these veins, the anisotropy and viscosity contrast 892 

between olivine and serpentinite will be permanent. 893 

 894 

6. Conclusions 895 

We developed an isothermal 2D hydro-mechanical-chemical model to investigate the 896 

generation of dehydration veins in a ductily deforming serpentinite for the reaction antigorite 897 

+ brucite = forsterite + water. The model predicts shear-driven formation of dehydration veins 898 

and, hence, supports the hypothesis of shear-driven formation of metamorphic olivine veins in 899 

the antigorite serpentinites of the Erro Tobbio unit (Fig. 1).  900 
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The fluid and total pressures are initially homogeneous in the model and correspond to 901 

the serpentinite stability field. The applied model, hence, does not a priori prescribe that 902 

dehydration takes place. In contrast, the model is able to predict the self-consistent generation 903 

of fluid pressure perturbations during shearing of mechanically heterogeneous serpentinite, 904 

which trigger the dehydration reaction and cause the formation of olivine veins. The modelled 905 

veins consist of a weak forsterite-water mixture and grow in a direction parallel to the 906 

maximal principal stress which is controlled by the applied far-field simple shearing. The 907 

modelled growth of dehydration veins is not an unstable, or runaway, process, but a self-908 

limiting process because the fluid pressure perturbations that drive dehydration decrease 909 

during progressive shearing due to fluid flow. 910 

The applied initial porosity geometry and a pressure-insensitive yield strength, 911 

mimicking a strongly stress dependent effective viscosity, have a minor impact on olivine 912 

vein formation. In contrast, the applied ambient fluid pressure and the relationship between 913 

compaction length and porosity have a strong impact on olivine vein formation. For the 914 

applied model configuration, a shear viscosity with exponential dependence on porosity (i) 915 

provides a compaction length which first increases and subsequently decreases with 916 

increasing porosity and (ii) is most suitable for the formation of olivine veins.   917 

The rate of porosity production during dehydration is controlled by the rates of three 918 

mechanisms: the rate of solid volumetric change, the rate of solid density change and the rate 919 

of reactive mass transfer. All three mechanisms contribute in approximately equal parts to the 920 

porosity production during shearing.  921 

Olivine veins are observed in several high pressure serpentinites in the Western Alps 922 

and Liguria. The modelled veins have a similar orientation as natural en échelon olivine veins 923 

in serpentinite mylonite. The self-limiting feature of the modelled vein growth might also 924 

explain the natural observation of many smaller olivine veins and the absence of few large 925 
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olivine veins. Furthermore, the presented model can explain transient weakening and the 926 

generation of mechanical anisotropy during dehydration when the elongated, parallel and 927 

high-porosity veins consist of a fluid-olivine mixture. The eventual escape of the fluids will 928 

cause a viscosity and anisotropy inversion since olivine-only veins are stronger than 929 

serpentinite. Such transient weakening, anisotropy generation and viscosity inversion may be 930 

important processes during slow slip and tremor observed at subduction zones. Rescaling of 931 

the model results to natural conditions suggests that the serpentinite should have been 932 

effectively impermeable, with ambient permeabilities smaller than approximately 10-24 m2, 933 

during olivine vein formation and the shearing rate should have been in the order of 10-9 s-1, 934 

presumably during periods of slow slip.   935 
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Appendix  957 

A1. Numerical algorithm 958 

To determine the unknowns fp , p ,  , 
s

xv  and s

yv  we employ the iterative accelerated 959 

pseudo-transient (PT) method (Räss et al., 2022) using a finite difference discretization on a 960 

regular Cartesian staggered grid, described in Schmalholz et al. (2020). For example, equation 961 

(7) is used to solve for  . Therefore, a PT derivative of  , written as /PT PTt  , is added to 962 

the left-hand side of equation (7), which yields 963 

( ) ( )1 1
PT

s

X XPTt t


   

 
 = − + −     

v .                               (A1) 964 

Within a PT iteration loop the value of   is iteratively updated and the value of /PT PTt   965 

converges towards zero during the interations. The iterations are stopped once the value of 966 

/PT PTt   is smaller than a specified tolerance value. This tolerance value corresponds to 967 

the residual of the numerically solved PDE (see also Halter et al., 2022). The unknowns fp , 968 

p , 
s

xv  and s

yv  are determined with the same PT method within the same iteration loop. The 969 

system of PT equations is: 970 

 

( )

( ) ( )

( )

3

1 1

1

1

PT

f sT
f f TPT

pf f

PT
s

X XPT

PT s

i
ijPT

v

PT
f fs

PT

p d

p k
p

t t

t t

v

t

dp p pp dp

t K dt dt



 
 




   



 

  
= − +  − 

    

 
 = − + −     


= 



− 
= − − − − 

 − 

v

v

v

. (A2) 971 



45 

 

To discretize the physical time derivatives, such as /T t  , we employ a “physical” time 972 

step, t . The applied values of t  and of the pseudo-transient (PT), PTt , time steps are 973 

typically: 974 
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      (A3) 975 

where x  and y  are horizontal and vertical numerical grid spacing, respectively, and the 976 

values of the factors pfC , 
vC  and pC  can vary for different simulations, mainly to reduce the 977 

number of required PT iteration loops. More information concerning the choice of such PT 978 

time steps can be found in Räss et al. (2022) and Wang et al. (2022). Upon convergence, these 979 

iterations provide results which are equivalent to results of a numerical-implicit method, since 980 

the gradients of the numerical variables are updated in each iteration. 981 

For reasons of numerical efficiency, we approximate the thermodynamic relations of 982 

the densities and mass fractions with the fluid pressure, obtained with Gibbs free-energy 983 

minimization, with analytical functions (Fig. 3C and D):  984 
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 (A4) 985 

where Rp  is the reaction pressure, here 12.65 kbar. We use the functions above in the 986 

numerical algorithm to calculate densities and mass fraction from the current fluid pressure. 987 

We provide a general overview, in the form of a simple flowchart, of the structure of the 988 

numerical algorithm and the order of the governing equations in which they are solved in 989 

figure A1. 990 

 991 

A2. Numerical resolution and accuracy test 992 

We present here the results of a numerical resolution and accuracy test. Such tests are 993 

essential to determine whether the evolution of the dehydrating region is independent of (1) 994 

the employed numerical resolution and (2) the applied tolerance to exit the PT iteration loop. 995 

We performed the simulation shown in figure 7E to H with the following different numerical 996 

resolutions: 500×500, 700×700 and 900×900 grid points (Fig. A2). For a dimensionless 997 

model time of 0.036, the ratio of the maximum porosity in the model domain divided by the 998 

maximum porosity for a simulation with 900 × 900 grid points is plotted versus the 999 

corresponding resolution for simulations with different resolution (Fig. A2A). Similar ratios 1000 

are plotted for the minimum fluid pressure in the model domain and the average value of the 1001 

fluid velocity. The higher the resolution, the less the three ratios vary, indicating the 1002 

convergence of the numerical results upon increasing numerical resolution. The evolution of 1003 

the minimum fluid pressure in the model domain with time is shown for different numerical 1004 
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resolutions (Fig. A2B). With larger numerical resolution, the temporal evolution of the 1005 

minimum fluid pressure varies less, indicating again the convergence of the numerical results 1006 

for increasing numerical resolution. Finally, the spatial distribution of fp  at a dimensionless 1007 

time of 0.036 is displayed for the three different resolutions (Fig. A2C to E). For numerical 1008 

resolutions of 500×500, 700×700 and 900×900 the contours of fp  are smooth and the 1009 

colormaps of fp  are very similar (Fig. A2C to E). The numerical resolution test shows that 1010 

the applied numerical model provides results which converge for increasing numerical 1011 

resolution and are, hence, not dependent on the numerical resolution. For the presented 1012 

numerical simulations, a numerical resolution of 900×900 was applied.     1013 

We present also a test for the numerical accuracy of the applied iterative PT solver. If 1014 

the partial differential equations are solved correctly, then the left hand sides of equations 1015 

(A2) are zero. However, since these equations are solved with numerical approximations, the 1016 

value of the left hand side of the numerical form of equations (A2) is not exactly equal to 1017 

zero. The deviation from zero is typically called a residual. During the iterative solution, 1018 

iterations are performed until all residuals at all numerical grid points for all equations 1019 

decrease below a certain tolerance value. We calculated the first time step for a the simulation 1020 

shown in figure 7E to H for different values of the tolerance (Fig. A3). We choose three 1021 

representative quantities to test their change with a change of the tolerance. These quantities 1022 

are the minimum fluid pressure in the model domain, the maximal total pressure in the model 1023 

domain and the maximal value of the second invariant of the deviatric stress tensor (Fig. A3). 1024 

All three quantities stop changing once the tolerance decreases below a value of 10-6. The 1025 

results presented in figure A3 show the convergence of the results with decreasing tolerance. 1026 

A tolerance of 10-6 was applied in the presented simulations.  1027 
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Figures with captions 1306 

 1307 

Figure 1. Natural examples of metamorphic olivine veins in antigorite serpentinite from the 1308 

Erro Tobbio ultramafic rocks, Ligurian Alps, Italy. A) Overview on the limited spatial extent 1309 

of olivine bearing veins (with darker color) in weakly deformed serpentinized peridotite. Coin 1310 

diameter is 2.4 cm. B) Olivine veins with characteristic spacing and aspect ratios in 1311 

serpentinised peridotite. Detail of picture in A). C) olivine-bearing veins in a serpentinised 1312 

peridotite, foliation is sub vertical, extent of veins is ca. 20 cm. D) Serpentinite mylonite with 1313 

different generations of olivine veins. An earlier set is subparallel to the foliation, younger 1314 

shear bands dissect serpentinite mylonite and olivine veins. Top-to-the-left shear sense. Note 1315 

the late stage serpentine veins perpendicular to the foliation. E) and F) En échelon olivine 1316 

veins in antigorite serpentinite. Coordinates: A) and B) at 44.56081°N, 8.81376°E; C) at 1317 

44.57147°N, 8.80825°E; D) at 44.56958°N, 8.80814°E; E) and F) at 44.57140°N, 8.80784°E. 1318 
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 1319 

 1320 

 1321 

Figure 2. Simple sketches illustrating the geodynamic setting (A) and the hypothesis for 1322 

shear-driven dehydration and olivine vein formation in viscous serpentinite (B to D; see text 1323 

for details). E) Simplified phase diagram showing the Brucite-out and Antigorite-out 1324 

reactions, two common subduction geotherms (in °C/km), the likely region of olivine vein 1325 

formation (green dashed ellipse) and typical minerals. The phase diagram is strongly 1326 

simplified for a MSH system after figure 6 in Padrón-Navarta et al. (2013). Mineral 1327 

abbreviations: Atg = antigorite, Br = brucite, Ol = olivine, Opx = orthopyroxene and Tlc = 1328 

talc.     1329 
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 1331 

 1332 

Figure 3. Thermodynamic results obtained from Gibbs’ free energy minimization for the 1333 

system antigorite + brucite = forsterite + water (see text for exact chemical formulas). Density 1334 

fields of solid (A) and fluid (B) in thermodynamic pressure, P , and temperature, T , space. 1335 

Corresponding profiles of solid and fluid densities (C) and mass fraction of MgO (D) as a 1336 

function of fluid pressure at 500 °C. The circles in the three profiles in panels C) and D) are 1337 

the results from Gibbs energy minimization and the corresponding solid lines are analytical 1338 

approximations of these profiles, which are used in the numerical algorithm (see Appendix).  1339 

 1340 
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 1341 

Figure 4. Sketch of the model configuration and the applied far-field simple shear (bottom 1342 

sketch; see text for details). The intitial distribution of the porosity is described by a 2D 1343 

Gaussian distribution, having an initial horizontal bandwidth of 2 r  (graph in left middle of 1344 

the sketch) and a vertical bandwidth of 4 r . The width and height of the model is 40 r  and the 1345 

applied far-field shearing rate is xyD . The orientation of the maximal and minimal principal 1346 

stresses, 1  and 
3  respectively, associated to the far-field simple shearing are indicated in 1347 

the bottom right.  1348 

 1349 
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 1350 

Figure 5. The relations between normalized compaction length, / r , and porosity,  , 1351 

applied in the simulations. A) Curves of / r  versus   for shear viscosities, s , that are an 1352 

exponential function of  . The parameter a  is always 1/2.5, except for one curve with a  = 1353 

1/1.65 (see equation (10)). B) Curves of / r  versus   for s  that are a power-law function 1354 

of  . The applied power-law exponents, n , are indicated in the legend (see equation (11)). C) 1355 

Applied values of s , normalized by the shear viscosity for the ambient porosity, sa , versus 1356 

 . Diamonds and circles indicate representative experimental data for the shear viscosities of 1357 

partially molten rocks (data taken from the compilation in Katz et al., 2022, their figure 2b, 1358 

with original references given in the legend).    1359 
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 1360 

 1361 

Figure 6. Color plots showing the evolution of fluid pressure, fp , with progressive simple 1362 

shearing for three values of the ambient pressure, 
ap . Time displayed in panels is 1363 

dimensionless and normalized by Ct  for the ambient porosity (eqn. (15)). Panels A) to D) 1364 

show results for 
ap  of 14.5 kbar, E) to H) for 

ap  of 13.5 kbar and I) to L) for 
ap  of 12.75 1365 

kbar. Red contours indicate porosity,  , and black contours fp  (contour labels given in panel 1366 

I). For better comparison, the color scale is the same for all panels. Applied parameters in the 1367 

simulations: 
1 0.033 = , 2 0.11 = , 3 40 = , 

4 2 =  and 
5 0.0025 = . 1368 
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 1370 

Figure 7. Color plots showing the evolution of solid density, s , with progressive simple 1371 

shearing for three values of 1  and for a shear viscosity with exponential dependence on 1372 

porosity (Fig. 5A). Time displayed in panels is dimensionless and normalized by Ct  for the 1373 

ambient porosity (eqn. (15)). Ambient pressure is always 12.75 kbar. Panels A) to D) show 1374 

results for 
1 0.0082 = , E) to H) for 

1 0.033 =  and I) to L) for 1 0.16 = (see Fig. 5A). Red 1375 

contours indicate porosity,  , of 0.15 and black contours indicate fluid pressure, fp , at 12.7 1376 

kbar (contour labels given in panel E). Applied parameters in the simulations: 2 0.11 = , 1377 

3 40 = , 
4 2 =  and 

5 0.0025 = . 1378 
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 1380 

Figure 8. Color plots showing the evolution of solid density, s , with progressive simple 1381 

shearing for a shear viscosity with power-law dependence on porosity (Fig. 5B). The three 1382 

/ r  versus   relations displayed in figure 5B are applied in the displayed three simulations. 1383 

Time displayed in panels is dimensionless and normalized by Ct  for the ambient porosity 1384 

