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Abstract

Accurately identifying liquid water layers in mixed-phase clouds is crucial for estimating cloud radiative effects. Lidar-based

retrievals are limited in optically thick or multilayer clouds, leading to positive biases in simulated shortwave radiative fluxes.

At the same time, general circulation models also tend to overestimate the downwelling shortwave radiation at the surface

especially in the Southern Ocean regions. To reduce this SW radiation bias in models, we first need better observational-based

retrievals for liquid detection which can later be used for model validation. To address this, a machine-learning-based liquid-layer

detection method called VOODOO was employed in a proof-of-concept study using a single column radiative transfer model

to compare shortwave cloud radiative effects of liquid-containing clouds detected by Cloudnet and VOODOO to ground-based

and satellite observations. Results showed a reduction in shortwave radiation bias, indicating that liquid-layer detection with

machine-learning retrievals can improve radiative transfer simulations.
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Abstract13

Accurately identifying liquid water layers in mixed-phase clouds is crucial for es-14

timating cloud radiative effects. Lidar-based retrievals are limited in optically thick or15

multilayer clouds, leading to positive biases in simulated shortwave radiative fluxes. At16

the same time, general circulation models also tend to overestimate the downwelling short-17

wave radiation at the surface especially in the Southern Ocean regions. To reduce this18

SW radiation bias in models, we first need better observational-based retrievals for liq-19

uid detection which can later be used for model validation. To address this, a machine-20

learning-based liquid-layer detection method called VOODOO was employed in a proof-21

of-concept study using a single column radiative transfer model to compare shortwave22

cloud radiative effects of liquid-containing clouds detected by Cloudnet and VOODOO23

to ground-based and satellite observations. Results showed a reduction in shortwave ra-24

diation bias, indicating that liquid-layer detection with machine-learning retrievals can25

improve radiative transfer simulations.26

Plain Language Summary27

This article discusses the challenges of accurately identifying liquid water layers within28

mixed-phase clouds, which is important for understanding precipitation formation and29

estimating cloud radiative effects. While remote-sensing retrievals using lidar can be use-30

ful for this purpose, they are limited in optically thick or multilayer clouds, leading to31

biases in simulated radiative fluxes. The authors propose a machine-learning-based method32

called VOODOO to better detect supercooled-liquid in clouds, which can help reduce33

biases in radiative transfer simulations and improve model validation. A proof-of-concept34

study was conducted using a single column radiative transfer calculation, comparing short-35

wave cloud radiative effects of liquid-containing clouds detected by Cloudnet and VOODOO36

to ground-based and satellite observations. Results showed a reduction in shortwave ra-37

diation bias, suggesting that liquid-layer detection with machine-learning retrievals can38

improve radiative transfer simulations.39

1 Introduction40

Supercooled liquid water clouds and mixed-phase clouds are common over the South-41

ern Ocean (Hu et al., 2010; Kanitz et al., 2011; Morrison et al., 2011; Huang et al., 2012;42

Radenz et al., 2021). Only a few long-term observations are available from the south-43

ern mid-latitudes, and most of them are either based on lidar-only (Kanitz et al., 2011),44

space-borne radar-lidar datasets with limited sensitivity (Zhang et al., 2010; Wang et45

al., 2016), or short-term ship-based measurements (Gettelman et al., 2020; Mace et al.,46

2021; Xi et al., 2022). The lack of long-term ground-based remote-sensing observations47

of the atmosphere in this region motivated the long-term Dynamics Aerosol Clouds And48

Precipitation Observation in the Pristine Environment of the Southern Ocean (DACAPO-49

