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Abstract

Rupture speed Vr and stress drop Δτ are two key parameters that can characterize earthquake source and the associated

potential for ground shaking. Despite their importance, a controversy has emerged in recent years regarding whether there is a

positive or negative correlation between Δτ and Vr. Here I attempt to reconcile the controversy by presenting a context-based

solution and a physics-based solution. The first solution calls for attention to the specific context under which Vr and Δτ are

discussed, as their meanings and estimated values can vary between different studies. It is noted that a negative correlation

between Δτ and Vr can result, at least partly, from a tradeoff effect inherent to certain analysis method. For the second solution,

it is shown that the specific correlation between Δτ and Vr can depend on the condition of fracture energy Gc. Constant Gc

often favors a positive correlation, whereas introducing a variability of Gc can lead to a negative correlation. More efforts are

needed to improve the methods for estimating Vr and Δτ, and to explore other mechanisms that may explain the correlation

between the two parameters.
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Key Points: 10 

• There are different contexts for discussing rupture speed, stress drop, and their correlation 11 

• Constant fracture energy favors a positive correlation between stress drop and rupture 12 
speed  13 

• Variable fracture energy can lead to a negative correlation between stress drop and 14 
rupture speed  15 
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Abstract 16 

Rupture speed 𝑉௥ and stress drop Δ𝜏 are two key parameters that can characterize earthquake 17 
source and the associated potential for ground shaking. Despite their importance, a controversy 18 
has emerged in recent years regarding whether there is a positive or negative correlation between 19 Δ𝜏 and 𝑉௥. Here I attempt to reconcile the controversy by presenting a context-based solution and 20 
a physics-based solution. The first solution calls for attention to the specific context under which 21 𝑉௥ and Δ𝜏 are discussed, as their meanings and estimated values can vary between different 22 
studies. It is noted that a negative correlation between Δ𝜏 and 𝑉௥ can result, at least partly, from a 23 
tradeoff effect inherent to certain analysis method. For the second solution, it is shown that the 24 
specific correlation between Δ𝜏 and 𝑉௥ can depend on the condition of fracture energy 𝐺௖. 25 
Constant 𝐺௖ often favors a positive correlation, whereas introducing a variability of 𝐺௖ can lead 26 
to a negative correlation. More efforts are needed to improve the methods for estimating 𝑉௥ and 27 Δ𝜏, and to explore other mechanisms that may explain the correlation between the two 28 
parameters. 29 

 30 

Plain Language Summary 31 

Rupture speed describes how fast an earthquake rupture propagates, and stress drop dictates how 32 
much strain energy stored in the surrounding media is released by an earthquake. From an 33 
energy-based point of view, it may be intuitive to anticipate a positive correlation between stress 34 
drop and rupture speed, because larger stress drop would imply more energy supply (converted 35 
from strain energy) for rupture propagation. Meanwhile, several recent studies also reveal a 36 
negative correlation between stress drop and rupture speed. To reconcile the discrepancy, it is 37 
necessary to recognize (1) how rupture speed and stress drop are defined and estimated, and (2) 38 
the importance of both energy supply and consumption. Especially, it is shown that reducing the 39 
energy consumption required for rupture propagation, known as fracture energy, can lead to a 40 
negative correlation between stress drop and rupture speed. Therefore, the detailed correlation 41 
between stress drop and rupture speed can depend on whether fracture energy remains invariant. 42 
Other mechanisms may also produce a positive or negative correlation between stress drop and 43 
rupture speed, and deserve to be explored in the future. 44 

 45 

1 Introduction 46 

Since the seminal work of Griffith (1921), it is now generally accepted that fracture of 47 

brittle materials is described by an energy balance criterion (Broberg, 1999; Freund, 1990). 48 

Significant efforts have been made to extend the key concepts in material science focusing on 49 

fracture to earthquake science focusing on frictional slip (Andrews, 1976; Ben-Zion, 2001; 50 

Burridge, 1973; Das, 2003; Madariaga, 2012; Rice, 1980), after which energy partitioning can be 51 

discussed during an earthquake (Kanamori & Rivera, 2006; Rivera & Kanamori, 2005). Recent 52 

laboratory experiments, theoretical analyses, and numerical simulations further support the 53 

validity of fracture mechanics for describing the behaviors of both slow and fast earthquakes 54 
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(Svetlizky & Fineberg, 2014; Kammer et al., 2018; Reches & Fineberg, 2023; Weng & 55 

