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Abstract

The accuracy of initial conditions is an important driver of the forecast skill of numerical weather prediction models. Increases in

the quantity of available measurements, in particular high-resolution remote sensing observational data products from satellites,

are valuable inputs for improving those initial condition estimates. However, the data assimilation methods used for integrating

observations into forecast models are computationally expensive. This makes incorporating dense observations into operational

forecast systems challenging, and it is often prohibitively time-consuming. As a result, large quantities of data are discarded

and not used for state initialization. We demonstrate, using the Lorenz-96 system for testing, that a simple machine learning

method can be trained to assimilate high-resolution data. Using it to do so improves both initial conditions and forecast

accuracy. Compared to using the Ensemble Kalman Filter with high-resolution observations ignored, our augmented method

has an average root-mean-squared error reduced by 15%. Ensemble forecasts using initial conditions generated by the augmented

method are more accurate and reliable at up to 10 days of forecast lead time.
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Key Points:6

• Machine learning augmented data assimilation of high-resolution observations im-7

proves the analysis in a nonlinear dynamical model.8

• Explainable Artificial Intelligence identifies system covariances to guide neural net-9

work training for analysis state reproduction.10

• Short-term forecasts from the analysis generated by the machine learning augmented11

data assimilation are more accurate and more reliable.12
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Abstract13

The accuracy of initial conditions is an important driver of the forecast skill of numerical14

weather prediction models. Increases in the quantity of available measurements, in particu-15

lar high-resolution remote sensing observational data products from satellites, are valuable16

inputs for improving those initial condition estimates. However, the data assimilation meth-17

ods used for integrating observations into forecast models are computationally expensive.18

This makes incorporating dense observations into operational forecast systems challenging,19

and it is often prohibitively time-consuming. As a result, large quantities of data are dis-20

carded and not used for state initialization. We demonstrate, using the Lorenz-96 system for21

testing, that a simple machine learning method can be trained to assimilate high-resolution22

data. Using it to do so improves both initial conditions and forecast accuracy. Compared to23

using the Ensemble Kalman Filter with high-resolution observations ignored, our augmented24

method has an average root-mean-squared error reduced by 15%. Ensemble forecasts using25

initial conditions generated by the augmented method are more accurate and reliable at up26

to 10 days of forecast lead time.27

Plain Language Summary28

Weather forecasts are highly sensitive to the estimate of the current state of the atmo-29

sphere, known as initial conditions. The atmosphere is chaotic, meaning that small errors in30

this estimate can grow quickly as the forecast model predicts events further into the future.31

The satellite era has contributed to large improvements in weather forecasts by providing32

additional data that allow for more accurate estimates of initial conditions. However, cur-33

rent methods for generating initial conditions are computationally time-consuming, and as34

a result, large fractions of available measurements are not used for this purpose. In a proof-35

of-concept study using a simplified representation of the atmosphere for testing, we train36

a machine learning method to replicate the results of a traditional method. Once trained,37

machine learning models are usually very fast. Applying the trained model exclusively to38

measurements that would otherwise be too time-consuming to use produces better initial39

conditions and more accurate forecasts.40

1 Introduction41

The accuracy of operational weather forecast models is highly dependent on the quality42

of the initial conditions provided to the model (Bauer et al., 2015). To correct drift and43

maintain the robustness of forecasts, model initial conditions are regularly updated based44

on measurements (Bannister, 2017; Edwards et al., 2015). These measurements include45

both in-situ data, such as weather station measurements, and remotely sensed data (Zhang46

& Tian, 2021; Choi et al., 2017). Observations are noisy and may not be aligned with the47

model grid or state variables; the task of identifying optimal initial conditions consistent48

with all available information is therefore challenging and computationally expensive. Data49

assimilation (DA) methods are employed to do this. With the proliferation of high-resolution50

datasets, often at resolutions higher than that of the forecast models, otherwise useful data is51

regularly ignored and not assimilated into operational models due to time or computational52

constraints (Eyre et al., 2022; Kumar et al., 2022). Assimilation of a subset of available53

satellite data has improved forecasts, making it likely that leveraging currently unused data54

could generate further improvements (Eyre et al., 2022).55

DA techniques can be generally categorized as variational methods or sequential meth-56

ods (Bannister, 2017; Edwards et al., 2015). Variational methods use numerical optimiza-57

tion, finding the initial condition that minimizes an error metric or cost function. Sequential58

methods nowadays are some variant of the Ensemble Kalman Filter (EnKF), in which a set59

of model realizations are simulated to quantify covariance structures before assimilating60

observations (Evensen, 2003; Hoteit et al., 2018). Both methods require running multiple61

simulations of the full forecast model, a step that is computationally expensive and time-62
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consuming. To capture the information of a high-resolution measurement, the model itself63

must at least match the resolution of the measurement – further increasing the cost of this64

step as model run time scales with resolution. In addition to the necessity of using a higher65

resolution model (run multiple times), the physics of smaller scale dynamics create more66

complex correlation structures, and a larger ensemble size is required to actually improve67

the forecast (Miyoshi et al., 2015).68

An additional cost associated with assimilating high-resolution observations is the ob-69

servation operator. Both variational and sequential methods assess the error of a model70

forecast for a given initial condition in observation space. This requires, for each obser-71

vation, explicitly mapping between forecast model space and observation space. For some72

observations, this is straightforward. For others, particularly for remotely sensed data such73

as high-resolution satellite measurements, this calculation itself is a physics-based model74

that can be a computational bottleneck (Eyre et al., 2022). In some operational models,75

the trade-off between the speed and accuracy of these observation operators is already an76

important avenue of research for improving the performance of their DA systems even before77

currently unusable high-resolution data is considered (Shahabadi & Buehner, 2021). The78

observation operator calculation must be performed for each data point and so also scales79

with the number of discrete observations, again increasing its cost.80

When possible, assimilation of these remotely sensed observations can and has improved81

forecasts, especially since in-situ observations of large portions of the atmosphere and surface82

are sparse (Bannister, 2017). Efforts to incorporate satellite and other remotely sensed83

observations into assimilation systems have been effective at improving model initialization84

and forecast accuracy (Shahabadi & Buehner, 2021). However, as a result of the expense85

associated with assimilation much of the potential of these high-resolution measurements for86

improving state initialization in forecast models has not been realized. Currently employed87