(eqn. (15)). Ambient pressure is always 12.75 kbar. Panels A) to D) show results for 4n = , E) 1385 

to H) for 3n =  and I) to L) for 2n =  (see Fig. 5B). Red contours indicate porosity,  , of 0.05 1386 

and black contours indicate fluid pressure, fp , at 12.7 kbar (contour labels given in panel E). 1387 

Applied parameters in the simulations: 2 0.11 = , 3 40 = , 
4 2 =  and 

5 0.0025 = .  1388 
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 1390 

Figure 9. Time evolution of maximum solid density (A and D), minimum fluid pressure (B 1391 

and E), and maximum relative porosity increase (C and F). The porosity ratio is the ratio of 1392 

the current to the initial porosity at a numerical grid point and the maximal porosity ratio 1393 

displays the maximal value for each numerical time step. Time displayed in panels is 1394 

dimensionless and normalized by Ct  for the ambient porosity (eqn. (15)). A) to C) shows 1395 

results for simulations with the / r  versus   relations displayed in figure 5A and D) to F) 1396 

shows results for simulations with the / r  versus   relations displayed in figure 5B. Legend 1397 

in C) applies also to panels A) and B) nd legend in F) applies also to panels D) and E).    1398 
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 1400 

Figure 10. Color plots showing the evolution of solid density, s , with progressive simple 1401 

shearing for three simulations for a shear viscosity with exponential dependence on porosity 1402 

(Fig. 5A). A) to D) shows the simulation displayed in figure 7E to H but with a yield stress of 1403 

100 MPa. E) to H) shows a simulation for an initial distribution of porosity with a vertical 1404 

long axis of the Gaussian distribution (see vertical blue dashed line in Fig. 4). The parameter 1405 

a  = 1/1.65 (see Fig. 5A and C). I) to L) shows the simulation displayed in E) to H) with an 1406 

applied yield stress of 125 MPa. Time displayed in panels is dimensionless and normalized by 1407 

Ct  for the ambient porosity (eqn. (15)).  1408 
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 1409 

 1410 

Figure 11. Results for a simulation with an initial random porosity distribution and a yield 1411 

stress of 100 MPa. A) to D) shows time evolution of solid density, E) to H) of porosity and I) 1412 

to L) of the square root of the second invariant of the deviatoric stress tensor, 1413 

( )2 2 20.5II xx yy xy   = + + . Time displayed in panels is dimensionless and normalized by Ct  1414 

for the ambient porosity (eqn. (15)). Exponential porosity dependence of shear viscosity with 1415 

a  = 1/2.5 (Fig. 5C). Applied parameters in the simulations: 
1 0.036 = , 

2 0.39 = , 
4 2 =  1416 

and 
5 0.0025 = . 1417 

  1418 
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 1419 

 1420 

Figure 12. Evolution of a dehydration vein for the simulation shown in figure 7E to H. Time 1421 

displayed in panels is dimensionless and normalized by Ct  for the ambient porosity (eqn. (15)1422 

). The colormaps show the dimensionless divergence of the solid velocity, the blue arrows 1423 

show the fluid velocity field and the black arrows show the solid velocity field. The red 1424 

contour indicates fluid pressure, fp = 12.7 kbar, whereby values of fp  are always smaller 1425 

inside the contour. The blue contour indicates porosity,   = 0.12, whereby values of   are 1426 

always larger inside the contour. The dashed grey contour indicates solid density s  = 2700 1427 

kg/m3, whereby values of s  are always larger inside the contour. There are no solid density 1428 

contours in panel A) because all densities are < 2700 kg/m3.  1429 
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 1430 

 1431 

Figure 13. The three mechanisms that control the temporal porosity variation (see equation 1432 

(19)) for the simulation shown in figure 7E to H at a dimensionless time of 0.008. Panel A) 1433 

shows the colormap of the quantity displayed in the legend for A, which represents the 1434 

porosity rate, B) shows the colormap of the quantity displayed in the legend for B, C) shows 1435 

the colormap of the quantity displayed in the legend for C, which represents the rate of solid 1436 

volumetric deformation, D) shows the colormap of the quantity displayed in the legend for D, 1437 

which represents the rate of solid density variation, and E) shows the colormap of the quantity 1438 

displayed in the legend for E, which represents the rate of mass transfer. All displayed terms 1439 

represent dimensionless rates which are normalized by Ct  for the ambient porosity (eqn. (15)). 1440 

Symbols are explained in Table 1. 1441 

  1442 

 1443 
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 1444 

Figure 14. Time evolution of the maximum (per each time step) values of the rate of solid 1445 

volume change (quantity labelled C in Fig. 13), rate of solid density change (quantity labelled 1446 

D in Fig. 13) and rate of mass transfer (quantity labelled E in Fig. 13). Time is dimensionless 1447 

and normalized by Ct  for the ambient porosity (eqn. (15)). The vertical dashed line indicates 1448 

the time for which results are displayed in figure 13.   1449 

 1450 

  1451 
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 1452 

 1453 

Figure 15. Colorplots of porosity,  ,  show the formation of localized, high-porosity fluid 1454 

bands without dehydration reaction. In all panels, time is dimensionless and normalized by Ct1455 

, blue contours indicate   = 0.15 and white contours indicate small viscosities for /s sa   = 1456 

1/40. A) to D) shows colorplots of   for the simulation presented in figure 6A to D, but with 1457 

1  = 0.33. Red arrowas indicate fluid velocity. E) to H) shows the simulation shown in figure 1458 

11, but for 
ap  = 14.5 kbar and 1  = 0.33. The total area within white contour lines is 1459 

increasing, indicating and effective weakening of the model domain due to the increase in 1460 

areas with /s sa   < 1/40. Regions with high   become elongated and parallel to the 1461 

orientation of 1  (see Fig. 4). 1462 
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 1464 

 1465 

Figure A1. Simplifed flow chart of the applied numerical algorithm and the order of the 1466 

governing equations in which they are solved inside the pseudo-transient (PT) iteration loop. 1467 

The PT iteration loop calculates the unknowns and simultaneously treats the various 1468 

nonlinearites, such as porosity-dependent shear viscosity and permeability, while the time 1469 

loop calculates the evolution of the unknows with time. Parameters are explained in Table 1.   1470 

  1471 
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 1472 

 1473 

Figure A2. Numerical resolution test for the simulation shown in figure 7E to H . A) For a 1474 

dimensionless model time of 1.21, the ratio of the maximum porosity in the model domain 1475 

divided by the maximum porosity for a simulation with a resolution of 900 × 900 grid points 1476 

is plotted versus the corresponding resolution for simulations with different resolution. 1477 

Similar ratios are plotted for the minimum fluid pressure in the model domain and the mean 1478 

value of the fluid velocity. The larger the resolution, the less the three ratios vary. B) 1479 

Evolution of minimum fluid pressure in the model domain with time for different numerical 1480 

resolutions (see legend). With larger resolution, the evolution of fluid pressure varies less. C) 1481 

to D) At a dimensionless model time of 0.036, the colormap of the fluid pressure is displayed 1482 

for three different resolutions (see numbers in panel titles). Two contour lines of fluid 1483 

pressure are displayed for better comparability. A resolution of 900×900 was applied in the 1484 

simulations presented in the main text. 1485 
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 1486 

 1487 

Figure A3. Numerical accuracy test for the simulation shown in figure 7E to H after the first 1488 

numerical time step. A) The minimum value of the fluid pressure in the model domain versus 1489 

the applied tolerance of the iterative Pseudo-Transient solver. B) Maximum value of total 1490 

pressure versus tolerance. C) Maximum value of second invariant of deviatorc stress tensor 1491 

versus tolerance. Once the tolerance is smaller than 10-6 the three numerical values do not 1492 

change anymore. A tolerance of 10-6 was used in the presented simulations.  1493 

  1494 
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 1495 

Table 1. Model variables and parameters. 1496 

Symbol Name / Definition Units 

ct  Characterstic time  s  

kint  Kinetic time   s  

  Compaction length  m  

fp  Fluid pressure  Pa  

p  Total pressure  Pa  

ap   Ambient pressure  Pa  

  Porosity    

0,a   Ambient, initial porosity    

s  Solid density 3kg m−    

f  Fluid density 3kg m−    

sX  Mass fraction MgO    

  Mass transfer rate 3 1kg m s− −     

s

xv , s

yv  Solid velocities 1m s−    

f

xv , f

yv  Fluid velocities 1m s−    

xx , yy , xy  Deviatoric stresses  Pa  

II  Deviatoric stress invariant  Pa  

k  Permeability 2m    

f  Fluid viscosity  Pa s  

s  Shear viscosity solid  Pa s  

  Bulk viscosity solid  Pa s  

sK   Bulk modulus solid  Pa  

dK   Bulk modulus drained  Pa  

xyD   Far-field shearing rate 1s−     

r   Bandwidth of Gaussian  m  

w   Model width  m  

1,2,3,4,5  Dimensionless ratios    

 1497 
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Abstract 23 

Serpentinite subduction and associated dehydration vein formation are important for 24 

subduction zone dynamics and water cycling. Field observations suggest that en échelon 25 

olivine veins in serpentinite mylonites formed by dehydration during simultaneous shearing of 26 

serpentinite. Here, we test a hypothesis of shear-driven formation of dehydration veins with a 27 

two-dimensional hydro-mechanical-chemical numerical model. We consider the reaction 28 

antigorite + brucite = forsterite + water. Shearing is viscous and the shear viscosity decreases 29 

with increasing porosity. Total and fluid pressures are initially homogeneous and in the 30 

serpentinite stability field. Initial perturbations in porosity, and hence viscosity, cause fluid 31 

pressure perturbations during simple shearing. Dehydration nucleates where fluid pressure 32 

decreases locally below the thermodynamic pressure defining the reaction boundary. During 33 

shearing, dehydration veins grow in direction parallel to the maximum principal stress and 34 

serpentinite transforms into olivine inside the veins. Simulations show that the relation 35 

between compaction length and porosity as well as the ambient pressure have a strong impact 36 

on vein formation, while the orientation of the initial porosity perturbation and a pressure-37 

insensitive yield stress have a minor impact. Porosity production associated with dehydration 38 

is controlled by three mechanisms: solid volumetric deformation, solid density variation and 39 

reactive mass transfer. Vein formation is self-limiting and slows down due to fluid flow 40 

decreasing fluid pressure gradients. We discuss applications to natural olivine veins as well as 41 

implications for slow slip and tremor, transient weakening, anisotropy generation and the 42 

formation of shear-driven high-porosity bands in the absence of a dehydration reaction. 43 

 44 

Plain language summary 45 

Serpentinite is a rock that contains water which is bound within the crystal lattice. When 46 

serpentinite is plunging together with tectonic plates into the Earth mantle, the changing 47 
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pressure and temperature conditions cause chemical reactions which releases the water bound 48 

in the crystal lattice; a process called dehydration. A typical mineral that forms by serpentine 49 

dehydration is olivine. Dehydration is important for the global deep water cycle, since much 50 

water is transferred with tectonic plates into the mantle and is migrating back to the Earth 51 

surface after dehydration. However, many aspects of the water cycle remain still unclear, 52 

since dehydration during plunging of tectonic plates involves the incompletely understood 53 

interaction of three fundamental mechanical and chemical processes: mechanical deformation 54 

of the rock, porous flow of released fluid and chemical reactions involving changes in rock 55 

density. Here, we present a new mathematical model to investigate the coupled processes of 56 

rock deformation, fluid flow and dehydration reactions. We present computer simulations 57 

which can explain why the dehydration occurs in narrow and elongated regions which are 58 

termed veins. We propose that our simulations could explain the field observation of many 59 

small olivine veins in strongly sheared serpentinite.    60 

  61 
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1. Introduction  62 

The dehydration of serpentinite at subduction zones is an important process for the 63 

global deep water cycle (e.g., Peacock, 1990; Pettke and Bretscher, 2022; Ulmer and 64 

Trommsdorff, 1995; Rupke et al., 2004), for the dynamics and seismicity at subduction zones 65 

(e.g., Bloch et al., 2018; Hacker et al., 2003) or for arc magmatism due to hydration of the 66 

mantle wedge (e.g., Hebert et al., 2009; John et al., 2012). More generally, the interaction of 67 

mineral reactions, fluid flow and rock deformation is important for a variety of geodynamic 68 

processes, such as chemical and volatile cycling (e.g., Bebout, 2014) or reaction-induced 69 

weakening of faults and shear zones (e.g., Labrousse et al., 2010; Sulem and Famin, 2009), as 70 

well as for practical applications such as natural carbon storage (e.g., Matter and Kelemen, 71 

2009) or geothermal energy exploitation (e.g., Pandey et al., 2018). However, many aspects of 72 

the coupling of mineral reactions, fluid flow and rock deformation are still unclear. 73 

Indirect observations that have been attributed to serpentinite dehydration at 74 

subduction zones are aseismic episodic tremor and slow-slip (ETS) phenomena (e.g., Behr 75 

and Bürgmann, 2021; Burlini et al., 2009; Tarling et al. 2019). These phenomena are 76 

commonly thought to result from episodic fault slip, likely facilitated or promoted by pulses 77 

of fluid release associated with fluid pressure variations (e.g., Audet et al., 2009; Connolly, 78 

1997; Frank et al., 2015; Gomberg et al., 2010; Shelly et al., 2006; Taetz et al., 2018). For 79 

example, such slow-slip occurs on the plate interface in Cascadia at 30 to 40 km depth (e.g., 80 

Gomberg et al., 2010) and for temperatures probably between 400 and 500 °C (e.g., Tarling et 81 

al., 2019 and references therein). However, how the dehydration reaction, the associated fluid 82 

release and the volumetric and shear deformation of the involved rocks are coupled and 83 

actually cause the episodic slow-slip phenomena remains elusive. 84 

Direct observation of the dehydration of serpentinite at subduction zones is not 85 

possible in nature. However, field observations in areas with abundant exposed serpentinites 86 
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at variable pressure and temperature may provide insight into incipient dehydration stages. In 87 

the European Alps, exposed serpentinites, which experienced variable peak pressures and 88 

temperatures, are abundant in many regions. Examples are the antigorite serpentinites of Saas 89 

Zermatt (Western Alps) or of the Erro-Tobbio unit (Voltri massif, Ligurian Alps, Italy; e.g., 90 

Hermann et al., 2000; Peters et al., 2020; Plümper et al., 2017; Scambelluri et al. 1991, 91 