Ampuero, 2022). 56 

One fundamental question in earthquake science is how fast an earthquake rupture can 57 

propagate, since this will affect the understanding of earthquake physics and the assessment of 58 

seismic hazard. According to fracture mechanics, rupture speed is controlled by the balance 59 

between energy release rate and fracture energy (Freund, 1990). The former tells how much 60 

available energy is released per unit rupture length, which is a function of stress drop and rupture 61 

speed; while the latter describes how much energy must be dissipated in order to advance the 62 

rupture front. Following this idea, a variety of rupture phase diagrams have been constructed to 63 

connect rupture speed with other source parameters, such as stress drop or a function of it 64 

(Andrews, 1976; Liu et al., 2014; Madariaga & Olsen, 2000; Passelègue et al., 2020; Trømborg 65 

et al., 2011; Wei et al., 2021; Xu et al., 2015). 66 

While the importance of rupture speed and stress drop has been recognized, how the two 67 

parameters correlate with one another is still a subject of debate. Some studies show a positive 68 

correlation based on experimental observations (Chen et al., 2021; Passelègue et al., 2013; 69 

Svetlizky et al., 2017; Xu et al., 2018), whereas others report a negative correlation based on 70 

source inversion of natural earthquakes (e.g., Chounet et al., 2018). In this commentary, I present 71 

two solutions for reconciling the discrepancy. The first solution calls for attention to the context 72 

under which rupture speed and stress drop are discussed, as their meanings can vary between 73 

different studies. The second solution is more physics based and will invoke fracture energy to 74 

tune the correlation between stress drop and rupture speed.       75 

2 Different contexts for discussing rupture speed and stress drop  76 

While the definitions of rupture speed and stress drop are clear in the literature (Bizzarri, 77 

2011; Kanamori & Rivera, 2006; Noda et al., 2013), to estimate their values from actual 78 

observations requires experience and sometimes can be challenging. 79 

In the laboratory, rupture speed 𝑉௥ is usually estimated by two approaches: (1) counting 80 

the travel time of rupture front over some propagation distance, and (2) matching the near-field 81 

waveform against a 𝑉௥-dependent reference solution. Although the two approaches can often 82 

yield similar results, some issues deserve to be mentioned. First, the approach of waveform 83 

matching has a low and high sensitivity to 𝑉௥ when 𝑉௥ is slow and fast, respectively, owing to the 84 

pronounced Lorentz effect only when 𝑉௥ approaches the limiting speed (Svetlizky & Fineberg, 85 
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2014; Svetlizky et al., 2020). Consequently, one study recommends combining rupture front 86 

trajectory and detailed waveform pattern for a robust estimation of rupture properties (Xu et al., 87 

2019a). Second, when rupture process is not smooth (Xu et al., 2023) or when rupture evolution 88 

has not become spontaneous, e.g., during rupture nucleation (Guérin-Marthe et al., 2019), then 89 

the two approaches may not converge. The estimation of stress drop Δ𝜏 in the laboratory also 90 

requires experience and caution. Here I don’t consider the cases equipped with only macroscopic 91 

observations (Baumberger & Caroli, 2006; Leeman et al., 2016; Nielsen et al., 2016), because 92 

rupture propagation is not explicitly involved. For other cases where rupture propagation can be 93 

resolved, Δ𝜏 is typically estimated during the passage of rupture front (Bayart et al., 2018; Xu et 94 

al., 2018), known as dynamic stress drop. The purpose is to minimize undesired effects, such as 95 

fault re-rupturing, healing, reflected waves from sample boundaries, and interaction with external 96 

apparatus. That said, caution must be taken to study the static stress drop finalized after rupture 97 

termination (Ke et al., 2018; Passelègue et al., 2016) or the long-tailed slip-weakening process 98 

(Brener & Bouchbinder, 2021; Paglialunga et al., 2022), since undesired effects can be involved 99 

if the selected time window is long. Moreover, spatial heterogeneity (Bayart et al., 2018), off-100 

fault measurement (Xu et al., 2019a), and intermittent rupture process (Rubino et al., 2022; Xu et 101 

al., 2023) can also complicate the estimation of stress drop or slip-weakening curve. 102 