PESO) field campaign in Punta Arenas (53.13◦ S, 70.88◦ W), Chile, which resulted e.g.,50

in an in-depth analysis of shallow mixed-phase clouds by Radenz et al. (2021). Mixed-51

phase clouds are difficult to represent in global climate models (GCM), which is prob-52

lematic because, as e.g. Gregory and Morris (1996) and Li and Treut (1992) showed, mod-53

elled variables such as cloud cover, cloud albedo, outgoing terrestrial (longwave) radi-54

ation, and cloud water content depend significantly on the temperature range in which55

liquid water and ice are assumed to coexist. To date, large uncertainties remain in the56

representation of mixed-phase clouds in GCM (McCoy et al., 2016). Comparisons of var-57

ious GCMs predict vastly different distributions of thermodynamic cloud phase for a given58

temperature, where none of them are capable of reproducing the observations in spatial59

distribution nor magnitude (Bony et al., 2006; Grise & Polvani, 2014a; Grise et al., 2015).60

Also, Komurcu et al. (2014) suggested that validating GCMs using only the vertically61
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integrated water contents could lead to amplified differences in cloud radiative feedback.62

The Southern Ocean region is associated with significant uncertainties in estimates of63

cloud properties in GCMs. In this region, the amount of supercooled liquid water in clouds64

is underestimated, causing shortwave (SW) radiative flux biases (Kay et al., 2016; Bodas-65

Salcedo et al., 2016; Gettelman et al., 2020). Also, the use of reanalysis products with66

wrong cloud phases in GCM (Naud et al., 2014) have been attributed to the inability67

of models to represent the frequency of occurrence of supercooled water in mixed-phase68

volumes. Even if models estimate the correct total condensed water content, the same69

amount of condensed water in the ice phase results in a lower cloud albedo compared70

to the liquid phase. This is because the ice particles are smaller in number but larger71

in size than the corresponding liquid droplets, so the optical thickness of the glaciated72

cloud is smaller. Therefore, the identification of the spatial distribution of liquid droplets73

in mixed-phase clouds is of great importance not only because the radiative properties74

of water and ice are different (Sun & Shine, 1994) but also because they influence the75

formation of precipitation (Field & Heymsfield, 2015; Mülmenstädt et al., 2015) and thus76

ultimately cloud lifetime. Synergistic remote-sensing observations of clouds and the on-77

going development of retrievals of microphysical cloud properties - such as cloud ther-78

modynamic phase - continue to enhance the understanding of MPC process (Shupe et79

al., 2005; Bühl et al., 2016; Mace & Protat, 2018; Griesche et al., 2020; Zaremba et al.,80

2020). Accurate retrievals of cloud thermodynamic phase are required for constraining81

cloud phase representation in GCM (Fiddes et al., 2022). Several studies showed that82

the shortwave radiative transfer, especially through mixed-phase clouds, depends highly83

on the amount and location of liquid cloud droplets (McFarquhar et al., 2021; Barrientos-84

Velasco et al., 2022). An underestimation in the liquid water-path (LWP) leads to a less85

radiative opaque cloud, which subsequently leads to an underestimation of the cloud ra-86

diative effect at the surface (Cesana & Storelvmo, 2017; Tan & Storelvmo, 2019).87

The question we are addressing in this study is if and to what extent improved cloud88

phase retrievals from ground-based remote sensing observations can reduce the SW ra-89

diation bias in the Southern Ocean. We introduce the data set in Section 2 and explain90

how the improved cloud phase detection algorithm VOODOO works in Section 3. The91

radiative transfer simulation architecture is also described in Section 3. Results of ra-92

diative flux comparison are shown in Section 4 to evaluate the concept. The study ends93

with discussions and conclusions in Section 5.94

2 Datasets95

2.1 Ground-based remote sensing dataset96

The core instrumentation used for this work is provided by the Leipzig Institute97

for Meteorology (LIM) and the Leibniz Institute for Tropospheric Research (TROPOS).98