Scambelluri et al., 1995; Kempf et al., 2020). These serpentinite bearing regions are key areas 92 

that preserve ductile and brittle structures that are related to fluid release. The antigorite 93 

serpentinites of the Erro-Tobbio unit exhibit olivine-bearing veins and the metamorphic 94 

olivine most likely results from the breakdown of antigorite and brucite (Fig. 1; e.g., Hermann 95 

et al., 2000; Plümper et al., 2017; Scambelluri et al., 2004). The serpentinites were initially 96 

formed by hydration of subcontinental mantle which was exposed to the Tethyan ocean floor 97 

during pre-Alpine extension (e.g. Scambelluri et al., 1995). Subsequently, these serpentinites 98 

transformed to antigorite serpentinites during prograde metamorphism associated with Alpine 99 

subduction (e.g. Scambelluri et al., 2004; Fig. 2). During subduction, the serpentinites, 100 

containing likely few olivine, have been sheared, which generated antigorite serpentinite 101 

mylonites (e.g. Scambelluri et al., 1995; Fig. 2). The exhumed antigorite mylonites are 102 

dissected by en-échelon olivine veins (e.g. Scambelluri et al., 1995; Fig. 1).  The olivine-103 

bearing antigorite serpentinites exposed in the Erro Tobbio region, hence, indicate that during 104 

subduction the antigorite serpentinites crossed the brucite-out reaction, enabling olivine 105 

formation, but never crossed the antigorite-out reaction before exhumation (e.g. Scambelluri 106 

et al., 1995; Fig. 2E). Most likely, the observed olivine veins were formed by the breakdown 107 

of mainly brucite when the subducting and actively deforming antigorite serpentinite crossed 108 

the pressure and temperature conditions of the brucite-out reaction (Fig. 2E). The olivine 109 

veins occur in two settings: as minimally deformed veins within little deformed, variably 110 

serpentinized peridotite and as deformed veins within strongly deformed antigorite 111 
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serpentinite, described as a serpentinite mylonite (Fig. 1; e.g., Hermann et al., 2000; Plümper 112 

et al., 2017). These serpentinite mylonites are cut by en échelon olivine veins, which in turn 113 

are dissected by multiple sets of olivine-bearing shear bands (Hermann et al., 2000). Plümper 114 

et al. (2017) suggested that the association of undeformed and sheared veins attests that 115 

dehydration-induced vein formation was synchronous with ductile deformation in the 116 

enclosing serpentinite mylonites. Furthermore, Hermann et al. (2000) hypothesized that (i) 117 

multiple sets of olivine shear bands provide evidence for continuous deformation, (ii) sheared 118 

olivine-rich veins are probably very weak due to continuous solution and precipitation in the 119 

presence of a fluid phase, (iii) fluid produced by the dehydration reaction was (partially) 120 

trapped in the serpentinite mylonite and (iv) serpentinite mylonites are not only zones with 121 

highly localized deformation but also zones of focused fluid flow. These hypotheses for 122 

olivine vein formation imply certain mechanical, hydrological and chemical mechanisms, but 123 

these hypotheses have not been tested with theoretical models based on the concepts of 124 

continuum mechanics and thermodynamics. Recently, Huber et al. (2022) presented a hydro-125 

chemical (HC) model to study the formation of olivine veins in dehydrating serpentinite. 126 

However, they do not consider any solid-mechanical aspects of olivine vein formation and do, 127 

hence, not consider volumetric or shear deformation of the serpentinite and associated fluid 128 

pressure changes. Therefore, we cannot apply their model to test the hypothesis of shear-129 

driven olivine vein formation. 130 

Here, we test the hydrological, mechanical and chemical feasibility of a hypothesis for 131 

the formation of observed olivine veins in serpentinite mylonites with a new two-dimensional 132 

(2D) hydro-mechanical-chemical (HMC) model. The hypothesis is (Fig. 2): During viscous 133 

shearing of serpentinite, the magnitudes of ambient pressure and temperature were close to 134 

the magnitudes required for triggering the dehydration reaction from serpentinite to olivine 135 

(Figs. 2E and 3A). The effective viscosity of serpentinite was spatially variable, for example 136 
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due to variable porosity or heterogeneities in mineralogy (Fig. 2A). Weak domains, with 137 

lower viscosity, cause pressure variations in the sheared serpentinite and pressure is locally 138 

smaller than the ambient pressure. If the pressure decreases locally below the reaction 139 

pressure, then the dehydration reaction is triggered in these domains. The dehydration forms 140 

olivine and signficantly increases the porosity locally, which in turn increases the size of weak 141 

domains, consisting of an olivine-fluid mixture. The dehydration region forms vein-like 142 

structures that grow in a direction parallel to the maximal compressive stress without any 143 

fracturing (Fig. 2A and B). After fluid has escaped the olivine-rich region, the olivine-rich 144 

veins, observable in the field, have formed (Fig. 2C). We test this hypothesis with a 2D HMC 145 

model because such models are suitable to theoretically study the coupling between chemical 146 

reactions, fluid flow and rock deformation (e.g., Kolditz et al., 2015; Poulet et al., 2012). Such 147 

coupled models have been applied to study a variety of geodynamic processes, for example, 148 

reaction-driven cracking during serpentinization (e.g., Evans et al., 2020), porosity evolution 149 

and clogging during serpentinization (e.g. Malvoisin et al., 2021), the impact of dehydration 150 

on earthquake nucleation (e.g., Brantut et al., 2011), the impact of shear heating and 151 

associated chemical rock decomposition on thrusting (e.g., Poulet et al., 2014) or reactive 152 

melt migration (e.g., Aharonov et al., 1997; Baltzell et al., 2015; Bessat et al., 2022; Keller 153 

and Katz, 2016; Schiemenz et al., 2011). We apply here an extension of a HMC model that 154 

was  previously used to model the dehydration reaction: brucite = periclase + water 155 

(Schmalholz et al., 2020). Here, we elaborate this HMC model and consider a simple MgO-156 

SiO2-H2O (MSH) system for the reaction: antigorite + brucite = forsterite + water (Fig. 3). For 157 

simplicity, we consider an isothermal system and a fixed chemical composition so that the 158 

reaction antigorite + brucite = forsterite + water is balanced everywhere in the model domain.     159 

The main aim of our study is to investigate the fundamental coupling of dehydration 160 

reactions, fluid flow and rock deformation, for which a simplified model is useful. Particular 161 
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aims of our study are (1) to test the hypothesis for the shear-driven formation of olivine veins 162 

in antigorite serpentinite and (2) to quantify the mechanisms that control the evolution and 163 

production of porosity during dehydration of ductily deforming rocks.  164 

 165 

2. Mathematical model 166 

2.1. Porous medium densities 167 

We consider a simple MSH system and the reaction antigorite (Mg48Si34O85(OH)62) + 168 

20 brucite (Mg(OH)2) = 34 forsterite (Mg2SiO4) +  51 water (H2O). We assume that antigorite 169 

and brucite together represent one solid rock phase with a homogeneous solid density, s  (in 170 

kg/m3), and homogeneous material properties. All model parameters and variables are 171 

presented in Table 1. The total density of the porous rock, either consisting of antigorite + 172 

brucite or forsterite + water, is 173 

 ( )1T f s    = + −   (1) 174 

with porosity   (volume ratio) and pore-fluid density f . For simplicity, we assume that the 175 

solid phase consists of two components, (1) the non-volatile components, MgO and SiO2, that 176 

remain always in the solid and (2) the volatile component, H2O, that is liberated during 177 

dehydration. We quantify the amount of the non-volatile component as a function of MgO 178 

inside the solid with its solid mass (in kg) fraction, sX , which is 0.74sX =  (68 times the 179 

molar mass of MgO / (68 times the molar mass of MgO + 51 times the molar mass of H2O) ) 180 

for the solid made of antigorite + brucite in a molar ratio of 1/20. Equivalently, 1sX =  for 181 

forsterite. We neglect the SiO2 in the calculations, because the SiO2 for the considered 182 

reaction cannot vary independently from MgO. The relative density of the solid MgO 183 

component in the solid phase is 184 
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X s sX =   (2) 185 

2.2. Hydro-chemical model 186 

The conservation of mass (per unit volume) of the solid and the fluid is frequently 187 

given by respectively (e.g., McKenzie, 1984) 188 

 
( )( )

( )
1

1
s s

s
t

 
 

 −
 + − = − 

v  (3) 189 

 
( )f f

f
t

 
 


 + =  

v   (4) 190 

where t  is time,   is the divergence operator, f
v  and s

v  are vectors of the fluid and solid 191 

barycentric velocities, respectively, and   is a mass transfer rate that quantifies the rate at 192 

which mass is transferred from the solid to the fluid phase. Concerning the symbols for vector 193 

and tensor quantities, we use indices f  and s  as superscripts, because vector and tensor 194 

components will have additional subscripts indicating the spatial direction, and scalar 195 

quantities can be easier distinguished from vector and tensor quantities. In our mathematical 196 

model, we do not use the two mass conservation equations (3), for solid mass, and (4), for 197 

fluid mass, but instead we use two different mass conservation equations: a conservation 198 

equation for total mass and a conservation equation for the total non-volatile component 199 

(MgO). The conservation equation of total mass results from the sum of equations (3) and (4) 200 

(e.g., Fowler, 1985; Beinlich et al., 2020; Malvoisin et al., 2021; Plümper et al., 2016; 201 

Schmalholz et al., 2020): 202 

 ( ) ( ) 0f s sT
f T

t


  


 + − + =
 

v v v   (5) 203 
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The relative velocity of the fluid to the solid, ( )f s −v v , in equation (5) is expressed by 204 

Darcy’s law, here for simplicity in the absence of gravity 205 

 ( )
3

f s

f

f

k
p





− = − v v   (6) 206 

where   is the gradient operator, k  is the permeability coefficient in a porosity-dependent, 207 

Kozeny-Carman-type permeability expression, f  is the fluid viscosity and fp  is the fluid 208 

pressure. The conservation equation for the total non-volatile component (MgO) is 209 

 ( ) ( )1 1 0s

X X
t
   


 − + − =    

v .  (7) 210 

There is no fluid velocity in this conservation equation because we assume that the dissolution 211 

of MgO in the fluid is negligible. The main reason why we use mass conservation equations 212 

(5) and (7), instead of equations (3) and (4), is that equations (5) and (7) do not include the 213 

term for the mass transfer rate,  , so that we do not need to specifiy  .   214 

We consider a constant temperature and a closed system with constant system 215 

composition for the entire model domain, however, H2O can migrate within our model 216 

domain. It has been experimentally demonstrated that dehydration reactions are controlled by 217 

fluid pressure (e.g., Llana-Fúnez et al., 2012) and, therefore, we approximate s , f  and sX  218 

as a function of fp , which is expressed as (Schmalholz et al., 2020): 219 

 

( )

( )

( )

EQ

f f f

EQ

s s f

EQ

s s f

p

p

X X p

 

 

=

=

=

,  (8) 220 

whereby the values of 
EQ

s , EQ

f  and 
EQ

sX  for a range of values of fp  are calculated by 221 

equilibrium Gibbs free-energy minimization using the program Perple_X (e.g., Connolly, 222 
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1990, 2005, 2009; Fig. 3) with the thermodynamic dataset of Holland and Powell (1998). 223 

Newer thermodynamic datasets do not include considerably different values for the Gibbs free 224 

energies and the associated densities of the minerals considered here, which is why we still 225 

use the Holland and Powell (1998) dataset. We assume that f  always corresponds to EQ

f , 226 

as a result of its equation of state (Fig. 3C). Due to the sharp, step-like variation of 
EQ

s  and 227 

EQ

sX  with varying fp  across the dehydration reaction (Fig. 3C and D) we assume that the 228 

reaction is controlled by a kinetic reaction timescale, so that values of s  do not change 229 

instantaneously if fp  crosses the value of the reaction pressure at 12.65 kbar (Fig. 3). The 230 

kinetic reaction timescales relevant to thermodynamic equilibrium are (e.g., Omlin et al., 231 

2017) 232 

 

EQ

s s s

kin

EQ

s s s

kin

t t

X X X

t t

  −
=



 −
=



 (9) 233 

where tkin is the characteristic kinetic timescale.  234 

 235 

2.3. Mechanical model 236 

The components of the total stress tensor of the two-phase mixture, ij , are composed 237 

of the total pressure, p , and the components of the total deviatoric stress tensor, ij , by the 238 

relation ij ij ijp  = − + , with ij  being the Kronecker delta (e.g. Steeb and Renner, 2019). 239 

Subscripts i  and j  are either 1 (representing the horizontal x-direction) or 2 (representing the 240 

vertical y-direction). We assume that the contribution of fluid flow to the total deviatoric 241 

stress of the mixture is negligible and only consider the solid deformation in the calculation of 242 
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the total deviatoric stress (e.g. McKenzie, 1984; Steeb and Renner, 2019). We consider a 243 

visco-plastic solid and, hence, the effective shear viscosity, s , relates the total deviatoric 244 

stress tensor components to the deviatoric strain rate tensor components of the solid, ijD , by 245 

the equation 2ij s ijD = , with ( ) ( )/ / / 2 / / 3s s s

ij i j j i ij k kD v x v x v x=   +   −   . Some studies 246 

apply the relation ( )1 2ij s ijD  = −  to take into account that the solid deformation only 247 

contributes a part to the total deviatoric stress of the mixture (e.g. Keller et al., 2013), while 248 

other studies do not consider such porosity factor in the relation between total deviatoric 249 

stress of the mixture and partial deviatoric stress of the solid (e.g. Steeb and Renner, 2019). 250 

Here, we assume that such porosity effects are implicitely included in a porosity dependent s251 

. The porosity dependence of s  is motivated by studies on partially molten rocks (e.g., Katz 252 

et al., 2022; Mei et al., 2002; Schmeling et al., 2012). We consider here two types of porosity 253 

dependence of s , namely an exponential and a power-law dependence (e.g. Katz et al., 2006; 254 

Mei et al., 2002; Schmeling et al. 2012): 255 

 ( )0 02 2 expij s ij s ijD a D    = = −  −     (10) 256 

 ( )0 02 2
n

ij s ij s ijD D    = =   (11) 257 

where 0s  is the reference shear viscosity for a reference porosity, 0 , and a  and n  are two 258 

parameters quantifying the dependence of s  on  . We further consider a von Mises yield 259 

stress, y , to limit the maximal value of the deviatoric stresses. The square root of the second 260 

invariant of the deviatoric stress tensor, ( )2 2 20.5II xx yy xy   = + +  controls a plastic multiplier, 261 

1 /y II  = − . If 0  , then deviatoric stresses are modified using 262 

 ( )1ij ij  = − . (12) 263 
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One reason why we consider such stress limiter, is to test whether such stress limiter has a 264 

significant impact on the numerical simulations of olivine vein formation. A second reason is 265 

that this pressure insensitive yield stress can represent any strong nonlinear dependence of the 266 

shear viscosity on the deviatoric stress, such as for low-temperature plasticity or exponential 267 

creep (e.g. Karato, 2008; Schmalholz and Fletcher, 2011; Tsenn and Carter, 1987). For such 268 

exponential creep the stress increases only minor with increasing strain rate, in contrast to the 269 

linear viscosity, s , for which stresses increase linearly with strain rate, if   is constant.   270 