Despite the aforementioned various issues, as long as careful calibrations are made, 103 

rupture speed and stress drop can be estimated directly and accurately in the laboratory, whose 104 

values are sometimes cross-validated by fracture mechanics (Bayart et al., 2018; Kammer et al., 105 

2018; Svetlizky et al., 2017; Xu et al., 2019a). 106 

Except for some cases equipped with near-field stations (Fukuyama & Mikumo, 2007; 107 

Fukuyama & Suzuki, 2016), the source properties of natural earthquakes usually cannot be 108 

directly measured; instead, they are inferred from remote observations in the context of certain 109 

models, and thus are subject to attenuation and model dependence. Although dynamic inversion 110 

has been applied to a few cases (Madariaga & Ruiz, 2016), common practice still assumes a 111 

kinematic model with prescribed rupture process to invert for earthquake source properties. For 112 

large earthquakes, finite fault inversion can be performed to discretize the source region into 113 

several patches. Depending on data quality and model parameterization, either a constant 114 

(Hartzell & Heaton, 1983; Kikuchi & Kanamori, 1991; Ye et al., 2016) or a variable rupture 115 

speed (Ji et al., 2002; Minson et al., 2013) can be inverted. With the inverted slip history, a 116 
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dislocation model can be further applied to obtain the evolution of stress (Bouchon, 1997; Ide & 117 

Takeo, 1997; Tinti et al., 2005) and the final static stress drop (Okada, 1992), either on each 118 

patch or over the entire region (Noda et al., 2013; Shao et al., 2012). For small-to-moderate 119 

earthquakes, simple models such as the circular crack or rectangular fault models are preferred 120 

(Brune, 1970; Haskell, 1964; Kaneko & Shearer, 2015; Madariaga, 1976; Sato & Hirasawa, 121 

1973), although only some of them explicitly consider rupture propagation (Udías et al., 2014). 122 

Another useful approach is to analyze the second moment tensor (McGuire, 2004; Meng et al., 123 

2020). Several studies have already applied simple models to global (Allmann & Shearer, 2009; 124 

Chounet et al., 2018) or regional earthquakes (Abercrombie & Rice, 2005; Abercrombie et al., 125 

2017; Yoshida & Kanamori, 2023). In these studies, rupture speed is either assumed or inferred 126 

from pre-defined misfit functions, while stress drop is estimated from the corner frequency of 127 

source spectrum and the scaling relation related to seismic moment.  128 

Three issues deserve to be mentioned for the kinematic inversion of natural earthquakes. 129 

First, the inverted rupture speed does not necessarily reflect the true rupture speed, because there 130 

is no cross-validation against fracture mechanics. Second, for most cases, the estimated stress 131 

drop depends on the entire rupture process, including fault rupturing, re-rupturing and healing, 132 

and thus can deviate from the dynamic stress drop solely produced by one rupture front 133 

(Madariaga, 1976; Kaneko & Shearer, 2015; Ke et al., 2022; Song & Dalguer, 2017). Third, 134 

there is a tradeoff between stress drop Δ𝜏 and rupture speed 𝑉௥ through the scaling relation 135 ∆𝜏 ∙ (𝑉௥)ଷ ∝ 𝑀଴, where 𝑀଴ denotes seismic moment (Kanamori & Rivera, 2004). This can easily 136 

render a negative correlation between Δ𝜏 and 𝑉௥ (Ye et al., 2016). 137 

In summary, the context for discussing rupture speed and stress drop can vary between 138 

laboratory and natural earthquakes (Table 1), or between studies on the same earthquake but with 139 

different models. Consequently, it is quite possible that the derived correlation between stress 140 

drop and rupture speed can also vary. To avoid apple vs. orange comparison, it is better to stick 141 

to the same context, and mind the assumptions and limitations of the employed model. 142 

  143 
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Table 1 Different contexts for estimating rupture speed 𝑉௥ and stress drop Δ𝜏 144 
 Laboratory earthquakes 

(with rupture propagation) 

Natural earthquakes 

(kinematic inversion) 

