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Abstract

A promising method for improving the representation of clouds in climate models, and hence climate projections, is to develop

machine learning-based parameterizations using output from global storm-resolving models. While neural networks can achieve

state-of-the-art performance, they are typically climate model-specific, require post-hoc tools for interpretation, and struggle

to predict outside of their training distribution. To avoid these limitations, we combine symbolic regression, sequential feature

selection, and physical constraints in a hierarchical modeling framework. This framework allows us to discover new equations

diagnosing cloud cover from coarse-grained variables of global storm-resolving model simulations. These analytical equations are

interpretable by construction and easily transferable to other grids or climate models. Our best equation balances performance

and complexity, achieving a performance comparable to that of neural networks ($Rˆ2=0.94$) while remaining simple (with only

13 trainable parameters). It reproduces cloud cover distributions more accurately than the Xu-Randall scheme across all cloud

regimes (Hellinger distances $<0.09$), and matches neural networks in condensate-rich regimes. When applied and fine-tuned

to the ERA5 reanalysis, the equation exhibits superior transferability to new data compared to all other optimal cloud cover

schemes. Our findings demonstrate the effectiveness of symbolic regression in discovering interpretable, physically-consistent,

and nonlinear equations to parameterize cloud cover.
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• We systematically derive and evaluate cloud cover parameterizations of various11

complexity from global storm-resolving simulation output12
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• Our data-driven cloud cover equation can be retuned with few samples, facilitat-15

ing transfer learning to generalize to other realistic data16
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Abstract17

A promising method for improving the representation of clouds in climate mod-18

els, and hence climate projections, is to develop machine learning-based parameteriza-19

tions using output from global storm-resolving models. While neural networks can achieve20

state-of-the-art performance, they are typically climate model-specific, require post-hoc21

tools for interpretation, and struggle to predict outside of their training distribution. To22

avoid these limitations, we combine symbolic regression, sequential feature selection, and23

physical constraints in a hierarchical modeling framework. This framework allows us to24

discover new equations diagnosing cloud cover from coarse-grained variables of global25

storm-resolving model simulations. These analytical equations are interpretable by con-26

struction and easily transferable to other grids or climate models. Our best equation bal-27

ances performance and complexity, achieving a performance comparable to that of neu-28

ral networks (R2 = 0.94) while remaining simple (with only 13 trainable parameters).29

It reproduces cloud cover distributions more accurately than the Xu-Randall scheme across30

all cloud regimes (Hellinger distances < 0.09), and matches neural networks in condensate-31

rich regimes. When applied and fine-tuned to the ERA5 reanalysis, the equation exhibits32

superior transferability to new data compared to all other optimal cloud cover schemes.33

Our findings demonstrate the effectiveness of symbolic regression in discovering inter-34

pretable, physically-consistent, and nonlinear equations to parameterize cloud cover.35

Plain Language Summary36

In climate models, cloud cover is usually expressed as a function of coarse, pixe-37

lated variables. Traditionally, this functional relationship is derived from physical assump-38

tions. In contrast, machine learning approaches, such as neural networks, sacrifice in-39

terpretability for performance. In our approach, we use high-resolution climate model40

output to learn a hierarchy of cloud cover schemes from data. To bridge the gap between41

simple statistical methods and machine learning algorithms, we employ a symbolic re-42

gression method. Unlike classical regression, which requires providing a set of basis func-43

tions from which the equation is composed of, symbolic regression only requires math-44

ematical operators (such as +, ×) that it learns to combine. By using a genetic algorithm,45

inspired by the process of natural selection, we discover an interpretable, nonlinear equa-46

tion for cloud cover. This equation is simple, performs well, satisfies physical principles,47

and outperforms other algorithms when applied to new observationally-informed data.48

1 Introduction49

Due to computational constraints, climate models used to make future projections50

spanning multiple decades typically have horizontal resolutions of 50 – 100 km (Eyring51

et al., 2021). The coarse resolution necessitates the parameterization of many subgrid-52

scale processes (e.g., radiation, microphysics), which have a significant effect on model53

forecasts (Stensrud, 2009). Climate models, such as the state-of-the-art ICOsahedral Non-54

hydrostatic (ICON) model, exhibit long-standing systematic biases, especially related55

to cloud parameterizations (Crueger et al., 2018; Giorgetta et al., 2018). A fundamen-56

tal component of the cloud parameterization package in ICON is its cloud cover scheme,57

which, in its current form, diagnoses fractional cloud cover from large-scale variables in58

every grid cell (Giorgetta et al., 2018; Mauritsen et al., 2019). As cloud cover is directly59

used in the radiation (Pincus & Stevens, 2013) and microphysics (Lohmann & Roeck-60

ner, 1996) parameterizations of ICON, its estimate directly influences the energy bal-61

ance and the statistics of water vapor, cloud ice, and cloud water. The current cloud cover62

scheme in ICON, based on Sundqvist et al. (1989), nevertheless makes some crude em-63

pirical assumptions, such as a near-exclusive emphasis on relative humidity (see Grundner64

et al. (2022) for further discussion).65
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With the extended availability of high-fidelity data and increasingly sophisticated66

machine learning (ML) methods, ML algorithms have been developed for the parame-67

terization of clouds and convection (e.g., Brenowitz and Bretherton (2018); Gentine et68

al. (2018); Krasnopolsky et al. (2013); O’Gorman and Dwyer (2018); see reviews by Beucler69

et al. (2022) and Gentine et al. (2021)). High-resolution atmospheric simulations on storm-70

resolving scales (horizontal resolutions of a few kilometers) resolve deep convective pro-71

cesses explicitly (Weisman et al., 1997), and provide useful training data with an improved72

physical representation of clouds and convection (Hohenegger et al., 2020; Stevens et al.,73

2020). There are only few approaches that learn parameterizations directly from obser-74

vations (e.g., McCandless et al. (2022)), as these are challenged by the sparsity and noise75

of observations (Rasp et al., 2018; Trenberth et al., 2009). Therefore, a two-step process76

might be required, in which the statistical model structure is first learned on high-resolution77

modeled data before its parameters are fine-tuned on observations (transfer learning),78

leveraging the advantage of the consistency of the modeled data for the initial training79

stage before having to deal with noisier observational data.80

Neural networks and random forests have been routinely used for ML-based pa-81

rameterizations. Unlike traditional regression approaches, they are not limited to a par-82

ticular functional form provided by combining a set of basis functions. They are usually83

fast at inference time and can be trained with very little domain knowledge. However,84

this versatility comes at the cost of interpretability as explainable artificial intelligence85

(XAI) methods still face major challenges (Kumar et al., 2020; Molnar et al., 2021). Given86

this limitation, we ask: Can we create data-driven cloud cover schemes that are inter-87

pretable by construction without renouncing the high data fidelity of neural networks?88