Specifically, the five data sources considered are the following:99

1. Profiles of cloud radar Doppler spectra and moments from the RPG-FMCW94-100

DP, a frequency modulated continuous wave 94GHz vertically-pointing Doppler101

cloud radar with polarimetric capabilities (Küchler et al., 2017),102

2. Profiles of attenuated backscatter coefficient βatt from the Jenoptik CHM15kx,103

a 1064 nm ceilometer (Heese et al., 2010),104

3. Liquid water path (LWP) retrieved from the RPG-HATPRO-G2, a 14-channel mi-105

crowave radiometer (MWR; Rose et al. (2005)),106

4. Temperature, relative humidity and pressure from the European Centre for Medium-107

Range Weather Forecasts integrated forecasting system (ECMWF-IFS; “ECMWF108

Forecast User Guide” (2018)),109

5. Shortwave downward irradiance from the TROPOS Mobile Radiation Observa-110

tory (MORDOR) (2022), measured with a Class A pyranometer (ISO 9060:2018,111
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2018) of the type MS-80, from the manufacturer EKO Instruments, with measure-112

ment uncertainty under clear sky conditions of about 2%.113

The classical Cloudnet multi-sensor approach by Illingworth et al. (2007) converts the114

information of 1. – 4. into an atmospheric target classification and higher level microphys-115

ical products such as ice and liquid water contents (IWC and LWC) and the respective116

ice crystal and droplet effective radii (riceeff and rliqeff ). In this work, we use the latest im-117

plementation of CloudnetPy (Tukiainen et al., 2020). A detailed description of instru-118

ments and parameters is presented in Schimmel et al. (2022). The latter data source (5.)119

is considered for the validation of the shortwave radiative transfer simulations at the sur-120

face.121

2.2 Ancillary dataset122

The data sets used as input parameters for the radiative transfer simulations are123

based on the hourly pressure level profiles of temperature, pressure, ozone mass mixing124

ratio and specific humidity from the European Centre for Medium-Range Weather Fore-125

casts (ECMWF) Re-Analysis (ERA5), and single levels of surface pressure and skin tem-126

perature (Hersbach et al., 2020). The ERA5 dataset has a spatial grid from 0.25◦ lat-127

itude by 0.25◦ longitude. We opted for this dataset due its consistency and realistic rep-128

resentation of the atmospheric conditions as described in previous studies (Goyal et al.,129

2021; Hoffmann & Spang, 2022). The surface albedo used for the radiative transfer sim-130

ulations is based on CERES (Clouds and the Earth’s Radiant Energy System) Synop-131

tic 1-degree daily flux (SYN1deg, ed.4) products (Minnis et al. (2021); hereafter CERES132

SYN), which has been collocated to the location of the remote sensing station in Punta133

Arenas, Chile. The atmospheric trace gases quantities were obtained from the climato-134

logical values from the Air Force Geophysics Laboratory (AFGL) for a mid-latitude sum-135

mer atmosphere (Anderson et al., 1986). The CERES SYN parameters are provided in136

a spatial resolution of 1◦ latitude by 1◦ longitude and at a 1 hour temporal resolution.137

The mentioned ancillary data products were collocated and linearly interpolated in time138

to the location and time of interest.139

3 Methodology140

The following section describes the methods to retrieve the cloud macro- and mi-141

crophysical properties used to generate the input data for the radiative transfer simu-142

lations (RTS) and then the RTS framework used to simulate the shortwave irradiances143

and the derivation of the cloud radiative effects.144

3.1 Description of Cloudnet and VOODOO145

This section introduces the methods to retrieve the thermodynamic phase of clouds146

using ground-based remote sensing observations of MPCs and the distribution of liquid147

and ice. As reference simulation we use the products of the CloudnetPy toolbox (Tukiainen148

et al., 2020), which provides cloud properties such as IWC, LWC, riceeff , and rliqeff . Cloud-149

netPy is able to distinguish between different hydrometeor types such as drizzle/rain,150

ice, melting layer, liquid droplets, and mixed-phase (ice + liquid droplets). However, the151

identification of liquid droplets relies entirely on the attenuated backscatter coefficient152