DA methods are simply not efficient enough to sufficiently quickly ingest this data to be88

useful in an operational setting. Machine Learning (ML) methods may provide a potential89

solution.90

ML techniques have been increasingly used in earth science applications, including91

DA (Sonnewald et al., 2021; Abarbanel et al., 2018; Bonavita et al., 2021; Penny et al.,92

2022). They are appealing for this particular problem mostly due to their speed. While93

the training process is often expensive, once trained ML methods are very fast compared94

to weather forecast models. Since many of the bottlenecks in traditional DA methods are95

related to computational efficiency, as described above, much of the effort in employing96

ML to improve DA has been targeted at the most computationally expensive parts of the97

process.98

One obvious place to look is at the model simulations themselves. Attempts to use deep99

learning, in which neural networks comprised of many layers are used to capture complex100

structures, have proven successful. The basic approach is to train the ML model on the101

output of a traditional physics-based model (Kim et al., 2019; Pathak et al., 2017). The102

result is more computationally efficient but at the cost of accuracy. In the context of DA, it103

has been demonstrated that model surrogates can be successfully trained iteratively using104

DA state estimates (Brajard et al., 2020; Gottwald & Reich, 2021).105

Extending this approach beyond demonstrating that ML can capture the dynamics106

of complex and chaotic systems, augmented approaches that use model surrogates only to107

represent scales unresolved by the physical model (Brajard et al., 2021) have shown that108

the integration of ML as a model surrogate can generate improvements over traditional109

DA methods. Other work has demonstrated the utility of using ML model surrogates to110

increase the ensemble size beyond what would be otherwise practical (Yang & Grooms,111

2021; Wu et al., 2021). Related to the issue of unresolved scale and model resolution, ML112

has been employed to successfully generate parameterizations used to capture unresolved113
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physics, making the generation of the tangent linear models needed in many variational DA114

methods more efficient (Hatfield et al., 2021).115

The observation operator, which can be another computational bottleneck, has also116

been targeted using ML (Jung et al., 2010; J. Liang et al., 2023; Wang et al., 2022; Geer,117

2021; X. Liang et al., 2022; Stegmann et al., 2022). Other efforts have used ML methods to118

identify regions of tropical cyclone activity to target high-resolution modeling in a subdo-119

main (Lee et al., 2019), to perform bias correction of model forecasts before they are fed into120

the assimilation algorithm (Arcucci et al., 2021; Chen et al., 2022), and apply time-varying121

localization to the covariance structure of the system (Lacerda et al., 2021).122

In contrast, relatively limited efforts have been directed toward using ML to perform123

the assimilation step directly. Rather than using ML to replace pieces of the DA process,124

we propose an augmented DA method in which a ML model is trained offline to assimilate125

high-resolution measurements. Convolutional neural networks (CNN) are particularly good126

candidates for assimilating spatial data and learning the spatial correlation structure of the127

system of interest, as their design and main demonstrated use cases rely on their ability to128

identify spatial patterns (Dong et al., 2021; Mallat, 2016).129

In a real-world scenario, computational resource bottlenecks require some high-resolution130

observations to be either thinned before being assimilated or discarded entirely. As a proof-131

of-concept demonstration for our proposed method, we use a synthetic system with observa-132

tions available at regular time intervals. The observations are alternatively high-resolution133

or low-resolution. Low-resolution observations are always assimilated using the EnKF, and134

in the augmented method, high-resolution observations are assimilated using the trained135

CNN.136

This study will explore these two hypotheses:137

1. A shallow CNN can be successfully trained to reproduce the analysis of the EnKF138

offline139

2. When used online to assimilate otherwise ignored high-resolution data, with the tradi-140

tional EnKF used for low-resolution data, assimilation performance will be improved141

with the chaotic Lorenz-96 model as the test system. Yet the relevance is broader with142

applications in weather and climate predictions. Section 2 describes the Lorenz-96 modeling143

system, the machine learning augmentation of EnKF framework and the explainable AI144

methodology. Section 3 presents the results from the experiments and analyses performed.145

Section 4 summarizes the results and discussion and section 5 concludes.146

2 Methods147

2.1 Lorenz-96 System148

The Lorenz-96 system is described by a set of N discrete differential equations, designed149

to mimic some behaviors of the atmosphere (Lorenz, 2005). It is commonly used for testing150

data assimilation methods. It is defined as a 1-D analog of an atmospheric state variable at151

discrete points evenly spaced in the zonal direction, with its dynamics governed by:152

dxi

dt
= (xi+1 − xi−2)xi−2 − xi + F (1)

for i ∈[1,N] and F a constant forcing term. The system is cyclically symmetric with gird153

point i = N + 1 equal to grid point i = 1. We use F = 8, a value for which the system is154

known to be chaotic, and N = 40, a typical value for testing DA methods.155

To generate a reference trajectory for our experiments, we numerically integrated Equa-156

tion 1 forward. A 5th order Runge-Kutta method was used, with a variable time step to157
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control error assuming 4th-order accuracy (Dormand & Prince, 1980), as implemented in158

the SciPy package (Virtanen et al., 2020). The maximum allowable relative error was set159

to 0.001 and the maximum allowable absolute error to 10−6. The system is in an unstable160

equilibrium when all variables are equal to F ; initial conditions were set by perturbing one161

of the variables to a value of 8.01. The system was integrated out to t = 2000 and output162

was generated at time intervals of ∆t = 0.05 generating data for a 40 variable vector at163

