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Abstract

Geomorphologists have long debated the relative importance of disturbance magnitude, duration and frequency in shaping

landscapes. For river-channel adjustment during floods, some argue that cumulative flood ‘power’, rather than magnitude or

duration, matters most. However, studies of flood-induced river-channel change often draw upon small datasets. Here, we

combine Sentinel-2 imagery with flow data from laterally-active rivers to address this question using a larger dataset. We apply

automated algorithms in Google Earth Engine to map rivers and detect their lateral shifting; we generate a large dataset to

quantify channel change during 160 floods across New Zealand, Russia, and South America. Widening during these floods is

best explained by their duration and cumulative hydrograph. We use a random forest regression model to predict flood-induced

channel widening, with potential applications for hazard management. Ultimately, better global data on sediment supply and

caliber would help us to understand flood-driven change to river planforms.
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Key Points:9

• We develop a method to quantify river planform change during flood events, us-10

ing Google Earth Engine11

• We do so for a dataset of 160 floods that exceeded the 80th percentile stage, at12

41 flow gauging sites on laterally active rivers13

• Erosion during these high-flow events was most correlated with the event dura-14

tion and summed hydrograph15
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Abstract16

Geomorphologists have long debated the relative importance of disturbance magnitude,17

duration and frequency in shaping landscapes. For river-channel adjustment during floods,18

some argue that cumulative flood ‘power’, rather than magnitude or duration, matters19

most. However, studies of flood-induced river-channel change often draw upon small datasets.20

Here, we combine Sentinel-2 imagery with flow data from laterally-active rivers to ad-21

dress this question using a larger dataset. We apply automated algorithms in Google Earth22

Engine to map rivers and detect their lateral shifting; we generate a large dataset to quan-23

tify channel change during 160 floods across New Zealand, Russia, and South America.24

Widening during these floods is best explained by their duration and cumulative hydro-25

graph. We use a random forest regression model to predict flood-induced channel widen-26

ing, with potential applications for hazard management. Ultimately, better global data27

on sediment supply and caliber would help us to understand flood-driven change to river28

planforms.29

Plain Language Summary30

Some rivers change their shape over time. In this paper, we explore how high-flow31

events drive these river channels to reshape themselves. We use Google Earth Engine32

to automatically map the shapes of rivers in satellite images. We apply this method to33

pairs of satellite images before and after high-flow events, to understand how the river34

shape is changed by the event. We compare the amount of channel-widening measured35

to aspects of the high-flow event, including its peak, duration and total flow. We do so36

for 160 high-flow events, and find that the duration and total flow are most important37

for explaining how much a channel widens during the event. Finally, we build a statis-38

tical model to predict the average amount of channel widening for a given high-flow event.39

This method has potential applications for hazard management in rivers that are known40

to change their shape.41

1 Introduction42

The relative importance of disturbance magnitude, duration and frequency for shap-43

ing landscapes is a crucial question in geomorphology. Many studies have considered the44

effects of high-magnitude versus high-frequency events: for cumulative sediment trans-45

port (Wolman & Miller, 1960; Webb & Walling, 1982), for generating and reworking land-46

forms (Wolman & Gerson, 1978; Kale, 2002, 2003; Surian et al., 2015), and for the re-47

sulting sedimentology (Magilligan et al., 1998; Marren, 2005). Others have considered48

the duration and total energy expenditure of individual disturbances and how this re-49

lates to their ability to transport sediment and reshape river channels (Costa & O’Connor,50

1995; Magilligan et al., 2015). In rivers, understanding which disturbances perform the51

most geomorphic work — both instantaneously, and cumulatively over time — has im-52

portant implications for sediment budgeting, flood conveyance, depositional records, and53

natural hazard management.54

In rivers, the major disturbances are flood events, which have the power to reshape55

the channels that convey them. Such reshaping ranges from bar deposition and bank ero-56

sion (Bryndal et al., 2017) or aggradation (Morche et al., 2007; Hooke, 2016) through57

to widening (Fuller, 2008; Yousefi et al., 2018), reoccupation of abandoned channels (Arnaud-58

Fassetta et al., 2005) and large-scale reworking of floodplains (Miller, 1990). The latter59

can have severe impacts for society, including erosion of agricultural or residential land60

(Yousefi et al., 2018) or the destruction of transport and river management infrastruc-61

ture (Arnaud-Fassetta et al., 2005). Conversely, aggradation during floods can raise riverbeds62

by several meters (Morche et al., 2007; Tunnicliffe et al., 2018), reducing a channel’s con-63

veyance capacity and the freeboard below bridges (Johnson et al., 2001). Quantitative64
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methods are needed to understand, model, and predict how river channels can be reshaped65

by individual flood events.66

The geomorphic effectiveness of a flood is thought to be a function of its duration67

and magnitude. Here, we define geomorphic effectiveness as the extent to which a flood68

alters the channel form by eroding or depositing sediment. We use the term ’flood’ to69

mean any temporary rise in the water level (in our analysis, one that exceeds the 80th70

percentile of the water surface elevation measurements). Previous studies have suggested71

that the cumulative stream power (defined by Bagnold (1966) as the product of water72

density, acceleration due to gravity, discharge and slope) beneath a flood hydrograph must73

be high for the event to be geomorphically effective; the implication is that high-magnitude74

but brief floods, and low-magnitude but long floods, are not likely to be effective (Costa75

& O’Connor, 1995). However, others have suggested that additional factors (not just the76

cumulative power) make a flood geomorphically effective. For instance, Middleton et al.77

(2019) demonstrated that flood magnitude does influence geomorphic effectiveness: in78

the proglacial braided river they studied, planform change during floods increased with79

their peak discharges. Others propose that a flood’s geomorphic effectiveness is not de-80

termined by the hydrograph alone, but also by the sediment supply (Church, 2014; Hooke,81

2016; Bennett et al., 2017; Pfeiffer et al., 2019) or the time since the previous flood, which82

can influence both sediment availability and the looseness of the riverbed (Gintz et al.,83

1996; Hooke, 2015). These studies have advanced our understanding of geomorphic ef-84

fectiveness, but almost all were small-sample case studies of 1-10 flood events or river85

reaches, often in similar regional or climatic contexts. Larger samples of flood events from86

a more geomorphically and geographically diverse set of rivers are required to produce87

a robust empirical assessment of what makes a geomorphically effective flood.88

Google Earth Engine (GEE) has recently emerged as a key tool facilitating large-89

sample analyses of landscape characteristics — through both its computational platform90

and archive of quality controlled satellite data. The ‘large-sample’ approach, which ad-91

dresses environmental questions using data from tens to thousands of sites, is popular92

in hydrology (Addor et al., 2017; Klingler et al., 2021) and has begun to be applied in93

geomorphology (Slater et al., 2015; Slater, 2016; Pfeiffer et al., 2019; Sylvester et al., 2019;94

Valenza et al., 2020; Ahrendt et al., 2022; Brooke et al., 2022; Clubb et al., 2022; Ed-95

monds et al., 2022). A large-sample approach to studying planimetric river adjustments96

can be readily deployed in GEE, drawing on automated methods to map river planform97

(Allen & Pavelsky, 2015; Pekel et al., 2016; Zou et al., 2018; Isikdogan et al., 2019; Pick-98

ens et al., 2020; Boothroyd et al., 2021) and to track planform deformation (Wickert et99

al., 2013; Rowland et al., 2016; Schwenk et al., 2017; Jarriel et al., 2021; Chadwick et100

al., 2022; Langhorst & Pavelsky, 2022). By automating river planform tracking in GEE,101

the geomorphic effectiveness of a large sample of flood events can be assessed.102

In this paper, we investigate the streamflow drivers of geomorphically effective floods103

using Sentinel-2 satellite imagery in GEE. We pursue two research questions:104

1. Which hydrograph metrics best explain a flood’s 2D geomorphic effectiveness?105

2. How well can a flood’s 2D geomorphic effectiveness be predicted from hydrologic106

and environmental variables?107

We measure geomorphic effectiveness as the reach-averaged channel widening during a108

flood. We compute this planimetric erosion in GEE for flood events in Brazil, Colom-109

bia, New Zealand and Russia. We use 160 flood events at 41 flow gauging sites on lat-110

erally active rivers to evaluate our research questions (see Figure S1, Supplementary Ma-111

terial (SM), for gauge locations). We ascertain the influence of hydrograph shape on ge-112

omorphic effectiveness in our dataset. Finally, we develop an empirical model to predict113

flood-induced erosion. When coupled with streamflow forecasts, the model may be use-114

ful for hazard management in sites that are known to be laterally active.115
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2 Methods116

Our method can be summarized as follows. First, we identified sites with histor-117

ical daily stage (water level) measurements and a laterally active channel. For those rivers,118

we identified peaks in the stage records. Second, for each flood peak we extracted the119

pre- and post-flood channel planform from Sentinel-2 data in GEE, and conducted a change120

detection between the two planforms to quantify erosion during the flood. Ultimately,121

we compared the lateral erosion detected to parameters of the flood hydrograph. Fig-122

ure 1 illustrates these steps with an example of one flood in Colombia. Our code is avail-123

able at https://github.com/a-leenman/2dFloodsPublic; GEE processing was per-124

formed via the ‘rgee’ r package (Aybar, 2022).125

Figure 1. Methods used to define floods and detect planform change. (a) The pre-flood (blue)

and post-flood (red) search windows for a sequence of floods (bold lines), showing how the win-

dows can overlap (purple). (b) Example flood from Colombian gauge 23097040, with the flood

start date (blue circle), two options for flood end date (black and red circles; the ‘downcross’ (red

circle) method was most appropriate) and the pre- and post-flood search windows. (c) Pre-flood

channel morphology, mosaicked from all cloud-free pixels in the six satellite images covering part

of the AOI within the pre-flood search window. Erosion during the following flood is outlined in

yellow. Black patches have no data due to cloud. (d) Corresponding post-flood mosaic (10 source

images within the time and space filter). (e) The pre- and post-flood channel planforms are over-

laid, highlighting the erosion (red) detected.