Furthermore, we consider a poro-visco-elastic volumetric deformation for which the 271 

divergence of the solid velocity field is a function of total pressure, p , and fluid pressure, fp  272 

(e.g., Yarushina and Podladchikov, 2015):  273 

 
( )

1

1

f fs

d

dp p pdp

K dt dt  

− 
 = − − − 

− 
v   (13) 274 

where   is the bulk viscosity, dK  is the drained bulk modulus, and 1 /d sK K = −  with sK  275 

being the solid bulk modulus. In our model, the magnitude of   will be linked to the 276 

magnitude of s  (e.g., Katz et al., 2022, and references therein) so that   is also porosity 277 

dependent. We consider elastic bulk deformation in our model to avoid potentially 278 

unrealistically large volumetric deformations. If only viscous bulk deformation is considered, 279 

then volumetric deformation, represented by the term 
sv , is essentially unlimited as long 280 

as there are differences between p  and fp .  281 

The applied equations for conservation of linear momentum (or force balance 282 

equations) without inertial forces and gravity are 283 

 0ij =  (14)   284 

  285 
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2.4. Governing system of equations 286 

 The equations above can be combined to a system of 11 equations for 11 unknowns, 287 

which are fp ,  , s , f , sX , p , 
s

xv , s

yv , xx , yy  and xy , assuming that the deviatoric 288 

stress tensor is symmetric, xy yx = . The deviatoric stress tensor components, xx , yy  and xy289 

, are calculated using equations (10). The solid and fluid densities as well as the mass fraction 290 

are calculated from the fluid pressure, using the results of thermodynamic calculations 291 

represented by equation (8) (thermodynamic relations between s , f , sX  and fp  are 292 

illustrated in Fig. 3C and D). In our numerical algorithm, described below, we will use 293 

equation (5) in combination with (6) to calculate the fluid pressure, fp , equation (13) to 294 

calculate the total pressure, p , equation (7) to calculate the porosity,  , and the two force 295 

balance equations (14) to calculate the two solid velocities, 
s

xv  and s

yv .  296 

 297 

2.5 Numerical algorithm 298 

 We discretize the governing system of equations described above using the finite 299 

difference method on a regular Cartesian staggered grid. The staggering relies on second-300 

order conservative finite differences (e.g., McKee et al., 2008; Patankar, 2018; Virieux, 301 

1986). The six unknowns xx , yy , xy , s , f  and sX  can be determined without solving a 302 

partial differential equation (PDE) whereas determining the five unknowns fp ,   , p , 
s

xv  303 

and s

yv  requires the solution of a corresponding PDE. We apply the accelerated pseudo-304 

transient (PT) method to solve the discretized system of governing PDEs in an iterative and 305 

matrix-free fashion (e.g., Chorin, 1997; Räss et al., 2022). We use a relaxation, or 306 

continuation, approach to handle the various nonlinearities, such as porosity-dependent shear 307 
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viscosity and permeablity within the iterative procedure (e.g. Räss et al., 2019a; Schmalholz 308 

et al., 2020; Wang et al., 2022). The fundamental features of the applied numerical algorithm 309 

and the iterative PT method are described in appendix A1. Furthermore, we present a 310 

numerical resultion test and a numerical accuracy test of the applied numerical algorithm in 311 

appendix A2.    312 

 313 

3. Model configuration, characterstic scales and dimensionless parameters 314 

3.1. Geodynamic scenario 315 

We describe first the geodynamic scenario which represents the motivation for the 316 

applied model configuration. We consider an antigorite serpentinite which is sheared during 317 

subduction (Fig. 2). For simplicity, the modelled serpentinite is made only of antigorite and 318 

brucite. We assume that the serpentinite is mechanically heterogenous. Such heterogeneity is 319 

mimicked here by a spatially heterogeneous porosity which causes a heterogeneous viscosity 320 

(equations (10) and (11)). The serpentinite includes small regions of higher porosity which 321 

generates small regions of lower viscosity. Such viscosity heterogeneities within a deformed, 322 

or externally stressed, viscous rock cause pressure variations around the mechanically weaker 323 

regions with lower viscosity (e.g. Schmid and Podladchikov, 2003; Moulas et al., 2014; 324 

Moulas and Schmalholz, 2020). The pressure variations generate regions with smaller and 325 

higher pressure with respect to the ambient background pressure (e.g. Moulas et al., 2014). 326 

Recently, Conoiu et al. (2019) showed with laboratory rock deformation experiments and 327 

numerical simulations that such pressure variations can cause mineral phase transformations. 328 

During subduction and shearing, such pressure variations cause no metamorphic reactions as 329 

long as the ambient pressure of the serpentinite is well within the antigorite + brucite stability 330 

field and pressure variations do not generate locally pressure magnitudes that are below the 331 
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reaction pressure (see potential prograde pressure-temperature path in Fig. 3A). However, if 332 

the ambient pressure in the sheared serpentinite is close to the reaction pressure, then pressure 333 

variations can generate locally pressures that are below the reaction pressure and trigger 334 

dehydration (Fig. 2B). We consider here such scenario where the ambient pressure is close to 335 

the reaction pressure in order to investigate dehydration reactions which are triggered by 336 

shearing-induced pressure variations. This scenario is motivated by field observations from 337 

the Erro Tobbio region (Fig. 1). In this region, the exhumed antigorite serpentinite exhibits 338 

locally metamorphic olivine veins which indicate that the serpentinite has locally crossed the 339 

brucite-out reaction during subduction (Fig. 2E). However, before exhumation back to the 340 

surface, the antigorite serpentinite has never crossed the antigorite-out reaction, because this 341 

reaction would have generated peridotite (Fig. 2E). Therefore, the olivine veins in the 342 

exhumed antigorite serpentinites, exposed in the Erro Tobbio region, have likely formed in a 343 

relatively narrow ambient pressure and temperature range (Fig. 2E).      344 

 345 

3.2. Model configuration    346 

We assume that fp  and p  are initially identical and correspond to the ambient 347 

pressure, 
ap . The ambient porosity, a , is 2%, except in an elliptical region in the model 348 

center where the porosity exhibits a Gaussian distribution (Fig. 4). The initial Gaussian 349 

distribution of the porosity is: ( ) ( )
2 2

0 exp / / 2a A x r y r   = + − −
 

. A  is the amplitude of 350 

the initial porosity perturbation and the distance r  controls the width, or variance, of the 351 

porosity distribution (Fig. 4). We apply here an elliptical form of the Gaussian distribution 352 

with an axis ratio of 2 and with the long axis either parallel to the vertical y-direction or at 45° 353 

to the vertical direction (see the two blue dashed lines in Fig. 4). The origin of the coordinate 354 

system is at the center of the elliptical region with positive coordinates indicating towards the 355 
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right side and upwards (Fig. 4). We will also present two simulations with a random initial 356 

perturbation of the porosity. The shear and bulk viscosities are smaller in the central region of 357 

the model due to the higher porosity. We assume a constant temperature of 500 °C for which 358 

the thermodynamic reaction pressure in our model is at 12.65 kbar (Fig. 3). The exact 359 

temperature value is not essential for our study, because the variation of the solid and fluid 360 

densities with varying fluid pressure is similar for temperatures between 450 and 550 °C (Fig. 361 

3A and B). We apply far-field simple shear for the boundary velocities (Fig. 4) so that the 362 

divergence, or volume change, of the entire model domain is zero. Shearing is parallel to the 363 

horizontal x-direction and the orientations of the maximal and minimal principal stresses, 1  364 

and 
3  respectively, associated with the far-field shearing are oriented at 45 ° to the shearing 365 

direction (Fig. 4). Boundary conditions for   and fp  are of Dirichlet type, with boundary 366 

values fixed to the initial ambient values.  367 

 368 

3.3. Compaction length, characteristic time and dimensionless parameters    369 

In our simulations, we always consider the same dehydration reaction with its 370 

associated fluid pressure versus density relations (Fig. 3C). Therefore, the characteristic 371 

pressure for our simulations is fixed and corresponds to the reaction pressure of 12.65 kbar. 372 

Hence, we present the results for pressures and densities in dimensional form. However, the 373 

magnitudes of other quantities such as ambient permeability, shear viscosities, far-field 374 

shearing rate or size of the initial porosity perturbation are arbitrary in our model, as long as 375 

they are within a range that is realistic for natural conditions. Therefore, we will describe the 376 

performed simulations with a set of dimensionless numbers and not with a table including 377 

specific dimensional magnitudes for each model parameter. Furthermore, we will present the 378 
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spatial and temporal evolution of the simulations with dimensionless coordinates and a 379 

dimensionless time, respectively, to emphasize their general applicability.      380 

To describe the hydro-mechanical features of the model configuration, we will use a 381 

characteristic length scale,  , and a characteristic time scale, Ct . In a viscously deformable 382 

porous medium, the compaction of the poro-viscous medium and associated spatial variations 383 

in solid and fluid velocities occur over a characteristic length scale which is termed the 384 

compaction length (e.g. McKenzie, 1984). We use this compaction length as  . Similarly, the 385 

compaction and associated porous fluid flow occurs over a characteristic time scale, which we 386 

use as Ct . The   and Ct  are given by:   387 

 
( ) ( )

( )

3

2 3

4

3

/

s

f

C f s

k

t r k K


    



 

 
= + 

 

=

 (15) 388 

In our model with porosity dependent effective permeability as well as porosity 389 

dependent shear and bulk viscosities, both   and Ct  depend on  . We consider two different 390 

relations between s  and   (equations (10) and (11)) which control the relation between   391 

and   (Fig. 5). We make   dimensionless by dividing it by r  and discuss in the following 392 

the relation between / r  and   applied in the simulations. For simplicity, the porosity 393 

exponent in the effective permeabilty is always 3 in the simulations (equation (6)). To 394 

quantify and label the applied / r ‒  relations we introduce the dimensionless parameter 1  395 

that represents the value of / r  for the ambient porosity a , that is: 396 

 1

a
r  



=

 = . (16)      397 
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For simulations with an exponential dependence of s  on   (equation (10)) we 398 

employ 6 different values of 1 , ranging approximately between 0.008 and 0.2 (legend in 399 

Fig. 5A). We use mostly 1/ 2.5a = , but also present two simulations with 1/1.65a =  400 

(equation (10); Fig. 5A and C). With increasing  , values of / r  first increase and then 401 

decrease (Fig. 5A). The maximum value of / r  is approximately 25 times larger than the 402 

minimum value of / r  for each displayed / r ‒  curve (Fig. 5A). The variation of s , 403 

normalized by the viscosity for the ambient porosity, sa , with increasing   is displayed in 404 

figure 5C. For comparison, we illustrate representative values for experimentally determined 405 

shear viscosities for partially molten rock as function of porosity (experimental data is taken 406 

from the compilation of Katz et al., 2022; see figure caption for all references). The 407 

experimental data shows that the effective shear viscosity of a porous medium can vary 3 to 4 408 

orders of magnitude when the porosity varies between approximately 2 and 25%.  409 

For s  with power-law dependence on   (equation (11)) we use three values for the 410 

power-law exponent, namely n = 2, 3 and 4, (Fig. 5C) in order to obtain values of / r  that 411 

are increasing, constant or decreasing, respectively, with increasing   (Fig. 5B). For all three 412 

/ r  versus   relations the values of 
1 0.035  (Fig. 5B).  413 

For all applied / r ‒  relations, the values of 1  are approximately between 0.01 414 

and 0.1 which means that r  is approximately 10 to 100 times larger than   for the poro-415 

viscous medium with ambient porosity. Such values for 1  are suitable, because deformation 416 

associated with compaction occurs over a distance which is several times larger than   (e.g. 417 

McKenzie, 1984). If 
1 0.01 , then compaction occurs over a distance much smaller than 418 

the porosity distribution, the compaction is essentially spatially unrelated to the porosity 419 

perturbation and it is unfeasible to numerically resolve both the porosity perturbation and the 420 
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compaction which occurs on a much smaller length scale. If, on the other hand, 
2 0.1 , 421 

then compaction occurs on spatial scales larger or equal to the size of the porosity 422 

perturbation and it is difficult to generate significant fluid pressure perturbations within small 423 

areas around the weak region with increased porosity. Similar values for 1 , as applied here, 424 

are also typically used in simulations of porosity waves (e.g. Simpson and Spiegelman, 2011; 425 

Dohmen and Schmeling, 2021). Hence, we chose the applied values of 1  because they are 426 

suitable to model poro-viscous deformation and associated pressure perturbations caused by 427 

the initial porosity perturbations.       428 

To describe the presented numerical simulations, we use several more dimensionless 429 

ratios:    430 
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  (17) 431 

where w  is the model width and xyD  is the applied far-field simple shear rate (Fig. 4). All 432 

dimensionless ratios that are dependent on the porosity are specifed for the applied ambient 433 

porosity, a  = 2%. In most of the presented simulations with an initial Gaussian porosity 434 

distribution, we apply 2 0.11 = , which means that the shear stress resulting from the applied 435 

far-field simple shear is approximately one order of magnitude smaller than the ambient 436 

pressure. We further apply 3 40 =  to have a model domain significantly larger than the 437 

applied porosity perturbation, 
4 2 = , which is supported by theoretical models and 438 
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experiments (e.g. Katz et al., 2022), and 
5 0.0025 = , so that the kinetic time scale is 439 

significantly faster than the hydraulic diffusion time scale. If a different dimensionless 440 

parameter was applied, it will be mentioned in the description of the results. The applied 441 

values of 1  will be given when the simulations are discussed below. 442 

Furthermore, we will discuss the magnitudes of   and Ct  as well as the applied 443 

dimensional ratios with respect to realistic quantities below. In the figures, physical units are 444 

displayed in square braces, for example 3/kg m   . The horizontal, x , and vertical, y , 445 

coordinates are normalized by r  and the simulation time as well as all displayed rates, e.g. 446 

sv , will be normalized by Ct  , whereby Ct  is calculated for the ambient porosity, a . 447 