Near-field observation yes sometimes yes but mostly no  𝑉௥ directly measured or inferred inferred or assumed;  

constant or variable Δ𝜏 directly measured;  

mostly dynamic stress drop 

indirectly estimated;  

mostly static stress drop 

Independent estimations 

of 𝑉௥ and Δ𝜏 

yes usually no 

𝑉௥ and Δ𝜏 cross-validated 

by fracture mechanics 

sometimes yes no 

 145 

3 Physical mechanisms explaining the correlation between stress drop and rupture speed 146 

In this section, I focus on the same context(s) where rupture speed and stress drop can be 147 

estimated in a consistent way. Although tradeoff effect and estimation error may still exist, the 148 

main purpose here is to seek physical mechanisms for understanding the correlation between 149 

stress drop and rupture speed. 150 

In the laboratory, several studies have revealed a positive correlation between stress drop 151 Δ𝜏 and rupture speed 𝑉௥ (Chen et al., 2021; Okubo & Dieterich, 1984; Passelègue et al., 2013, 152 

2016; Svetlizky et al., 2017; Xu et al., 2018). This can be understood by the balance between 153 

dynamic energy release rate 𝐺ௗ(𝑉௥, Δ𝜏) = 𝑔(𝑉௥) ∙ 𝐺௦(Δ𝜏) and fracture energy 𝐺௖ (Freund, 1990). 154 

Here, 𝑔(𝑉௥) is a monotonically decreasing function of 𝑉௥, while 𝐺௦(Δ𝜏) is a functional of Δ𝜏 and 155 

known as static energy release rate. Assuming 𝐺௖ is constant, larger Δ𝜏 in general would indicate 156 

larger 𝐺௦(Δ𝜏). To still hold a balance between 𝐺ௗ(𝑉௥, Δ𝜏) and 𝐺௖, the function 𝑔(𝑉௥) must 157 

decrease, which then implies an increase in 𝑉௥. While fracture energy 𝐺௖ does appear constant in 158 

some cases once the conditions for loading and fault interface are set (Bayart et al., 2016), there 159 

is no particular reason to believe that 𝐺௖ must always remain constant. Indeed, 𝐺௖ can vary by a 160 

factor of two during the same sequence of earthquakes (Xu et al., 2019a), or by two orders of 161 

magnitude between the primary and secondary rupture fronts (Kammer & McLaskey, 2019). 162 
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Taken to the extreme, one study shows that some secondary slip fronts, corresponding to one 163 

type of interface waves, can propagate rapidly with zero 𝐺௖ and zero Δ𝜏 (Xu et al., 2019b). 164 

Apparently, if one relaxes the assumption of constant 𝐺௖, then there will be room for a negative 165 

correlation between Δ𝜏 and 𝑉௥. This is further demonstrated by a recent experimental work 166 

showing that a smooth fault tends to produce subshear ruptures with larger Δ𝜏 and longer 167 

recurrence interval, whereas a rough fault can host supershear ruptures with smaller Δ𝜏 and 168 

shorter recurrence interval (Xu et al., 2023). It is conceived that 𝐺௖, which scales with recurrence 169 

interval, is smaller on the rough fault. 170 

 171 

 172 

Figure 1. Schematic diagrams showing secondary slip fronts in a region that has already been 173 
ruptured by a main slip front. (a) In the transition zone of a subducting plate, along-strike tremor 174 
reversal and along-dip tremor streak can emerge in the wake of a main ETS front. Figure drawn 175 
based on figures 3 and 6 in Luo & Ampuero (2017). (b) Under the condition of constant friction 176 
(implying zero fracture energy 𝐺௖) behind a primary rupture front, secondary slip fronts can 177 
propagate at the Rayleigh, S, or P wave speed (denoted by 𝐶ୖ, 𝐶ୗ, and 𝐶୔, respectively). Figure 178 
drawn based on figure 1 in Dunham et al. (2003). 179 
 180 

The role of fracture energy may also explain the behaviors of natural earthquakes. 181 

Episodic Tremor and Slip (ETS), one form of slow earthquakes (Peng & Gomberg, 2010), has 182 

been observed to advance slowly at a speed of ~ 10 km/day, along the strike of the subducting 183 

plate in Cascadia (Houston et al., 2011) and southwest Japan (Obara et al., 2012). Occasionally, 184 

secondary slip fronts can propagate backward along the strike at a speed of ~ 100 km/day, or 185 

back and forth along the dip at a speed of ~ 1000 km/day (Figure 1a) (Ghosh et al., 2010; 186 