2.1 Site selection and area of interest126

Hydrologic records are crucial to our analysis, providing flood occurrence and hy-127

drograph shape data. We obtained publicly available stage records and gauging locations128
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for Brazil, Colombia, New Zealand and Russia. These countries were chosen for their lat-129

erally active rivers and availability of recent daily stage records.130

Other authors used discharge or stream power records to pursue this problem. How-131

ever, we chose to use stage data so that differences in stage could provide a proxy for132

depth fluctuations when estimating the time series of shear stress. Ultimately, we aimed133

to approximate the sediment transport capacity of each hydrograph.134

We filtered the stage records to include only those gauges that:135

1. Were located on a river with a mean annual discharge above 100 cm3 s-1 (data from136

Grill et al. (2019)), to ensure these rivers were large enough to be visible in our137

10 m satellite imagery.138

2. Were located on a laterally active river whose dynamics could be measured from139

satellite data. Laterally active rivers were identified by filtering the ‘water per-140

manence’ layer from Pekel et al. (2016). After computing planform change dur-141

ing floods, a site was removed if the eroded area never exceeded 1% of the water142

surface area or if the flood-induced widening never exceeded 3 m. These thresh-143

olds enabled the largest possible dataset while excluding channels that were not144

laterally active.145

3. Were not adjacent to large lakes or dams.146

4. Overlapped with the Sentinel-2 record (June 2015 - present) by at least one year.147

This filtering isolated a sample of 41 gauges. River widths ranged from 60 to 1000148

m; their gradients ranged from 0.00001 to 0.002. Their mean long-term discharge ranged149

from 100 to 7000 cm3s-1, and upstream catchment area ranged from 3800 to 430000 km2.150

Values of the Richards-Baker index (Baker et al., 2004) ranged from 0.005 (very seasonal)151

to 0.33 (moderately flashy). Gauge altitudes ranged from 3 to 500 m. Forest cover at152

the gauges ranged from 0 to 100%, and mean annual rainfall from 440 to 4100 mm. The153

range of rivers (including braided, wandering and meandering forms) encompassed by154

these values highlights the geographic and geomorphic diversity of the rivers we incor-155

porate.156

For each gauge, we defined an ‘Area of Interest’ (AOI) in which we extract the river157

planform and monitor its deformation. The ‘HydroSHEDS Free Flowing Rivers’ vector158

network (Lehner et al., 2008; Grill et al., 2019) was used to select all river segments within159

40 km of each gauge. We kept only the segments on the same branch as the gauge, and160

also removed segments that were past a jump in average discharge of >20%, implying161

that a ‘major’ tributary had been passed; we computed such jumps using the average162

discharge data for each segment in Grill et al. (2019). If two gauges were nearby on the163

same river, we divided the intervening segments between them. This left a remaining ‘linked164

reach’ (comprising one or more HydroSHEDS segments) assigned to each gauge. We ex-165

tracted water masks along each reach from Allen and Pavelsky (2018a, 2018b), as a first166

approximation of the channel area. However, these masks do not always encompass the167

entire channel in our study reaches (which are extremely laterally mobile: some shift by168

more than 30 m in a single flood) and so we buffered these masks by 500 m to create the169

AOI. Finally, lakes in the HydroLAKES (Messager et al., 2016) dataset were subtracted170

from the AOI, to avoid spurious change detection from varying lake levels. We thus as-171

signed to each gauge a unique AOI within which we extracted the river planform before172

and after each flood.173

2.2 Flood delineation and search window definition174

We delineated floods temporally based on the daily stage record for each gauge.175

Although higher frequency records were available for some countries, we resampled them176

by taking the daily mean stage. While this process smoothed some maxima and min-177
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ima, it gave all records the same frequency. We defined a flood as any period exceeding178

the 80th percentile of the stage record during the Sentinel-2 record (June 2015 onwards;179

Figure 1a, b). Floods were extracted from the daily stage records using the hydroEvents180

R package (Wasko & Guo, 2022). To ensure we captured the rising and falling limbs, we181

defined the flood start date as the first measurement before the peak which was also be-182

low the 50th percentile of stage (Figure 1a, blue points). We defined the flood end date183

in two ways: either as184

1. the first measurement following the peak which also fell below the 50th percentile185

of stage (Figure 1a, red points), or186

2. the first measurement following the peak which was within 30 cm of the stage at187

the start of the flood (Figure 1a, black points). Occasionally, missing data meant188

that the first method created flood end dates that were unreasonably far after the189

end of the flood, necessitating the second method.190

For each flood, we chose the flood end date with the stage measurement that was clos-191

est to the stage on the start date. Following the discussion in Slater et al. (2021), floods192

separated by less than seven days were counted as one event, and floods lasting more than193

5 months were discounted as these were mostly anomalies from missing data. While this194

approach of using the 50th percentile to give the start and end dates assigns a longer length195

to floods than some standard approaches, it allows us to capture the geomorphic effects196

of the rising and falling limbs, and recognizes that geomorphic change and sediment en-197

trainment likely start before the 80th percentile stage is exceeded.198

Directly before and after each flood, we defined pre- and post-flood time windows199

of up to three weeks (Figure 1a, b). We truncated a time window if floods were less than200

three weeks apart; for example, flood 309 (Figure 1a) finished nine days before the fol-201

lowing event, and so its post-flood window was truncated. If sequential events were less202

than six weeks apart, their pre- and post-flood windows were allowed to overlap; the post-203

flood window for one flood could even overlap entirely with the pre-flood window of the204

following event, as with floods 309 and 310 (Figure 1a; this would mean that the post-205

flood channel mask of flood 309 was reused as the pre-flood mask of flood 310). We used206

these pre- and post-flood time windows to search the Sentinel-2 archive (Level 1C, har-207

monized).208

2.3 Planform extraction and change detection209

Within each pre- and post-flood time window, we extracted the river planform from210

Sentinel-2 (S2) imagery. First, we mosaicked all cloud-free S2 pixels within the time win-211

dow and AOI, taking the minimum reflectance in each band if multiple copies of one pixel212

were available. Figure 1c and d are examples of these mosaics. We proceeded with an213

event if at least 50% of its AOI was cloud-free; only pixels that were cloud-free in both214

mosaics were used. For sites in New Zealand and Russia, we also mapped snow using the215

normalized difference snow index, following Hofmeister et al. (2022). For snow-free scenes216

that met our cloud threshold, we mapped channel planform from a combination of spec-217

tral indices, following Zou et al. (2018) and Boothroyd et al. (2021); these were the nor-218

malized difference vegetation index (Rousel et al., 1973), modified normalized difference219

water index (Xu, 2006), and enhanced vegetation index (Huete et al., 2002). Following220

Boothroyd et al. (2021), we counted both water and exposed sediment (i.e. non-vegetated221

bars) as part of the channel, given that a lack of vegetation indicates bars are frequently222

inundated. While this mapping method is simple, it is generalizable to rivers with dif-223

ferent lighting conditions and suspended sediment concentrations.224

We conducted change detection between the pre- and post-flood planforms to es-225

timate each flood’s geomorphic impact. To isolate areas that were permanently (as op-226

posed to transiently) changed during a flood, we tracked the state (wet or dry) of each227
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pixel at monthly intervals for the following 24 months, loosely following the pixel-by-pixel228

trend analysis of Nagel et al. (2022). We only considered a pixel to be eroded if it switched229

from dry-to-wet in the flood and then continued to be wet for the subsequent two years.230