 448 

4. Results 449 

4.1 Overview 450 

The result section is structured in two general parts. In the first part, we investigate the 451 

impact of ambient pressure, compaction length, yield stress and geometry of the initial 452 

porosity distribution on the formation of dehydration veins. In the second part, we focus on 453 

one simulation to quantify the mechanisms which cause the production and evolution of 454 

porosity during deformation and dehydration. 455 

   456 

4.2. Impact of ambient pressure on dehydration vein formation 457 

 With the first three simulations we test the impact of the ambient pressure, 
ap , on the 458 

formation of dehydration veins (Fig. 6). We apply 
1 0.033 =  and an exponential relation 459 

between s  ( a =1/2.5) and   (Fig. 5A and C). The amplitude of the initial   perturbation is 460 
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12A =  and the maximal   in the model center is 24%. Hence, the minimum initial s  in the 461 

model center is approximately 100 times smaller than sa  (Fig. 5C). The long axis of the 462 

initial Gaussian   distribution is oriented 45° with respect to the vertical y-direction so that 463 

the long axis is parallel to the maximal principal stress for the applied far-field simple shear (464 

1  in Fig. 4). We apply 
ap  of 14.5 (Fig. 6A to D), 13.5 (Fig. 6E to H) and 12.75 kbar (Fig. 6I 465 

to L). If in the simulations fp  decreases below 12.7 kbar, then an increase of s  begins due 466 

to the dehydration reaction in our discretized model (Fig. 3C). For 
ap  of 14.5 kbar, fp  does 467 

not decrease below 12.7 kbar in the model domain (Fig. 6A to D). During significant simple 468 

shearing, the   perturbation is sheared and rotated (see red porosity contours in Fig. 6A to D) 469 

and fp  perturbations are always present around the region with higher   (Fig. 6A to D). No 470 

vein-like structure with increased  , oriented parallel to 1 , develops in the model when no 471 

dehydration reaction takes place. For 
ap  of 13.5 kbar, fp  decreases locally below 12.7 kbar 472 

after some shearing (black contour lines in Fig. 6F to H; see contour labels in panel Fig. 6I) 473 

and two separate, elongated regions with decreased fp  and increased   develop (Fig. 6F to 474 

H).   in these regions is increased with respect to the a  (change of red contour line in Fig. 475 

6E to H). For 
ap  of 12.75 kbar, a single elongated region with fp  < 12.7 kbar develops in 476 

which   is increased with respect to a  (Fig. 6I to L). In summary, the results show that (i) if 477 

no dehydration reaction takes place, no elongated, or vein-like, region with increased   478 

develops, (ii) for the applied model configuration, 
ap  of 13.5 kbar is sufficiently close to the 479 

reaction pressure of 12.65 kbar so that shear-driven perturbations in fp  can trigger 480 

dehydration and (iii) dehydration during shearing generates elongated, vein-like regions of 481 

increased   which are oriented parallel to 1  (Fig. 6).   482 
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 483 

4.4. Impact of porosity dependence of compaction length       484 

We apply 
ap  of 12.75 kbar, the same configuration as for the simulation displayed in 485 

figure 6I to L, and use 1 = 0.0082, 0.033 and 0.082 for an exponential dependence of s on 486 

  (Fig. 5A). For 1 = 0.0082, two elongated, separate regions with s  > 3000 kg/m3 487 

developed during shearing, indicating the reaction from serpentinite to olivine (Fig. 7A to D). 488 

This simulation was run until it failed to converge, which was caused by extremely sharp 489 

gradients in material properties around the two vein tips. For 1 = 0.033, one continuous 490 

elongated region with s  > 3000 kg/m3 develops (Fig. 7E to H), showing the formation of an 491 

olivine vein. For 1 = 0.082, also one continuous elongated region with increased values of 492 

s  develops, but maximal values of s  are slightly below 3000 kg/m3 (Fig. 7I to L). The time 493 

evolution of maximal values of s , minimal values of fp  and relative increase of   will be 494 

discussed further below.       495 

 We perform three additional simulations for the same configuration as for the 496 

simulations presented in figure 7, but for a power-law dependence of s  on   (see  Fig. 5B) 497 

with three different values of the power-law exponent, n . For n  = 4 and 1  = 0.033, values 498 

of / r  monotoneously decrease with increasing   (Fg. 5B). In this simulation, an elongated 499 

region with increased s  and decreased fp  develops (Fig. 8A to D). However, maximal 500 

values of s  <  2850 kg/m3. For n  = 3 and 1  = 0.036, values of / r  are constant with 501 

increasing  , and also an elongated region with increased s  and decreased fp   develops 502 

(Fig. 8E to H). Maximal values of s  are just slightly larger than 2900 kg/m3. For n  = 2 and 503 

1  = 0.033, values of / r  monotoneously increase with increasing  , and two separate, 504 
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elongated regions with increased s  and decreased fp   develop (Fig. 8I to L). For this 505 

simulation, maximal values of s  > 3000 kg/m3. 506 

 The temporal evolution of the dehydration and olivine formation depends on the 507 

applied / r  ‒    relations and the value of 1  (Figs. 7 and 8). We performed a total of 508 

seven simulations for an exponential dependence of s  on   and with different values of 1509 

(Fig. 9) to study the temporal evolution of maximal values of s  (Fig. 9A), minimal values of 510 

fp  (Fig. 9B) and the maximal relative increase of   (Fig. 9C). The presented maximal or 511 

minimal values correspond to the maximal or minimal value in the entire model domain at 512 

one particular numerical time step. Maximal values of s  start to increase faster for smaller 513 

values of 1  (Fig. 9A) and corresponding minimal values of fp  are smaller for smaller 1  514 

(Fig. 9B). Smaller 1  favor the development of larger perturbations of fp , however, these 515 

perturbations for smaller 1  also decay faster compared to simulations with larger 1  (Fig. 516 

9B). For larger 1 , the perturbations of fp  become smaller and, hence, maximal s  reach 517 

smaller values (Fig. 9A). For the largest 1  of 0.16, maximal s  < 2875 kg/m3, which is the 518 

average density between the density of antigorite+brucite and forsterite in our model (Fig. 519 

3C). If we run the same simulation with 1  = 0.16 again, but now with 
ap  of 12.71 kbar, 520 

then maximal s  > 3000 kg/m3, which confirms that the closer 
ap  is to the reaction pressure, 521 

the more intense is the dehydration and progress of the reaction (compare with Fig. 6). To 522 

investigate the relative evolution of  , we store at each numerical grid point the ratio of the 523 

initial to the current value of  . For each numerical time step, we determine the maximal 524 

value of this porosity ratio and plot its evolution with progressive simulation time (Fig. 9C). 525 

In all simulations the maximal porosity ratio is continuously increasing, showing that 526 

dehydration is continuously ongoing. At the end of the simulations, maximal values of the 527 
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porosity ratio are between 10 and 25, showing that   increases more than an order of 528 

magnitude during the simulations.      529 

For the three simulations with a power-law dependence of s  on  , maximal values of 530 

s  start to increase faster for larger values of n , but maximal s  during the simulations is 531 

smaller for larger n  (Fig. 9D). Only for n  = 2 the simulation generates s  > 3000 kg/m3. 532 

Minimal values of fp  are smallest for n  = 4 and similar for n  = 3 and 2 (Fig. 9E). The larger 533 

the n , the faster the minimum fp  develops during the simulations (Fig. 9D). In simulations 534 

with n  = 4 and 3, the increase of the maximal porosity ratio is considerably slowing down 535 

with time and this ratio is even decreasing towards the end of the simulation for n  = 4 (Fig. 536 

9F). This decrease of the porosity ratio with shearing indicates that the progress of the 537 

dehydration reaction slows down in the simulation, in agreement with the decrease of 538 

maximal s  (Fig. 9D).  539 

 In summary, the simulations (Figs. 7, 8 and 9) described above confirm that the 540 

relation between / r  and   has a strong impact on the development of the dehydrating 541 

region, the progress of olivine formation and the geometry of olivine veins. For our model 542 

configuration, the most suitable conditions for the formation of a single olivine vein are for an 543 

exponential dependence of s  on   and for values of 1  approximately between 0.016 and 544 

0.1.      545 

 546 

4.5. Impact of plasticity and orientation of porosity perturbation       547 

 In regions with constant  , s  is also constant and the modelled poro-viscous medium 548 

flows like a linear viscous fluid. To test the impact of significant nonlinear flow, we apply a 549 
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pressure-insensitive yield stress, y , corresponding to a von Mises type yield criterion 550 

(equation (12)). We perform the simulation with 1  = 0.033, for which results are shown in 551 

figure 6I to L and 7E to H, with y  = 100 MPa, that is approximately a factor of 0.08 of the 552 

reaction pressure magnitude (Fig. 10A to D). Without application of y , the maximal shear 553 

stresses in this simulation correspond to approximately 150 MPa. Overall, the simulation with 554 

y  = 100 MPa is similar to simulations without the application of a yield stress, y . The 555 

application of a yield stress, y , and the associated nonlinear viscous flow, or creep, does, 556 

hence, not significantly impact the formation of olivin veins.  557 

A similar result is obtained for two simulations, with and without y , for which the 558 

initial orientation of the long axis of the elliptical Gaussian porosity distribution was vertical 559 

(Fig. 8E to L). For these two smulations with an exponential relation between s  and  , a  = 560 

1/1.65 (see Fig. 5A and C), 1  = 0.016, 2  = 0.16 and 12A =  so that the minimum initial 561 

s  in the model center is again approximately 100 times smaller than sa , similar to the 562 

simulations with a  = 1/2.5. For this initial geometrical   perturbation, the olivine veins with 563 

s   3000 kg/m3 are also parallel to 1 , but the veins are curved in their center, resulting 564 

from the initial   perturbation. Compared to the simulation without y  (Fig. 10E to H), the 565 

simulation with y  = 125 MPa is shorter and slightly thicker at comparable simulation stages 566 

(Fig. 10I to L). 567 

       We finally apply initially a random   perturbation and y  = 100 MPa to test 568 

whether olivine veins associated with dehydration occur for more realistic   perturbation and 569 

nonlinear creep (Fig. 11). We generated the initial porosity distribution with the random field 570 

generator presented in Räss et al. (2019). All other parameters are the same as for the 571 
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simulation presented in figures 6I to L and 7E to H. With progressive shearing, several veins 572 

with s  >3000 kg/m3 (Fig. 11A to D) and   >0.5 (Fig. 11E to H) develop. The long axes of 573 

these veins are oriented parallel to 1  and have an orientation similar to an en échelon 574 

geometry. The values of 
II  are smallest inside the veins due to the low, porosity-dependent 575 

s . Due to this porosity dependence of s , the magnitudes of 
II  are very heterogeneous 576 

throughout the model. The area-averaged value of 
II  in the model for each time step is a 577 

proxy for the area-averaged shear strength and effective viscosity of the model domain, if a 578 

constant far-field shearing rate is applied, as done here. The increase of the areas with smaller 579 

II  with progressive shearing (Fig. 11) indicates, hence, a decrease of the average viscosity 580 

and, consequently, a weakening of the rock unit represented by the model domain (e.g. 581 

Schmalholz et al., 2020).   582 

  In summary, the simulations with different initial   perturbations and nonlinear 583 

creep, modelled here in a simple way by the application of y  show that (i) the geometry of 584 

the initial   perturbation and the type of flow law for the solid deformation do not strongly 585 

impact the dehydration and olivine vein formation and (ii) olivine veins are formed in our 586 

model also for more realistic model configurations considering random initial   perturbations 587 

and nonlinear flow laws for the solid. 588 

 589 

4.6. Mechanisms of porosity production        590 

In the presented simulations, the modelled dehydration reaction, the porous fluid flow 591 

and the solid deformation all can affect the production and evolution of  . However, which 592 

mechanisms exactly produce   and their relative importance is unclear. One reason is that in 593 

our coupled HMC model, most quantities, such as solid and fluid densities, porosity, fluid 594 
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pressure, shear and bulk viscosities and solid and fluid velocities, vary in space and time. We, 595 

therefore, first investigate the evolution of several quantities for a particular simulation, which 596 

is the one displayed in figure 6I to L and 7E to H. Due to the point symmetry of the vein with 597 

respect to the coordinate origin, we only show the upper, left half of the vein (Fig. 12). The 598 

divergence of the solid velocity, / /s s s

x yv x v y =   +  v , indicates a volumetric change 599 

associated with dehydration vein formation (Fig. 12). A positive value of sv  indicates 600 

volume increase, or dilation (Bordeaux colors in Fig. 12). The solid velocities indicate mainly 601 

the applied far-field simple shear deformation (black arrows in Fig. 12), with some deviations 602 

around the dehydrating region. The fluid velocities (blue arrows in Fig. 12) are completely 603 

different compared to the solid velocities. For the first time step, fluid flow only occurs in the 604 

central region where the porosity, and hence permeability, is high (Fig. 12A). During 605 

dehydration vein formation, fluid flow mainly is localized along the boundaries of the veins 606 

which are characterized by higher values of sv  (Fig. 12B to D). The fluid velocities 607 

indicate fluid flow from the boundary of the dehydrating region towards the centre of the vein 608 

(Fig. 12B to D). For the first time step, the   distribution indicates the initial, oblique 609 

Gaussian geometry (blue contour in Fig. 12). With progressive deformation and vein 610 

formation, the region with higher   grows in direction parallel to the dehydration vein. At the 611 

beginning of shearing, there is a small region with fp  <12.7 kbar (red contours in Fig. 12A) 612 

and this region is growing in a direction parallel to the vein (Fig. 7A). The region with s  > 613 

2700 kg/m3 (dashed grey contours in Fig. 12) also increases in direction parallel to the vein. 614 

In the early stages of shearing, nowhere in the model s  > 2700 kg/m3, since there are no 615 

contours for s  = 2700 kg/m3 (Fig. 12A).     616 

 To quantify the relative contribution of the mechanisms controlling the temporal 617 

variation of  , we post-process our numerical results (i.e. calculate values from saved 618 
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numerical results). We quantify the mass transfer rate,  , associated with the dehydration 619 

reaction, which can be expressed by (using equation (3)): 620 
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−
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Note that in equation (18) the material time derivative ( /d dt , including the advection term, 622 

( )1s

s  −  v ) is used and, hence, the divergence term is different compared to equation 623 

(3). Therefore, equation (18) represents an approximation of   since the advective term is not 624 

taken into account, here for simplicity of the post-processing. Equation (18) can be rearranged 625 

to provide an expression for the temporal variation of the porosity: 626 
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Equation (19) shows that the temporal variation of the porosity is controlled by three 628 

mechanisms: (1) volumetric deformation of the solid (i.e. divergence of solid velocity field; 629 

first term on right-hand side of equation (19)), (2) temporal variation of solid density (second 630 

term) and (3) mass transfer of H2O from the solid to the fluid phase associated with the 631 

dehydration reaction (third term). We display the spatial distribution of the four terms in 632 

equation (19) for the simulation displayed in figure 12 at a dimensionless time of 0.008 (Fig. 633 