40,000 time steps, or 800,000 data points representing the true time evolution of the system.164

Synthetic observations were generated by adding normally distributed random noise with165

a standard deviation equal to 30% of the standard deviation of the reference state. This166

level of observation noise is consistent with other work done using the Lorenz-96 system for167

testing DA methods. (Hatfield et al., 2018; Brajard et al., 2020; Hoteit et al., 2008).168

2.2 The Ensemble Kalman Filter169

Data assimilation is used to combine model forecasts and observations and solves the170

filtering problem. Formally, the filtering problem is to generate a minimum-variance esti-171

mate of a state vector, x⃗, conditional on a noisy forecast and a noisy observation. The state172

vector evolves in time with model dynamics represented by a forward operator M . The time173

evolution of the system is defined iteratively; the system states at times ti and ti+1, x⃗i and174

x⃗i+1 are related via:175

M(x⃗i) = x⃗i+1 + µ⃗ (2)

where µ is the assumed model forecast error. Observations yi at time ti are related to the176

state vector via an observation operator, H:177

yi = H(x⃗i) + ν⃗ (3)

where ν is the assumed observation error.178

The solution to the filtering problem is referred to as the analysis. When forecast and179

observation errors are unbiased, normally distributed, and independent, and the forecast180

model and observation operator are both linear, the Kalman filter (KF) provides the closed-181

form optimal solution of the filtering problem(Kalman, 1960).182

In earth system applications, the system’s time evolution and thus the forecast models183

are often non-linear. The Ensemble Kalman filter (EnKF) is an extension of the KF that184

accommodates nonlinear models at the cost of being an approximate, rather than exact,185

solution to the filtering problem by using an ensemble of model forecasts (Evensen, 2003).186

The EnKF analysis equation is:187

Xa = Xf + CHT (HCHT +R)−1(Y −HXf ). (4)

Here, Xa is a matrix whose column vectors are analysis ensemble members. Xf is188

a matrix whose column vectors are individual forecasts. C is the sample covariance of189

the ensemble forecast, Xf , used as an approximate representation of the true covariance/190

R is the observation error covariance matrix, and Y is a matrix whose columns are the191

observation vector yi. To ensure that the covariance does not systematically underrepresent192

the true error, random Gaussian noise with covariance R is added to the observation matrix193

Y (Evensen, 2003).194

The EnKF assumes normality for the forecast and observation errors, µ⃗ and ν⃗, although195

has been demonstrated to be somewhat robust to non-Gaussian distributions (Reichle et al.,196

2002). Also relevant for earth system models in which the state space is very large, the EnKF197

can be effective even when the number of ensemble members is much smaller than the size198

of the state space. This is in contrast to more exact methods such as particle filters, which199
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Run Name Observation Error StDev (fraction) Ensemble Size Inflation Factor Localization Distance

Base 0.3 100 1 5
s1 0.4 100 1 5
s2 0.2 100 1 5
s3 0.3 33 1 5
s4 0.3 1000 1 5
s5 0.3 100 1.01 5
s6 0.3 100 1.05 5
s7 0.3 100 1.1 5
s8 0.3 100 1 3
s9 0.3 100 1 7

Table 1. Sensitivity settings for the EnKF runs. Observation error is presented as observation

noise standard deviation as a fraction of total system standard deviation.

often exhibit stability problems in such situations (Farchi & Bocquet, 2018; Hoteit et al.,200

2008).201

The EnKF is known to be vulnerable to issues associated with the fact that it approx-202

imates a PDF with samples represented by a finite number of ensemble members. These203

issues include spurious correlations as well as a covariance collapse, in which the ensemble204

becomes sharply clustered at a point in state space far away from the true state. To address205

this localization is often used, a technique that has been shown to improve performance206

by reducing the impact of spurious correlations of the system state at distant grid points207

(Evensen, 2003). For this application we used a step function to localize the covariance,208

setting any covariance between variables greater than five grid points apart equal to zero.209

Covariance inflation, in which all covariance values are multiplied by a factor greater210

than 1 before computing equation 4, is another technique used for improving the stability211

and performance of the EnKF. Our base settings did not include covariance inflation as our212

initial experiments did not show significant improvements employing it. Both approaches213

can improve performance in some circumstances by preventing covariance collapse (Evensen,214

2003). However, since both address issues created by the finite size of the ensemble, they215

become less necessary with larger ensemble sizes and must be tuned (Miyoshi et al., 2015).216

As such they are appropriate parameters to vary in our sensitivity analysis in order to217

identify optimal values.218

We use the EnKF here for two purposes: to generate training data for a CNN and219

as a benchmark to evaluate the performance of our augmented method. After assimilating220

the synthetic observations with the EnKF using settings described above, at all 40,000221

time steps, the following data are available: the true model state, the model forecast, the222

synthetic observation, and the EnKF analysis. Other combinations of settings were also223

used to assess sensitivity. These are outlined in Table 1. Observation error is specified as224

the standard deviation of the added noise used to generate the synthetic observations, as a225

fraction of the system standard deviation.226

2.3 CNN Architecture and Training227

The machine learning model consists of a convolutional neural network with two hidden228

layers. Its architecture is shown in Figure 1. The input layer has two channels: the model229

ensemble forecast mean and the difference between the forecast mean and the observation230