If cloud cover meant there were <18 months of these after-flood observations for an event,231

we discounted it; we chose this threshold by checking the change detection for bias due232

to stage fluctuations. This pixel-tracking method allowed us to eliminate spurious change233

detection resulting from transient stage fluctuations.234

We measured a flood’s geomorphic effectiveness as the area that was permanently235

eroded (i.e. changed from ‘dry’ to ‘wet’) during the event. We normalized this eroded236

area by the reach length to give the reach-averaged channel widening. Because we counted237

non-vegetated bars as part of the channel, it was difficult to measure deposition follow-238

ing the flood; newly deposited sediment was typically registered as ‘channel’ by our map-239

ping algorithm. This is why we consider post-flood erosion to be the most appropriate240

metric of geomorphic change in our data.241

Our procedures for gauge selection, cloud- and snow-filtering isolated a dataset of242

160 events for which we measured geomorphic effectiveness. Because there were less than243

11 floods in some countries, we pooled all floods for our subsequent analyses.244

2.4 Regression and prediction245

Our first research question considers the influence of hydrograph shape on geomor-246

phic effectiveness. There are numerous metrics to characterize hydrographs, including247

measures of height, duration, integrated power, volume or transport capacity, and asym-248

metry (Brunner et al., 2021; Slater et al., 2021). Because these rivers feature a range of249

hydrographs (for instance, flashy versus seasonal), we use three simple metrics that al-250

low comparison with previous studies. The first is the flood peak height, relative to the251

mean daily stage. The second is the cumulative value of all daily stage measurements252

during the flood, measured relative to mean daily stage. This cumulative water level met-253

ric is akin to the ‘volume’ of a hydrograph when using discharge records (e.g. Brunner254

et al. (2021), Figure 3). Because we use stage records, the metric accounts for the com-255

bined influence of changes in flow depth during the flood (exerting stress on the river banks/bed)256

and of flood duration; we refer to it as the ‘summed hydrograph’. The third metric is257

the flood duration.258

As well as exploring how hydrograph metrics correlated with erosion, we built a259

random forest regression model to rank the predictors’ importance (by estimating how260

much they decreased the model’s mean square error, MSE). In addition to these hydro-261

graph metrics, we incorporated the pre-flood channel width, as channel size can positively262

influence channel mobility (Constantine et al., 2014; Nanson & Hickin, 1986; Langhorst263

& Pavelsky, 2022). Although sediment supply also increases channel mobility (e.g. Constantine264

et al. (2014); Ahmed et al. (2019); Donovan et al. (2021)), we do not have sediment sup-265

ply time-series for our gauging sites. Instead, we used stream gradients and stage records266

to estimate the sediment transport capacity for each flood (see Section S1, SM for de-267

tails), and added these estimates to the random forest model. We built the model us-268

ing the randomForest r package (Liaw & Wiener, 2002) with 500 trees and two variables269

randomly sampled at each split. We used the model to predict each flood’s reach-averaged270

erosion using leave-one-out cross-validation (LOOCV).271

3 Results272

In the laterally active rivers we study, floods and their geomorphic impacts vary273

by orders of magnitude. Peak heights vary from 30 to 700 cm above mean daily stage.274

The summed hydrographs vary from 40 to 30000 cm above mean daily stage, and flood275

durations from 1 to 152 days. The geomorphic effects of these floods are diverse, with276
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Figure 2. Flood metrics and their relationship to reach-averaged channel widening (i.e. plan-

view erosion normalized by reach length) during each flood. (a) Flood peak height above the

mean daily stage. (b) Cumulative stage exceeding mean daily stage (‘summed hydrograph’). (c)

Flood duration. Each point represents one event; colors indicate the four countries; point size is

proportional to pre-flood channel width. The solid gray line shows a linear regression and dotted

lines show 95% confidence limits; the regression equation is at the top-right. r2 and p-values are

at the top left. r2 values for individual countries are in Table S1, SM.

reach-averaged widening as low as 0.005 m and as high as 41 m. The least geomorphi-277

cally active country is New Zealand, with an average flood-induced widening of 0.9 m,278

while the most active is Colombia, with an average widening of 7 m across all floods.279

Our first research question considers the erosional response of river channels to flood280

hydrographs. Figure 2 demonstrates how reach-averaged erosion varies with three hy-281

drograph metrics in the 160 floods we study. Each point represents one event, with the282

reach-averaged erosion compared to the flood’s peak height (a), summed hydrograph (b),283

and flood duration (c). Figure 2 therefore shows how hydrograph metrics influence ge-284

omorphic effectiveness for 160 floods at 41 sites across Brazil, Colombia, New Zealand285

and Russia between 2015 and 2021.286

Our results indicate that reach-averaged channel widening is only weakly related287

to flood height in our dataset (Figure 2a). A linear regression of reach-averaged erosion288

during each flood against the peak height had an r2 of just 0.01. Erosion scaled more289

strongly with the summed hydrograph (Figure 2b), with an r2 of 0.32, and most strongly290

with flood duration (Figure 2c), with an r2 of 0.35. See Table S1 (SM) for country-specific291

relationships. These coefficients of determination are surprisingly high, considering that292

they represent observations from real systems and are thus confounded by other natu-293

ral variables in each location. Some of the relationships in Figure 2 appear non-linear294

(especially panel (c)), but we lack sufficient data to fit non-linear models and so we use295

linear regression to make a first-order comparison. These metrics are correlated among296

themselves (see Figure S2, SM); longer floods often had higher peaks, so that the r2 val-297

ues shown here indicate relative importance and we cannot say that the increase in ero-298

sion with flood duration was independent of the concurrent increase in height for many299

floods. Nevertheless, panels a-c indicate that, at least for our sample of laterally active300
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Figure 3. Predictions from our random forest regression model. (a) The stage record for

Colombian gauge 23097040; flood events with sufficient cloud-free satellite data are highlighted.

The observed and predicted reach-averaged erosion (channel widening) during each flood are

overlain and scale with the secondary y-axis. (b) A comparison of observed and predicted

channel-widening at this gauge; each point is one flood. (c) A comparison of observed and

predicted channel-widening for all floods in our dataset. Grey lines in (b) and (c) show a 1:1

relation.

rivers, flood duration was the most important variable for explaining flood-driven ero-301

sion of the vegetated channel boundary.302

We built a random forest regression model to rank the importance of the hydro-303

graph metrics, channel width, and estimated sediment transport for explaining flood ero-304

sion. The random forest model ranked these variables in the following order: estimated305

transport, channel width, flood duration, summed hydrograph and peak height; the rank-306

ings reflect how much each variable reduced the model’s MSE. This ranking is similar307

to the r2 values in Figure 2 and Figures S3-S4 (SM). Because the summed hydrograph308

and flood duration were correlated (R = 0.79), we ran two additional model versions,309

omitting either summed hydrograph or flood duration. Although these omissions altered310

the variables’ MSE reductions, neither altered the remaining variable rankings, imply-311

ing that the rankings are not affected by this co-linearity in the predictors.312

We predicted erosion for all floods in our dataset using the random forest model313

with LOOCV. We were able to predict erosion with at least 60% accuracy (R = 0.83;314

Figure 3c) using the pooled dataset. The model performed best for sites in Colombia with315

numerous floods, such as site 23097040 (Figure 3a,b). For Colombian sites with data for316

> 7 floods, R values were 0.78–0.99. The model tended to under-predict the highest val-317

ues of reach-averaged erosion.318
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4 Discussion319

Although there is no firm consensus, previous literature has laid the case for a hy-320

drograph’s cumulative power as the best explainer of a flood’s geomorphic effectiveness.321

For instance, based on 10 events in Arkansas, California, Colorado, Idaho, Oregon and322

Washington, Costa and O’Connor (1995) suggested that a flood’s geomorphic effective-323

ness reflected the cumulative unit stream power exceeding the threshold for alluvial ero-324

sion. Rose et al. (2020) likewise found that the most geomorphically effective floods in325

a sample of seven had a high energy expenditure, high peak and long duration. Kale and326

Hire (2007) observed that sediment transport (a proxy for geomorphic effectiveness) dur-327

ing monsoons rose exponentially with their cumulative stream power. Magilligan et al.328

(2015) attributed the limited widening during an extreme flood to its low cumulative power,329

resulting from a high peak but short duration. Our data partly support this hypothe-330

sis; the summed hydrograph was positively correlated with erosion during the floods we331

studied. However, in our dataset flood duration was a slightly better predictor of ero-332

sion of the vegetated channel boundary. This result was consistent when we raised the333

flood definition threshold to the 90th percentile of stage, and the summed hydrograph334

and flood duration had equal effects when we lowered the threshold to the 70th percentile335