13). All four terms represent rates, have units of 1/s, such as the unit of solid volumetric 634 

deformation rate 
sv , and are normalized by multiplying with Ct  for a . The rate of  , 635 

quantified by the term on the left-hand side of equation (19), is positive and largest in the 636 

region of increased  , indicating an increase of   with time (Fig. 8A). The sum of the three 637 

terms on the right-hand side of equation (19) provides essentially the same result as the term 638 

on the left-hand side of equation (19), indicating the accuracy of equation (19) (Fig. 13A and 639 

B). The magnitudes of the relative contributions of solid volumetric deformation (Fig. 13C), 640 



30 

 

solid density variation (Fig. 13D) and mass transfer (Fig. 13E) to the temporal variation of 641 

porosity are similar, because the spatial distribution and magnitude of these three terms are 642 

similar (Fig. 13 D to E). Therefore, solid volumetric deformation, solid density variation and 643 

reactive mass transfer equally contribute to the porosity variation and, hence, to the evolution 644 

of the dehydration veins.  645 

 To investigate the temporal variation of the relative importance of solid volumetric 646 

deformation rate, solid density rate and mass transfer rate on the rate of  , we record the 647 

maximum value of each rate for each numerical time step and plot these maximum rates 648 

versus the dimensionless model time (Fig. 14). All rates first increase and then decrease. 649 

During the initial stages of vein formation, the mass transfer rate is fastest and the volumetric 650 

deformation rate is slowest. Subsequently, there is a time interval where the mass transfer rate 651 

is still fastest, but the solid density rate is slowest. Afterwards, until the end of the simulation, 652 

the solid volumetric deformation rate is fastest and the solid density rate is slowest. In 653 

summary, the results indicate that all three rates always contribute to   production, but with 654 

varying relative importance as function of time.          655 

 656 

5. Discussion 657 

5.1. Shear-driven dehydration and olivine vein formation  658 

Field observations have led previous authors to hypothesize that en échelon 659 

metamorphic olivine veins have been caused by shear deformation, but this hypothesis has not 660 

been tested with a HMC model. Our simulations show that it is hydrologically, mechanically 661 

and chemically feasible to form olivine veins by dehydration reactions which are triggered 662 

during ductile shearing of serpentinite. A thermodynamic reaction, such as the dehydration 663 

reaction considered here, is typically controlled by a narrow zone in pressure-temperature 664 
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space (e.g. Fig. 2E and 3). In isothermal models, such as the one presented here, the reaction 665 

occurs, therefore, across a narrow pressure range (Fig. 3C). In our model, the fluid pressure, 666 

fp , controls the reaction which is supported by theoretical and experimental studies (e.g. 667 

Dahlen, 1992; Llana-Fúnez et al., 2012). The fp  is initially homogeneous and everywhere in 668 

the model domain within the serpentinite stability field, and represents the ambient fluid 669 

pressure, 
ap . Only if 

ap  is close to the reaction pressure and if the shear-driven fp  670 

perturbations are significant, then fp  can decrease locally below the reaction pressure during 671 

shearing and trigger the dehydration reaction (Fig. 6). For our model configuration, 
ap  of 672 

13.5 kbar was close enough to trigger dehydration for a reaction pressure of 12.65 kbar 673 

(pressure difference of 0.85 kbar; Fig. 6). Assuming an average density of the overlying rock 674 

of 3000 kg/m3 for this pressure difference, the dehydration can be triggered in our model 675 

when the rocks are within a vertical distance of approximately 2.5 to 3 km to the depth at 676 

which the reaction would occur with respect to a lithostatic pressure. 677 

Our model for shear-driven dehydration is different to published models of similar 678 

dehydration reactions, because in these published models an initially heterogeneous 679 

distribution of fp  is applied such that initial values of fp  involve already different values 680 

that correspond to the stability fields on both sides of the reaction (e.g. Huber et al., 2022; 681 

Malvoisin et al., 2015; Schmalholz et al., 2020). Therefore, the initial condition in these 682 

models guarantees that the initial fp  will trigger the dehydration reaction. In contrast, in our 683 

model also the evolution of a heterogeneous fp  distribution is simulated (Fig. 6). Whether 684 

this evolving fp  distribution can trigger dehydration and eventually generate an olivine vein, 685 

depends on the applied value of 
ap  and model parameters, such as the applied / r ‒  686 

relation (Figs. 6, 7 and 8). Only if the fluid pressure decreases locally below the reaction 687 
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pressure, an olivine vein can form. Consequently, our model predicts mechanical deformation 688 

as a potential mechanism by which dehydration veins can be formed locally. An alternative 689 

possibility for triggering locally dehydration, is an initially heterogeneous chemical 690 

composition of the serpentinite in which some regions, having for example brucite, dehydrate 691 

while other regions, for example exclusively composed of antigorite, do not dehydrate (e.g. 692 

Plümper et al., 2017). Such chemical mechanism does not require any solid deformation. 693 

However, for such mechanism the orientation of the olivine veins is entirely controlled by the 694 

initial chemical composition. The specific en échelon geometry of olivine veins is most likely 695 

not caused by initial chemical heterogeneity in a non-deforming rock, especially since these 696 

veins are formed in a strongly sheared antigorite serpentinite.         697 

Field data show that in the Erro Tobbio region the olivine in the studied veins is 698 

indeed metamorphic olivine, which is also supported by geochemical studies (e.g., Peters et 699 

al., 2020). Furthermore, in all presented simulations, the formation of dehydration veins is not 700 

a run-away process, but a self-limiting process (Fig. 9). In the low-pressure regions, where 701 

dehydration takes place, fp  first decreases and then increases again which slows down the 702 

dehydration reaction (Fig. 9B and E). Hence, the simulation with initial random porosity 703 

perturbation shows the formation of several veins with similar length, which stop growing 704 

after some amount of shear (Fig. 11). The simulation does not show the formation of a single 705 

vein which grows across the entire model domain (Fig. 11). The formation of many veins of 706 

similar size and orientation, and the absence of few, large veins is in agreement with natural 707 

observations (Fig. 1). Therefore, based on published geochemical studies, structural 708 

observations and our modelling results, we propose that the formation of observed olivine 709 

veins was the result of a coupled deformation-reaction process that accelerated mineral 710 

dehydration along particular orientations, controlled by the local stress field in the sheared 711 
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serpentinite. Similar veins made of metamorphic olivine have been described from subducted 712 

serpentinite, such as in the Zermatt-Saas unit in the Central Alps (e.g., Kempf et al., 2020).   713 

 714 

5.2. Rescaling to dimensional parameters   715 

We consider here one specific dehydration reaction which controls the relation 716 

between fluid pressure and densities (Fig. 3). We did, hence, not rearrange the governing 717 

system of equations into a dimensionless system of equations for which model parameters are 718 

commonly clustered in dimensionless numbers, such as Damköhler or Péclet numbers (e.g. 719 

Jones and Katz, 2018). However, most model parameters, such as shear viscosities, 720 

permeabilities or far-field shearing rate, are arbitrary in our model. Therefore, we did not 721 

perform the simulations for a specific set of parameter magnitudes, but we used dimensionless 722 

ratios to quantify the relations between model parameters (equations (16) and (17)). We 723 

assume now particular values for the model parameters and discuss the applicability and 724 

consequences of the chosen dimensionless ratios for the natural situation. We applied 4  = 725 

/ s   = 2, which is based on theoretical and experimental results (see Katz et al., 2022 and 726 

references therein), and we assume s  = 1017 Pa s. Despite the importance of antigorite 727 

serpentinite, its rheology at lithospheric-scale pressure and temperature conditions remains 728 

not well constrained (e.g. David et al., 2018; Hirauchi et al., 2020, and references therein). 729 

However, for the ambient pressure and temperature conditions considered here, viscosities of 730 

antigorite serpentinite of approximately 1017 Pa s seem feasible based on experimental studies 731 

(e.g., Chernak and Hirth, 2010; Hilairet et al., 2007). We further assume f  = 10-3 Pa s, a  = 732 

0.02 and r  = 10 cm. Applied values of 1  range between 0.0082 and 0.16 (Fig. 9). For the 733 

values assumed above, values of 1  between 0.0082 and 0.16 require values for the product 734 
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3

ak , which represents the ambient permeability, approximately between 10-27 and 10-24 m2, 735 

respectively. Note, that we could have used also the permeability formulation 736 

( ) ( )
3 33 3

0/ /a a ak k k     = =  and then 0k  would represent the ambient permeability. Such 737 

values for 
3

ak  indicate that the serpentinite should be essentially impermeable in the regions 738 

where the olivine veins form. Experimental studies suggest that serpentinite permeability 739 

decreases exponentially with depth and is in the order of 10-23 and 10-21 m2 at a depth of 7 km 740 

below seafloor (e.g. Hatakeyama et al., 2017). Permeabilities at much greater depth and 741 

ambient pressure, as the 12.75 kbar ambient pressure considered here, could hence be smaller 742 

than 10-23 m2. The extrapolation of Hatakeyama et al. (2017) (their equation 1), for their 743 

sepertinite termed Sengen-03, suggests a permeability of 10-26 m2 already for a confining 744 

pressure of approximately 6 kbar. Therefore, permeabilites between 10-24 and 10-26 m2, or in 745 

other words an effectively impermeable antigorite serpentinite as required in our models, is 746 

not unrealistic for natural antigorite serpentinite under a confining pressure of approximately 747 

12.75 kbar and the assumed temperature of 500 °C. Furthermore, s  could have potentially 748 

been smaller than 1017 Pa s during significant shearing, for example due to a strongly 749 

nonlinear deformation behavior as mimicked here with a pressure-insensitive yield stress, so 750 

that required values for 
3

ak  could also have been larger than 10-24 m2, keeping values of 1  751 

the same.       752 

For 2  we applied a value of 0.11 which requires a value of xyD  of approximately 10-753 

9 s-1. For a typical subduction velocity of 3 cm/yr, a shear zone must be 1 m thick so that a 754 

relative shear velocity across the shear zone generates a shearing rate of 10-9 s-1. Such strain 755 

rate and s  = 1017 Pa s generates a shear stress in the order of 100 MPa and we also applied a 756 

yield stress in some simulations to limit shear stresses to 100 MPa (Figs. 10A to D and 11). 757 

Such stress magnitudes agree with recent estimates of England and Smye (2023), who suggest 758 
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shear stresses of up to 100 MPa at subduction interfaces. Fast shearing rates of 10-9 s-1 are 759 

presumably more likely achieved during aseismic slow slip events, whereby shearing 760 

velocities are larger than a few centimeters per year. For example, typical slip velocities 761 

associated with long term slow slip events are between 35 and 70 cm/yr (1 to 2 mm/day; see 762 

review of Behr and Bürgmann, 2021, and references therein) and for such faster slip velocities 763 

strain rates of 10-9 s-1 are achievable in shear zones with thicknesses of up to approximately 764 

20 m.  765 

For the parameters assumed above, for 
3

ak  = 10-25 m2 and for a typical solid bulk 766 

modulus sK  = 1011 Pa, the characterstic time ( Ct , equation (15)) for a  is approximately 30 767 

years. A typical dimensionless duration, normalized by Ct , of a simulation is in the order of 768 

0.03 (Fig. 9), which corresponds to a natural duration of approximately 1 year. If the value of  769 

3

ak  = 10-24 m2, then the duration is in the order of one month. The applied value of 5  = 770 

0.0025 means that the characteristic kinetic time, or duration, should be at least one order of 771 

magnitude faster than the duration of the vein formation.   772 

In summary, the rescaled dimensional quantities suggest that if our model is 773 

approximating the natural process of shear-driven olivine vein formation, then the serpentinite 774 

should have been effectively impermeable and the shear deformation should have been fast, 775 

potentially related to aseismic slow slip events.   776 

 777 

5.3. Shear-driven high-porosity fluid bands without dehydration  778 

In our simulation with 
ap  = 14.5 kbar, in which no dehydration reaction ocurrs (Fig. 779 

6A to D), one might expect the formation of elongated regions with increased   due to a  780 

process similar to the process that forms localized melt bands during simple shearing of 781 
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partially molten rock (e.g. Holtzman et al., 2003; Katz et al., 2006; Spiegelman, 2003; 782 

Stevenson, 1989). However, in the simulation with 
ap  = 14.5 kbar no such bands with high   783 

formed (Fig. 6A to D). One reason might be that the characteristic time scale of fluid flow, Ct , 784 

is too short with respect to the duration of shearing, because the final dimensionless time of 785 

the simulation with 
ap  = 14.5 kbar is 0.176 (Fig. 6D). This means that Ct  is approximately a 786 

factor of 5 larger than the duration of the simulation. To test the impact of Ct , we performed 787 

the same simulation with 
ap  = 14.5 kbar, but now for a value of 

3

ak  that is 100 times larger, 788 

so that Ct  is 100 times shorter and the corresponding 1  is 10 times larger, namely 1  = 0.33 789 

(Fig. 15A to D). For such values of Ct  and 1 , the simulation shows indeed the formation of 790 

an elongated region with high   which is oriented parallel to the orientation of 1  (Fig. 15A 791 

to D). We also performed the simulation with an initially random perturbation (Fig. 11) for 792 

ap  = 14.5 kbar and for the same values of Ct  and 1  = 0.33 as for the simulation shown in 793 

figure 15A to D. This simulation also shows the formation of elongated regions of high  , 794 

oriented parallel to 1  (Fig. 15E to H). For both simulations shown in figure 15 the final 795 

dimensionless time is now > 1, indicating that Ct  is shorter than the duration of shearing so 796 

that significant fluid flow can occur during the shearing. The two simulations with 
ap  = 14.5 797 

kbar and 1  = 0.33 show that during shearing of serpentinite without reaction, that is during 798 

the formation of serpentinite mylonites, elongated high-porosity regions, with lower shear 799 

viscosity might have formed. The formation of such elongated high-porosity regions could 800 

have been one mechanism causing the formation of shear bands in the antigorite serpentinite 801 

which are frequently observed in the Erro Tobbio region. Once 
ap  will become close to the 802 

reaction pressure, due to continued burial, these high-porosity, low-viscosity fluid bands 803 
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might then have favored the generation of olivine veins, similar to our simulations with an 804 

oblique initial Gaussian   distribution.   805 

 806 

5.4. Simplifications 807 

The modelled process involves the coupling of a metamorphic reaction, porous fluid 808 

flow and rock deformation and, hence, the studied process and the applied HMC model are 809 

already quite complex. On the other hand, we needed to simplify each of the hydraulic, 810 

mechanical and chemical processes to develop the mathematical model. 811 

For the hydraulic process, we consider a standard Darcy flow model with a specific 812 

porosity dependent (cubic dependence using 3k ), isotropic permeabilty. This exponent of   813 

can also differ from 3 and values between 1 and 25 have been reported (e.g. David et al., 814 

1994). Furthermore, this exponent can also vary during a compaction process (e.g., Hommel 815 

et al., 2018), the porosity-permeability relations could be more complex (e.g. Costa, 2006; 816 

