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Abstract

Vegetation plays a fundamental role in modulating the exchange of water, energy, and carbon fluxes between the land and the

atmosphere. These exchanges are modelled by Land Surface Models (LSMs), which are an essential part of numerical weather

prediction and data assimilation. However, most current LSMs implemented specifically in weather forecasting systems use

climatological vegetation indices, and land use/land cover datasets in these models are often outdated. In this study, we update

land surface data in the ECMWF land surface modelling system ECLand using Earth observation-based time varying leaf area

index and land use/land cover data, and evaluate the impact of vegetation dynamics on model performance. The performance of

the simulated latent heat flux and soil moisture is then evaluated against global gridded observation-based datasets. Updating

the vegetation information does not always yield better model performances because the model’s parameters are adapted to

the previously employed land surface information. Therefore we recalibrate key soil and vegetation-related parameters at

individual grid cells to adjust the model parameterizations to the new land surface information. This substantially improves

model performance and demonstrates the benefits of updated vegetation information. Interestingly, we find that a regional

parameter calibration outperforms a globally uniform adjustment of parameters, indicating that parameters should sufficiently

reflect spatial variability in the land surface. Our results highlight that newly available Earth-observation products of vegetation

dynamics and land cover changes can improve land surface model performances, which in turn can contribute to more accurate

weather forecasts.
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Abstract17

Vegetation plays a fundamental role in modulating the exchange of water, energy, and18

carbon fluxes between the land and the atmosphere. These exchanges are modelled by19

Land Surface Models (LSMs), which are an essential part of numerical weather predic-20

tion and data assimilation. However, most current LSMs implemented specifically in weather21

forecasting systems use climatological vegetation indices, and land use/land cover datasets22

in these models are often outdated. In this study, we update land surface data in the ECMWF23

land surface modelling system ECLand using Earth observation-based time varying leaf24

area index and land use/land cover data, and evaluate the impact of vegetation dynam-25

ics on model performance. The performance of the simulated latent heat flux and soil26

moisture is then evaluated against global gridded observation-based datasets. Updat-27

ing the vegetation information does not always yield better model performances because28

the model’s parameters are adapted to the previously employed land surface informa-29

tion. Therefore we recalibrate key soil and vegetation-related parameters at individual30

grid cells to adjust the model parameterizations to the new land surface information. This31

substantially improves model performance and demonstrates the benefits of updated veg-32

etation information. Interestingly, we find that a regional parameter calibration outper-33

forms a globally uniform adjustment of parameters, indicating that parameters should34

sufficiently reflect spatial variability in the land surface. Our results highlight that newly35

available Earth-observation products of vegetation dynamics and land cover changes can36

improve land surface model performances, which in turn can contribute to more accu-37

rate weather forecasts.38

Plain Language Summary39

The accuracy of weather forecasts relies critically on the accurate modelling of the40

exchange of water and energy between the land surface and the atmosphere. The latent41

heat flux and the soil moisture are two important land surface variables in this exchange42

through the net balances of water and energy. The accurate simulation of these variables43

is challenging in most land surface models specifically used for numerical weather pre-44

diction due to i) outdated land surface cover information and/or ii) neglecting the role45

of short-term anomalies in vegetation functioning, e.g. related to droughts. This study46

quantifies the benefits of including up-to-date land use/land cover information and an47

explicit consideration of the current vegetation state on the prediction of latent heat flux48

and soil moisture. We find that model simulation performance can only benefit from up-49

dated land surface information through further adjustments to key soil and vegetation50

related parameters in the model. Overall, we demonstrate that the new Earth observa-51

tion datasets can help to improve land surface model performance, which then contributes52

to more accurate weather forecasts.53

1 Introduction54

The atmosphere is sensitive to variations in land surface processes, and such co-55

variability between the land and atmosphere states is described as the land-atmosphere56

coupling (Santanello et al., 2009; Quillet et al., 2010; Santanello et al., 2018). The land57

surface characteristics, e.g. vegetation state, albedo, and soil moisture, play important58

roles in this coupling as they modulate the exchange of water, energy, and carbon be-59

tween the land surface and the atmosphere (Balsamo et al., 2011; de Rosnay et al., 2013;60

Dirmeyer et al., 2018). Accordingly, an adequate representation of land surface proper-61

ties in the land surface models that are specifically used in numerical weather predic-62

tion (hereafter LSMs) contributes to improved forecast skills from short-range weather63

forecasts to long-range seasonal predictions (Guo et al., 2011; Dirmeyer & Halder, 2017;64

Nogueira et al., 2020), helping to better predict extreme events like heat waves or droughts65

(Zhang et al., 2008; Meng et al., 2014; Hirsch et al., 2019; Miralles et al., 2019).66

–2–



manuscript submitted to JGR: Atmospheres

As LSMs are an essential component of the models that are typically used for weather67

forecasting systems, there have been considerable efforts in recent decades to improve68

LSM performance (Wipfler et al., 2011; Dutra et al., 2010; Laguë et al., 2019; Fisher &69