Here, we use a hierarchical modeling approach to systematically derive and eval-89

uate a family of cloud cover (interpreted as the cloud area fraction) schemes, ranging from90

traditional physical (but semi-empirical) schemes and simple regression models to neu-91

ral networks. We evaluate them according to their Pareto optimality (i.e., whether they92

are the best performing model for their complexity). To bridge the gap between simple93

equations and high-performance neural networks, we apply equation discovery in a data-94

driven manner using state-of-the-art symbolic regression methods. In symbolic regres-95

sion, as opposed to regular regression, the user first specifies a set of mathematical op-96

erators instead of a set of basis functions. Based on these operators, the symbolic regres-97

sion library creates a random initial population of equations (Schmidt & Lipson, 2009).98

Inspired by the process of natural selection in the theory of evolution, symbolic regres-99

sion is usually implemented as a genetic algorithm that iteratively applies genetically mo-100

tivated operations (selection, crossover, mutation) to the set of candidate equations. At101

each step, the equations are ranked based on their performance and simplicity, so that102

the top equations can be selected to be included in the next population (Smits & Kotanchek,103

2005). Advantages of training/discovering analytical models instead of neural networks104

include an immediate view of model content (e.g., whether physical constraints are sat-105

isfied) and the ability to analyze the model structure directly using powerful mathemat-106

ical tools (e.g., perturbation theory, numerical stability analysis). Additionally, analyt-107

ical models are straightforward to communicate to the broader scientific community, to108

implement numerically, and fast to execute given the existence of optimized implemen-109

tations of well-known functions.110

To our knowledge, Zanna and Bolton (2020) marks the first usage of automated,111

data-driven equation discovery for climate applications. Training on highly idealized data,112

they used a sparse regression technique called relevance vector machine to find an an-113

alytical model that parameterizes ocean eddies. In sparse regression, the user defines a114

library of terms, and the algorithm determines a linear combination of those terms that115

best matches the data while including as few terms as possible (Brunton et al., 2016; Rudy116

et al., 2017; Zhang & Lin, 2018; Champion et al., 2019). In a follow-up paper, Ross et117

al. (2023) employed symbolic regression to discover an improved equation, again trained118
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on idealized data, that performs similarly well as neural networks across various met-119

rics and has greater generalization capability. Nonetheless, they had to assume that the120

equation was linear in terms of its free/trainable parameters and additively separable121

as their method included an iterative approach to select suitable terms. For the selec-122

tion of terms, they took a human-in-the-loop approach rather than solely relying on the123

genetic algorithm. Additionally, the final discovered equation relied on high-order spa-124

tial derivatives, which may not be feasible to compute in a climate model. To prevent125

this issue, we only permit features we can either access or easily derive in the climate126

model.127

Guiding questions for this study include: Using symbolic regression, can we auto-128

matically discover a physically consistent equation for cloud cover whose performance129

is competitive with that of neural networks? Given that modern symbolic regression li-130

braries can handle higher computational overhead, we want to relax prior assumptions131

of linearity or separability of the equation. Then, what can we learn about the cloud cover132

parameterization problem by sequentially selecting performance-maximizing features in133

different predictive models? Finally, how much better do simple models generalize and/or134

transfer to more realistic data sets?135

We first introduce the data sets used for training, validation and testing (Sec 2),136

the diverse data-driven models used in this study (Sec 3), and evaluation metrics (Sec 4),137

before studying the feature rankings, performances and complexities of the different mod-138

els (Sec 5.1). We investigate their ability to reproduce cloud cover distributions (Sec 5.2)139

and adapt to the ERA5 reanalysis (Sec 5.3). We conclude with an analysis of the best140

analytical model we found using symbolic regression (Sec 6).141

2 Data142

In this section, we introduce the two data sets used to train and benchmark our143

cloud cover schemes: We first use storm-resolving ICON simulations to train high-fidelity144

models (Sec 2.1), before testing these models’ transferability to the ERA5 meteorolog-145

ical reanalysis, which is more directly informed by observations (Sec 2.2).146

2.1 Global Storm-Resolving Model Simulations (DYAMOND)147

As the source for our training data, we use output from global storm-resolving ICON148

simulations performed as part of the DYnamics of the Atmospheric general circulation149

Modeled On Non-hydrostatic Domains (DYAMOND) project. The project’s first phase150

(‘DYAMOND Summer’) included a simulation starting from August 1, 2018 (Stevens151

et al., 2019), while the second phase (‘DYAMOND Winter’) was initialized on January152

20, 2020 (Duras et al., 2021). In both phases, the ICON model simulated 40 days, pro-153

viding three-hourly output on a grid with a horizontal resolution of 2.47 km.154

Following the methodology of Grundner et al. (2022), we coarse-grain the DYA-155

MOND data to an ICON grid with a typical climate model horizontal grid resolution of156

≈ 80 km. Vertically, we coarse-grain the data from 58 to 27 layers below an altitude of157

21 km, which is the maximum altitude with clouds in the data set. For cloud cover, we158

first estimate the vertically maximal cloud cover values in each low-resolution grid cell159

before horizontally coarse-graining the resulting field. For all other variables, we take a160

three-dimensional integral over the high-resolution grid cells overlapping a given low-resolution161

grid cell. For details, we refer the reader to Appendix A of Grundner et al. (2022). Due162

to the sequential processing of some parameterization schemes in the ICON model, condensate-163

free clouds can occur in the simulation output. To instead ensure consistency between164

cloud cover and the other model variables, we follow Giorgetta et al. (2022) and man-165

ually set the cloud cover in the high-resolution grid cells to 100% when the cloud con-166

densate mixing ratio exceeds 10−6 kg/kg and to 0% otherwise.167
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We remove the first ten days of ‘DYAMOND Summer’ and ‘DYAMOND Winter’168

as spin-up, and discard columns that contain NaNs (3.15% of all columns). From the re-169

mainder, we keep a random subset of 28.5% of the data, while removing predominantly170

cloud-free cells to mitigate a class imbalance in the output (‘undersampling’ step). We171

then split the data into a training and a validation set, the latter of which is used for early172

stopping. To avoid high correlations between the training and validation sets, we divide173

the data set into six temporally connected parts. We choose the union of the second (≈174

Aug 21 - Sept 1, 2016) and the fifth (≈Feb 9 - Feb 19, 2020) part to create our valida-175

tion set. For all models except the traditional schemes, we additionally normalize mod-176

els’ features (or ‘inputs’) so that they have zero mean and unit variance on the train-177

ing set.178

We define a set of 24 features F that the models (discussed in Sec 3) can choose

from. For clarity, we decompose F into three subsets: F def
= F1 ∪ F2 ∪ F3. The first

subset, F1
def
= {U, qv, qc, qi, T, p,RH} groups the horizontal wind magnitude U [m/s] and

thermodynamic variables known to influence cloud cover, namely specific humidity qv [kg/kg],
cloud water and ice mixing ratios qc [kg/kg] and qi [kg/kg], temperature T [K], pressure
p [Pa] , and relative humidity RH with respect to water, approximated as:

RH ≈ 0.00263
p

1Pa
qv exp

[
17.67(273.15K− T )

T − 29.65K

]
. (1)

The second subset F2 contains the first and second vertical derivatives of all features in179

F1. These derivatives are computed by fitting splines to every vertical profile of a given180

variable and differentiating the spline at the grid level heights to obtain derivatives on181

the irregular vertical grid. Finally, the third subset F3
def
= {z, land, ps} includes geo-182

metric height z [m] and the only two-dimensional variables, i.e., land fraction and sur-183

face pressure ps [Pa].184

In Grundner et al. (2022) we found it sufficient to diagnose cloud cover using in-185

formation from the close vertical neighborhood of a grid cell. By utilizing vertical deriva-186

tives to incorporate this information, we ensure the applicability of our cloud cover schemes187

to any vertical grid. Since our feature set F contains all features appearing in our three188

baseline ‘traditional’ parameterizations (see Sec 3.1), we deem it comprehensive enough189

for the scope of our study.190

2.2 Meteorological Reanalysis (ERA5)191

To test the transferability of our cloud cover schemes to observational data, we also192

use the ERA5 meteorological reanalysis (Hersbach et al., 2018). We sample the first day193

of each quarter in 1979-2021 at a three-hourly resolution. The days from 2000-2006 are194

taken from ERA5.1, which uses an improved representation of the global-mean temper-195

atures in the upper troposphere and stratosphere. Depending on the ERA5 variable, they196

are either stored on an N320 reduced Gaussian (e.g., for cloud cover) or a T639 spec-197

tral (e.g., for temperature) grid. Using the CDO package (Schulzweida, 2019), we first198

remap all relevant variables to a regular Gaussian grid, and then to the unstructured ICON199

grid described in Sec 2.1. Vertically, we coarse-grain from approximately 90 to 27 lay-200

ers.201

The univariate distributions of important features such as cloud water and ice do202

not match between the (coarse-grained) DYAMOND and (processed) ERA5 data. The203

maximal cloud ice values that are attained in the ERA5 data set are twice as large as204

in the DYAMOND data. We illustrate this in Fig 1, next to a comparison of the distri-205

butions of cloud water, relative humidity and temperature. Due to differences in the dis-206

tributions of cloud ice, cloud water and relative humidity, we consider our processed ERA5207

data a challenging data set to generalize to.208
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Figure 1. A comparison of the univariate distributions of four variables from the coarse-

grained DYAMOND and ERA5 data sets. The y-axes are scaled logarithmically to visualize the

distributions’ tails. While cloud ice is often larger in our processed ERA5 data set, cloud water

tends to be smaller than in the DYAMOND data. The distributions of temperature and relative

humidity are comparable.
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3 Data-Driven Modeling209

We now introduce a family of data-driven cloud cover schemes. We adopt a hier-210

archical modeling approach and start with models that are interpretable by construc-211

tion, i.e., linear models, polynomials, and traditional schemes. As a second step, we mostly212

focus on performance and therefore train deep neural networks (NNs) on the DYAMOND213

data. To bridge the gap between the best-performing and most interpretable models, we214

use symbolic regression to discover analytical cloud cover schemes from data. These schemes215

are complex enough to include relevant nonlinearities while remaining interpretable.216

3.1 Existing Schemes217

We first introduce three traditional diagnostic schemes for cloud cover and train
them using the BFGS (Nocedal & Wright, 1999) and Nelder-Mead (Gao & Han, 2012)
unconstrained optimizers (which outperform grid search methods in our case), each time
choosing the model that minimizes the mean squared error (MSE) on the validation set.
Before doing so, we multiply the output of each of the three schemes by 100 to obtain
percent cloud cover values. The first is the Sundqvist scheme (Sundqvist et al., 1989),
which is currently implemented in the ICON climate model (Giorgetta et al., 2018). The
Sundqvist scheme expresses cloud cover as a monotonically increasing function of rel-
ative humidity. It assumes that cloud cover can only exist if relative humidity exceeds
a critical relative humidity threshold RH0, which itself is a function of the fraction be-
tween surface pressure and pressure: If

RH > RH0
def
= RH0,top + (RH0,surf − RH0,top) exp(1− (ps/p)

n
), (2)

then the Sundqvist cloud cover is given by

CSundqvist
def
= 1−

√
min{RH,RHsat} − RHsat

RH0 − RHsat
. (3)

The Sundqvist scheme has four tunable parameters {RH0,surf ,RH0,top,RHsat, n}. As prop-218

erly representing marine stratocumulus clouds in the Sundqvist scheme might require219

a different treatment (see e.g., Mauritsen et al. (2019)), we allow these parameters to dif-220

fer between land and sea, which we separate using a land fraction threshold of 0.5.221

The second scheme is a simplified version of the Xu-Randall scheme (Xu & Ran-
dall, 1996), which was found to outperform the Sundqvist scheme on CloudSat data (Wang
et al., 2023). It additionally depends on cloud water and ice, ensuring that cloud cover
is 0 in condensate-free grid cells. It can be formulated as

CXu−Randall
def
= min{RHβ(1− exp(−α(qc + qi))), 1}. (4)

The Xu-Randall scheme has only two tuning parameters: {α, β}.222

The third scheme was introduced in Teixeira (2001) for subtropical boundary layer
clouds. Teixeira arrived at a diagnostic relationship for cloud cover by equating a cloud
production term from detrainment and a cloud erosion term from turbulent mixing with
the environment. We can express the Teixeira scheme as

CTeixeira
def
=

Dqc

2qs(1− R̂H)K

−1 +

√
1 +

4qs(1− R̂H)K

Dqc

 , (5)

where R̂H
def
= min{RH, 1− 10−9} bounds relative humidity to 1− 10−9 to ensure rea-223

sonable asymptotics, qs = qs(T, p) is the saturation specific humidity (Lohmann et al.,224

2016), and {D,K} are the detrainment rate and the erosion coefficient, which are the225

two tuning parameters of the Texeira scheme.226
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Besides those three traditional schemes, we additionally train the three neural net-227

works (cell-, neighborhood-, and column-based NNs) from Grundner et al. (2022) on the228

DYAMOND data. These three NNs receive their inputs either from the same grid cell,229

the vertical neighborhood of the grid cell, or the entire grid column. Thus, they differ230

in the amount of vertical locality that is assumed for cloud cover parameterization. As231

the ‘undersampling step’ has to be done at a cell-based level, we omit it when pre-processing232

the training data for the column-based NN. Nevertheless, the column-based NN is eval-233

uated on the same validation set as all other models.234

Now that we have introduced three semi-empirical cloud cover schemes, which can235

be used as baselines, we are ready to derive a hierarchy of data-driven cloud cover schemes.236