(the innovation). A CNN is defined by the following parameters for each layer: the filter size,231

the number of feature maps, and the activation function (Alzubaidi et al., 2021). We use a232

filter size of 3 for all convolutions. The weights of each convolutional filter are independent of233

space and are applied uniformly across the domain. 5 feature maps are used in both hidden234
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layers, with each feature map assigned different filter weights and a constant bias weight.235

The ReLu activation function is used for both hidden layers and no activation function is236

applied to the output, which is then a linear weighted sum of the activation values in the237

second hidden layer.238

Output from a convolution has a smaller dimension than its input, since locations on239

the edge of the domain don’t have a neighboring point on one side. In image recognition240

and other similar tasks, zero-padding is used to address this issue by artificially adding241

zeros to the input on the edges of the domain. Here, with a cyclically symmetric system,242

zero-padding is not an appropriate solution. Instead, we implemented cyclic padding such243

that the neighboring spatial nodes for i = 1 are i = N and i = 2. Similarly, the neighboring244

spatial nodes for i = N are i = 1 and i = N − 1. Applying three convolutions with a filter245

size of three will reduce the domain size by 6. The data from spatial locations i = [1, 3]246

were concatenated to the end of the spatial domain, and the data from spatial locations247

i = [N − 2, N ] were concatenated to the beginning of the spatial domain. This maintains248

the cyclic nature of the Lorenz-96 system and ensures that the size of the CNN output249

matches the dimensions of the system. The size of the input to the neural network is 46x2.250

Its output, the analysis, is 40x1. The model has 131 trainable weights.251

The training data is comprised of the first half of the EnKF analysis states, for times252

t = 0 to 1,000 covering 20,000 individual time steps. The dataset from the best-performing253

EnKF sensitivity run settings described in Table 1 was used for training. A stochastic254

gradient descent optimizer (Sutskever et al., 2013) was used to train the model, using 20255

training epochs and 100 batches per epoch.256

2.4 Augmented Method and Experimental Setup257

The augmented method is designed to be applicable to a scenario in which high-258

resolution observations are available but not assimilated (Figure 2). To create an analog259

of this scenario with the Lorenz-96 system, we created a set of low-resolution observations260

at every other time step (∆t = 0.1) for the second half of the time series (t = 1000.05 to261

t = 2000) by randomly selecting 25% of the variables to measure. The EnKF using base262

settings was then used to assimilate these observations. This run is the baseline against263

which the augmented method will be compared. This method will subsequently be referred264

to as “EnKF SparseObs”, with the method used to generate the training data in which265

100% of variables were measured at every time step referred to as “EnKF AllObs”.266

The augmented method uses the EnKF to assimilate low-resolution observations. On267

alternating time steps, a “high-resolution” observation is available that includes observa-268

tions of 100% of the variables. For EnKF SparseObs these observations are assumed to269

be prohibitively computationally expensive to assimilate and are therefore ignored. The270

forecast continues on to the next time step where a low-resolution observation is available271

and assimilated by the EnKF. In the augmented method, the CNN is used to assimilate the272

high-resolution observations that cannot be assimilated by the EnKF.273

The CNN takes the ensemble forecast mean and the observation as input and returns274

a single analysis as output. At this stage, an ensemble must be re-created to generate275

an ensemble forecast for the next time step (where the EnKF will be applied to the low-276

resolution observation). To be consistent with the analysis generated by the CNN, the new277

ensemble mean must be equal to the vector analysis produced by the CNN. We create such278

an ensemble by computing the vector difference between the CNN analysis value and the279

ensemble forecast mean, δ⃗ = x⃗f
mean − x⃗a

cnn. To generate the new initial ensemble, δ⃗ is280

subtracted from each member of the ensemble forecast. The new ensemble mean then by281

definition is equal to the vector analysis generated by the CNN with the same spread as the282

ensemble forecast.283
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5 Feature Maps

i

i+1

i-1

: Hidden Node

: Forecast Mean

: Innovation Residual

: Analysis

Legend

Figure 1. Architecture of the CNN trained to emulate the EnKF analysis step with observations

of all variables. Forecast mean and observations are provided in separate collocated input channels.

Two hidden convolutional layers each contain 5 feature maps, with different filter weights. Analysis

mean is generated as output.
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Xaj-1

EnKF AllObs EnKF SparseObs Augmented

Low Resolution 
Observations (ENKF)

Xaj+1

Xfj+1 Xfj+1

Low Resolution 
Observations (EnKF)

Xaj+1

Xaj-1

Xfj

High Resolution 
Observations (CNN)

Xaj

tj-1

tj

tj+1

Xfj+1

High Resolution 
Observations (EnKF)

Xaj+1

Xfj

High Resolution 
Observations (EnKF)

Xaj

Xaj-1

Figure 2. Flow chart of the experimental setup and augmented method. EnKF AllObs is

provided with full observations at every time step. EnKF SparseObs is provided with observations

25% of the variables at every other time step. The augmented method is identical to EnKF

SparseObs but is additionally provided with observations of 100% of the variables on alternating

time steps and uses the trained CNN to assimilate these.