Koven, 2020). The constantly increasing computing power allows us to include more re-70

alistic descriptions of relevant processes and their interactions with the atmosphere, in-71

cluding soil thermodynamics, vegetation dynamics, and land cover and management (Nemunaitis-72

Berry et al., 2017; González-Rouco et al., 2021; Steinert et al., 2021). Another reason73

for this improvement is the increasing availability of Earth observation data that allows74

to characterise surface properties and better constrain model simulations (Ghilain et al.,75

2012; Orth et al., 2017; Balsamo et al., 2018; Hawkins et al., 2019). For LSMs that em-76

ploy data assimilation, such as the Carbon Cycle Data Assimilation System (CCDAS)77

(Rayner et al., 2005) and ORCHIDEE (Santaren et al., 2007), Earth observation con-78

stitutes an important data source for key land surface variables including soil moisture,79

vegetation state, albedo, and land use/land cover (Guillevic et al., 2002; Seneviratne et80

al., 2010; Meng et al., 2014). However, exploiting these new data streams for enhanced81

land surface model performance is not straightforward (Wulfmeyer et al., 2018).82

Traditional LSMs used for weather forecasting incorporate the effect of vegetation83

on simulated land surface meteorology through look-up-tables providing different param-84

eter values depending on the biome type (Boussetta et al., 2013; Johannsen et al., 2019;85

Duveiller et al., 2022). This requires up-to-date information on land cover described through86

the considered biome types. Furthermore, state-of-the-art LSMs use satellite-observed87

vegetation indices such as the leaf area index (LAI) to describe vegetation greening, ma-88

turity, and senescence (Boussetta et al., 2013; Stevens et al., 2020). However, in most89

LSMs, the vegetation state is represented only through climatological seasonality, neglect-90

ing possible impacts of anomalies in vegetation functioning on the weather (Duveiller et91

al., 2022). Therefore, the full potential of LSMs in the face of the newly available Earth92

observation data is not yet well exploited, resulting in opportunities for further improv-93

ing weather prediction accuracy.94

In this study, we use the ECMWF land surface modelling system ECLand based95

on the previous Hydrology Tiled ECMWF Surface Scheme for Exchange over Land (HT-96

ESSEL) to investigate the impact of updating vegetation and land cover information on97

model performance (Boussetta et al., 2021). Previous studies have found that updating98

the vegetation information in HTESSEL enhances the performance of simulated soil mois-99

ture and energy fluxes thanks to a more accurate representation of i) the soil moisture100

uptake and ii) the modulation of evapotranspiration in response to soil moisture changes101

(Boussetta et al., 2013, 2015; Orth et al., 2017; Nogueira et al., 2020; O et al., 2020; Stevens102

et al., 2020). More recent studies that use the coupled version of HTESSEL within the103

Integrated Forecasting System (IFS) show the subsequent effect of updated land surface104

information on the forecast skill. For instance, Johannsen et al. (2019) showed that large105

biases in temperature simulated by the IFS strongly relate to the outdated land cover106

representation within HTESSEL. Further, Nogueira et al. (2021) showed that it is nec-107

essary to adapt the model to the new data, i.e., to perform a recalibration of model pa-108

rameters. This recalibration is an important step in the process of exploiting the poten-109

tial of updated land surface information since the model is well adapted to the previously110

used data. However most existing studies overlook the importance of model recalibra-111

tion, partially due to the lack of land observations to constrain the model parameters112

(Orth et al., 2016).113

Even though there have been considerable efforts to exploit additional Earth ob-114

servations with HTESSEL, they have never brought together all updates in one single115

study, nor have they performed this in combination with a parameter recalibration. Build-116

ing upon the most recent HTESSEL model performance studies, we perform a compre-117

hensive analysis with updated land surface information in ECLand as follows: i) we up-118
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date the land use/land cover information using the ESA-CCI/C3S dataset; ii) we intro-119

duce interannual variability of LAI and land cover fraction from Sentinel-3 and THEA120

GEOV2; iii) we perform a recalibration of key model parameters to adjust the model121

parameterizations to the newly updated land cover and vegetation information. This way,122

we explore the contribution of near-real time land surface information and model cal-123

ibration to model performance.124

2 Data and methods125

2.1 List of modelling experiments126

We perform multiple uncoupled model experiments while continuously updating127

the land and vegetation information of ECLand, as listed in Table 1. We use meteoro-128

logical forcing from ERA5 (Hersbach et al., 2020) at a reduced Gaussian grid of approx-129

imately 0.5° spatial resolution and hourly temporal resolution, from 1 January 1995 to130

31 December 2019. The temperature, surface pressure, humidity and wind fields are in-131

stantaneous values and representative of the atmospheric layer at 10 m above the sur-132

face. The incoming shortwave and longwave radiation at the surface, rainfall and snow-133

fall are provided as hourly accumulations (Boussetta et al., 2015). We use a spin-up pe-134

riod from 1995-1999, and all results shown do not include these five years.135

Table 1. Modelling experiments with ECLand

Experiment Land cover dataset Cover fraction dynamics LAI dynamics Land surface parameters