βatt of the lidar, which is quickly attenuated by liquid layers. For this reason, the liq-153

uid droplet detection of CloudnetPy beyond full lidar attenuation is not reliable, lim-154

iting the application to thin, single layer stratiform clouds. The new machine learning155

approach by Schimmel et al. (2022) is used as add-on to CloudnetPy, for reVealing su-156

percOOled liquiD layers beyOnd lidar attenuatiOn (VOODOO). The VOODOO algo-157

rithm is based on a convolutional neural network. The radar Doppler spectra (image)158

is processed into likelihood for the presence of (supercooled) liquid cloud droplets. How-159
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ever, due to the lower sensitivity of the Doppler cloud radar to liquid droplets (compared160

to lidar), small droplet number concentrations, or thin liquid layers of small droplets are161

not visible to the Doppler radar. Thus, liquid cloud droplet predictions By VOODOO162

are used to augment the Cloudnet atmospheric target classification in altitudes where163

no valid lidar signal (due to complete lidar signal attenuation) is received. Clearly, Cloud-164

net’s lidar-based approach has an advantage in detecting even thin liquid water layers,165

whereas VOODOO’s radar approach can be used primarily to reveal liquid water lay-166

ers beyond lidar attenuation in multi-layer or deep MPC. Both approaches complement167

each other perfectly and are now available as Cloudnet product in the latest Python-based168

GitHub release github.com/actris-cloudnet/cloudnetpy. The VOODOO method is169

also available as stand-alone version github.com/actris-cloudnet/voodoonet.170

3.2 Description of T-CARS171

The radiative transfer simulations were carried out using the TROPOS – Cloud
and Aerosol Radiative effect Simulator (hereafter T-CARS). T-CARS is a Python-based
environment created to conduct radiative transfer simulations with a particular focus on
the investigation of the radiative effects of aerosols, and clouds (Barlakas et al., 2020;
Witthuhn et al., 2021; Barrientos-Velasco et al., 2022). The radiative transfer solver used
was a 1D single column rapid radiative transfer model (RRTM) for GCM applications
(RRTMG; Mlawer et al. (1997); Barker et al. (2003); Clough et al. (2005)). T-CARS out-
put files have a standard atmospheric grid that consists of 197 levels ranging from the
surface up to 20 km height at 1-minute temporal resolution, as described in Barrientos-
Velasco et al. (2022) and published on Zenodo (Barrientos-Velasco, 2023). The first 10
km of the atmosphere is divided into 160 levels with a geometric layer thickness of about
62.5 m. The level thickness of each pixel for the first 10 km of the atmosphere corresponds
to two vertical levels of Cloudnet pixels, which are averaged to the standard grid. The
T-CARS output files provide simulated clear-sky and all-sky atmospheric profiles of broad-
band longwave (LW) and SW radiative fluxes and heating rates. We focus on the SW
broadband flux by calculating the flux difference between simulated and observed radia-
tive fluxes, describing heating rates and computing the SW cloud radiative effect (CRE)
following Eq. 1 and 2.

CRESW,BOA = (F ↓
SW − F ↑

SW )all−sky − (F ↓
SW − F ↑

SW )clear−sky. (1)

CRESW,TOA = (F ↑
SW )clear−sky − (F ↑

SW )all−sky. (2)

4 Results172

The results are presented in two subsections. First, a description of the cloud mi-173

crophysical retrievals of Cloudnet and the improved retrieval VOODOO is given. The174

second subsection compares the radiative simulation results based on Cloudnet alone and175

VOODOO+Cloudnet input by comparing the bottom-of-atmosphere (BOA) shortwave176

downwelling (SWD) radiative fluxes as well as the simulated upward SW flux (SWU)177

at the top-of-the atmosphere (TOA) with CERES SYN observations. Moreover, the short-178

wave CRE, and SW heating rate are calculated. Note that the simulations based on Cloud-179

net are referred to as Cloudnet-Sim (CSim), and the simulations based on the enhance-180

ment of the Cloudnet liquid detection by VOODOO are referred to as VOODOO-Cloudnet-181

Sim (VCSim). However, for simplicity the latter is labelled as Cloudnet and VOODOO182

results, respectively in Table 1, Fig. 3, Fig. 3, and Fig. 4.183

4.1 Cloud microphysical retrieval results184

The focus of this analysis is to quantify the effect of the improved thermodynamic185

phase classification by VOODOO (Schimmel et al., 2022) compared to the reference re-186

trieval Cloudnet (Illingworth et al., 2007; Tukiainen et al., 2020).187
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Figure 1. Cloud situation on 2 January 2019 in Punta Arenas, Chile. (A) Radar reflectivity

Ze, (B) atmospheric target classification of Cloudnet, and (C) combination of atmospheric target

classification of Cloudnet enhanced by the liquid predictions of VOODOO. Dashed lines depict

the isotherm lines from ECMWF temperature profiles. The red dots in (A) indicate the ceilome-

ter cloud base height.