2.5 Explainable AI284

Machine learning models are fast to run and accurate when sufficient training data285

are available. In many earth system science applications, the computational efficiency of286

traditional tools is a significant bottleneck and available training data is voluminous. These287

models have a major drawback, however: models are a black box and it is therefore often288

not clear how they are generating their predictions (Gevaert, 2022). Using testing and289

validation datasets can provide some level of confidence in the models by demonstrating290

their level of accuracy on data not used for training. If they are to be deployed in something291

like an operational weather forecast system, however, such demonstrations may not provide292

a sufficient level of confidence. Out-of-sample input data cannot be guaranteed never to293

occur, and no guarantees can be made about the behavior of the machine learning model294

when presented with such data.295

A variety of tools are available to make otherwise opaque data-driven models more296

transparent, collectively referred to as Explainable AI (XAI) methods (Linardatos et al.,297

2021). Shapely Additive Explanations, or SHAP, is one such tool. SHAP quantifies the298

impact of a specific input variable on the output generated by a model. The method is299

model-agnostic and is equally applicable to a simple linear regression model or a deep neural300

network with millions of trainable parameters. Full details and a formal definition can be301

found in Lundberg and Lee (2017). Heuristically, a SHAP value is the anomaly in an output302

variable attributable to the anomaly in an input variable. It provides a way of apportioning303

the deviation from the mean in the output to each input variable. This information can304

increase confidence that the trained model is reliable as well as provide insights into the305

structure of the underlying system.306

We apply it here to analyze how the trained CNN generates analyses from forecasts307

and innovations. In a DA context, the behavior of the CNN should be predictable and308

consistent with our understanding of the dynamics of the Lorenz-96 system; it should not,309

for example, heavily weight forecasts from highly spatially distant nodes. Evaluating the310
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Run Name
Observation Error
(StDev fraction)

Ensemble
Size

Inflation
Factor

Localization
Distance

RMSE
(% of Observation StDev)

Base 0.3 100 1 5 20.3059
s1 0.2 100 1 5 20.1084
s2 0.4 100 1 5 20.6152
s3 0.3 33 1 5 29.5916
s4 0.3 1000 1 5 19.6315
s5 0.3 100 1.01 5 20.3089
s6 0.3 100 1.05 5 20.3404
s7 0.3 100 1.1 5 20.4216
s8 0.3 100 1 3 22.6087
s9 0.3 100 1 7 19.4958

Table 2. EnKF-only sensitivity results. RMSE is presented as a fraction of the observation

standard deviation to allow for comparison between different observation error settings.

CNN in this way can provide confidence in its ability to perform well when presented with311

new data.312

3 Results313

3.1 Sensitivity and Training314

The results of the base run and 9 sensitivity runs using the EnKF are outlined in Table315

2. These runs are intended to identify optimal settings for generating training data, with the316

EnKF assimilating all observations at every time step (i.e. the high-resolution observation at317

every time step). The performance for each run is evaluated as the mean analysis root-mean-318

squared error (RMSE) divided by the standard deviation of the observation error. For all319

10 cases, the EnKF analysis has a lower error than the observation error, as expected, with320

all runs achieving better than 24% on this metric. As the EnKF approximates the optimal321

solution by using the first two moments of the forecast ensemble to represent a normal322

distribution, errors caused by the finite size of the ensemble are expected to decrease with323

ensemble size. This is evident in our results, which show larger ensemble sizes producing324

lower errors.325

Localization and covariance inflation can improve EnKF performance by mitigating326

errors related to finite ensemble size but can be detrimental for larger ensemble sizes as327

such errors become less important. We expect the performance to be dependent on local-328

ization and inflation settings but it is not clear a priori which values will be optimal. The329

best-performing combination of settings was run s9 with localization of 7 grid spaces and330

covariance inflation factor of 1 (i.e. no inflation). These are the EnKF settings used for331

training the CNN and used in the augmented method.332

The results from the training process are shown in Figure 3. The training targets were333

the EnKF analyses produced using observations of all variables as described in section 2.3.334

CNN error can be considered in terms of how well CNN output matches the EnKF analyses335

as well as its deviation from the true state. The RMSE with respect to these training targets336

is shown across 20 training iterations. Additionally, the error with respect to true states in337

the second half of the time series, i.e. the set not used for training, is included for validation.338

Over-fitting would be indicated by an increase in validation error even as the training error339

remained flat or decreased. This is not evident here, demonstrating that our trained CNN340

is not overfitting and produces reliable predictions when presented with data from outside341

its training set (Ying, 2019).342
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Figure 3. Root mean squared error of the CNN through training epochs, with the error shown

based on both training targets (dashed line) and validation error (solid line). Training error is with

respect to EnKF analysis, validation error is with respect to truth.
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Run Name
Observation Error
(StDev fraction)

Ensemble
Size

Inflation
Factor

Localization
Distance

Augmented
RMSE

SparseObs
RMSE

Base 0.3 100 1 5 0.750 0.877
s1 0.2 100 1 5 n/a n/a
s2 0.4 100 1 5 n/a n/a
s3 0.3 33 1 5 0.782 1.453
s4 0.3 1000 1 5 0.7371 0.8243
s5 0.3 100 1.01 5 0.751 0.883
s6 0.3 100 1.05 5 0.754 0.876
s7 0.3 100 1.1 5 0.759 0.882
s8 0.3 100 1 3 0.873 0.989
s9 0.3 100 1 7 0.728 0.899

Table 3. Sensitivity results for the augmented and EnKF SparseObs methods. RMSE for both

is presented as a fraction of the observation error standard deviation. For all runs, the augmented

method outperforms EnKF SparseObs.