3.2 Developing Parsimonious Models via Sequential Feature Selection237

Our goal is to develop parameterizations for cloud cover that are not only perfor-238

mant, but also simple and interpretable. Providing many, possibly correlated features239

to a model may needlessly increase its complexity and allow the model to learn spuri-240

ous links between its inputs and outputs (Nowack et al., 2020), impeding both interpretabil-241

ity (Molnar, 2020) and generalizability (Brunton et al., 2016). Therefore, we instead seek242

parsimonious models, starting without any features and carefully selecting and adding243

features to a given type of model (e.g., a second-order polynomial) in a sequential man-244

ner. The chosen feature is always the one that maximizes the model’s performance on245

a sufficiently large subset of the training set (see also Sec 5.1.1). With this sequential246

feature selection (SFS) approach, we discourage the choice of correlated features and en-247

force sparsity by selecting a controlled number of features that already lead to the de-248

sired performance. Another benefit is that by studying the order of selected variables,249

optionally with the corresponding performance gains, we can gather intuition and phys-250

ical knowledge about the task at hand. On the way, we will obtain an approximation of251

the best-performing set of features for a given number of features. There is however no252

guarantee of it truly being the best-performing feature set due to the greedy nature of253

the feature selection algorithm, which decreases its computational cost.254

3.2.1 Linear Models and Polynomials255

We allow first-order (i.e., linear models), second-order, and third-order polynomi-256

als. The set of possible terms grows from 25 (see Sec 2.1) to 325 for the second-order and257

to 2925 for the third-order polynomials. To circumvent memory issues for the third-order258

polynomials, we restrict the pool of possible features to combinations of the ten most259

important ones. In addition to these ten features, we also include air pressure to be tech-260

nically able to later assign a sample to a cloud regime (overall reducing the total amount261

of possible terms from 2925 to 364). The choice of the ten features is informed by the262

SFS NNs (Sec 3.2.2), which are able to select informative features for nonlinear mod-263

els. Thereafter we run SFS and train all linear models and polynomials using the Sequen-264

tialFeatureSelector and LinearRegression methods of scikit-learn (Pedregosa et al., 2011)265

to obtain sequences of models with up to ten features.266

3.2.2 Neural Networks267

We train a sequence of SFS NNs with up to ten features using the “mlxtend” Python268

package (Raschka, 2018). We additionally train an NN with all 24 features for compar-269

ison purposes. As our regression task is similar in nature (including the vertical local-270

ity assumptions it makes for the features), we use the “Q1 NN” model architecture from271

Grundner et al. (2022) for all SFS NNs. “Q1 NN”’s architecture has three hidden lay-272

ers with 64 units each; it uses batch normalization and its loss function includes L1 and273

L2-regularization terms following hyperparameter optimization.274
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Due to the flexibility of NNs, when combining SFS with NNs, we obtain a sequence275

of features that is not bound to a particular model structure. In Sec 3.2.1 and 3.3, we276

therefore reuse the SFS NN feature rankings for other nonlinear models to restrict their277

set of possible features. The combination of SFS with NNs also yields a tentative up-278

per bound on the accuracy one can achieve with N features: If we assume that i) SFS279

provides the best set of features for a given number of features N ; and ii) the NNs are280

able to outperform all other models given their features, one would not be able to out-281

perform the SFS NNs with the same number of features. Even though the assumptions282

are only met approximately, we still receive helpful upper bounds on the performance283

of any model with N features.284

3.3 Symbolic Regression Fits285

To improve upon the analytical models of Sec 3.1 and 3.2.1 without compromis-286

ing interpretability, we use recently-developed symbolic regression packages. We choose287

the PySR (Cranmer, 2020) and default GP-GOMEA (Virgolin et al., 2021) libraries, which288

are both based on genetic programming. GP-GOMEA is one of the best symbolic re-289

gression libraries according to SRBench, a symbolic regression benchmarking project that290

compared 14 contemporary symbolic regression methods (La Cava et al., 2021). PySR291

is a very flexible, efficient, well-documented, and well-maintained library. In PySR, we292

choose a large number of potential operators to enable a wide range of functions (see Ap-293

pendix B for details). We also tried AIFeynman and found that its underlying assump-294

tion that one could learn from the NN gradient was problematic for less idealized data.295

Other promising packages from the SRBench competition, such as DSR/DSO and (Py)Operon,296

are left for future work. PySR and GP-GOMEA can only utilize a very limited number297

of features. Regardless of the number of features we provide, GP-GOMEA only uses 3−298

4, while PySR uses 5−6 features. For this reason, PySR also has a built-in tree-based299

feature selection method to reduce the number of features. Since the SFS NNs from Sec 3.2.2300

already provide a sequence of features that can be used in general, nonlinear cases, we301

instead select the first five of these features to maximize comparability between mod-302

els. The decision to run PySR with five features is also motivated by the good perfor-303

mance (R2 > 0.95) of the corresponding SFS NN (see Sec 5.1.2). Each run of the PySR304

or GP-GOMEA algorithms adds new candidates to the list of final equations. From ≈305

600 of resulting equations, we select those that have a good skill (R2 > 0.9), are inter-306

pretable, and satisfy most of the physical constraints that we define in the following sec-307

tion. As a final step, we refine the free parameters in the equation using the Nelder-Mead308

and BFGS optimizers (as in Sec 3.1).309

4 Model Evaluation310

4.1 Physical Constraints311

To facilitate their use, we postulate that simple equations for cloud cover C(X) ought312

to satisfy certain physical constraints (Gentine et al., 2021; Kashinath et al., 2021): 1)313

The cloud cover output should be between 0 and 100%; 2) an absence of cloud conden-314

sates should imply an absence of clouds; 3-5) when relative humidity or the cloud wa-315

ter/ice mixing ratios increase (keeping all other features fixed), then cloud cover should316

not decrease; 6) cloud cover should not increase when temperature increases; 7) the func-317

tion should be smooth on the entire domain. We can mathematically formalize these phys-318

ical constraints (PC):319

1) PC1: C(X) ∈ [0, 100]%320

2) PC2: (qc, qi) = 0 ⇒ C(X) = 0321

3) PC3: ∂C(X)/∂RH ≥ 0322

4) PC4: ∂C(X)/∂qc ≥ 0323
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5) PC5: ∂C(X)/∂qi ≥ 0324

6) PC6: ∂C(X)/∂T ≤ 0325

7) PC7: C(X) is a smooth function326

While these physical constraints are intuitive, they will not be respected by data-driven327

cloud cover schemes if they are not satisfied in the data. In the DYAMOND data, the328

first physical constraint is always satisfied, and PC2 is satisfied in 99.7% of all condensate-329

free samples. The remaining 0.3% are due to noise induced during coarse-graining. In330

order to check whether PC3 - PC6 are satisfied in our subset of the coarse-grained DYA-331