In this study, the focus is on the period between 15:00–22:00UTC on 2 January188

2019 in Punta Arenas Chile, when multilayer MPC were observed. Figure 1 (A) shows189

the radar reflectivity factor Ze, and the target classification of Cloudnet (B) and VOODOO190

(C). Multiple showers of very low precipitation intensity were observed by the radar in191

the first half of the case study. However, no precipitation was measured by ground-based192

in-situ rain sensors. The ceilometer cloud base height shown by red dots in Fig. 1 (A)193

indicates the first supercooled liquid layer height, which matches the liquid detections194

(classes: ’Droplets’ and ’Ice & droplets’) in the Cloudnet target classification (B). How-195

ever, Cloudnet detects only the first liquid cloud base layer, while VOODOO reveals ad-196

ditional supercooled liquid layers in altitudes between 2.5–5.0 km with cloud top tem-197

peratures down to T = −25◦ C. Parts of the required input parameters for the radia-198

tive transfer simulations are the IWC and LWC as shown in Fig. 2. The IWC (A) is equal199

for Cloudnet and VOODOO, with values ranging from 10−5 to 2×10−4 kgm−3. How-200

ever, differences in the distribution of the liquid layers within the observed clouds are201

clearly visible in Fig. 2 (B), (C) and Fig. 4 (A). The scaling approach used in Cloud-202

net processing, distributes all the liquid water detected by the MWR into thin liquid lay-203

ers (with depths < 150m), resulting in Cloudnet mean LWC values of 3×10−3 kgm−3.204

By using of VOODOO+Cloudnet liquid detection, the LWC is distributed over a greater205

liquid layer depth, reaching mean LWC values of 5× 10−4 kgm−3.206

4.2 Analysis of simulated SW radiative fluxes and heating rates207

Radiative transfer simulations were performed to evaluate the radiative effect of208

the different cloud microphysical properties from CSim and VCSim parameterizations.209
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Figure 2. Panel (A) shows ice water content of both, Cloudnet and VOODOO, for 2 January

2019 in Punta Arenas, Chile. (B) Cloudnet liquid water content, and (C) Cloudnet liquid water

content enhanced by liquid predictions of VOODOO. In (B) and (C), colored pixels reflect liquid-

bearing cloud volumes and grey pixels other hydrometeor types (see Fig. 1). Dashed lines depict

the isotherm lines from ECMWF temperature profiles.

The analysis focuses on comparing the SWU at the TOA (Fig. 3 A and B), SWD at BOA210

(Fig. 3 C and D), and the atmospheric SW heating rates (Fig. 4). The results are sum-211

marized in Table 1. Additionally, the comparison differentiates the periods when the cloud212

cover was homogeneous or inhomogeneous, which is important to keep in mind when com-213

paring observations of pencil-beam radar-lidar measurements to all-sky pyranometer mea-214

surements. At the TOA, the simulated fluxes are compared to the collocated CERES215

SYN observations (Fig. 3 A and B). The values from CERES SYN indicate a semi-continuous216

SWU flux between 300 to 600 Wm−2 while the T-CARS radiative transfer simulations217

range from 100 to 800 Wm−2 (Fig. 3A). Given that the surface albedo used for the sim-218

ulations is from CERES SYN, the observed differences of more than 100 Wm−2 at the219

TOA indicate a plausible overestimation of the cloud top albedo due to a large amount220

of the water content in the cloud or small particle sizes (Vergara-Temprado et al., 2018).221