Another check on the trained CNN is to compare its RMSE on the validation dataset343

to the observation error. To generate an improvement in the state estimate the CNN must344

perform better than observations alone. Using EnKF AllObs forecasts and residuals, the345

final validation RMSE with respect to the true state in Figure 3 is 23% of the observation346

standard deviation.347

The sensitivity of the augmented method to different settings was tested. These results348

are shown in Table 3. For all runs, the CNN trained on results using the s9 run settings349

was used. The s1 and s2 run settings were not tested; the CNN was trained on data with350

the observation error specified by s9 settings and the s1 and s2 settings are therefore not351

applicable for the augmented method. For those cases that are applicable, the augmented352

method performance was compared to the EnKF assimilating only the low-resolution obser-353

vations (EnKF SparseObs). For all sensitivity settings, the augmented method outperforms354

EnKF SparseObs (Table 3).355

3.2 Performance Comparison356

Having shown that the trained CNN does not over-fit and that its error is 23% of357

observation error, we can now assess the performance of the augmented method using this358

CNN. In addition to the augmented method and EnKF SparseObs, the performance of359

EnKF AllObs assimilating observations of all variables at every time step is included for360

comparison. The analysis RMSE for all three methods is shown in Figure 4. Time is shown361

as earth-years with 1 model time unit is equivalent to 5 real days (Lorenz, 2005). EnKF362

AllObs performs best with an average RMSE of 0.22. Considering only the density and363

frequency of assimilated observations, this comparative overperformance is unsurprising364

as EnKF AllObs assimilates more data than the other methods. More interestingly, the365

augmented method performs better than EnKF SparseObs, with an average RMSE of 0.75366

compared to 0.88, representing an improvement of 14.5%.367

The other thing to note is the variability of errors between methods. The time series on368

the left is smoothed, and in this rolling average the augmented method consistently outper-369

forms sparse obs at nearly all time steps. The histogram on the right shows the distribution370

of errors at all time steps for EnKF AllObs, EnKF SparseObs, and the augmented method.371

There is substantial overlap in the distribution of errors; using unsmoothed data, the aug-372

mented method outperforms in 30% of coincident time steps. The EnKF SparseObs errors373

have a notably fatter tail in the histogram, however. These spikes are periods where the374
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Figure 4. A time series (left) and histogram (right) of the RMSE of the EnKF AllObs, EnKF

SparseObs, and augmented methods. The mean error for each method is represented by a horizontal

dashed line. The first half of the time series includes only results for EnKF AllObs, which is used

for training the CNN. The second half of the time series includes EnKF SparseObs and augmented

as well, with both initialized using the last analysis produced by the EnKF AllObs. The time series

data is smoothed with a moving window of 60 days for readability. On the right, a histogram of the

distribution of RMSE for all three methods is shown using the same axis as the time series plot.

This plot uses unsmoothed data and as a result, the tails extend beyond the range of time series

traces.
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Figure 5. The forecast accuracy out to 10 days using initial conditions produced by the aug-

mented method as well as the EnKF (sparse and all obs). 95% confidence intervals are included

for all three methods based on the RMSE standard deviation across 1,000 randomly selected initial

conditions. The mean ensemble standard deviations are also shown as dashed lines.

state estimate diverged from reality, generating instabilities in the EnKF that resulted in375

large errors.376

Despite having a similar error distribution to EnKF SparseObs, the augmented method377

does not have the same fat tail. It is better at maintaining the state estimate in the vicinity378

of the true state, preventing instabilities and periodic spikes in the analysis error. This379

accounts for the consistent over-performance in the smoothed time series. The improved380

stability is an important factor in evaluating the relative performance and suggests that the381

augmented method is more reliable in excess of what would be otherwise assessed based on382

the fact that it only outperforms EnKF SparseObs in 30% of time steps. The improved383

stability and reduced mean RMSE are clear benefits of exploiting all available data in384

assimilation using an efficient but possibly sub-optimal technique (the CNN) compared to385

ignoring a subset of observations.386

Another way of assessing the performance of the three methods is to generate forecasts387

using their analyses as initial conditions. Forecast skill over time can then be compared.388

These results are shown in Figure 5. The mean error of ensemble forecasts from a sample389

of initial conditions is plotted out to 10 days of lead time. As with the results in Figure 4,390

EnKF AllObs performs best, generating better forecasts for all lead times. The augmented391

method again outperforms EnKF SparseObs. Out to 5 days of forecast lead time, the RMSE392

of forecasts generated using initial conditions from the augmented method is statistically393
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Figure 6. The distribution of augmented (red) and EnKF SparseObs (blue) analysis errors nor-

malized by ensemble standard deviation as probability density plots (a) and cumulative probability

plots (b). A reference unit normal distribution is also included in both plots in black.

significantly better at the p<0.05 level. Graphically, this is immediately evident as the 95%394

confidence interval bands do not initially overlap.395

Figure 5 also shows another metric for evaluating the reliability of the ensemble fore-396

casts. By definition, when errors are unbiased the standard deviation of the error and the397

RMSE are equivalent. If the ensemble spread is reflective of the true error, then the actual398