MOND data, we extract {qc, qi,RH, T}. We then separate the variable whose partial deriva-332

tive we are interested in. Bounded by the min/max-values of the remaining three vari-333

ables, we define a cube in this three-dimensional space, which we divide into N3 equally-334

sized cubes. In this way, the three variables of the samples within the cubes become more335

similar with increasing N . If we now fit a linear function in a given cube with the sep-336

arated variable as the inputs and cloud cover as the output, then we can use the sign of337

the function’s slope to know whether the physical constraint is satisfied.338

On one hand, the test is more expressive the smaller the cubes are, as the samples339

have more similar values for three of the four chosen variables and we can better approx-340

imate the partial derivative with respect to the separated variable. However, we only guar-341

antee similarity in three variables (omitting e.g., pressure). On the other hand, as the342

size of the cubes decreases, so does the number of samples contained in a cube, and noisy343

samples may skew the results. We therefore only consider the cubes that contain a suf-344

ficiently large number of samples (at least 104 out of the 2.9 · 108).345

Table 1. The percentage of data cubes that fulfill a given physical constraint. Only the cubes

with a sufficiently large amount of samples are taken into account. The last column shows the

proportion of cubes (across all sizes we consider) in which the constraint is satisfied on average.

(Maximum) Number of data cubes

1 23 33 43 53 63 73 Average (%)

PC3 100 100 100 100 100 100 100 100
PC4 100 100 83 90 73 78 71 77.5
PC5 100 100 85 50 81 83 68 73.8
PC6 100 50 100 67 72 89 75 77.7

We collect the results in Table 1, and find that the physical constraint PC3 (with346

respect to RH) is always satisfied. The other constraints are satisfied in most (on aver-347

age 76%) of the cubes. Thus, from the data we can deduce that the final cloud cover scheme348

should satisfy PC1 - PC3 in all and PC4-PC6 in most of the cases.349

To enforce PC1, we always constrain the output to [0, 100] before computing the
MSE. With the exception of the linear and polynomial SFS models, we already ensure
PC1 during training. For PC2, we can define cloud cover to be 0 if the grid cell is condensate-
free. We can combine PC1 and PC2 as

C(X) =

{
0, if qi + qc = 0

max{min{f(X), 100}, 0}, otherwise,
(6)

and our goal is to learn the best fit for f(X). In the case of the Xu-Randall and Teix-350

eira schemes, ensuring PC2 is not necessary since they satisfy the constraint by design.351
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4.2 Performance Metrics352

We use different metrics to train and validate the cloud cover schemes. We always
train to minimize the mean squared error (MSE), which directly measures the average
squared mismatch of the predictions f(xi) (usually set to be in [0, 100]) and the corre-
sponding true (cloud cover) values yi:

MSE
def
=

1

N

N∑
i=1

(C(xi)− yi)
2. (7)

The coefficient of determination R2-value takes the variance of the output Y = {yi}Ni=1

into account:

R2 def
= 1− MSE

Var(Y )
. (8)

To compare discrete univariate probability distributions P and Q, we use the Hellinger
distance

H(P,Q)
def
=

1√
2
∥
√
P −

√
Q∥2. (9)

As opposed to the Kullback-Leibler divergence, the Hellinger distance between two dis-353

tributions is always symmetric and finite (in [0, 1]).354

As our measure of complexity we use the number of (free/tunable/trainable) pa-355

rameters of a model. A clear limitation of this complexity measure is that, e.g., the ex-356

pression f(x) = ax is considered as complex as g(x) = sin(exp(ax)). However, in this357

study, most of our models (i.e., the linear models, polynomials, and NNs) do not con-358

tain these types of nested operators. Instead, each additional parameter usually corre-359

sponds to an additional term in the equation. In the case of symbolic regression tools,360

operators are already taken into account (see Appendix B) during the selection process,361

and we find that the number of trainable parameters suffices to compare the complex-362

ity our symbolic equations in their simplified forms. Finally, this complexity measure is363

one of the few that can be used for both analytical equations and NNs.364

4.3 Cloud Regime-Based Evaluation365

We define four cloud regimes based on air pressure p and the total cloud conden-366

sate qt (cloud water plus cloud ice) mixing ratio:367

1. Low air pressure, little condensate (cirrus-type cloud regime)368

2. High air pressure, little condensate (cumulus-type cloud regime)369

3. Low air pressure, substantial condensate (deep convective-type cloud regime)370

4. High air pressure, substantial condensate (stratus-type cloud regime)371

Pressure or condensate values that are above their medians (78 787 Pa and 1.62·10−5
372

kg/kg) are considered to be large, while values below the median are considered small.373

Each regime has a similar amount of samples (between 35 and 60 million samples per374

regime). In this simplified data split, based on Rossow and Schiffer (1991), air pressure375

and total cloud condensate mixing ratio serve as proxies for cloud top pressure and cloud376

optical thickness. These regimes will help decompose model error to better understand377

the strengths and weaknesses of each model, discussed in the following section.378

5 Results379

5.1 Performance on the Storm-Resolving (DYAMOND) Training Set380

In this section, we train the models we introduced in Sec 3 on the (coarse-grained)381

DYAMOND training data and compare their performance and complexity on the DYA-382

MOND validation data. We start with the sequential feature selection’s results.383
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5.1.1 Feature Ranking384

We perform 10 SFS runs for each linear model, polynomial, and NN from Sec 3.3.385

Each run varies the random training subset, which consists of O(105) samples in the case386

of NNs and O(106) samples in the case of polynomials. We then average the rank of a387

selected feature and note it down in brackets. We omit the average rank if it is the same388

for each random subset. By Pd, d ∈ {1, 2, 3} we denote polynomials of degree d (e.g.,389

P1 groups linear models). The sequences in which the features are selected are390

P1: RH → T → ∂zRH → qi[4.3] → ∂zzp[4.7] → qc → U → ∂zzqc → ∂zqv → zg

P2: RH → T → qcqi → RH∂zRH → T∂zRH[5.6] → qvRH[6.4] → TRH[7.4] →
RH2[7.9] → ∂zqv[9.2] → U [10.1]

P3: RH → T → qcqi → T 2RH[4.4] → RH2[5.4] → T 2[6.7] → RH∂zRH[7.4] →
∂zRH[8.3] → p2∂zzp[8.8] → T∂zRH[9.4]

NNs: RH → qi → qc → T [4.1] → ∂zRH[4.9] → ∂zzp[6.7] → ∂zp[8.1] →
∂zzRH[8.3] → ∂zT [10.0] → ps[10.1]

Regardless of the model, the selection algorithm chooses RH as the most informa-391

tive feature for predicting cloud cover. This is consistent with, e.g., Walcek (1994), who392

considers RH to be the best single indicator of cloud cover in most of the troposphere.393