CONTROL GLCC Climatology Climatology Default
LC ESA-CCI/C3S Climatology Climatology Default
LC COV ESA-CCI/C3S Interannual variability Climatology Default
LC LAI ESA-CCI/C3S Climatology Interannual variability Default
LC COV LAI ESA-CCI/C3S Interannual variability Interannual variability Default
Global calibration ESA-CCI/C3S Interannual variability Interannual variability Spatially constant calibration
Regional calibration ESA-CCI/C3S Interannual variability Interannual variability Regionally varying calibration

For each experiment, we update one aspect of the land surface model, i.e. land cover,136

cover fraction, LAI or land surface parameters. We start from a baseline simulation (CON-137

TROL) which is based on an outdated land cover dataset from the USGS Global Land138

Cover Characterization (GLCC) (Loveland et al., 2000), cover fraction and LAI clima-139

tology, and default model parameters, until we perform the LC COV LAI experiment140

in which we update all aspects including the land cover dataset using information from141

ESA-CCI/C3S (Bontemps et al., 2017), the cover fraction interannual variability and the142

LAI interannual variability using 10-daily data from Sentinel-3 (Verger et al., 2022) and143

THEA GEOV2 (Verger et al., 2020), but with default model parameters. The cover frac-144

tion and LAI interannual variability refers to monthly values that vary every year, in con-145

trast to climatological monthly means, based on the monthly mean calculated over the146

period 1993-2019.147

We additionally perform two calibration experiments (last two rows in Table 1) in148

which we recalibrate six soil- and vegetation-related model parameters listed in Table149

2: i) a global calibration in which we search a unique parameter set that works best over-150

all for all selected grid cells (i.e. spatially constant calibration), and ii) a regional cal-151

ibration in which we define the best parameter set individually for each grid cell (i.e. re-152

gionally varying calibration). We use Latin hypercube sampling (McKay et al., 1979)153

to select 1000 random combinations of perturbation factors independently chosen for each154

parameter within a specified range. The selection of the range for each parameter fol-155

lows previously used ranges in recent literature about parameter sensitivity analysis and156
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recalibration of similar parameters in HTESSEL (MacLeod et al., 2016; Orth et al., 2016,157

2017; Johannsen et al., 2019; O et al., 2020; Stevens et al., 2020).158

Table 2. Model parameters considered for the recalibration experiments

Model parameter Units Range of default values Range of perturbation factors

Hydraulic conductivity ms−1 0.83–3.83 0.01–100.0
Humidity stress function ms−1mbar 0.00–0.03 0.25–4.0
Minimum stomatal resistance sm−1 80–250 0.25–4.0
Soil moisture stress function - - 0.25–4.0
Total soil depth cm 1–800 0.5–2.0
Transmission of net solar radiation through vegetation - 0.03–0.05 0.1–10.0

For computational efficiency, we perform the parameter calibration experiments only159

at 230 randomly chosen grid cells across the globe (their location is shown in global maps160

at Section 3.2.2). We only consider grid cells with a long-term mean Enhanced Vegeta-161

tion Index (EVI) greater than 0.2 to exclude regions with scarce vegetation. The EVI162

data are derived from MODIS V6 (Didan, 2015). First, we select 30 grid cells to run the163

1000 simulations (one for each parameter set), and we select the best 100 parameter sets164

according to the model performance metric introduced in Section 2.2. Second, we run165

the best 100 parameter sets in the remaining 200 grid cells and we again evaluate their166

performance to find the best-performing parameters that work over a wider range of cli-167

mate regimes.168

2.2 Model evaluation169

For each model experiment, we compare simulated latent heat flux and soil mois-170

ture with respective global gridded observation-based datasets listed in Table 3. While171

we use absolute values for latent heat flux, for near-surface and deep soil moisture we172

analyze normalized anomalies to account for different systematic errors in ECLand and173

in each reference dataset. To compute normalized anomalies for each soil moisture vari-174

able and dataset i) we subtract the linear long-term trend from the time series, ii) we175

remove the mean seasonal cycle calculated at daily time steps over the period 2000-2019,176

and iii) we divide by the standard deviation of the resulting time series.177

Table 3. Reference datasets for model performance evaluation

Output variable Reference dataset Source of information

Near-surface soi lmoisture normalized anomalies SoMo.ml 0-10 cm soil layer (upscaled in situ observations) O and Orth (2021)
GLEAM 0-10 cm soil layer (physical-based model) Martens et al. (2017)
MERRA-2 0-5 cm soil layer (reanalysis) Gelaro et al. (2017)

Deep soil moisture normalized anomalies SoMo.ml 10-50 cm soil layer (upscaled in situ observations) O and Orth (2021)
GLEAM 10-100 cm soil layer (physical-based model) Martens et al. (2017)
MERRA-2 0-100 cm soil layer (reanalysis) Gelaro et al. (2017)

Surface latent heat flux FLUXCOM RS V6 (upscaled in situ observations) Jung et al. (2019)
GLEAM (physical-based model) Martens et al. (2017)
MERRA-2 (reanalysis) Gelaro et al. (2017)