RMSE should equal the ensemble standard deviation (Leutbecher & Palmer, 2008; Gneit-399

ing & Katzfuss, 2014). If the ensemble is overprecise with estimated errors smaller than400

actual, it is said to be underdispersive. If the ensemble is under-precise, with its spread401

overestimating actual errors and precision, it is said to be overdispersive.402

Here, the ensemble standard deviation for all three methods is generally less than403

the RMSE indicating underdispersive ensemble forecasts that do not adequately represent404

the true forecast error. For the first day, however, the standard deviation of the augmented405

analysis error is within the 95% confidence interval of its RMSE. Beyond this, the augmented406

method is underdispersive but less so than EnKF SparseObs with the difference between407

its RMS and standard deviation smaller for several more days. This is another indication408

of the improved reliability of the augmented method compared to EnKF SparseObs. In409

addition to avoiding large spikes in RMSE shown in Figure 4, ensemble forecasts using the410

augmented method analyses as initial conditions produce both more accurate forecasts as411

well as uncertainty estimates that more closely match the true statistics of forecast errors.412

For a more detailed examination of the reliability of ensemble state estimates, we exam-413

ine the distribution of actual vs. expected analysis errors. These results (as opposed to the414

distributions of RMSE) can indicate if forecasts are biased or otherwise not well distributed.415
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Figure 7. Rank histograms of the observations with respect to the ensemble of analyses for

EnKF SparseObs (left) and augmented (right) methods. The percentile in which an observation

falls is on the x-axis, with the normalized frequency on y-axis.
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If errors are assumed to be Gaussian, then if scaled by the ensemble standard deviation the416

error distribution should follow a unit normal with a mean of zero. Conversely, if the er-417

rors are not well represented by a normal distribution, or the ensemble standard deviations418

don’t reflect the true analysis error statistics, the scaled distribution will diverge from the419

reference unit normal. This comparison is shown in Figure 6.420

Figure 6a suggests that the augmented method has a slight bias with its PDF shifted421

left compared with the reference unit normal. It also suggests that EnKF SparseObs is422

slightly underdispersive, with its peak lower and its tails higher than the reference unit423

normal PDF. These features are also apparent in Figure 6b, which displays the same data424

but as a CDF instead. For negative errors, EnKF SparseObs is higher than the reference425

distribution; for positive errors, it is lower. Consistent with the results presented in Figure426

5, despite its bias the augmented method better represents the true statistics of its error427

than EnKF SparseObs, with a standard deviation of 0.96 compared to 1.18, while a perfectly428

dispersive ensemble would have a standard deviation of 1.429

Rank histograms are an alternative way of visualizing the dispersion of ensemble fore-430

casts or analyses (Hatfield et al., 2018; Candille & Talagrand, 2005; Weigel, 2011; Hamill,431

2001). For each forecast (or analysis), the percentile of the true value within the ensemble is432

calculated. When the distribution of the percentile values is plotted, a uniform distribution433

indicates a well-dispersed forecast. Errors of a given size occur as frequently as would be434

expected if the ensemble spread represents the true error statistics. A U shape is under-435

dispersive, with errors outside the range of the ensemble over-represented. A tilt indicates436

a biased ensemble forecast, with positive errors more or less likely to occur than negative437

errors.438

Figure 7 includes rank histograms for both methods. It is more visually apparent439

here that the EnKF SparseObs produces underdispersive state estimates. Small and large440

percentile frequencies are clearly larger than frequencies at or around the 50th percentile.441

Conversely, while the dispersion of the augmented method state estimates is not as visually442

clear, the bias evident in Figure 6 is also visible here. The augmented method produces443

more accurate state estimates and more stability but with a slight bias compared with EnKF444

SparseObs.445

3.3 Explainable AI: SHAP Values446

We now return to the behavior the CNN in producing state estimates from forecasts and447

innovations. In an operational setting, allowing black-box operators to produce new initial448

conditions is not tenable. There must be some confidence that the system won’t generate449

unrealistic results when presented with out-of-sample data, and some understanding of how450

it is producing its state estimates. Here we use SHAP values to estimate the impact of input451

variables on the outputs generated by the CNN (Figure 8).452

Figure 8a shows the mean absolute SHAP values in decreasing order. The largest con-453

tributors to the state estimate of a variable are the forecast and the innovation of that454

variable. This is an excellent first sanity check on the CNN. In estimating a state vari-455

able, it weights the forecast and observation of that variable more heavily than forecasts or456

observations of nearby variables.457

Figure 8b, identical to Figure 8a but with the first input variable not shown, suggests458

that the next two most heavily weighted inputs for generating a state estimate are the459

forecasts at 1 and 3 spatial lags, followed by observations and forecasts at 2 spatial lags.460

The long-term spatial correlation structure of the Lorenz-96 system is important to note461

at this point. Since the system is symmetric, without loss of generality we can consider462

the dynamics and correlation between locations only in terms of absolute spatial lag. The463

dynamics of a state variable are nonlinearly dependent on the state variables at spatial lags464

of 1 and 2 as described in Equation 1.465
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Figure 8. Estimated mean absolute SHAP values at a given location for the forecast(x) and

innovation (δx) at spatial lags of 0 to 4. In panel a), input variables are sorted from largest to

smallest mean absolute SHAP value. In panel b), panel a) is replicated without the first value (the

analysis at a spatial lag of zero). Panel c) includes SHAP values for the forecast at spatial lags of

1-4, and panel d) for innovations at spatial lags of 1-4.
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This dependence defines the temporal derivative. In non-differential terms, considering466

the variable values rather than rates of change, the correlation extends further than two grid467

points. At spatial lags of 1-4, the long-term absolute correlation coefficients are 0.05, 0.33,468

0.11, and 0.03. Variables at a distance of 2 and 3 grid points removed from one another469

are more highly correlated than immediately adjacent variables one grid point removed470