Considering that the cloud cover in the high-resolution data was only derived from the394

cloud condensate mixing ratio, the models’ prioritization of RH is quite remarkable. From395

the feature sequences, we can also deduce that cloud cover depends on the mixing ra-396

tios of cloud condensates in a very nonlinear way: The polynomials choose qiqc as their397

third feature and do not use any other terms containing qi or qc. The NNs choose qi and398

qc as their second and third features, and are able to express a nonlinear function of these399

two features. The linear model cannot fully exploit qi and qc and hence attaches less im-400

portance to them.401

Since RH and T are chosen as the most informative features for the linear model,402

we can derive a notable linear dependence of cloud cover on these two features (the cor-403

responding model being f(RH, T ) = 41.31RH − 15.54T + 44.63). However, given the404

possibility, higher order terms of T and RH are chosen as additional predictors over, for405

instance, p or qv. Finally, ∂zRH is an important recurrent feature for all models. Depend-406

ing on the model, the coefficient associated with ∂zRH can be either negative or posi-407

tive. If ∂zRH ̸= 0, one can assume some variation of cloud cover (i.e., cloud area frac-408

tion) vertically within the grid cell. Thus, ∂zRH is a meaningful proxy for the subgrid409

vertical variability of cloud area fraction. Since the effective cloud area fraction of the410

entire grid cell is related to the maximum cloud area fraction at a given height within411

the grid cell, this could explain the significance of ∂zRH.412

5.1.2 Balancing Performance and Complexity413

In Fig 2, we depict all of our models in a performance × complexity plane. We mea-414

sure performance as the MSE on the validation (sub)set of the DYAMOND data and use415

the number of free parameters in the model as our complexity metric. We add the Pareto416

frontier, defined to pass through the best-performing models of a given complexity. The417

SFS sequences described above are used to train the SFS models of the corresponding418

type. The only exception is the swapped order of ∂zp and ∂zzp for the NNs, as we base419

the sequence shown in Fig 2 on a single SFS run. For the SFS NNs with 4-7 features,420

it was possible to reduce the number of layers and hidden units without significant per-421

formance degradation, which reduced the number of free parameters by about an order422

of magnitude and put them on the Pareto frontier.423
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Figure 2. All models described in Sec 3 in a performance × complexity plot. The dashed ver-

tical lines mark the R2 = 0.95- and R2 = 0.9-boundaries. Models marked with a cross satisfy the

second physical constraint PC2 (using equation (6)). Only the best PySR and GP-GOMEA sym-

bolic regression fits are shown. The NNs in cyan are the column-, neighborhood- and cell-based

NNs when read from left to right. The SFS NN with the lowest MSE contains all 24 features

described in Sec 2.1. For the SFS NNs, the last added feature is specified in curly brackets. Since

the validation MSE of the SFS NNs decreases with additional features, we can extract the fea-

tures for a given SFS NN by reading from right to left (e.g., the features of the SFS NN marked

with {qc} are {qi, qc,RH}).

For most models, we train a second version that does not need to learn that condensate-424

free cells are always cloud-free, but for which the constraint is embedded by equation (6).425

For such models, condensate-free cells are removed from the training set. In addition to426

the schemes of Xu-Randall and Teixeira (see Sec 4.1), we find that it is also not neces-427

sary to enforce PC2 in the case of NNs, since they are able to learn PC2 without degrad-428

ing their performance. PC1 is always enforced by default for all models.429

We find that, even though the Sundqvist and Teixeira schemes are also tuned to430

the training set, linear models of the same complexity outperform them. However, these431

linear models do not lie on the Pareto frontier either. The lower performance of the Teix-432

eira scheme is most likely due to the fact that it was developed for subtropical bound-433

ary layer clouds. Among the existing schemes, only the Xu-Randall scheme with its two434

tuning parameters set to {α, β} = {0.9, 9 · 105} is on the Pareto frontier as the sim-435
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plest model. With relatively large values for α and β, cloud cover is always approximately436

equal to relative humidity (i.e., C ≈ RH0.9) when clouds are present. The next mod-437

els on the Pareto frontier are third-order SFS polynomials P3 with 2-6 features with PC2438

enforced. To account for the bias term and the output of the polynomial being set to439

zero in condensate-free cells, the number of their parameters is the number of features440

plus 2. We then pass the line with R2 = 0.9 and find three symbolic regression fits on441

the Pareto frontier, each trained on the five most informative features for the SFS NNs.442

All symbolic regression equations that appear in the plot are listed in Appendix C. We443

will analyze the PySR equation with arguably the best tradeoff between complexity (11444

free parameters when phrased in terms of normalized variables) and performance (MSE =445

103.95(%)2) in Sec 6. The remaining models on the Pareto frontier are SFS NNs with446

4-10 features and finally the NN with all 24 features defined in Sec 2.1 included (MSE =447

30.51(%)2).448

Interestingly, the (quasi-local) 24-feature NN is able to achieve a slightly lower MSE449

(30.51(%)2) than the (non-local) column-based NN (33.37(%)2) with its 163 features.450

The two aspects that benefit the 24-feature NN are the additional information on the451

horizontal wind speed U and its derivatives, and the smaller number of condensate-free452

cells in its training set due to undersampling (Sec 2.1 and 3.1). The SFS NN with 10 fea-453

tures already shows very similar performance (MSE = 34.64(%)2) to the column-based454

NN with a (12 times) smaller complexity and fewer, more commonly accessible features.455

Comparing the small improvements of the linear SFS models (up to MSE = 250.43(%)2)456

with the larger improvements of SFS polynomials (up to MSE = 190.78(%)2) with in-457

creasing complexity, it can be deduced that it is beneficial to include nonlinear terms in-458

stead of additional features in a linear model. For example, NNs require only three fea-459

tures to predict cloud cover reasonably well (R2 = 0.933), and five features are suffi-460

cient to produce an excellent model (R2 = 0.962) because they learn to nonlinearly trans-461

form these features.462

The PySR equations can estimate cloud cover very well (R2 ∈ [0.935, 0.940]). How-463

ever, while the PySR equations depend on five features, the NNs are able to outperform464

them with as few as four features (R2 = 0.944). This suggests that the NNs learn bet-465

ter functional dependencies than PySR, as they do better with less information. How-466

ever, the improved performance of the NNs comes at the cost of additional complexity467

and greatly reduced interpretability.468

5.2 Split by Cloud Regimes469

In this section, we divide the DYAMOND data set into the four cloud regimes in-470

troduced in Sec 4.3. In Fig 3, we compare the cloud cover predictions of Pareto-optimal471

models (on Fig 2’s Pareto frontier) with the actual cloud cover distribution in these regimes.472

We evaluate the models located at favorable positions on the Pareto frontier (at the be-473

ginning to maximize simplicity, at the end to maximize performance, or on some corners474

to optimally balance both). Of the two PySR equations, we consider the one with the475

lowest MSE (as in Sec 6 later).476

In general, we find that the PySR equation (except in the cirrus regime) and the477