(Figures S5 and S6, SM).336

One reason for the weaker influence of the summed hydrograph in our data may337

be that these previous studies used the unit stream power hydrograph, whereas we used338

the stage hydrograph. We used stage so that changes could be used as a proxy for depth339

fluctuations when estimating shear stress and each hydrograph’s sediment transport ca-340

pacity. Although the unit transport capacity was a weaker predictor than the summed341

hydrograph or duration, transport became a stronger predictor when multiplied by chan-342

nel width (see section S1 and Figure S3 (SM) for more detail).343

The importance of flood duration in our dataset implies that, once these floods ex-344

ceed the entrainment threshold, further stage increases have a smaller effect than the du-345

ration above the threshold. That is, shear stress exposure duration has a greater effect346

than the peak stress. This result suggests that the threshold for entrainment was low347

in the rivers we studied, so that full mobility of all sediment sizes was attained frequently.348

The regional breakdown of Figure 2 (Table S1, SM) supports this notion, as the influ-349

ence of duration is strongest for Colombia where some studies have reported sand beds350

(e.g. Smith (1986); Mart́ınez Silva and Nanny (2020)).351

Other studies have used flood peak height, rather than cumulative power, to ex-352

plain geomorphic effectiveness. For instance, Middleton et al. (2019) mapped planimet-353

ric change during floods in a proglacial river and showed that, once an annually-reset thresh-354

old discharge had been exceeded, planimetric change increased with peak discharge. Miller355

(1990) found that, in alluvial rivers wider than 200 m, peak unit stream power during356

floods was correlated with geomorphic effectiveness. In alluvial fan experiments featur-357

ing different hydrographs of the same volume, surface reworking increased with the peak358

discharge (Leenman et al., 2022). Nevertheless, in our dataset flood height was only weakly359

related to geomorphic change. It is possible that a threshold above which peak height360

becomes important can only be extracted by analyzing numerous floods at one location.361

Such an analysis is difficult in the remote sensing of real rivers, either due to seasonal362

floods or to persistent cloud cover, both of which limit the number of events that can363

be assessed.364

Our results, and particularly the importance of flood duration, highlight some com-365

plexities of investigating flood impacts with a large-sample remote-sensing analysis. First,366

while we measured the flood-induced erosion of the vegetated channel boundaries, oth-367

ers simply categorized flood-driven change (e.g. (Costa & O’Connor, 1995)) or quanti-368

fied sedimentological impacts (Magilligan et al., 2015). The importance of duration here369

is relevant to vegetated channel boundaries, but results may differ if measuring a differ-370
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ent aspect of channel morphology — for instance, Magilligan et al. (2015) highlight how371

a flood event can have large sedimentological effects but a smaller impact on channel shape.372

Second, our large-sample analysis highlights the difficulty of finding a single parameter373

explaining flood effectiveness in all rivers. Flood duration was the most important driver374

of erosion in some rivers in our dataset, but not all; Table S1 shows that peak height was375

more important in Russia. Third, the relationship between a flood hydrograph and the376

erosion caused can be compounded by other variables, including the presence and char-377

acter of vegetation, the caliber and structure of bed and bank sediment, the sediment378

supplied from upstream, and the time elapsed since the previous flood. In this paper,379

we make a first attempt at a large-sample analysis of geomorphically effective floods, and380

our work highlights the need for global datasets on these additional variables in order381

to fully address this problem.382

Others have suggested that the causal relationship between a flood and its geomor-383

phic effectiveness is moderated by sediment supply. For instance, in comparing two events384

on the Peace River (Canada), Church (2014, Chapter 10) found that their geomorphic385

effects were best explained by differences in the sediment influx. Pfeiffer et al. (2019) found386

that bed-level changes in Washington State were not related to high-flow events, but to387

sediment supply from glaciers upstream. Dean and Schmidt (2013) observed that geo-388

morphic change during a flood in the Rio Grande was highest downstream of sediment-389

rich tributaries. For longer-term channel mobility, sediment supply positively influences390

channel migration (Constantine et al., 2014), and some rivers in our dataset (e.g. the391

Magdalena) have very high sediment loads (Restrepo et al., 2006; Higgins et al., 2016;392

Dethier et al., 2022). This question is an interesting and important one, and further work393

to measure sediment transport alongside flow during floods is crucial for understanding394

how sediment availability modulates a hydrograph’s geomorphic effectiveness.395

Our methods have some limitations which provide avenues for further research. The396

first is the suitability of using planform measurements to quantify three-dimensional chan-397

nel adjustment. For landslides, erosional area scales with volume (Guzzetti et al., 2009;398

Larsen et al., 2010), but in rivers a 2D for 3D substitution would not be appropriate where399

channels are laterally confined. We have side-stepped this problem by using only later-400

ally mobile rivers, which are therefore the rivers where a 2D for 3D substitution is most401

appropriate. Middleton et al. (2019) demonstrated experimentally that sediment trans-402

port scaled linearly with planimetric change, providing further justification for 2D change403

detection. However, further work on the suitability of measuring geomorphic change in404

planview would be valuable.405

Further potential limitations include that of data resolution; the Sentinel-2 imagery406

we use has a 10 m resolution. Because erosion may occupy a smaller footprint than de-407

position of the same volume (Lindsay & Ashmore, 2002), finer-scale imagery may bet-408

ter capture erosion and would facilitate equal monitoring of both processes. An inves-409

tigation of improvements with higher-resolution imagery would be worthwhile. In ad-410

dition, our method computes change in the vegetated channel boundaries, so that non-411

vegetated bars moving through these rivers are not counted. Work comparing different412

algorithms to quantify river dynamics would be a useful contribution. Finally, similar-413

ity between the spectral signatures of snow and water in the mNDWI (Huang et al., 2018)414

meant we had to discard snowy scenes. We thus compromised slightly on our goal of a415

geomorphically diverse set of rivers. As the S2 record approaches a decade, the main lim-416

itation on this work is the availability of flow records, which constrains the range of sites417

that can be used. Methods to measure or model flow in ungauged basins could extend418

this work to an even more geographically diverse range of rivers.419
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5 Conclusions420

We used Google Earth Engine and the Sentinel-2 satellite archive to map planform421

geomorphic change in laterally-mobile rivers during 160 flood events. By tracking each422

pixel for two years, we were able to separate permanent planform change from transient423

water extent fluctuations arising from stage variability. We measured each flood’s geo-424

morphic effectiveness as the reach-averaged erosion during the flood, and compared this425

to the flood hydrograph.426

In the 41 laterally active rivers studied, we found that the flood peak height was427

only weakly correlated with erosion. The summed hydrograph was a better predictor,428

but erosion was most closely correlated with flood duration in our dataset of events ex-429

ceeding the 80th percentile of stage.430

We built a random forest regression model to predict geomorphic change for each431

flood, using hydrograph metrics, estimated sediment transport and channel size. The model432

had a prediction accuracy above 60%, which is promising for the predictability of river-433

bank erosion in mobile reaches.434

Our work highlights the need for high-frequency flow monitoring in the world’s lat-435

erally active rivers, to better understand how a flood’s hydrograph controls its erosional436

impact. Moreover, better data on land cover, bank strength, and sediment caliber at stream437

gauging sites would elucidate how these characteristics modulate flood-driven erosion.438

Finally, monitoring sediment transport alongside river flows would help us to understand439

how sediment availability influences a flood’s geomorphic effectiveness.440
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Abstract16

Geomorphologists have long debated the relative importance of disturbance magnitude,17

duration and frequency in shaping landscapes. For river-channel adjustment during floods,18

some argue that cumulative flood ‘power’, rather than magnitude or duration, matters19

most. However, studies of flood-induced river-channel change often draw upon small datasets.20

Here, we combine Sentinel-2 imagery with flow data from laterally-active rivers to ad-21

dress this question using a larger dataset. We apply automated algorithms in Google Earth22

Engine to map rivers and detect their lateral shifting; we generate a large dataset to quan-23

tify channel change during 160 floods across New Zealand, Russia, and South America.24

Widening during these floods is best explained by their duration and cumulative hydro-25

graph. We use a random forest regression model to predict flood-induced channel widen-26

ing, with potential applications for hazard management. Ultimately, better global data27

on sediment supply and caliber would help us to understand flood-driven change to river28

planforms.29

Plain Language Summary30

Some rivers change their shape over time. In this paper, we explore how high-flow31

events drive these river channels to reshape themselves. We use Google Earth Engine32

to automatically map the shapes of rivers in satellite images. We apply this method to33

pairs of satellite images before and after high-flow events, to understand how the river34

shape is changed by the event. We compare the amount of channel-widening measured35

to aspects of the high-flow event, including its peak, duration and total flow. We do so36

for 160 high-flow events, and find that the duration and total flow are most important37

for explaining how much a channel widens during the event. Finally, we build a statis-38

tical model to predict the average amount of channel widening for a given high-flow event.39