Hommel et al., 2018) and/or the porosity-permeability relation could also be spatially variable 817 

in the serpentinite. Therefore, there is considerable uncertainty concerning the natural 818 

porosity-permeability relation in the serpentnite, especially at 12.75 kbar and 500 °C ambient 819 

pressure and temperature, respectively.        820 

For the mechanical shearing process, we consider a flow law in which the shear 821 

viscosity is only a function of porosity. In a natural serpentinite with constant porosity, the 822 

relationship between deviatoric stress and strain rate could be nonlinear due to an effective 823 

shear viscosity that depends on the stress magnitude, the mineral grain size and the chemical 824 

composition. Such nonlinearity can be mathematically represented by a power-law 825 

relationship between deviatoric stress,  , and strain rate, D , of the form m D   (e.g. 826 

Montesi and Zuber, 2002). If 1m , then   increases insignificantly with increasing D . To 827 
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test the impact of such nonlinear stress-strain rate relationships, we have performed also 828 

simulations with a pressure-insensitive yield stress, in which stress remains constant for 829 

increasing strain rate and which represents a considerably nonlinear flow law for 1m . 830 

Concerning the effective shear viscosities: During olivine vein formation, s  changes 831 

continuously from s  for serpentinite to s  for olivine indicating a transient transformation 832 

from brucite to olivine (Fig. 9). Furthermore, in modelled regions with s  > 3000 kg/m3, 833 

values of   > 0.4 (Fig. 11). In nature, the fluid is likely distributed along mineral grain 834 

boundaries and we assume that a mixture of transforming brucite-olivine grains and fluid with 835 

  > 0.4 has a low effective shear viscosity. An individual, fully transformed olivine grain has 836 

a much larger shear viscosity and could potentially also deform in a frictional-plastic manner 837 

at 500 °C. Moreover, we apply a constant value of a  for the exponential s ‒  relationship 838 

(equation (10)) over the entire   range between 0.02 and ~0.6. However, a  could also vary 839 

with  , especially for higher values of   > ~0.2. 840 

For the chemical process, we consider, for simplicity, a fixed chemical composition 841 

for which forsterite + water results from dehydration of antigorite + brucite + a small amount 842 

of free water. We consider this small amount of free water simply to be able to apply the 843 

governing two-phase equations for solid-fluid mixtures in the entire model domain and to 844 

calculate thermodynamically the fluid density in the stability field of antigorite + brucite (Fig. 845 

3C). Natural chemical compositions, in for example the Erro-Tobbio unit, are more complex 846 

and feature a higher chemical variability as considered in our model. However, the main aim 847 

of our study is to investigate the fundamental coupling between dehydration reactions, fluid 848 

flow and rock deformation, justifying the use of a simplified MSH system. A more elaborated 849 

system would be the FMASH system which also considers aluminium, Al, and iron, Fe (e.g., 850 

Padrón-Navarta et al., 2013). One effect of the FMASH system, applied to our isothermal 851 
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model, would be that both brucite and olivine could be stable at the same pressure over a 852 

range of pressure, within a so-called divariant field (e.g., Padrón-Navarta et al., 2013). 853 

Consequently, the H2O liberation would not be controlled by a specific pressure, but would 854 

rather occur over a pressure interval. Such pressure interval is already considered in our 855 

model, because the modelled reaction does not occur sharply at one specific fluid pressure, 856 

but over an interval between 12.6 and 12.7 kbar. Considering a FMASH system would allow 857 

to constrain this pressure interval better. Furthermore, our model suggests that natural areas of 858 

serpentinite dehydration, consisting of olivine and water, are mechanically weak due to their 859 

high, up to 0.6, porosity and water content; as proposed by Hermann et al. (2000). After the 860 

formation of the dehydration veins, the water eventually escapes the dehydration region, so 861 

that finally only olivine is left in the veins.  862 

 863 

5.5. Potential applications to deep-seated slow slip and tremor 864 

The presented model could potentially be applied to investigate fluid-related processes 865 

causing episodic tremor and slow-slip events (ETS; e.g., Behr and Bürgmann, 2021; Peng & 866 

Gomberg 2010). Despite the lack of consensus on the inter-relationships between mineral 867 

dehydration, fluid flow, critical stress and ETS, the coincidence of the location of low-868 

frequency earthquakes to regions with high Vp/Vs ratios requires the consideration of fluid 869 

flow and mineral dehydration in these settings (e.g., Behr and Bürgmann 2021; Burlini et al. 870 

2009; Kato et al. 2010; Shelly et al. 2006; Van Avendonk et al., 2010). For example, Van 871 

Avendonk et al. (2010) infer a zone of very high Vp/Vs of 6 at the top of the subducting 872 

Cocos slab between 35 and 55 km depth, lying downdip of the seismogenic zone. They 873 

propose that these high Vp/Vs ratios are due to several-meter thick shear zones under high 874 

pore pressure and that the hydrous pore fluids were generated by prograde dehydration 875 

reactions. The 35 to 55 km depth range with inferred high Vp/Vs ratios corresponds to the 876 
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depth range and ambient pressure considered in our model. In addition, the correlation of 877 

rapid-tremor migration to pore-pressure waves suggests that this coincidence can be explained 878 

by the coupled processes of dehydration, fault weakening and tremor migration (e.g., Van 879 

Avendonk et al. 2010; Cruz-Atienz et al. 2018). Thus, the formation of fluid-filled veins, as 880 

modelled here, can be correlated to the transient weakening that is inferred in regions of 881 

mineral dehydration. Furthermore, the dehydration reaction, generating olivine-fluid bearing 882 

veins, and the subsequent fluid escape, leaving behind olivine-only veins, will cause a 883 

viscosity inversion: when significant fluid is present in the olivine bearing veins, then the 884 

effective viscosity of the olivine-fluid veins is smaller than the viscosity of the serpentinite; 885 

but once the fluid has escaped the veins the effective viscosity of the olivine-only veins is 886 

larger than the viscosity of the serpentinte. Such viscosity variation and inversion likely 887 

strongly impacts the spatial and temporal evolution of the stress in the serpentinites. We 888 

predict that, under the presence of a general anisotropic stress field, the vein formation will 889 

lead to an increase of the anisotropic effective viscosity of the subducted mantle rocks as a 890 

result of the different effective viscosities of serpentinite and olivine + fluid assemblages. 891 

When the fluid is completely drained from these veins, the anisotropy and viscosity contrast 892 

between olivine and serpentinite will be permanent. 893 

 894 

6. Conclusions 895 

We developed an isothermal 2D hydro-mechanical-chemical model to investigate the 896 

generation of dehydration veins in a ductily deforming serpentinite for the reaction antigorite 897 

+ brucite = forsterite + water. The model predicts shear-driven formation of dehydration veins 898 

and, hence, supports the hypothesis of shear-driven formation of metamorphic olivine veins in 899 

the antigorite serpentinites of the Erro Tobbio unit (Fig. 1).  900 
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The fluid and total pressures are initially homogeneous in the model and correspond to 901 

the serpentinite stability field. The applied model, hence, does not a priori prescribe that 902 

dehydration takes place. In contrast, the model is able to predict the self-consistent generation 903 

of fluid pressure perturbations during shearing of mechanically heterogeneous serpentinite, 904 

which trigger the dehydration reaction and cause the formation of olivine veins. The modelled 905 

veins consist of a weak forsterite-water mixture and grow in a direction parallel to the 906 

maximal principal stress which is controlled by the applied far-field simple shearing. The 907 

modelled growth of dehydration veins is not an unstable, or runaway, process, but a self-908 

limiting process because the fluid pressure perturbations that drive dehydration decrease 909 

during progressive shearing due to fluid flow. 910 

The applied initial porosity geometry and a pressure-insensitive yield strength, 911 

mimicking a strongly stress dependent effective viscosity, have a minor impact on olivine 912 

vein formation. In contrast, the applied ambient fluid pressure and the relationship between 913 

compaction length and porosity have a strong impact on olivine vein formation. For the 914 

applied model configuration, a shear viscosity with exponential dependence on porosity (i) 915 

provides a compaction length which first increases and subsequently decreases with 916 

increasing porosity and (ii) is most suitable for the formation of olivine veins.   917 

The rate of porosity production during dehydration is controlled by the rates of three 918 

mechanisms: the rate of solid volumetric change, the rate of solid density change and the rate 919 

of reactive mass transfer. All three mechanisms contribute in approximately equal parts to the 920 

porosity production during shearing.  921 

Olivine veins are observed in several high pressure serpentinites in the Western Alps 922 

and Liguria. The modelled veins have a similar orientation as natural en échelon olivine veins 923 

in serpentinite mylonite. The self-limiting feature of the modelled vein growth might also 924 

explain the natural observation of many smaller olivine veins and the absence of few large 925 
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olivine veins. Furthermore, the presented model can explain transient weakening and the 926 

generation of mechanical anisotropy during dehydration when the elongated, parallel and 927 

high-porosity veins consist of a fluid-olivine mixture. The eventual escape of the fluids will 928 

cause a viscosity and anisotropy inversion since olivine-only veins are stronger than 929 

serpentinite. Such transient weakening, anisotropy generation and viscosity inversion may be 930 

important processes during slow slip and tremor observed at subduction zones. Rescaling of 931 

the model results to natural conditions suggests that the serpentinite should have been 932 

effectively impermeable, with ambient permeabilities smaller than approximately 10-24 m2, 933 

during olivine vein formation and the shearing rate should have been in the order of 10-9 s-1, 934 

presumably during periods of slow slip.   935 
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Appendix  957 

A1. Numerical algorithm 958 

To determine the unknowns fp , p ,  , 
s

xv  and s

yv  we employ the iterative accelerated 959 

pseudo-transient (PT) method (Räss et al., 2022) using a finite difference discretization on a 960 

regular Cartesian staggered grid, described in Schmalholz et al. (2020). For example, equation 961 

(7) is used to solve for  . Therefore, a PT derivative of  , written as /PT PTt  , is added to 962 

the left-hand side of equation (7), which yields 963 

( ) ( )1 1
PT

s

X XPTt t


   

 
 = − + −     

v .                               (A1) 964 

Within a PT iteration loop the value of   is iteratively updated and the value of /PT PTt   965 

converges towards zero during the interations. The iterations are stopped once the value of 966 

/PT PTt   is smaller than a specified tolerance value. This tolerance value corresponds to 967 

the residual of the numerically solved PDE (see also Halter et al., 2022). The unknowns fp , 968 

p , 
s

xv  and s

yv  are determined with the same PT method within the same iteration loop. The 969 

system of PT equations is: 970 
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To discretize the physical time derivatives, such as /T t  , we employ a “physical” time 972 

step, t . The applied values of t  and of the pseudo-transient (PT), PTt , time steps are 973 

typically: 974 
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      (A3) 975 

where x  and y  are horizontal and vertical numerical grid spacing, respectively, and the 976 

values of the factors pfC , 
vC  and pC  can vary for different simulations, mainly to reduce the 977 

number of required PT iteration loops. More information concerning the choice of such PT 978 

time steps can be found in Räss et al. (2022) and Wang et al. (2022). Upon convergence, these 979 

iterations provide results which are equivalent to results of a numerical-implicit method, since 980 

the gradients of the numerical variables are updated in each iteration. 981 

For reasons of numerical efficiency, we approximate the thermodynamic relations of 982 

the densities and mass fractions with the fluid pressure, obtained with Gibbs free-energy 983 

minimization, with analytical functions (Fig. 3C and D):  984 
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 (A4) 985 

where Rp  is the reaction pressure, here 12.65 kbar. We use the functions above in the 986 

numerical algorithm to calculate densities and mass fraction from the current fluid pressure. 987 

We provide a general overview, in the form of a simple flowchart, of the structure of the 988 

numerical algorithm and the order of the governing equations in which they are solved in 989 

figure A1. 990 

 991 

A2. Numerical resolution and accuracy test 992 

We present here the results of a numerical resolution and accuracy test. Such tests are 993 

essential to determine whether the evolution of the dehydrating region is independent of (1) 994 

the employed numerical resolution and (2) the applied tolerance to exit the PT iteration loop. 995 

We performed the simulation shown in figure 7E to H with the following different numerical 996 

resolutions: 500×500, 700×700 and 900×900 grid points (Fig. A2). For a dimensionless 997 

model time of 0.036, the ratio of the maximum porosity in the model domain divided by the 998 

maximum porosity for a simulation with 900 × 900 grid points is plotted versus the 999 

corresponding resolution for simulations with different resolution (Fig. A2A). Similar ratios 1000 

are plotted for the minimum fluid pressure in the model domain and the average value of the 1001 

fluid velocity. The higher the resolution, the less the three ratios vary, indicating the 1002 

convergence of the numerical results upon increasing numerical resolution. The evolution of 1003 

the minimum fluid pressure in the model domain with time is shown for different numerical 1004 
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resolutions (Fig. A2B). With larger numerical resolution, the temporal evolution of the 1005 

minimum fluid pressure varies less, indicating again the convergence of the numerical results 1006 

for increasing numerical resolution. Finally, the spatial distribution of fp  at a dimensionless 1007 

time of 0.036 is displayed for the three different resolutions (Fig. A2C to E). For numerical 1008 

resolutions of 500×500, 700×700 and 900×900 the contours of fp  are smooth and the 1009 

colormaps of fp  are very similar (Fig. A2C to E). The numerical resolution test shows that 1010 

the applied numerical model provides results which converge for increasing numerical 1011 

resolution and are, hence, not dependent on the numerical resolution. For the presented 1012 

numerical simulations, a numerical resolution of 900×900 was applied.     1013 

We present also a test for the numerical accuracy of the applied iterative PT solver. If 1014 

the partial differential equations are solved correctly, then the left hand sides of equations 1015 

(A2) are zero. However, since these equations are solved with numerical approximations, the 1016 

value of the left hand side of the numerical form of equations (A2) is not exactly equal to 1017 

zero. The deviation from zero is typically called a residual. During the iterative solution, 1018 

iterations are performed until all residuals at all numerical grid points for all equations 1019 

decrease below a certain tolerance value. We calculated the first time step for a the simulation 1020 

shown in figure 7E to H for different values of the tolerance (Fig. A3). We choose three 1021 

representative quantities to test their change with a change of the tolerance. These quantities 1022 

are the minimum fluid pressure in the model domain, the maximal total pressure in the model 1023 

domain and the maximal value of the second invariant of the deviatric stress tensor (Fig. A3). 1024 

All three quantities stop changing once the tolerance decreases below a value of 10-6. The 1025 

results presented in figure A3 show the convergence of the results with decreasing tolerance. 1026 

A tolerance of 10-6 was applied in the presented simulations.  1027 
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Figures with captions 1306 