We use censored RMSE (cenRMSE) as a performance metric, which is based on178

modified root mean squared error (RMSE) to account for uncertainties in the observa-179

tional data. The term “censored” refers to a value that occurs outside the range of a mea-180

suring instrument (Fridley & Dixon, 2007). We compute the cenRMSE as follows:181
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cenRMSE =

√√√√ n∑
i=1

dy2i (1)182

dyi = min(|ŷi − yi,r|), r = 1, 2, 3 (2)183

ŷi is the model value in time step i and yi,r is the reference data for the three ref-184

erences (yi,1, yi,2. yi,3). dyi = 0 if ŷi is in the interval defined by the range of the ref-185

erence values, otherwise the minimum is taken to compute the cenRMSE. The cenRMSE186

behaves like RMSE outside the interval and is 0 if all predictions are within the range187

of reference values.188

Specifically for the parameter calibration experiments, we combine the cenRMSE189

performance metric of the three target variables (i.e. near-surface soil moisture, deep soil190

moisture and surface latent heat flux). We rank the 1000 perturbation factors individ-191

ually for each variable and then we add the individual ranks up. The lowest (highest)192

sums constitute the best (poorest) perturbation factors in terms of model performance.193

2.3 Spatial variability of regional parameters194

We extend our analysis to the spatial features of calibrated model parameters (Ta-195

ble 2). We employ random forest models (Breiman, 2001; Molnar, 2020) (hereafter RF)196

to predict each of the six calibrated parameter values across grid pixels (six RF mod-197

els are used). As predictor variables we use i) long-term mean climatic and land surface198

characteristics such as aridity, temperature and EVI, ii) differences in high and low veg-199

etation cover between the two land cover datasets used in the modelling experiments (ESA-200

CCI/C3S and GLCC) (Boussetta et al., 2021), and iii) the values of the remaining five201

parameters (other than the target parameter). This allows us to determine if there is a202

spatial pattern of the newly defined model parameters and, if so, to quantify factors in-203

fluencing the spatial patterns.204

We use information from the 230 grid cells for the RF training. We assess the per-205

formance of the RF models by computing the R2 between the predicted and the observed206

target variables for out-of-bag (OOB) data that was not used for training (hereafter re-207

ferred to as estimate of R2) (Li et al., 2021). We infer the relative importance of each208

predictor variable from SHapley Additive exPlanations (SHAP) feature importance which209

is based on the average marginal contribution of each predictor to the modelled target210

variable (Lundberg & Lee, 2017; Sundararajan & Najmi, 2020).211

We note a potential caveat in our approach with the RF due to existing relation-212

ships among our selected set of predictors. Accordingly, we compute individual Spear-213

man correlations (Wilks, 2011) among the predictors to account for the magnitude of214

these associations and to identify the most affected variables.215

3 Results and discussion216

3.1 Impact of updated land surface information on model performance217

Figure 1 shows ECLand’s model performance in the CONTROL experiment. In218

general, the model performance varies considerably across regions. For near-surface and219

deep soil moisture (Figure 1 a and b), we see relatively good performance in the mid-220

latitudes of Europe, North America and southern South America. On the contrary, the221

model performs poorly in high-latitude regions, possibly due to high uncertainty in soil222
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moisture-related processes, e.g, soil freeze/thaw cycles (Dutra et al., 2010, 2011; Diro et223

al., 2018). In some regions, the model performance for deep soil moisture is slightly poorer224

than for near-surface soil moisture. This can be due to the high uncertainty among the225

reference datasets for deep soil moisture values as a consequence of sparse observations226

(Denissen et al., 2020; Koster et al., 2020; Li et al., 2021). For the surface latent heat227

flux (Figure 1 c) the cenRMSE is relatively good in central and eastern Europe and North228

America, which might be related to the high density of observations that can support229

model development and parameter calibration dedicated to these regions (Stegehuis et230

al., 2013).231

Good performance Bad performance

c) Surface latent heat flux

Good performance Bad performance

b) Deep soil moisture

Good performance Bad performance

a) Near-surface soil moisture

Figure 1. cenRMSE performance metric of CONTROL simulation for a) near-surface soil

moisture, b) deep soil moisture and c) surface latent heat flux. cenRMSE is computed based

on absolute values for latent heat flux, while normalized anomalies are used for soil moisture.

Numbers in the textboxes represent the global median. Gray areas are masked as their long-term

mean EVI is lower than 0.2.

Figure 2 shows the performance of the experiment with the most updated land in-232

formation (LC COV LAI) compared to the performance of the CONTROL experiment.233

We find a general deterioration of model performance (red color) for all three variables234

considered which is related to the high sensitivity of the RMSE-based metrics to out-235

liers. Recomputing the cenRMSE without the 10% largest disagreements between LC COV LAI236

and CONTROL simulation confirms that the percentage difference in cenRMSE improves237

in most regions (not shown). Therefore, on average, an update of the land surface in-238

formation in ECLand has positive impacts on the prediction of surface latent heat flux239

and near-surface and deep soil moisture.240
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c) Surface latent heat flux

b) Deep soil moisturea) Near-surface soil moisture

Improvement Deterioration Improvement Deterioration

Improvement Deterioration

Figure 2. Similar to Figure 1, but for percentage differences in performance: LC COV LAI

minus CONTROL divided by CONTROL.