This method has potential applications for hazard management in rivers that are known40

to change their shape.41

1 Introduction42

The relative importance of disturbance magnitude, duration and frequency for shap-43

ing landscapes is a crucial question in geomorphology. Many studies have considered the44

effects of high-magnitude versus high-frequency events: for cumulative sediment trans-45

port (Wolman & Miller, 1960; Webb & Walling, 1982), for generating and reworking land-46

forms (Wolman & Gerson, 1978; Kale, 2002, 2003; Surian et al., 2015), and for the re-47

sulting sedimentology (Magilligan et al., 1998; Marren, 2005). Others have considered48

the duration and total energy expenditure of individual disturbances and how this re-49

lates to their ability to transport sediment and reshape river channels (Costa & O’Connor,50

1995; Magilligan et al., 2015). In rivers, understanding which disturbances perform the51

most geomorphic work — both instantaneously, and cumulatively over time — has im-52

portant implications for sediment budgeting, flood conveyance, depositional records, and53

natural hazard management.54

In rivers, the major disturbances are flood events, which have the power to reshape55

the channels that convey them. Such reshaping ranges from bar deposition and bank ero-56

sion (Bryndal et al., 2017) or aggradation (Morche et al., 2007; Hooke, 2016) through57

to widening (Fuller, 2008; Yousefi et al., 2018), reoccupation of abandoned channels (Arnaud-58

Fassetta et al., 2005) and large-scale reworking of floodplains (Miller, 1990). The latter59

can have severe impacts for society, including erosion of agricultural or residential land60

(Yousefi et al., 2018) or the destruction of transport and river management infrastruc-61

ture (Arnaud-Fassetta et al., 2005). Conversely, aggradation during floods can raise riverbeds62

by several meters (Morche et al., 2007; Tunnicliffe et al., 2018), reducing a channel’s con-63

veyance capacity and the freeboard below bridges (Johnson et al., 2001). Quantitative64

–2–



manuscript submitted to Geophysical Research Letters

methods are needed to understand, model, and predict how river channels can be reshaped65

by individual flood events.66

The geomorphic effectiveness of a flood is thought to be a function of its duration67

and magnitude. Here, we define geomorphic effectiveness as the extent to which a flood68

alters the channel form by eroding or depositing sediment. We use the term ’flood’ to69

mean any temporary rise in the water level (in our analysis, one that exceeds the 80th70

percentile of the water surface elevation measurements). Previous studies have suggested71

that the cumulative stream power (defined by Bagnold (1966) as the product of water72

density, acceleration due to gravity, discharge and slope) beneath a flood hydrograph must73

be high for the event to be geomorphically effective; the implication is that high-magnitude74

but brief floods, and low-magnitude but long floods, are not likely to be effective (Costa75

& O’Connor, 1995). However, others have suggested that additional factors (not just the76

cumulative power) make a flood geomorphically effective. For instance, Middleton et al.77

(2019) demonstrated that flood magnitude does influence geomorphic effectiveness: in78

the proglacial braided river they studied, planform change during floods increased with79

their peak discharges. Others propose that a flood’s geomorphic effectiveness is not de-80

termined by the hydrograph alone, but also by the sediment supply (Church, 2014; Hooke,81

2016; Bennett et al., 2017; Pfeiffer et al., 2019) or the time since the previous flood, which82

can influence both sediment availability and the looseness of the riverbed (Gintz et al.,83

1996; Hooke, 2015). These studies have advanced our understanding of geomorphic ef-84

fectiveness, but almost all were small-sample case studies of 1-10 flood events or river85

reaches, often in similar regional or climatic contexts. Larger samples of flood events from86

a more geomorphically and geographically diverse set of rivers are required to produce87

a robust empirical assessment of what makes a geomorphically effective flood.88

Google Earth Engine (GEE) has recently emerged as a key tool facilitating large-89

sample analyses of landscape characteristics — through both its computational platform90

and archive of quality controlled satellite data. The ‘large-sample’ approach, which ad-91

dresses environmental questions using data from tens to thousands of sites, is popular92

in hydrology (Addor et al., 2017; Klingler et al., 2021) and has begun to be applied in93

geomorphology (Slater et al., 2015; Slater, 2016; Pfeiffer et al., 2019; Sylvester et al., 2019;94

Valenza et al., 2020; Ahrendt et al., 2022; Brooke et al., 2022; Clubb et al., 2022; Ed-95

monds et al., 2022). A large-sample approach to studying planimetric river adjustments96

can be readily deployed in GEE, drawing on automated methods to map river planform97

(Allen & Pavelsky, 2015; Pekel et al., 2016; Zou et al., 2018; Isikdogan et al., 2019; Pick-98

ens et al., 2020; Boothroyd et al., 2021) and to track planform deformation (Wickert et99

al., 2013; Rowland et al., 2016; Schwenk et al., 2017; Jarriel et al., 2021; Chadwick et100

al., 2022; Langhorst & Pavelsky, 2022). By automating river planform tracking in GEE,101

the geomorphic effectiveness of a large sample of flood events can be assessed.102

In this paper, we investigate the streamflow drivers of geomorphically effective floods103

using Sentinel-2 satellite imagery in GEE. We pursue two research questions:104

1. Which hydrograph metrics best explain a flood’s 2D geomorphic effectiveness?105

2. How well can a flood’s 2D geomorphic effectiveness be predicted from hydrologic106

and environmental variables?107

We measure geomorphic effectiveness as the reach-averaged channel widening during a108

flood. We compute this planimetric erosion in GEE for flood events in Brazil, Colom-109

bia, New Zealand and Russia. We use 160 flood events at 41 flow gauging sites on lat-110

erally active rivers to evaluate our research questions (see Figure S1, Supplementary Ma-111

terial (SM), for gauge locations). We ascertain the influence of hydrograph shape on ge-112

omorphic effectiveness in our dataset. Finally, we develop an empirical model to predict113

flood-induced erosion. When coupled with streamflow forecasts, the model may be use-114

ful for hazard management in sites that are known to be laterally active.115
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2 Methods116

Our method can be summarized as follows. First, we identified sites with histor-117

ical daily stage (water level) measurements and a laterally active channel. For those rivers,118

we identified peaks in the stage records. Second, for each flood peak we extracted the119

pre- and post-flood channel planform from Sentinel-2 data in GEE, and conducted a change120

detection between the two planforms to quantify erosion during the flood. Ultimately,121

we compared the lateral erosion detected to parameters of the flood hydrograph. Fig-122

ure 1 illustrates these steps with an example of one flood in Colombia. Our code is avail-123

able at https://github.com/a-leenman/2dFloodsPublic; GEE processing was per-124

formed via the ‘rgee’ r package (Aybar, 2022).125

Figure 1. Methods used to define floods and detect planform change. (a) The pre-flood (blue)

and post-flood (red) search windows for a sequence of floods (bold lines), showing how the win-

dows can overlap (purple). (b) Example flood from Colombian gauge 23097040, with the flood

start date (blue circle), two options for flood end date (black and red circles; the ‘downcross’ (red

circle) method was most appropriate) and the pre- and post-flood search windows. (c) Pre-flood

channel morphology, mosaicked from all cloud-free pixels in the six satellite images covering part

of the AOI within the pre-flood search window. Erosion during the following flood is outlined in

yellow. Black patches have no data due to cloud. (d) Corresponding post-flood mosaic (10 source

images within the time and space filter). (e) The pre- and post-flood channel planforms are over-

laid, highlighting the erosion (red) detected.

2.1 Site selection and area of interest126

Hydrologic records are crucial to our analysis, providing flood occurrence and hy-127

drograph shape data. We obtained publicly available stage records and gauging locations128
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for Brazil, Colombia, New Zealand and Russia. These countries were chosen for their lat-129

erally active rivers and availability of recent daily stage records.130

Other authors used discharge or stream power records to pursue this problem. How-131

ever, we chose to use stage data so that differences in stage could provide a proxy for132

depth fluctuations when estimating the time series of shear stress. Ultimately, we aimed133

to approximate the sediment transport capacity of each hydrograph.134

We filtered the stage records to include only those gauges that:135

1. Were located on a river with a mean annual discharge above 100 cm3 s-1 (data from136

Grill et al. (2019)), to ensure these rivers were large enough to be visible in our137

10 m satellite imagery.138

2. Were located on a laterally active river whose dynamics could be measured from139

satellite data. Laterally active rivers were identified by filtering the ‘water per-140

manence’ layer from Pekel et al. (2016). After computing planform change dur-141

ing floods, a site was removed if the eroded area never exceeded 1% of the water142

surface area or if the flood-induced widening never exceeded 3 m. These thresh-143

olds enabled the largest possible dataset while excluding channels that were not144

laterally active.145

3. Were not adjacent to large lakes or dams.146

4. Overlapped with the Sentinel-2 record (June 2015 - present) by at least one year.147

This filtering isolated a sample of 41 gauges. River widths ranged from 60 to 1000148

m; their gradients ranged from 0.00001 to 0.002. Their mean long-term discharge ranged149

from 100 to 7000 cm3s-1, and upstream catchment area ranged from 3800 to 430000 km2.150