 1307 

Figure 1. Natural examples of metamorphic olivine veins in antigorite serpentinite from the 1308 

Erro Tobbio ultramafic rocks, Ligurian Alps, Italy. A) Overview on the limited spatial extent 1309 

of olivine bearing veins (with darker color) in weakly deformed serpentinized peridotite. Coin 1310 

diameter is 2.4 cm. B) Olivine veins with characteristic spacing and aspect ratios in 1311 

serpentinised peridotite. Detail of picture in A). C) olivine-bearing veins in a serpentinised 1312 

peridotite, foliation is sub vertical, extent of veins is ca. 20 cm. D) Serpentinite mylonite with 1313 

different generations of olivine veins. An earlier set is subparallel to the foliation, younger 1314 

shear bands dissect serpentinite mylonite and olivine veins. Top-to-the-left shear sense. Note 1315 

the late stage serpentine veins perpendicular to the foliation. E) and F) En échelon olivine 1316 

veins in antigorite serpentinite. Coordinates: A) and B) at 44.56081°N, 8.81376°E; C) at 1317 

44.57147°N, 8.80825°E; D) at 44.56958°N, 8.80814°E; E) and F) at 44.57140°N, 8.80784°E. 1318 
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 1319 

 1320 

 1321 

Figure 2. Simple sketches illustrating the geodynamic setting (A) and the hypothesis for 1322 

shear-driven dehydration and olivine vein formation in viscous serpentinite (B to D; see text 1323 

for details). E) Simplified phase diagram showing the Brucite-out and Antigorite-out 1324 

reactions, two common subduction geotherms (in °C/km), the likely region of olivine vein 1325 

formation (green dashed ellipse) and typical minerals. The phase diagram is strongly 1326 

simplified for a MSH system after figure 6 in Padrón-Navarta et al. (2013). Mineral 1327 

abbreviations: Atg = antigorite, Br = brucite, Ol = olivine, Opx = orthopyroxene and Tlc = 1328 

talc.     1329 

  1330 
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 1331 

 1332 

Figure 3. Thermodynamic results obtained from Gibbs’ free energy minimization for the 1333 

system antigorite + brucite = forsterite + water (see text for exact chemical formulas). Density 1334 

fields of solid (A) and fluid (B) in thermodynamic pressure, P , and temperature, T , space. 1335 

Corresponding profiles of solid and fluid densities (C) and mass fraction of MgO (D) as a 1336 

function of fluid pressure at 500 °C. The circles in the three profiles in panels C) and D) are 1337 

the results from Gibbs energy minimization and the corresponding solid lines are analytical 1338 

approximations of these profiles, which are used in the numerical algorithm (see Appendix).  1339 

 1340 
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 1341 

Figure 4. Sketch of the model configuration and the applied far-field simple shear (bottom 1342 

sketch; see text for details). The intitial distribution of the porosity is described by a 2D 1343 

Gaussian distribution, having an initial horizontal bandwidth of 2 r  (graph in left middle of 1344 

the sketch) and a vertical bandwidth of 4 r . The width and height of the model is 40 r  and the 1345 

applied far-field shearing rate is xyD . The orientation of the maximal and minimal principal 1346 

stresses, 1  and 
3  respectively, associated to the far-field simple shearing are indicated in 1347 

the bottom right.  1348 

 1349 
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 1350 

Figure 5. The relations between normalized compaction length, / r , and porosity,  , 1351 

applied in the simulations. A) Curves of / r  versus   for shear viscosities, s , that are an 1352 

exponential function of  . The parameter a  is always 1/2.5, except for one curve with a  = 1353 

1/1.65 (see equation (10)). B) Curves of / r  versus   for s  that are a power-law function 1354 

of  . The applied power-law exponents, n , are indicated in the legend (see equation (11)). C) 1355 

Applied values of s , normalized by the shear viscosity for the ambient porosity, sa , versus 1356 

 . Diamonds and circles indicate representative experimental data for the shear viscosities of 1357 

partially molten rocks (data taken from the compilation in Katz et al., 2022, their figure 2b, 1358 

with original references given in the legend).    1359 
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 1360 

 1361 

Figure 6. Color plots showing the evolution of fluid pressure, fp , with progressive simple 1362 

shearing for three values of the ambient pressure, 
ap . Time displayed in panels is 1363 

dimensionless and normalized by Ct  for the ambient porosity (eqn. (15)). Panels A) to D) 1364 

show results for 
ap  of 14.5 kbar, E) to H) for 

ap  of 13.5 kbar and I) to L) for 
ap  of 12.75 1365 

kbar. Red contours indicate porosity,  , and black contours fp  (contour labels given in panel 1366 

I). For better comparison, the color scale is the same for all panels. Applied parameters in the 1367 

simulations: 
1 0.033 = , 2 0.11 = , 3 40 = , 

4 2 =  and 
5 0.0025 = . 1368 
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 1370 

Figure 7. Color plots showing the evolution of solid density, s , with progressive simple 1371 

shearing for three values of 1  and for a shear viscosity with exponential dependence on 1372 

porosity (Fig. 5A). Time displayed in panels is dimensionless and normalized by Ct  for the 1373 

ambient porosity (eqn. (15)). Ambient pressure is always 12.75 kbar. Panels A) to D) show 1374 

results for 
1 0.0082 = , E) to H) for 

1 0.033 =  and I) to L) for 1 0.16 = (see Fig. 5A). Red 1375 

contours indicate porosity,  , of 0.15 and black contours indicate fluid pressure, fp , at 12.7 1376 

kbar (contour labels given in panel E). Applied parameters in the simulations: 2 0.11 = , 1377 

3 40 = , 
4 2 =  and 

5 0.0025 = . 1378 
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 1380 

Figure 8. Color plots showing the evolution of solid density, s , with progressive simple 1381 

shearing for a shear viscosity with power-law dependence on porosity (Fig. 5B). The three 1382 

/ r  versus   relations displayed in figure 5B are applied in the displayed three simulations. 1383 

Time displayed in panels is dimensionless and normalized by Ct  for the ambient porosity 1384 

(eqn. (15)). Ambient pressure is always 12.75 kbar. Panels A) to D) show results for 4n = , E) 1385 

to H) for 3n =  and I) to L) for 2n =  (see Fig. 5B). Red contours indicate porosity,  , of 0.05 1386 

and black contours indicate fluid pressure, fp , at 12.7 kbar (contour labels given in panel E). 1387 

Applied parameters in the simulations: 2 0.11 = , 3 40 = , 
4 2 =  and 

5 0.0025 = .  1388 
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 1390 

Figure 9. Time evolution of maximum solid density (A and D), minimum fluid pressure (B 1391 

and E), and maximum relative porosity increase (C and F). The porosity ratio is the ratio of 1392 

the current to the initial porosity at a numerical grid point and the maximal porosity ratio 1393 

displays the maximal value for each numerical time step. Time displayed in panels is 1394 

dimensionless and normalized by Ct  for the ambient porosity (eqn. (15)). A) to C) shows 1395 

results for simulations with the / r  versus   relations displayed in figure 5A and D) to F) 1396 

shows results for simulations with the / r  versus   relations displayed in figure 5B. Legend 1397 

in C) applies also to panels A) and B) nd legend in F) applies also to panels D) and E).    1398 
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 1400 

Figure 10. Color plots showing the evolution of solid density, s , with progressive simple 1401 

shearing for three simulations for a shear viscosity with exponential dependence on porosity 1402 

(Fig. 5A). A) to D) shows the simulation displayed in figure 7E to H but with a yield stress of 1403 

100 MPa. E) to H) shows a simulation for an initial distribution of porosity with a vertical 1404 

long axis of the Gaussian distribution (see vertical blue dashed line in Fig. 4). The parameter 1405 

a  = 1/1.65 (see Fig. 5A and C). I) to L) shows the simulation displayed in E) to H) with an 1406 

applied yield stress of 125 MPa. Time displayed in panels is dimensionless and normalized by 1407 

Ct  for the ambient porosity (eqn. (15)).  1408 
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 1409 

 1410 

Figure 11. Results for a simulation with an initial random porosity distribution and a yield 1411 

stress of 100 MPa. A) to D) shows time evolution of solid density, E) to H) of porosity and I) 1412 

to L) of the square root of the second invariant of the deviatoric stress tensor, 1413 

( )2 2 20.5II xx yy xy   = + + . Time displayed in panels is dimensionless and normalized by Ct  1414 

for the ambient porosity (eqn. (15)). Exponential porosity dependence of shear viscosity with 1415 

a  = 1/2.5 (Fig. 5C). Applied parameters in the simulations: 
1 0.036 = , 

2 0.39 = , 
4 2 =  1416 

and 
5 0.0025 = . 1417 
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 1419 

 1420 

Figure 12. Evolution of a dehydration vein for the simulation shown in figure 7E to H. Time 1421 

displayed in panels is dimensionless and normalized by Ct  for the ambient porosity (eqn. (15)1422 

). The colormaps show the dimensionless divergence of the solid velocity, the blue arrows 1423 

show the fluid velocity field and the black arrows show the solid velocity field. The red 1424 

contour indicates fluid pressure, fp = 12.7 kbar, whereby values of fp  are always smaller 1425 

inside the contour. The blue contour indicates porosity,   = 0.12, whereby values of   are 1426 

always larger inside the contour. The dashed grey contour indicates solid density s  = 2700 1427 

kg/m3, whereby values of s  are always larger inside the contour. There are no solid density 1428 

contours in panel A) because all densities are < 2700 kg/m3.  1429 
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 1430 

 1431 

Figure 13. The three mechanisms that control the temporal porosity variation (see equation 1432 

(19)) for the simulation shown in figure 7E to H at a dimensionless time of 0.008. Panel A) 1433 

shows the colormap of the quantity displayed in the legend for A, which represents the 1434 

porosity rate, B) shows the colormap of the quantity displayed in the legend for B, C) shows 1435 

the colormap of the quantity displayed in the legend for C, which represents the rate of solid 1436 

volumetric deformation, D) shows the colormap of the quantity displayed in the legend for D, 1437 

which represents the rate of solid density variation, and E) shows the colormap of the quantity 1438 

displayed in the legend for E, which represents the rate of mass transfer. All displayed terms 1439 

represent dimensionless rates which are normalized by Ct  for the ambient porosity (eqn. (15)). 1440 

Symbols are explained in Table 1. 1441 

  1442 
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 1444 

Figure 14. Time evolution of the maximum (per each time step) values of the rate of solid 1445 

volume change (quantity labelled C in Fig. 13), rate of solid density change (quantity labelled 1446 

D in Fig. 13) and rate of mass transfer (quantity labelled E in Fig. 13). Time is dimensionless 1447 

and normalized by Ct  for the ambient porosity (eqn. (15)). The vertical dashed line indicates 1448 

the time for which results are displayed in figure 13.   1449 

 1450 

  1451 
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 1452 

 1453 

Figure 15. Colorplots of porosity,  ,  show the formation of localized, high-porosity fluid 1454 

bands without dehydration reaction. In all panels, time is dimensionless and normalized by Ct1455 

, blue contours indicate   = 0.15 and white contours indicate small viscosities for /s sa   = 1456 

1/40. A) to D) shows colorplots of   for the simulation presented in figure 6A to D, but with 1457 

1  = 0.33. Red arrowas indicate fluid velocity. E) to H) shows the simulation shown in figure 1458 

11, but for 
ap  = 14.5 kbar and 1  = 0.33. The total area within white contour lines is 1459 

increasing, indicating and effective weakening of the model domain due to the increase in 1460 

areas with /s sa   < 1/40. Regions with high   become elongated and parallel to the 1461 

orientation of 1  (see Fig. 4). 1462 
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 1464 

 1465 

Figure A1. Simplifed flow chart of the applied numerical algorithm and the order of the 1466 

governing equations in which they are solved inside the pseudo-transient (PT) iteration loop. 1467 

The PT iteration loop calculates the unknowns and simultaneously treats the various 1468 

nonlinearites, such as porosity-dependent shear viscosity and permeability, while the time 1469 

loop calculates the evolution of the unknows with time. Parameters are explained in Table 1.   1470 
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 1473 

Figure A2. Numerical resolution test for the simulation shown in figure 7E to H . A) For a 1474 

dimensionless model time of 1.21, the ratio of the maximum porosity in the model domain 1475 

divided by the maximum porosity for a simulation with a resolution of 900 × 900 grid points 1476 

is plotted versus the corresponding resolution for simulations with different resolution. 1477 

Similar ratios are plotted for the minimum fluid pressure in the model domain and the mean 1478 

value of the fluid velocity. The larger the resolution, the less the three ratios vary. B) 1479 

Evolution of minimum fluid pressure in the model domain with time for different numerical 1480 

resolutions (see legend). With larger resolution, the evolution of fluid pressure varies less. C) 1481 

to D) At a dimensionless model time of 0.036, the colormap of the fluid pressure is displayed 1482 

for three different resolutions (see numbers in panel titles). Two contour lines of fluid 1483 

pressure are displayed for better comparability. A resolution of 900×900 was applied in the 1484 

simulations presented in the main text. 1485 
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 1487 

Figure A3. Numerical accuracy test for the simulation shown in figure 7E to H after the first 1488 

numerical time step. A) The minimum value of the fluid pressure in the model domain versus 1489 

the applied tolerance of the iterative Pseudo-Transient solver. B) Maximum value of total 1490 

pressure versus tolerance. C) Maximum value of second invariant of deviatorc stress tensor 1491 

versus tolerance. Once the tolerance is smaller than 10-6 the three numerical values do not 1492 

change anymore. A tolerance of 10-6 was used in the presented simulations.  1493 
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Table 1. Model variables and parameters. 1496 

Symbol Name / Definition Units 

ct  Characterstic time  s  

kint  Kinetic time   s  

  Compaction length  m  

fp  Fluid pressure  Pa  

p  Total pressure  Pa  

ap   Ambient pressure  Pa  

  Porosity    

0,a   Ambient, initial porosity    

s  Solid density 3kg m−    

f  Fluid density 3kg m−    

sX  Mass fraction MgO    

  Mass transfer rate 3 1kg m s− −     

s

xv , s

yv  Solid velocities 1m s−    

f

xv , f

yv  Fluid velocities 1m s−    

xx , yy , xy  Deviatoric stresses  Pa  

II  Deviatoric stress invariant  Pa  

k  Permeability 2m    

f  Fluid viscosity  Pa s  

s  Shear viscosity solid  Pa s  

  Bulk viscosity solid  Pa s  

sK   Bulk modulus solid  Pa  

dK   Bulk modulus drained  Pa  

xyD   Far-field shearing rate 1s−     

r   Bandwidth of Gaussian  m  

w   Model width  m  

1,2,3,4,5  Dimensionless ratios    
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