6-feature NN can reproduce the distributions quite well (Hellinger distances < 0.05),478

while the 24-feature NN shows excellent skill (Hellinger distances ≤ 0.015). However,479

all models have difficulty predicting the number of fully cloudy cells in all regimes (es-480

pecially in the regimes with fewer cloud condensates).481

For the PySR equation (and also the 24-feature NN), the cirrus regime distribu-482

tion is the most difficult one to replicate. The Hellinger distances suggest that it is the483

model’s functional form, and not its number of features that limits model performance484

in the cirrus regime. Indeed, the decrease in the Hellinger distance between the PySR485
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Figure 3. Predicted cloud cover distributions of selected Pareto-optimal models evaluated on

the DYAMOND data, divided into four different cloud regimes. The numbers in the upper left

indicate the Hellinger distance between the predicted and the actual cloud cover distributions for

each model and cloud regime.
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equation and the 6-feature NN is larger (0.049) than the decrease between the 6- and486

the 24-feature NN (0.02). Technically, the PySR equation has the same features as the487

5-feature and not the 6-feature NN, but the Hellinger distances of these two NNs to the488

actual cloud cover distribution are almost the same (difference of 0.003 in the cirrus regime).489

In the condensate-rich regimes, the PySR equation is as good as the 6-feature NN and490

even able to outperform it on the stratus regime. To improve the PySR scheme further491

in terms of its predicted cloud cover distributions, and combat its underestimation of cloud492

cover in the cirrus regime, it would most likely be a good strategy to sample more train-493

ing data from the cirrus regime and less from the stratus regime. Note that the PySR494

equation actually achieves its best R2 score (R2 = 0.84) in the cirrus regime as the co-495

efficient of determination takes into account the high variance of cloud cover in the cir-496

rus regime.497

Besides the peaks at the tail(s) of the distributions, we can see another erroneous498

peak in the Xu-Randall distribution in each cloud regime. We find that by neglecting499

the cloud condensate term and equating RH with the regime-based median, we can ap-500

proximately rederive these modes of the Xu-Randall cloud cover distributions in each501

regime using the Xu-Randall equation (4). With our choice of α = 0.9, this mode is502

indeed very close (absolute difference at most 8% cloud cover) to the median relative hu-503

midity calculated in each regime. By increasing α, we should therefore be able to push504

the mode above 100% cloud cover and thus remove the spurious peak – however, at the505

cost of increasing the overall MSE of the Xu-Randall scheme.506

5.3 Transferability to Meteorological Reanalysis (ERA5)507

Designing data-driven models that are not specific to a given Earth system model508

and a given grid is challenging. Therefore, in this section, we aim to identify which of509

our Pareto-optimal ML models are most general and transferable. Furthermore, to our510

knowledge, there is no systematic method to incorporate observations into ML param-511

eterizations for climate modeling. We take a step towards transferring schemes trained512

on SRMs to observations by analyzing the ability of the Pareto-optimal schemes to trans-513

fer learn the ERA5 meteorological reanalysis from the DYAMOND set.514

To do so, we take a certain number (either 1 or 100) of random locations, and col-515

lect the information from the corresponding grid columns of the ERA5 data over a cer-516

tain number of time steps in a data set T . Starting from the parameters learned on the517

DYAMOND data, we retrain the cloud cover schemes on T and evaluate them on the518

entire ERA5 data set. We can think of T as mimicking a series of measurements at these519

locations, which help the schemes to adjust to the unseen data set. Fig 4 shows the MSE520

of the Pareto-optimal cloud cover schemes on the ERA5 data set after transfer learning521

on data sets T of different sizes.522

The first columns of the three panels show no variability because the schemes are523

applied directly to the ERA5 data without any transfer learning (T = ∅). None of the524

schemes perform well without transfer learning (R2 < 0.15), which is expected given525

the different distributions of cloud ice and water between the DYAMOND and ERA5526

data sets (Fig 1). That being said, the SFS NNs retain their superior performance (MSE527

≈ 300(%)2 without retraining), especially compared to the non-retrained SFS polyno-528

mials, which exhibit MSEs in the range of 1375±55(%)2 and are therefore not shown529

in Panel c.530

For most schemes, performance increases significantly after seeing one grid column531

of ERA5 data, with the exception of the SFS NNs with more than 6 features and the532

GPGOMEA equation. The performance of the GPGOMEA equation varies greatly be-533

tween the selected grid columns, and the SFS NNs with many features appear to under-534

fit the small transfer learning training set. The models with the lowest MSEs are (1) the535

slightly more complex of the two PySR equations (median MSE = 148(%)2); and (2)536
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Figure 4. Performance of DYAMOND-trained Pareto-optimal cloud cover schemes on the

ERA5 data set after transfer learning. The labels on the x-axis denote how many grid columns

taken across how many time steps make up the transfer learning training set. Each setting is run

with six different random seeds and the diamond-shaped markers indicate the respective medians.

the SFS NNs with 5 and 6 features (median MSE = 200(%)2). While we cannot con-537

firm that fewer features (5-6 features) help with off-the-shelf generalizability of the SFS538

NNs, they do improve the ability to transfer learn after seeing only a few samples from539

the ERA5 data.540

After increasing the number of time steps to be included in T to 32 (correspond-541

ing to one year of our preprocessed ERA5 data set), the performances of the models start542

to converge and the SFS NNs with 5 and 6 features and its large number of trainable543

parameters outperform the PySR equation (with median ∆MSE ≈ 35(%)2). From the544

last column we can conclude that a T consisting of 100 columns from all available time545

steps is sufficient for the ERA5 MSE of all schemes to converge. Remarkably, the order546

from best- to worst-performing model is exactly the same as it was in Fig 2 on the DYA-547

MOND data set. Thus, we find that the ability to perform well on the DYAMOND data548

set is directly transferable to the ability to perform well on the ERA5 data set given enough549

data, despite fundamental differences between the data sets.550

A useful property of a model is that it is able to transfer learn what it learned over551

an extensive initial dataset after tuning only on a few samples. We can quantify the abil-552

ity to transfer learn with few samples in two ways: First, we can directly measure the553

error on the entire data set after the model has seen only a small portion of the data (in554

our case the ERA5 MSEs of the 1/1-column). Second, if this error is already close to the555

minimum possible error of the model, then few samples are really enough for the model556

to transfer learn to the new data set (in our case, the difference of MSEs in the 1/1-column557

and the 100/1368-column). In terms of the first metric (MSEs in (%)2), the leading five558

models are the more complex PySR equation (147.6), the 5- and 6-feature NNs (199.6/199.8),559

the simpler PySR equation (216.8), and the 6-feature polynomial (254.6). In terms of560

the second metric (difference of MSEs in (%)2), the top five models are again the more561

complex PySR equation (86.0), the 6-, 5-, and 4-feature polynomials (149.1/149.4/150.5),562
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and the simpler PySR equation (152.3). If we add both metrics, weighing them equally,563

then the more complex PySR equation has the lowest inability to transfer learn with few564

samples (233.7), followed by the simpler PySR equation (369.1) and the 5- and 6-feature565