However, it should be noted that the difference in spatial resolution might also play a222

role in the flux differences since the spatial grid of CERES SYN is of 1◦ by 1◦ and the223

simulations are focused on a point measurement at Punta Arenas with a contrasting wa-224

ter/land surface conditions near the Strait of Magellan that adds complexity to the sys-225

tem. Despite these differences, the results indicate a better agreement between VOODOO-226

based radiative transfer simulations than for Cloudnet-only for the SWU flux with an227

improvement in the correlation coefficients (r2) and a decrease of the mean-absolute-error228

(MAE) and root-mean-squared-error (RMSE) of 15–20% for both inhomogeneous and229

homogeneous atmospheres (Table 1). The time series of the CRESW,TOA is shown in Fig230

d3 B. For homogeneous cloud conditions, the mean CRESW,TOA are -362, -254, -428Wm−2
231

for CERES SYN, CSim and VCSim, respectively. The values indicate a better agreement232

between VCSim and the CERES SYN observations at the TOA. The significant differ-233

–7–



manuscript submitted to JGR: Atmospheres

Table 1. Table of time-series mean values (Mean) in Wm−2, correlation coefficient (r2), root

mean squared error (RMSE) in Wm−2, mean absolute error (MAE) in Wm−2, of pyranometer

(BOA) and CERES SYN (TOA) observations (O), as well as T–CARS simulations of TOA-SWU,

BOA-SWD radiation fluxes, CRESW,TOA and CRESW,BOA using Cloudnet (C) or VOODOO-

Cloudnet (VC) as input case study on 2 January 2019 in Punta Arenas, Chile. Results are

presented for the entire time period of 15:00 - 22:00 UTC (”inhom”) and for stratiform cloud

conditions only excluding broken cloud situations (”hom”).

Mean r2 RMSE MAE

O/C/VC C/VC C/VC C/VC

TOA-SWU
inhom. 481 / 354 / 543 0.35 / 0.62 237 / 189 210 / 169
hom. 440 / 378 / 553 0.33 / 0.81 204 / 164 166 / 142

CRESW,TOA
inhom. −398 /−218 /−406 0.29 / 0.58 271 / 177 236 / 150
hom. −362 /−254 /−428 0.19 / 0.75 229 / 133 179 / 110

BOA-SWD
inhom. 274 / 564 / 349 0.53 / 0.73 381 / 180 315 / 125
hom. 191 / 432 / 234 0.50 / 0.77 345 / 126 251 / 74

CRESW,BOA
inhom. −511 /−247 /−437 0.42 / 0.70 348 / 177 290 / 124
hom. −499 /−281 /−457 0.32 / 0.79 313 / 126 229 / 74

ences between Cloudnet and observations estimations are due to the underestimation of234

the liquid water content in the cloud layer. For inhomogeneous conditions, the mean CRESW,TOA235

for CERES SYN, CSim, and VCSim are -398, -218, -406 Wm−2, respectively (see Ta-236

ble 1). The differences are larger due to the limitations of the representations of these237

types of clouds in a single column 1D radiative transfer simulations and the different spa-238

tial representations between CERES SYN and the point measurements of the remote sens-239

ing instrumentation. The comparison between simulated and observed SWD fluxes at240

the BOA, as shown in Fig. 3 C, indicates that the simulations agree better with the ob-241

servations when using VOODOO-based input compared to Cloudnet-only input. The re-242

sults for VCSim simulations show that the mean absolute SWD radiation bias is reduced243

by 70% when the cloud cover is homogeneous. During broken cloud conditions, the dif-244

ferences are also reduced in VCSim, but to a lesser extent. However, it should be noted245

that during these conditions, 1D radiative transfer simulations cannot resolve broken cloud246

conditions well, and more complex methods, such as 3D radiative transfer models, should247

be applied. The latter is beyond the scope of this study. Panel D in Fig. 3 shows the248

time series of the calculated CRESW,BOA for CSim and VCSim and a calculation sub-249

stituting the simulated all-sky SWD flux with observations from the downwelling pyra-250

nometer. The CRESW results show a good agreement between VCSim and the calcu-251

lations considering the observations with correlation coefficients above 0.7 for both ho-252

mogeneous and inhomogeneous cloud conditions. The positive CRESW,BOA derived from253

pyranometer observations shown at around 15:00 and 16:30 UTC is due to the multi-254

ple scattering in broken cloud conditions leading to larger SWD values than during clear-255

sky conditions (Schade et al., 2007). The VCSim results indicate a reduction of the mean256

absolute error by 68%. The mean CRESW percentage error between CSim and the pyra-257

nometer observations is 44%, while the VCSim reduce the error to 8% (see Table 1).258