Houston et al., 2011; Luo & Ampuero, 2017; Nakamoto et al., 2021; Obara et al., 2012). 187 
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Theoretical analyses suggest that, for a secondary slip front to attain a faster propagation speed 188 𝑉௥ than the main one, either slip rate 𝑣ୱ୪୧୮ needs to be increased or peak-to-residual strength drop 189 Δ𝜏௣ି௥ needs to be reduced, according to the scaling relation: 𝑉௥ = 𝛼 ∙ 𝑣ୱ୪୧୮ ∙ ఓ୼ఛ೛షೝ, where 𝛼 is a 190 

geometric factor of order 1 and 𝜇 is the shear modulus (Ampuero & Rubin, 2008; Rubin & 191 

Armbruster, 2013). One possibility for achieving higher 𝑣ୱ୪୧୮ and/or lower Δ𝜏௣ି௥ is to reduce 192 

fracture energy 𝐺௖ (Hawthorne et al., 2016). This is mechanically feasible, because 𝐺௖ must be 193 

weakened by the main slip front and can only be partially recovered for a short elapse time. 194 

Similar feature has also been reported for numerically simulated fast earthquakes, where 195 

polarized secondary slip fronts can propagate at around the Rayleigh or body wave speed (~ 3-6 196 

km/s for typical crustal rocks) behind a main slip front (Figure 1b) (Dunham et al., 2003; 197 

Dunham, 2005). In this case, 𝐺௖ remains zero after the passage of the main slip front, so that 198 

those secondary slip fronts are accompanied with zero stress drop and zero strength drop, despite 199 

their fast propagation speeds. 200 

Last but not the least, there is another way for explaining a negative correlation between 201 

stress drop Δ𝜏 and rupture speed 𝑉௥. To do so, one needs to extrapolate the classical concept of 202 

fracture energy to any dissipative processes (e.g., off-fault damage) that can effectively damp the 203 

acceleration of the rupture front (Andrews, 2005; Ben-Zion & Dresen, 2022; Cocco et al., 2023; 204 

Gabriel et al., 2013; Nielsen, 2017; Templeton, 2009). Let’s consider a scenario where the entire 205 

on- and off-fault region is on the verge of failure and then a dynamic rupture is activated along 206 

the fault. On one hand, larger (or smaller) Δ𝜏 tends to favor faster (or slower) 𝑉௥, as already 207 

explained earlier. On the other hand, larger (or smaller) Δ𝜏 also tends to induce more (or less) 208 

extensive off-fault damage, which in turn can quench (or promote) the further acceleration of the 209 

rupture front. A delicate balance between the two competing effects could cause a negative 210 

correlation between Δ𝜏 and 𝑉௥. This is the physical mechanism invoked by Chounet et al. (2018) 211 

for understanding their inferred results on global earthquakes. Similarly, a non-monotonic 212 

friction law, characterized by rate-weakening at low slip rate but rate-strengthening at high slip 213 

rate (Bar-Sinai et al., 2014; Reches & Lockner, 2010; Rubin, 2011; Shibazaki & Iio, 2003), may 214 

also cause a negative correlation between Δ𝜏 and 𝑉௥. 215 
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4 Conclusions 216 

Contrasting views on the correlation between stress drop Δ𝜏 and rupture speed 𝑉௥ have 217 

been reported in recent years. Two solutions are presented to reconcile the discrepancy: (1) 218 

different contexts for discussing 𝑉௥ and Δ𝜏, and (2) some physical mechanisms. In (1), 𝑉௥ and Δ𝜏 219 

can have different meanings in different studies, which may hinder a direct comparison on the 220 

derived correlations. Moreover, a negative correlation may reflect a tradeoff effect inherent to 221 

the analysis method. In (2), the specific correlation between Δ𝜏 and 𝑉௥ can depend on fracture 222 

energy 𝐺௖. Constant 𝐺௖ often favors a positive correlation, whereas variable 𝐺௖ can lead to a 223 

negative correlation. It is hoped that this commentary can help clarify the estimations of 𝑉௥ and 224 Δ𝜏 under different contexts, and can stimulate future studies to investigate the correlation 225 

between the two parameters.  226 
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