The updated land surface information has a much clearer impact on the simula-241

tion of latent heat flux compared to soil moisture, as indicated by a larger magnitude242

of percentage changes in surface latent heat flux. Also, the spatial patterns of improve-243

ment/deterioration are not always consistent between latent heat flux and soil moisture;244

for instance, in southern South America there is improvement in most areas for surface245

latent heat flux but for both near-surface and deep soil moisture we find deterioration.246

This points to possible weaknesses in the representation of the coupling between latent247

heat flux and soil moisture in the model, as also stated in other studies (Zhang et al.,248

2008; Santanello et al., 2009; Quillet et al., 2010; Meng et al., 2014; Dirmeyer & Halder,249

2017; Wulfmeyer et al., 2018; Fairbairn et al., 2019).250

We also look at the model performance of each individual experiment in terms of251

the three considered output variables (Figures S1, S2 and S3). In general, the spatial pat-252

terns of improvement and deterioration are similar to the results in Figure 2. Compar-253

ing the magnitudes of the changes we find that the strongest effect on the model per-254

formance is exerted by the land cover type update, which is present in all experiments.255

The LAI interannual variability update has the second strongest effect on the model per-256

formance (Boussetta et al., 2013, 2015; Stevens et al., 2020; Duveiller et al., 2022).257
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3.2 Effect of recalibration of model parameters258

3.2.1 Ranks of the parameter sets259

We rank the 1000 model simulations with perturbed parameter values according260

to the cenRMSE performance metric of the three target variables (see Section 2.2), and261

relate the ranking to individual parameter perturbations in Figure 3 in order to assess262

their individual contribution. Table S1 shows the individual optimal perturbation fac-263

tors for the model parameters. Hydraulic conductivity and minimum stomatal resistance264

show the strongest systematic influence on model performance, similar to the results from265

Orth et al. (2016) and Orth et al. (2017).266

R
a
n

k

Perturbation factor

Perturbation factor Perturbation factor

Perturbation factor Perturbation factor

Perturbation factor

R
a
n

k

a) Hydraulic
conductivity

b) Humidity stress
function

c) Minimum stomatal
resistance

d) Soil moisture
stress function e) Total soil depth

f) Transmission of net
solar radiation 
through vegetation

Figure 3. Relating model performance to perturbations in the considered individual ECLand

parameters: a) hydraulic conductivity, b) humidity stress function, c) minimum stomatal re-

sistance, d) soil moisture stress function, e) total soil depth and f) transmission of net solar

radiation through vegetation. Red dots indicate the performance of the default parameteriza-

tions (i.e. no perturbation). A rank value of 1 (1000) in the Y-axis indicates the best (poorest)

perturbation factor in model performance.

Hydraulic conductivity governs the water transport in the soil and is therefore di-267

rectly linked to soil moisture and evapotranspiration (latent heat flux). We find that a268

substantial reduction of the hydraulic conductivity from its default value improves model269

performance. This reduces percolation of infiltrated water and therefore increases near-270

surface soil moisture and ultimately latent heat flux (O et al., 2020). If the model with271

the new land surface information displays a general dry bias in soil moisture, a lower hy-272

draulic conductivity would help in retaining more water into the soil matrix.273

In the case of the minimum stomatal resistance it strongly relates to evapotran-274

spiration as it modulates the exchange of moisture from vegetated surfaces (Orth et al.,275

2016). Our results suggest that there is an optimum perturbation value for the minimum276

stomatal resistance between 1 and 2, i.e. close to the default parameterization, thus, mod-277

ifying it has little potential to improve the model. The increase in stomata resistance278

should be related to an excess of evapotranspiration with the new land surface informa-279

tion, for instance, with an increase of LAI, compared to the CONTROL experiment.280
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We also analyze the influence of parameter perturbations on model performance281

in terms of the considered individual variables (Figures S4, S5 and S6). The clear pat-282

tern of better model performance in the case of lower hydraulic conductivity found in283

Figure 3 is mainly related to an improvement of the soil moisture performance, especially284

for the near-surface layer (Figure S4). For the minimum stomatal resistance the pattern285

found in Figure 3 is related to variations in the simulation performance of latent heat286

flux (Figure S6). Additionally, the total soil depth is relevant for the simulation perfor-287

mance of deep soil moisture, (Figure S5) as also found in a similar study by Hawkins et288

al. (2019). This illustrates that different parameters matter for different land surface vari-289

ables, as well as that different observational datasets are needed to constrain different290

parameters.291

3.2.2 Model performance in parameter calibration experiments292

Figures 4 and 5 show the model performance changes relative to CONTROL af-293

ter the global and the regional recalibration across 230 grid cells, respectively. Gener-294

ally, for the global calibration (Figure 4) we find inconsistent results with improved or295

deteriorated model performance depending on the grid cell. This suggests that there is296