The radiative heating rates (SWHR) are calculated for VCSim input and CSim simu-259

lation input to determine the change in the net SW flux in the atmospheric profile. The260

results show the dependency of the SW heating effect on the location of the liquid layer261

(see Fig. 4). The VCSim distribution of the liquid layers up to an altitude around 4.5262

km leads to an important cloud top warming of up to 12 K day−1 suppressing the warm-263

ing in the lower atmosphere since part of this radiation is reflected upward. In contrast,264
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Figure 3. (A) Time series of top-of-atmosphere shortwave upwelling irradiance simulations

for Cloudnet (black dots), VOODOO+Cloudnet (red dots), and CERES SYN observations (green

line). (B) Time series of the top-of-atmosphere cloud radiative effect (CRE) based on simulated

fluxes for Cloudnet (black dots) and VOODOO+Cloudnet (red dots). The grey background band

flags broken cloud situations. (C) Time series of bottom-of-atmosphere (BOA) shortwave down-

welling irradiance simulations and pyranometer observations (blue line, left y-axis), simulations

(black and red dots, left y-axis) and MWR-LWP (blue bars, right y-axis). (D) Time series of the

bottom-of-atmosphere cloud radiative effect based on simulated fluxes for Cloudnet (black dots)

and VOODOO+Cloudnet (red dots).

CSim based simulations show the most significant cloud opacity at around 1.5 km lead-265

ing to a SWHR of about 9Kday−1 at this height. In general, there are no significant changes266

in the mean SWHR between homogeneous and inhomogeneous cloud conditions. The267

small changes observed in Fig. 4B are due to an increase in the LWC when considering268

homogeneous clouds only, as detailed in Fig. 4A. It is worth noting that the clear-sky269

(CS) profiles, shown in solid black line, show slightly positive SWHR due to the enhanced270

water vapour at the heights of the cloud.271

5 Discussions, Conclusions and Outlook272

The presented study shows the potential of the novel cloud liquid detection ma-273

chine learning method VOODOO in reducing SW flux biases. Our study focuses on a274

multilayer mixed-phase cloud case study in the Southern Hemisphere in Punta Arenas,275

Chile. The approach consists in improving the multi-sensor products (LWC, IWC, riceeff276

and rliqeff ) of Cloudnet by using VOODOO. Single column 1D radiative transter simula-277

tions were performed to test the applicability of VOODOO and Cloudnet and quantify278
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Figure 4. Mean profiles of liquid water content (LWC) in (A) and shortwave atmospheric

heating rate (SWHR) for all-sky conditions for Cloudnet (blue line), VOODOO-Cloudnet (red

line), and clear-sky (CS; black line) in panel (B). Solid lines show SWHR for the entire period

15:00–22:00UTC on 2 January 2019 and dotted line for homogeneous clouds (”hom”) only.

the differences in radiative fluxes at the TOA, atmosphere and BOA. Based on the ob-279

servational availability of ground-based radiation measurements, we focus on the broad-280

band SW flux and summarize the findings in the following bullet points:281

• The analysis of the simulations indicate that the VOODOO-based method decreases282

RMSE and MAE values at the TOA up to 20% and at the BOA up to 70%, sug-283

gesting an improvement to the use of Cloudnet retrievals alone. While biases are284

reduced in both TOA and BOA, the results also indicate larger values of the SWU285

flux at the TOA from VCSim than CERES SYN values most likely attributed to286

the different spatial scale of a complex surface albedo as it also discussed in a rel-287

atively similar comparison for the Southern Hemisphere in the Tropical Western288