Values of the Richards-Baker index (Baker et al., 2004) ranged from 0.005 (very seasonal)151

to 0.33 (moderately flashy). Gauge altitudes ranged from 3 to 500 m. Forest cover at152

the gauges ranged from 0 to 100%, and mean annual rainfall from 440 to 4100 mm. The153

range of rivers (including braided, wandering and meandering forms) encompassed by154

these values highlights the geographic and geomorphic diversity of the rivers we incor-155

porate.156

For each gauge, we defined an ‘Area of Interest’ (AOI) in which we extract the river157

planform and monitor its deformation. The ‘HydroSHEDS Free Flowing Rivers’ vector158

network (Lehner et al., 2008; Grill et al., 2019) was used to select all river segments within159

40 km of each gauge. We kept only the segments on the same branch as the gauge, and160

also removed segments that were past a jump in average discharge of >20%, implying161

that a ‘major’ tributary had been passed; we computed such jumps using the average162

discharge data for each segment in Grill et al. (2019). If two gauges were nearby on the163

same river, we divided the intervening segments between them. This left a remaining ‘linked164

reach’ (comprising one or more HydroSHEDS segments) assigned to each gauge. We ex-165

tracted water masks along each reach from Allen and Pavelsky (2018a, 2018b), as a first166

approximation of the channel area. However, these masks do not always encompass the167

entire channel in our study reaches (which are extremely laterally mobile: some shift by168

more than 30 m in a single flood) and so we buffered these masks by 500 m to create the169

AOI. Finally, lakes in the HydroLAKES (Messager et al., 2016) dataset were subtracted170

from the AOI, to avoid spurious change detection from varying lake levels. We thus as-171

signed to each gauge a unique AOI within which we extracted the river planform before172

and after each flood.173

2.2 Flood delineation and search window definition174

We delineated floods temporally based on the daily stage record for each gauge.175

Although higher frequency records were available for some countries, we resampled them176

by taking the daily mean stage. While this process smoothed some maxima and min-177
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ima, it gave all records the same frequency. We defined a flood as any period exceeding178

the 80th percentile of the stage record during the Sentinel-2 record (June 2015 onwards;179

Figure 1a, b). Floods were extracted from the daily stage records using the hydroEvents180

R package (Wasko & Guo, 2022). To ensure we captured the rising and falling limbs, we181

defined the flood start date as the first measurement before the peak which was also be-182

low the 50th percentile of stage (Figure 1a, blue points). We defined the flood end date183

in two ways: either as184

1. the first measurement following the peak which also fell below the 50th percentile185

of stage (Figure 1a, red points), or186

2. the first measurement following the peak which was within 30 cm of the stage at187

the start of the flood (Figure 1a, black points). Occasionally, missing data meant188

that the first method created flood end dates that were unreasonably far after the189

end of the flood, necessitating the second method.190

For each flood, we chose the flood end date with the stage measurement that was clos-191

est to the stage on the start date. Following the discussion in Slater et al. (2021), floods192

separated by less than seven days were counted as one event, and floods lasting more than193

5 months were discounted as these were mostly anomalies from missing data. While this194

approach of using the 50th percentile to give the start and end dates assigns a longer length195

to floods than some standard approaches, it allows us to capture the geomorphic effects196

of the rising and falling limbs, and recognizes that geomorphic change and sediment en-197

trainment likely start before the 80th percentile stage is exceeded.198

Directly before and after each flood, we defined pre- and post-flood time windows199

of up to three weeks (Figure 1a, b). We truncated a time window if floods were less than200

three weeks apart; for example, flood 309 (Figure 1a) finished nine days before the fol-201

lowing event, and so its post-flood window was truncated. If sequential events were less202

than six weeks apart, their pre- and post-flood windows were allowed to overlap; the post-203

flood window for one flood could even overlap entirely with the pre-flood window of the204

following event, as with floods 309 and 310 (Figure 1a; this would mean that the post-205

flood channel mask of flood 309 was reused as the pre-flood mask of flood 310). We used206

these pre- and post-flood time windows to search the Sentinel-2 archive (Level 1C, har-207

monized).208

2.3 Planform extraction and change detection209

Within each pre- and post-flood time window, we extracted the river planform from210

Sentinel-2 (S2) imagery. First, we mosaicked all cloud-free S2 pixels within the time win-211

dow and AOI, taking the minimum reflectance in each band if multiple copies of one pixel212

were available. Figure 1c and d are examples of these mosaics. We proceeded with an213

event if at least 50% of its AOI was cloud-free; only pixels that were cloud-free in both214

mosaics were used. For sites in New Zealand and Russia, we also mapped snow using the215

normalized difference snow index, following Hofmeister et al. (2022). For snow-free scenes216

that met our cloud threshold, we mapped channel planform from a combination of spec-217

tral indices, following Zou et al. (2018) and Boothroyd et al. (2021); these were the nor-218

malized difference vegetation index (Rousel et al., 1973), modified normalized difference219

water index (Xu, 2006), and enhanced vegetation index (Huete et al., 2002). Following220

Boothroyd et al. (2021), we counted both water and exposed sediment (i.e. non-vegetated221

bars) as part of the channel, given that a lack of vegetation indicates bars are frequently222

inundated. While this mapping method is simple, it is generalizable to rivers with dif-223

ferent lighting conditions and suspended sediment concentrations.224

We conducted change detection between the pre- and post-flood planforms to es-225

timate each flood’s geomorphic impact. To isolate areas that were permanently (as op-226

posed to transiently) changed during a flood, we tracked the state (wet or dry) of each227
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pixel at monthly intervals for the following 24 months, loosely following the pixel-by-pixel228

trend analysis of Nagel et al. (2022). We only considered a pixel to be eroded if it switched229

from dry-to-wet in the flood and then continued to be wet for the subsequent two years.230

If cloud cover meant there were <18 months of these after-flood observations for an event,231

we discounted it; we chose this threshold by checking the change detection for bias due232

to stage fluctuations. This pixel-tracking method allowed us to eliminate spurious change233

detection resulting from transient stage fluctuations.234

We measured a flood’s geomorphic effectiveness as the area that was permanently235

eroded (i.e. changed from ‘dry’ to ‘wet’) during the event. We normalized this eroded236

area by the reach length to give the reach-averaged channel widening. Because we counted237

non-vegetated bars as part of the channel, it was difficult to measure deposition follow-238

ing the flood; newly deposited sediment was typically registered as ‘channel’ by our map-239

ping algorithm. This is why we consider post-flood erosion to be the most appropriate240

metric of geomorphic change in our data.241

Our procedures for gauge selection, cloud- and snow-filtering isolated a dataset of242

160 events for which we measured geomorphic effectiveness. Because there were less than243

11 floods in some countries, we pooled all floods for our subsequent analyses.244

2.4 Regression and prediction245

Our first research question considers the influence of hydrograph shape on geomor-246

phic effectiveness. There are numerous metrics to characterize hydrographs, including247

measures of height, duration, integrated power, volume or transport capacity, and asym-248

metry (Brunner et al., 2021; Slater et al., 2021). Because these rivers feature a range of249

hydrographs (for instance, flashy versus seasonal), we use three simple metrics that al-250

low comparison with previous studies. The first is the flood peak height, relative to the251

mean daily stage. The second is the cumulative value of all daily stage measurements252

during the flood, measured relative to mean daily stage. This cumulative water level met-253

ric is akin to the ‘volume’ of a hydrograph when using discharge records (e.g. Brunner254

et al. (2021), Figure 3). Because we use stage records, the metric accounts for the com-255

bined influence of changes in flow depth during the flood (exerting stress on the river banks/bed)256

and of flood duration; we refer to it as the ‘summed hydrograph’. The third metric is257

the flood duration.258

As well as exploring how hydrograph metrics correlated with erosion, we built a259

random forest regression model to rank the predictors’ importance (by estimating how260

much they decreased the model’s mean square error, MSE). In addition to these hydro-261

graph metrics, we incorporated the pre-flood channel width, as channel size can positively262

influence channel mobility (Constantine et al., 2014; Nanson & Hickin, 1986; Langhorst263

& Pavelsky, 2022). Although sediment supply also increases channel mobility (e.g. Constantine264

et al. (2014); Ahmed et al. (2019); Donovan et al. (2021)), we do not have sediment sup-265

ply time-series for our gauging sites. Instead, we used stream gradients and stage records266

to estimate the sediment transport capacity for each flood (see Section S1, SM for de-267

tails), and added these estimates to the random forest model. We built the model us-268

ing the randomForest r package (Liaw & Wiener, 2002) with 500 trees and two variables269

randomly sampled at each split. We used the model to predict each flood’s reach-averaged270

erosion using leave-one-out cross-validation (LOOCV).271

3 Results272

In the laterally active rivers we study, floods and their geomorphic impacts vary273

by orders of magnitude. Peak heights vary from 30 to 700 cm above mean daily stage.274