no one(calibration)-fits-all(regions) solution, probably related to the spatial heterogene-297

ity in climate along with different land surface characteristics, or its insufficient repre-298

sentation in the current default values in the model (like for specific vegetation types,299

soil textures, etc.) (Laguë et al., 2019; Nogueira et al., 2021), as can be seen from the300

spatial distribution of the calibrated parameter values in Figure S7. After the global cal-301

ibration we already see an improvement in both soil moisture variables but it is not al-302

ways the case for the surface latent heat flux, probably due to compensation in model303

performance between variables (McCabe et al., 2005). This is expected as the newly ap-304

plied datastreams are related to land cover and vegetation structure. Specifically, the305

model performance in the grid cells in northern Asia always degrades from a global cal-306

ibration, whereas for the other regions we see mixed results.307

After the regional calibration, we find substantial improvement in model perfor-308

mance for all three variables as shown in Figure 5. See also Figure S8 for comparisons309

of model performance between the regional and global calibrations. In a similar study310

for another LSM, Xie et al. (2007) found an improvement in model performance after311

a regional calibration of model parameters. This suggests that parameters should suf-312

ficiently reflect land surface heterogeneity, different climate zones, different biome types,313

etc. The regional calibration leads to better model performance for most grid pixels, ex-314

cept for high latitudes in Northern Asia, possibly due to high uncertainty in the repre-315

sentation of soil freeze processes, as found in other studies (Dutra et al., 2010, 2011; Diro316

et al., 2018).317

To aggregate our main findings, Figure 6 shows the median global change in model318

performance for each experiment and variable. Most of the experiments do not show clear319

model performance improvement with regards to the CONTROL simulation before re-320

calibration. Only the regional calibration experiment shows improvement in all output321

variables, which calls for parameter recalibration after updating land surface informa-322

tion on LSMs to exploit the benefits of Earth observation developments (Nogueira et al.,323

2021). This is specifically the case for a regional (spatially varying) as opposed to the324

global (spatially constant) calibration as this can better account for spatial heterogeneities,325

and compensate for potentially related shortcomings in the model structure (Xie et al.,326

2007). The variability of the experiments (represented by the error bars in Figure 6) for327

the surface latent heat flux is higher than for the two soil moisture variables. We attribute328

this to a direct effect on latent heat flux from the perturbation of the selected param-329

eters because these are mostly related with evapotranspiration, whereas they have an330

indirect effect on soil moisture (Jefferson et al., 2017; Montzka et al., 2017).331
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c) Surface latent heat flux

b) Deep soil moisturea) Near-surface soil moisture

Improvement Deterioration Improvement Deterioration

Improvement Deterioration

Figure 4. Similar to Figure 1, but for percentage differences in performance: Global calibra-

tion minus CONTROL divided by CONTROL.

In a final step, we study model performance changes in wet vs. dry regions by pro-332

ducing Figure 6 for such regions separately (Figure S9). The effect of updating land sur-333

face information in ECLand on model performance is generally stronger in dry grid cells334

than in wet grid cells. This is expected since vegetation plays a more important role for335

modulating the exchange of water and energy in dry-to-transitional regions, whereas the336

role of the vegetation and relevant land processes in comparison to the effect of atmo-337

spheric dynamics is less prominent in wet regions (Seneviratne et al., 2010; Miralles et338

al., 2019; Denissen et al., 2020).339

3.3 Attribution analysis of spatial patterns of regional parameter cal-340

ibration341

In a final step, we analyze the spatial patterns of the optimal parameter pertur-342

bations determined in the grid cell-wise model calibration shown in Figure S7. In order343

to explain the spatial pattern of each parameter we consider several predictors includ-344

ing climate and vegetation characteristics, as well as the calibrated values of the other345

considered parameters. This attribution analysis is done separately for each parameter346

(target in the regional calibration). Figure 7 shows that overall we see that for each of347

the modelled parameters, the remaining parameters are the best factors to predict the348

values of the target. Only for the humidity stress function (Figure 7 b) and for the trans-349

mission of net solar radiation through vegetation (Figure 7 f) the difference in vegeta-350

tion type and the temperature are important predictors (other than the remaining model351

parameters) in the RF models, respectively. We attribute this to an equifinality prob-352

lem in the model and accept it as a caveat in our analysis: we select only the best pa-353
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c) Surface latent heat flux

b) Deep soil moisturea) Near-surface soil moisture

Improvement Deterioration Improvement Deterioration

Improvement Deterioration

Figure 5. Similar to Figure 1, but for percentage differences in performance: Regional calibra-

tion minus CONTROL divided by CONTROL.

rameter sets while other sets might perform almost as good as the best set (Williams et354

al., 2009).355

The RF models have in general a good model performance (Figure S10), meaning356

that the considered factors can explain the spatial patterns of model parameters. The357

hydraulic conductivity calibration has the best RF model performance due to the clear358

systematic pattern in the parameter set ranks (Figure 3 a), specially given by the de-359

pendence of the near-surface soil moisture model performance on this parameter (Fig-360

ure S4).361

The relative importance is analyzed here for correlation and not causation. We ac-362

knowledge that some of the selected factors are highly correlated (Figure S11) and their363

actual relative importance might be reduced by the collinearities (Ghosh & Maiti, 2021).364