Pacific site at Darwin (TWPC3) in Dolinar et al. (2016). The analysis at TOA289

is as important as at BOA as it constitutes a reference of the absorbed SW radi-290

ation by the surface and atmosphere, which still is part of the large model uncer-291

tainties reported in previous studies (Bodas-Salcedo et al., 2016; Kay et al., 2016).292

• The analysis of the CRESW shows a prominent cooling effect at the BOA and the293

TOA. At the TOA and BOA, the results are consistent with Haynes et al. (2011)294

and Grise and Polvani (2014b), who report large values of CRESW for the loca-295

tion of Punta Arenas during summer based on satellite observations and model296

evaluations. It should be noted, however, that their results are averaged for a more297

extended period and area of analysis. The large instantaneous CRESW values pre-298

sented in this study are dominated by the effect of supercooled liquid droplets as299

it is characteristic of the region of analysis as discussed in Bodas-Salcedo et al. (2016).300

• The comparison of SWHR revealed a relevant difference in the warming SW ef-301

fect height that explained the SWU flux difference between VCSim and CSim at302

the TOA. The latter emphasizes the importance of correctly retrieving the dis-303

tribution of liquid water content within the clouds since the effect on radiation is304

of particular interest in stratiform clouds when the atmospheric radiation plays305
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a more relevant role in the diabatic heating of the atmosphere, which can poten-306

tially perturb the local atmospheric stability (Turner et al., 2018).307

The presented case study details the promising use of VOODOO to reduce software bi-308

ases caused by the misclassification of cloud thermodynamic phase and the consequent309

misidentification of the location of LWC in the atmospheric column. This technique could310

potentially be used in other cases of mixed-phase clouds where similar challenges have311

been previously described (Barrientos-Velasco et al., 2022; Fiddes et al., 2022). Addi-312

tionally, there is an envisioned plan to study more cases from the three-year DACAPO-313

PESO campaign, as well as other cases from the ARM Southern Ocean MARCUS ship-314

borne field campaign (Xi et al., 2022). However, future studies should also consider the315

effect of longwave radiative flux. Moreover, there is a plan to test the VOODOO-based316

method on future long-term Southern Ocean deployments of the Leipzig Aerosol and Cloud317

Remote Observations System (LACROS) station on the South Island of New Zealand.318
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Witthuhn, J., Hünerbein, A., Filipitsch, F., Wacker, S., Meilinger, S., & Deneke,598

H. (2021). Aerosol properties and aerosol–radiation interactions in clear sky599

conditions over germany. Atmospheric Chemistry and Physics Discussions,600

2021 , 1–64. Retrieved from https://acp.copernicus.org/preprints/601

acp-2021-517/ doi: 10.5194/acp-2021-517602

Xi, B., Dong, X., Zheng, X., & Wu, P. (2022). Cloud phase and macrophysical603

properties over the southern ocean during the marcus field campaign. Atmo-604

spheric Measurement Techniques, 15 (12), 3761–3777. Retrieved from https://605

amt.copernicus.org/articles/15/3761/2022/ doi: 10.5194/amt-15-3761606

-2022607

Zaremba, T. J., Rauber, R. M., McFarquhar, G. M., Hayman, M., Finlon, J. A.,608

& Stechman, D. M. (2020). Phase characterization of cold sector south-609

ern ocean cloud tops: Results from socrates. Journal of Geophysical Re-610

search: Atmospheres, 125 (24), e2020JD033673. Retrieved from https://611

agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JD033673612

(e2020JD033673 2020JD033673) doi: https://doi.org/10.1029/2020JD033673613

Zhang, D., Wang, Z., & Liu, D. (2010). A global view of midlevel liquid-layer614

topped stratiform cloud distribution and phase partition from calipso and615

cloudsat measurements. Journal of Geophysical Research: Atmospheres,616

115 (D4). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/617

abs/10.1029/2009JD012143 doi: https://doi.org/10.1029/2009JD012143618

–16–