The summed hydrographs vary from 40 to 30000 cm above mean daily stage, and flood275

durations from 1 to 152 days. The geomorphic effects of these floods are diverse, with276
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Figure 2. Flood metrics and their relationship to reach-averaged channel widening (i.e. plan-

view erosion normalized by reach length) during each flood. (a) Flood peak height above the

mean daily stage. (b) Cumulative stage exceeding mean daily stage (‘summed hydrograph’). (c)

Flood duration. Each point represents one event; colors indicate the four countries; point size is

proportional to pre-flood channel width. The solid gray line shows a linear regression and dotted

lines show 95% confidence limits; the regression equation is at the top-right. r2 and p-values are

at the top left. r2 values for individual countries are in Table S1, SM.

reach-averaged widening as low as 0.005 m and as high as 41 m. The least geomorphi-277

cally active country is New Zealand, with an average flood-induced widening of 0.9 m,278

while the most active is Colombia, with an average widening of 7 m across all floods.279

Our first research question considers the erosional response of river channels to flood280

hydrographs. Figure 2 demonstrates how reach-averaged erosion varies with three hy-281

drograph metrics in the 160 floods we study. Each point represents one event, with the282

reach-averaged erosion compared to the flood’s peak height (a), summed hydrograph (b),283

and flood duration (c). Figure 2 therefore shows how hydrograph metrics influence ge-284

omorphic effectiveness for 160 floods at 41 sites across Brazil, Colombia, New Zealand285

and Russia between 2015 and 2021.286

Our results indicate that reach-averaged channel widening is only weakly related287

to flood height in our dataset (Figure 2a). A linear regression of reach-averaged erosion288

during each flood against the peak height had an r2 of just 0.01. Erosion scaled more289

strongly with the summed hydrograph (Figure 2b), with an r2 of 0.32, and most strongly290

with flood duration (Figure 2c), with an r2 of 0.35. See Table S1 (SM) for country-specific291

relationships. These coefficients of determination are surprisingly high, considering that292

they represent observations from real systems and are thus confounded by other natu-293

ral variables in each location. Some of the relationships in Figure 2 appear non-linear294

(especially panel (c)), but we lack sufficient data to fit non-linear models and so we use295

linear regression to make a first-order comparison. These metrics are correlated among296

themselves (see Figure S2, SM); longer floods often had higher peaks, so that the r2 val-297

ues shown here indicate relative importance and we cannot say that the increase in ero-298

sion with flood duration was independent of the concurrent increase in height for many299

floods. Nevertheless, panels a-c indicate that, at least for our sample of laterally active300
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Figure 3. Predictions from our random forest regression model. (a) The stage record for

Colombian gauge 23097040; flood events with sufficient cloud-free satellite data are highlighted.

The observed and predicted reach-averaged erosion (channel widening) during each flood are

overlain and scale with the secondary y-axis. (b) A comparison of observed and predicted

channel-widening at this gauge; each point is one flood. (c) A comparison of observed and

predicted channel-widening for all floods in our dataset. Grey lines in (b) and (c) show a 1:1

relation.

rivers, flood duration was the most important variable for explaining flood-driven ero-301

sion of the vegetated channel boundary.302

We built a random forest regression model to rank the importance of the hydro-303

graph metrics, channel width, and estimated sediment transport for explaining flood ero-304

sion. The random forest model ranked these variables in the following order: estimated305

transport, channel width, flood duration, summed hydrograph and peak height; the rank-306

ings reflect how much each variable reduced the model’s MSE. This ranking is similar307

to the r2 values in Figure 2 and Figures S3-S4 (SM). Because the summed hydrograph308

and flood duration were correlated (R = 0.79), we ran two additional model versions,309

omitting either summed hydrograph or flood duration. Although these omissions altered310

the variables’ MSE reductions, neither altered the remaining variable rankings, imply-311

ing that the rankings are not affected by this co-linearity in the predictors.312

We predicted erosion for all floods in our dataset using the random forest model313

with LOOCV. We were able to predict erosion with at least 60% accuracy (R = 0.83;314

Figure 3c) using the pooled dataset. The model performed best for sites in Colombia with315

numerous floods, such as site 23097040 (Figure 3a,b). For Colombian sites with data for316

> 7 floods, R values were 0.78–0.99. The model tended to under-predict the highest val-317

ues of reach-averaged erosion.318
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4 Discussion319

Although there is no firm consensus, previous literature has laid the case for a hy-320

drograph’s cumulative power as the best explainer of a flood’s geomorphic effectiveness.321

For instance, based on 10 events in Arkansas, California, Colorado, Idaho, Oregon and322

Washington, Costa and O’Connor (1995) suggested that a flood’s geomorphic effective-323

ness reflected the cumulative unit stream power exceeding the threshold for alluvial ero-324

sion. Rose et al. (2020) likewise found that the most geomorphically effective floods in325

a sample of seven had a high energy expenditure, high peak and long duration. Kale and326

Hire (2007) observed that sediment transport (a proxy for geomorphic effectiveness) dur-327

ing monsoons rose exponentially with their cumulative stream power. Magilligan et al.328

(2015) attributed the limited widening during an extreme flood to its low cumulative power,329

resulting from a high peak but short duration. Our data partly support this hypothe-330

sis; the summed hydrograph was positively correlated with erosion during the floods we331

studied. However, in our dataset flood duration was a slightly better predictor of ero-332

sion of the vegetated channel boundary. This result was consistent when we raised the333

flood definition threshold to the 90th percentile of stage, and the summed hydrograph334

and flood duration had equal effects when we lowered the threshold to the 70th percentile335

(Figures S5 and S6, SM).336

One reason for the weaker influence of the summed hydrograph in our data may337

be that these previous studies used the unit stream power hydrograph, whereas we used338

the stage hydrograph. We used stage so that changes could be used as a proxy for depth339

fluctuations when estimating shear stress and each hydrograph’s sediment transport ca-340

pacity. Although the unit transport capacity was a weaker predictor than the summed341

hydrograph or duration, transport became a stronger predictor when multiplied by chan-342

nel width (see section S1 and Figure S3 (SM) for more detail).343

The importance of flood duration in our dataset implies that, once these floods ex-344

ceed the entrainment threshold, further stage increases have a smaller effect than the du-345

ration above the threshold. That is, shear stress exposure duration has a greater effect346

than the peak stress. This result suggests that the threshold for entrainment was low347

in the rivers we studied, so that full mobility of all sediment sizes was attained frequently.348

The regional breakdown of Figure 2 (Table S1, SM) supports this notion, as the influ-349

ence of duration is strongest for Colombia where some studies have reported sand beds350

(e.g. Smith (1986); Mart́ınez Silva and Nanny (2020)).351

Other studies have used flood peak height, rather than cumulative power, to ex-352

plain geomorphic effectiveness. For instance, Middleton et al. (2019) mapped planimet-353

ric change during floods in a proglacial river and showed that, once an annually-reset thresh-354

old discharge had been exceeded, planimetric change increased with peak discharge. Miller355

(1990) found that, in alluvial rivers wider than 200 m, peak unit stream power during356

floods was correlated with geomorphic effectiveness. In alluvial fan experiments featur-357

ing different hydrographs of the same volume, surface reworking increased with the peak358

discharge (Leenman et al., 2022). Nevertheless, in our dataset flood height was only weakly359

related to geomorphic change. It is possible that a threshold above which peak height360

becomes important can only be extracted by analyzing numerous floods at one location.361

Such an analysis is difficult in the remote sensing of real rivers, either due to seasonal362

floods or to persistent cloud cover, both of which limit the number of events that can363

be assessed.364

Our results, and particularly the importance of flood duration, highlight some com-365

plexities of investigating flood impacts with a large-sample remote-sensing analysis. First,366

while we measured the flood-induced erosion of the vegetated channel boundaries, oth-367

ers simply categorized flood-driven change (e.g. (Costa & O’Connor, 1995)) or quanti-368

fied sedimentological impacts (Magilligan et al., 2015). The importance of duration here369

is relevant to vegetated channel boundaries, but results may differ if measuring a differ-370
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ent aspect of channel morphology — for instance, Magilligan et al. (2015) highlight how371

a flood event can have large sedimentological effects but a smaller impact on channel shape.372