The most cross-correlated ones are: hydraulic conductivity and total soil depth; mini-365

mum stomatal resistance and soil moisture stress function; EVI and aridity; EVI and tem-366

perature; and the differences in high and low vegetation cover. However, most pairs of367

factors show correlation lower than 0.2.368

4 Summary and conclusion369

Recent studies performed substantial efforts for exploiting additional Earth obser-370

vations in ECLand model validation (Boussetta et al., 2013, 2015; Orth et al., 2017; Nogueira371

et al., 2020; O et al., 2020; Stevens et al., 2020). However these experiments have never372
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Figure 6. Summary of ECLand performance for each experiment compared to the CON-

TROL simulation. Medians of percentage change of cenRMSE across 230 grid cells are shown.

The error bars represent the 25th and 75th percentile.

included all updates in one single study. Neither have they performed a follow-up recal-373

ibration of the model to exploit the benefits of including more accurate land surface in-374

formation. Here we make a step in this direction with our comprehensive modelling ex-375

periments (Gupta et al., 1999), not only updating land cover type but also including in-376

terannual variability of LAI and cover fraction.377

We find a substantial impact of updating land and vegetation information from newly378

available Earth observations on the simulated surface latent heat flux and near-surface379

and deep soil moisture. However, these modifications do not always show positive im-380

pacts on the model performance. The changes in model performance vary between re-381

gions and considered variables, indicating the need for model evaluation based on mul-382

tivariable analysis to make conclusive remarks on model performance (McCabe et al.,383

2005). Further, this shows that ingesting novel Earth observation data streams into cur-384

rent LSMs is not automatically leading to improved model performance as the model pa-385

rameterizations need to be adapted to these updates (Nogueira et al., 2021). By consid-386

ering several reference datasets, we benefit from the growing suite of global observational387

products, and manage to incorporate the uncertainty between these products into our388

evaluation of model performance.389

As a further step we also recalibrate the model to adapt it to the new conditions.390

For the model recalibration we follow two approaches: global calibration and regional391

calibration (Xie et al., 2007). We find that the regional calibration yields substantial bet-392

ter agreement between model simulations and reference datasets, suggesting it may be393

beneficial to revise the spatial variability of model parameters which so far is based on394

soil and vegetation types (i.e. look-up tables). An update of those look-up tables and/or395
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Figure 7. Relative importance (SHAP values) of multiple factors to explain the spatial pat-

terns of regionally calibrated model parameters for a) hydraulic conductivity, b) humidity stress

function, c) Minimum stomatal resistance, d) soil moisture stress function, e) total soil depth and

f) transmission of net solar radiation through vegetation. Note that the Y-axes have different

ranges.

the consideration of more aspects of spatial heterogeneity may be a way forward in this396

context. This would allow that future calibrations can be done globally only.397

We suggest that one reason for the lack of improvement in the model performance398

after updating land surface information with state-of-the-art observations is attributed399

to the then outdated model parameters. The model shows substantial improvement when400

adjusting parameters, particularly through the regional calibration, indicating that land401

information updates in the model cannot be treated independently from model param-402

eterization. Future work should consider the impact of the improved and calibrated ECLand403

performance within a coupled model system.404
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The meteorological forcing for ECLand from ERA5 is available at https://cds.climate.copernicus.eu/406

(ECMWF & Service, 2018). The EVI data from MODIS are available through NASA’s407

data catalogue at https://lpdaac.usgs.gov/products/mod13c1v006/ (EOSDIS, 2015). Both408

the evaporative fraction data from FLUXCOM and the soil moisture data from SoMo.ml409

are available at the Data Portal of the Max Planck Institute for Biogeochemistry at https://www.bgc-410

jena.mpg.de/geodb/projects/Data.php (for Biogeochemistry, 2019, 2021). The output411

data from the ECLand modelling experiments are available in the Zenodo repository at412

https://doi.org/10.5281/zenodo.7823893.413
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Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., . . .504

Zhao, B. (2017). The Modern-Era Retrospective Analysis for Research and505

Applications, version 2 (MERRA-2). Journal of Climate, 30 (14), 5419 - 5454.506

doi: 10.1175/JCLI-D-16-0758.1507
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Vrese, P., Jungclaus, J. H., . . . Navarro, J. (2021). Increasing the depth518

of a land surface model. part I: Impacts on the subsurface thermal regime519

and energy storage. Journal of Hydrometeorology , 22 (12), 3211 - 3230. doi:520

10.1175/JHM-D-21-0024.1521

Guillevic, P., Koster, R. D., Suarez, M. J., Bounoua, L., Collatz, G. J., Los, S. O.,522

& Mahanama, S. P. P. (2002). Influence of the interannual variability of veg-523

etation on the surface energy balance—a global sensitivity study. Journal of524

Hydrometeorology , 3 (6), 617 - 629. doi: 10.1175/1525-7541(2002)003〈0617:525

IOTIVO〉2.0.CO;2526

Guo, Z., Dirmeyer, P. A., & DelSole, T. (2011). Land surface impacts on subsea-527

sonal and seasonal predictability. Geophysical Research Letters, 38 (24). doi: 10528