(Lorenz, 2005). It is also important to note that the convolutional layers will tend to471

create a binomial distribution here: larger lags have fewer paths of influence. This means472

that we should expect the SHAP results at increasing spatial lags to be a combination of a473

binomial distribution and the Lorenz-96 correlations. Figure 8c demonstrates monotonically474

decreasing SHAP values with increasing spatial lag consistent with the binomial influence475

of the CNN. Figure 8d shows a peak SHAP value at a spatial lag of 2, consistent with the476

correlation structure of Lorenz-96. In both cases, at a spatial lag of 4 the SHAP value is477

essentially zero. This is another important check on the results: the structure of the CNN478

means that the impact of data 4 spatial lags away cannot impact the output. The fact that479

the SHAP results reflect the known behavior of the CNN at a lag of 4 provides confidence480

that the other SHAP values have meaning.481

4 Discussion482

The results of using the augmented method outlined above are encouraging, and clearly483

show that it outperforms a traditional approach using only the EnKF. However, considering484

the training process of the CNN makes some limitations apparent. First: the network is485

trained using only the ensemble mean, rather than the entire ensemble, as input. As a result,486

it can only learn the covariance structure to the extent that the covariance is dependent on487

location in the state space. Other factors, most obviously the time since the last observation488

and analysis, will impact forecast uncertainty. The trained CNN cannot include such factors.489

Even within the confines of the experiment we have set up, the limitations of the490

training data have an impact on performance. When employed online in the augmented491

method the CNN is provided as input a forecast initialized by assimilating only 25% of492

the variables. In comparison, all variables are observed in the EnKF configuration used to493

generate training data. In the online setting, therefore, the initial condition error will be494

larger and the forecast precision lower than in the training set. In the experimental setup,495

the augmented method has an RMS of 0.74, nearly three times worse than the RMSE when496

it is simply applied to forecasts from the validation time period generated offline. This497

partly reflects the fact that the augmented method is simply assimilating less data. On a498

time-averaged basis, it is observing 62.5% of the observations assimilated in the training499

set, but that does not fully explain the 3-fold increase in RMSE. The remaining decrease500

in accuracy is attributable to the smaller forecast errors in the training data compared to501

forecast errors in the online setting.502

While the reduced performance of the CNN applied to an online setting as opposed503

to input data generated offline is unavoidable to some extent, future opportunities for im-504

provement may be found by allowing the CNN to better approximate forecast accuracy.505

Providing additional input to the network, such as ensemble standard deviation at the last506

time step combined with time since observations were last assimilated, is one option. Our507

results here provide no indication either way whether a neural network would be able to508

learn effectively from other input data, or how complex the network would have to be, but509

it is a potential avenue of further exploration.510

The results from the SHAP analysis provide additional insights into the possible ex-511

tensions of the approach. Localization is widely used to improve the performance of many512

assimilation systems. The SHAP values demonstrate that the trained CNN has applied513

localization to the forecast. The CNN also has learned the long-term correlation structure514

(teleconnections) of the system, applying a localization structure to the innovations con-515

sistent with that of the Lorenz-96 system. These are both reasons to think it is plausible516
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that in future extensions convolutional layers may be able to generate spatial estimates517

that blend forecasts and observations in a way that is both reliable and skillfully reflects518

underlying system behavior and dynamics.519

5 Conclusion520

This study demonstrated a proof-of-concept augmented assimilation methodology in521

which machine learning was used to directly assimilate high-resolution observations for po-522

tential improvement of the performance of an assimilation scheme. Significant quantities523

of observational data, particularly from remote-sensing platforms, go unused in operational524

forecast models due to the computational cost and time required for incorporating them525

into the model. The potential viability of training a machine learning model offline to as-526

similate this data could have a significant impact – improved state initialization has real527

and notable impacts on forecast quality, and the ability to use the vast amounts of newly528

available observational data products to that end is of clear benefit.529

As a demonstration of the potential feasibility of such an approach, we trained a 2-layer530

convolutional neural network to replicate the results generated by the Ensemble Kalman531

Filter on synthetic observations. Using the EnKF on low-resolution observations and the532

trained CNN on the high-resolution observations outperformed an EnKF assimilating only533

low-resolution data. More specifically, in an experimental setting using the Lorenz-96 model,534

the analyses generated by the augmented method have a mean RMSE 14.5% lower than using535

the EnKF on only low-resolution observations. Forecasts using analyses generated by the536

augmented method as initial conditions produce lower RMSE up to a forecast lead time537

of 10 days. Ensemble forecasts using initial conditions from the augmented method were538

also found to be less underdispersive, with ensemble standard deviations that more closely539

reflect true forecast error.540

Additionally, using an explainable AI method, we demonstrate that the trained CNN ef-541

fectively both applies localization as well as learns the correlation structure (teleconnections)542

of the underlying system via training. Distant observations do not impact its estimates. The543

natural tendency of convolutional layers to exploit local spatial correlations in this way is544

encouraging for potential extensions to more realistic applications. It also generates confi-545

dence that such a method would both be reliable and generate physically realistic results546

when presented with new data.547

Further studies are needed to demonstrate the ability of this approach to work in more548

complex systems and at scale. Testing using a quasigeostrophic model and more realistic549

observational data would be a logical next step. The demonstrated feasibility of the general550

approach in this proof-of-concept study will hopefully encourage additional efforts to address551

the large quantity of data that is currently unusable in an operational forecast setting using552

machine learning approaches.553

6 Open Research554

Code for generating the data used in this study as well as code for generating the555

plots in this paper (and the processed data used in the plots) can be accessed at https://556

github.com/climprocpred/machine learning DA part 1.557
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