Second, our large-sample analysis highlights the difficulty of finding a single parameter373

explaining flood effectiveness in all rivers. Flood duration was the most important driver374

of erosion in some rivers in our dataset, but not all; Table S1 shows that peak height was375

more important in Russia. Third, the relationship between a flood hydrograph and the376

erosion caused can be compounded by other variables, including the presence and char-377

acter of vegetation, the caliber and structure of bed and bank sediment, the sediment378

supplied from upstream, and the time elapsed since the previous flood. In this paper,379

we make a first attempt at a large-sample analysis of geomorphically effective floods, and380

our work highlights the need for global datasets on these additional variables in order381

to fully address this problem.382

Others have suggested that the causal relationship between a flood and its geomor-383

phic effectiveness is moderated by sediment supply. For instance, in comparing two events384

on the Peace River (Canada), Church (2014, Chapter 10) found that their geomorphic385

effects were best explained by differences in the sediment influx. Pfeiffer et al. (2019) found386

that bed-level changes in Washington State were not related to high-flow events, but to387

sediment supply from glaciers upstream. Dean and Schmidt (2013) observed that geo-388

morphic change during a flood in the Rio Grande was highest downstream of sediment-389

rich tributaries. For longer-term channel mobility, sediment supply positively influences390

channel migration (Constantine et al., 2014), and some rivers in our dataset (e.g. the391

Magdalena) have very high sediment loads (Restrepo et al., 2006; Higgins et al., 2016;392

Dethier et al., 2022). This question is an interesting and important one, and further work393

to measure sediment transport alongside flow during floods is crucial for understanding394

how sediment availability modulates a hydrograph’s geomorphic effectiveness.395

Our methods have some limitations which provide avenues for further research. The396

first is the suitability of using planform measurements to quantify three-dimensional chan-397

nel adjustment. For landslides, erosional area scales with volume (Guzzetti et al., 2009;398

Larsen et al., 2010), but in rivers a 2D for 3D substitution would not be appropriate where399

channels are laterally confined. We have side-stepped this problem by using only later-400

ally mobile rivers, which are therefore the rivers where a 2D for 3D substitution is most401

appropriate. Middleton et al. (2019) demonstrated experimentally that sediment trans-402

port scaled linearly with planimetric change, providing further justification for 2D change403

detection. However, further work on the suitability of measuring geomorphic change in404

planview would be valuable.405

Further potential limitations include that of data resolution; the Sentinel-2 imagery406

we use has a 10 m resolution. Because erosion may occupy a smaller footprint than de-407

position of the same volume (Lindsay & Ashmore, 2002), finer-scale imagery may bet-408

ter capture erosion and would facilitate equal monitoring of both processes. An inves-409

tigation of improvements with higher-resolution imagery would be worthwhile. In ad-410

dition, our method computes change in the vegetated channel boundaries, so that non-411

vegetated bars moving through these rivers are not counted. Work comparing different412

algorithms to quantify river dynamics would be a useful contribution. Finally, similar-413

ity between the spectral signatures of snow and water in the mNDWI (Huang et al., 2018)414

meant we had to discard snowy scenes. We thus compromised slightly on our goal of a415

geomorphically diverse set of rivers. As the S2 record approaches a decade, the main lim-416

itation on this work is the availability of flow records, which constrains the range of sites417

that can be used. Methods to measure or model flow in ungauged basins could extend418

this work to an even more geographically diverse range of rivers.419
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5 Conclusions420

We used Google Earth Engine and the Sentinel-2 satellite archive to map planform421

geomorphic change in laterally-mobile rivers during 160 flood events. By tracking each422

pixel for two years, we were able to separate permanent planform change from transient423

water extent fluctuations arising from stage variability. We measured each flood’s geo-424

morphic effectiveness as the reach-averaged erosion during the flood, and compared this425

to the flood hydrograph.426

In the 41 laterally active rivers studied, we found that the flood peak height was427

only weakly correlated with erosion. The summed hydrograph was a better predictor,428

but erosion was most closely correlated with flood duration in our dataset of events ex-429

ceeding the 80th percentile of stage.430

We built a random forest regression model to predict geomorphic change for each431

flood, using hydrograph metrics, estimated sediment transport and channel size. The model432

had a prediction accuracy above 60%, which is promising for the predictability of river-433

bank erosion in mobile reaches.434

Our work highlights the need for high-frequency flow monitoring in the world’s lat-435

erally active rivers, to better understand how a flood’s hydrograph controls its erosional436

impact. Moreover, better data on land cover, bank strength, and sediment caliber at stream437

gauging sites would elucidate how these characteristics modulate flood-driven erosion.438

Finally, monitoring sediment transport alongside river flows would help us to understand439

how sediment availability influences a flood’s geomorphic effectiveness.440
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Table 1. The r2 values for the relationships in Figure 2 (main manuscript), for each individ-

ual country.‘Av. mag.’ is the mean peak height in cm (measured above the gauge’s mean daily

stage) across all flood events in that country.‘Av. total’ is the mean (across all floods in a coun-

try) of the total water level (in cm) exceeding mean stage.‘Av. dur.’ is the mean flood duration

(in days) in that country. ‘Av. widening’ is the mean reach-averaged widening (in m) across all

floods and sites in that country.

Country r2, Peak
height above
mean stage

(cm)

r2, Stage
above mean,

summed
(cm)

r2, Duration
(days)

N.
floods

N.
gauge
sites

Av. mag. Av. total Av. dur. Av.
widening

Brazil -0.018 0.219 0.293 47 10 230 4100 53 1.90
Colombia 0.110 0.321 0.442 87 22 160 5300 57 7.30
New Zealand 0.796 0.278 0.171 11 1 190 1100 29 0.92
Russia 0.348 0.082 0.081 15 8 150 3700 71 3.20

Table 2. The variables used in the random forest model. Column 1 shows how each variable

contributed to reducing MSE. The final column shows the rank assigned to each variable by the

random forest regression.

% Decr. in MSE Variables Rank

22.18 Estimated sediment transport 1
16.77 Channel width 2
15.65 Duration 3
8.54 Total stage exceeding mean 4
7.61 Peak height above mean daily stage 5
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Figure 1. Map showing the areas of interest (AOIs) associated with each gauge. Colors show

the magnitude of reach-averaged widening (in metres) during the most effective flood at each site.
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Figure 2. Duration, magnitude (peak height) and geomorphic effectiveness (reach-averaged

erosion) for each flood event in our dataset. Each point is one flood event; colours correspond to

countries and size corresponds to geomorphic effectiveness of each flood.
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1 Sediment transport capacity10

We estimated sediment transport capacity based on the stage and slope data avail-11

able to us. Sediment transport equations often predict transport as the 3
2 power of some12

flow property — often that which exceeds a threshold value at which sediment of a given13

size can be entrained (Church, 2010). Often that flow property is the dimensionless shear14

stress τ∗, but we have no data on grain size with which to calculate this. Instead, we ap-15

proximate the dimensional boundary shear stress τ , which scales with the depth-slope16

product dS. We have no data on flow depth and approximate it with flow stage h in-17

stead; our estimates of channel slope S are calculated along the area of interest polygon18

for each gauging site using elevation data from the MERIT DEM (Yamazaki et al., 2017).19

We therefore estimate unit sediment transport qs as a function of stage and slope.20

We do not have data on the threshold for motion in our study sites, so we assume that21

the threshold is 25% of the difference between minimum and maximum stage in each gauge22

record, during the ˜7 year period for which we have satellite data. While arbitrary, this23

value of 25% is based on a literature search for reported values of the onset of transport24

as a percentage of peak discharge, and it also performed better than other thresholds25

we tried.26

We thus estimate a flood’s cumulative transport as a function of changes in stage:27

qs =

n∑
1

((h− hr25)S)
3
2 (1)

where n is the total number of days in the flood, h is the stage value for each day, r2528

is the stage that is 25% of the difference between the minimum and maximum stage dur-29

ing the satellite record, and S refers to the channel slope. We performed this calcula-30

tion for each day in a flood and summed across the entire event.31

Finally, we multiply qs by channel width to estimate the channel-integrated (to-32

tal) sediment transport Qs. While qs did not scale with erosion as well as the flood du-33

ration or summed hydrograph did, the estimated Qs scaled rather closely (r2 = 0.63) with34

each flood’s geomorphic effectiveness (Figure S3). It is Qs that we used in our random35

forest model.36
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Figure 3. Linear regression of flood-driven erosion (reach-averaged) against our estimates of

the cumulative sediment transport capacity of each hydrograph: (a) unit transport qs (b) inte-

grated (total) transport Qs.

Figure 4. Linear regression of flood-driven erosion (reach-averaged) against mean channel

width prior to each flood.
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Figure 5. The results in Figure 2 (main manuscript) when the flood-delineation threshold is

lowered to the 70th percentile of stage.

Figure 6. The results in Figure 2 (main manuscript) when the flood-delineation threshold is

raised to the 90th percentile of stage.
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