.1029/2011GL049945529

Gupta, H. V., Bastidas, L. A., Sorooshian, S., Shuttleworth, W. J., & Yang, Z. L.530

(1999). Parameter estimation of a land surface scheme using multicriteria531

methods. Journal of Geophysical Research: Atmospheres, 104 (D16), 19491-532

19503. doi: 10.1029/1999JD900154533

Hawkins, L. R., Rupp, D. E., McNeall, D. J., Li, S., Betts, R. A., Mote, P. W., . . .534

Wallom, D. C. H. (2019). Parametric sensitivity of vegetation dynamics in the535

TRIFFID model and the associated uncertainty in projected climate change536

impacts on Western U.S. forests. Journal of Advances in Modeling Earth537

Systems, 11 (8), 2787-2813. doi: 10.1029/2018MS001577538

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J.,539
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Introduction

The present document contains additional material (Table and Figures) that supports

the discussion in the study ”Impact of updating vegetation information on land surface

model performance”. This material is not included in the main text because it is not

essential to the main scientific conclusins other than providing additional information.
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Table S1. Optimal perturbation factors for the model parameters after global calibration

Model parameter Optimal perturbation factors
Hydraulic conductivity 0.09766
Humidity stress function 0.83900
Minimum stomatal resistance 1.27800
Soil moisture stress function 1.47000
Total soil depth 1.06044
Transmission of net solar radiation through vegetation 0.13652

April 13, 2023, 4:23pm



X - 4 RUIZ-VÁSQUEZ ET AL.:

a) LC

c) LC_LAI

e) Global calibration f) Regional calibration

Improvement Deterioration

b) LC_COV

d) LC_COV_LAI

Improvement Deterioration

Figure S1. Percentage differences in cenRMSE model performance for near-surface soil mois-

ture in a) LC, b) LC COV, c) LC LAI, d) LC COV LAI, e) Global calibration and f) Regional

calibration simulations with regards to CONTROL simulation. Numbers in the textboxes repre-

sent the global median.
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a) LC

c) LC_LAI

e) Global calibration f) Regional calibration

Improvement Deterioration

b) LC_COV

d) LC_COV_LAI

Improvement Deterioration

Figure S2. Similar to Figure S1, but for deep soil moisture.
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a) LC

c) LC_LAI

e) Global calibration f) Regional calibration

Improvement Deterioration

b) LC_COV
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Improvement Deterioration

Figure S3. Similar to Figure S1, but for surface latent heat flux.
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Figure S4. Rankings of 1001 random perturbation factors for near-surface soil moisture for

a) hydraulic conductivity, b) humidity stress function, c) minimum stomatal resistance, d) soil

moisture stress function, e) total soil depth and f) transmission of net solar radiation through

vegetation. Red dots indicate the performance of the default parameterizations (i.e. no pertur-

bation).

April 13, 2023, 4:23pm



X - 8 RUIZ-VÁSQUEZ ET AL.:

Figure S5. Similar to Figure S4, but for deep soil moisture.
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Figure S6. Similar to Figure S4, but for surface latent heat flux.
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Figure S7. Spatial distribution of the calibrated parameter values in the regional calibration

experiment for a) hydraulic conductivity, b) humidity stress function, c) minimum stomatal

resistance, d) soil moisture stress function, e) total soil depth and f) transmission of net solar

radiation through vegetation.
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Figure S8. Model performance of the global parameter calibration experiment (left column)

and reduction in cenRMSE of the regional parameter calibration experiment with regards to

the global calibration experiment (right column) for a) near-surface soil moisture, b) deep soil

moisture and c) surface latent heat flux.
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a) Dry grid cells

b) Wet grid cells

Near-surface soil moisture Deep soil moisture Surface latent heat flux
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60

40

20

0

20

40

60

M
e
d

ia
n

 i
m

p
ro

v
e
m

e
n

t 
[%

]

LC

LC_COV

LC_LAI

LC_COV_LAI

Global calibration

Regional calibration

Near-surface soil moisture Deep soil moisture Surface latent heat flux

Model output variable

60

40

20

0

20

40

60

M
e
d

ia
n

 i
m

p
ro

v
e
m

e
n

t 
[%

]

LC

LC_COV

LC_LAI

LC_COV_LAI

Global calibration

Regional calibration

Figure S9. Summary of ECLand performance for each experiment compared to the CONTROL

simulation only considering a) dry (≤first quartile of soil moisture) and b) wet (≥ third quartile

of soil moisture) grid cells. The error bars represent the 25th and 75th percentile.
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Figure S10. Model performance (OOB estimate of R2) in the trained RF for the considered

six soil and vegetation related model parameters. Higher OOB means the RF can well explain

the spatial pattern of model parameters.
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Figure S11. Spearman cross-correlation matrix among the 11 predictors used in the RF

models to predict the calibrated parameter values.
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