SFS NNs (370.5/374.5, where all numbers have units (%)2). As the more complex PySR566

equation is leading in both metrics, we can conclude that it is most able to transfer learn567

after seeing only one column of ERA5 data, and we further investigate its physical be-568

havior in the next section.569

6 Physical Interpretation of the Best Analytical Scheme570

We find that the two PySR equations on the Pareto frontier (see Fig 2) achieve
a good compromise between accuracy and simplicity. Both satisfy most of the physical
constraints that we defined in Sec 4.1. In this section, we analyze the (more complex)
PySR equation with a lower validation MSE as we showed that it generalized best to ERA5
data (see Fig 4). We also conclude that the decrease in MSE is substantial enough (∆MSE
= 3.04%2) to warrant the analysis of the (one parameter) more complex equation: The
equation for the case with condensates can be phrased as

f(RH,T, ∂zRH, qc, qi) = I1(RH,T ) + I2(∂zRH) + I3(qc, qi), (10)

where

I1(RH,T )
def
= a1RH2 + (a2RH− a3)T

2 − a4RHT + a5RH+ a6T − a7

I2(∂zRH)
def
= (a8∂zRH+ a9)(∂zRH)2

I3(qc, qi)
def
= −1/(a10qc + a11qi + ϵ).

To compute cloud cover in the general case, we plug equation (10) into equation (6), en-
forcing the first two physical constraints (C(X) ∈ [0, 100]% and C(X) = 0 in condensate-
free cells). On the DYAMOND data we find the best values for the coefficients to be

{a1, . . . , a11, ϵ} = {203, 0.06588, 0.03969, 33.87, 4224.6, 18.9586, 2202.6,
2 · 1010, 6 · 107, 8641, 32544, 0.0106}.

The function I1(RH,T ) is a quadratic polynomial of RH and T with a2RHT 2 as
an additional cubic term. I1 causes cloud cover to generally increase with relative hu-
midity (Fig 5a and 6a). While I1 does not ensure the constraint PC6 (∂C/∂T ≤ 0) ev-
erywhere, cloud cover typically decreases with temperature for samples of the DYAMOND
data set (see Fig 5f)). In the hot limit, we have

lim
T→∞

I1(RH,T ) =

{
∞, RH > a3/a2

−∞, RH < a3/a2.

Thus, in the case of DYAMOND, a relative humidity of a3/a2 ≈ 0.6 defines a cutoff
for cloudiness in the hot limit. To ensure PC3 (∂C/∂RH ≥ 0) in all cases, we replace
RH by

max{RH,−c1T
2 + c2T − c3}, (11)

with c1 = a2/(2a1) ≈ 0.00016, c2 = a4/(2a1) ≈ 0.0834 and c3 = a5/(2a1) ≈ 10.405.571

We arrive at this expression when solving ∂f/∂RH for RH. This condition of replacing572

RH triggers in roughly 1% of our samples. It ensures that cloud cover does not increase573

when decreasing relative humidity in cases of low relative humidity and average temper-574

ature (see Fig 6). Modifying the equation (10) in such a way does not deteriorate its per-575

formance on the DYAMOND data. Fig 6b) illustrates how the modification ensures PC3576

in an average setting. It would be difficult to apply a similar modification to the NN which577

in our case violates PC3 for RH > 0.95. We can also identify another feature of equa-578

tion (10); the absence of a minimum value of relative humidity, below which cloud cover579

must always be zero (the critical relative humidity threshold).580
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d) e) f)
g)

Figure 5. Top row: 1D- or 2D-plots of the three terms I1, I2, I3 as functions of their inputs.

In Panels a and b, the axis-values are bound by the respective minima and maxima in the DYA-

MOND data set, while those minima/maxima were divided by 5000 in Panel c. The vertical

black lines indicate the region of values covered by Panels d-g. Bottom row: Conditional aver-

age plots of cloud cover with respect to relative humidity and temperature (Panels d-f) or ∂zRH

(Panel g).
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Figure 6. Panel a: Contour plot of ∂RHf as a function of relative humidity and temperature.

The contour marks the boundary where ∂RHf = 0. Panel b: Predictions of the PySR equation

(10) with and without the modification (11) as a function of relative humidity. For comparison,

the predictions of the SFS NN with 24 features are shown. The other features are set to their

respective mean values.

The second function I2(∂zRH) is a cubic polynomial of ∂zRH. Its slope is mainly581

driven by a8. The parameter a9, while being negligible for small values of ∂zRH, increases582

the value of I2. The negative quotient of both parameters −a9/a8 defines the threshold583

for ∂zRH, below which I2 < 0.584

Removing the I2-term, we find that the induced prediction error is largest, on av-585

erage, in situations that are i) relatively dry (RH ≈ 0.6), ii) close to the surface (z ≈586

1000m), iii) over water (land fraction ≈ 0.1), iv) characterized by an inversion (∂zT ≈587

0.01), and v) have small values of ∂zRH (∂zRH ≈ −0.002, which corresponds to the588

cloud cover peak in Fig 5g). Using our cloud regimes of Sec 5.2, we find the average ab-589

solute error is largest in the stratus regime (4% cloud cover). Indeed, by plotting the glob-590

ally averaged contributions of I1, I2 and I3 on a vertical layer at about 1500m altitude591

(Fig A1), we find that I2 is most active in regions with low-level inversions where ma-592

rine stratocumulus clouds are abundant (Mauritsen et al., 2019). From this, we can in-593

fer that the SFS NN has chosen ∂zRH as a useful predictor to detect marine stratocu-594

muli and the symbolic regression algorithm has found a way to express this relationship595

mathematically. It is more informative than ∂zT (rank 10 in Sec 5.1.1), which would mea-596

sure the strength of an inversion more directly. The significance of ∂zRH relates back597

to our discussion in Sec 5.1.1: By comparing relative humidity values with those from598

the grid cells above and below we can infer cloud area fraction even when it is not rep-599

resented in the coarse variables of the given grid cell.600

The third function I3(qc, qi) is always negative and decreases cloud cover where there601

is little cloud ice or water. It ensures that PC4 and PC5 are always satisfied. Large val-602

ues of a10 or a11 enable larger values of cloud water/ice to actually set I3 close to zero.603

Finally, ϵ serves to avoid division by zero in condensate-free cells.604

Given that equation (10) is a continuous function, the continuity constraint PC7605

is only violated if and only if the cloud cover prediction is modified to be 0 in the condensate-606

free regime (by equation (6)), and would be positive otherwise. The value of ϵ dictates607
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Figure 7. Ablation study of equation (10) on the DYAMOND and ERA5 data sets. The

removal of the function I1 leads to a large decrease of MSE (of 1300/763(%)2) on the DYA-

MOND/ERA5 data sets and is therefore not shown.

how frequently the cloud cover prediction needs to be modified. In the limit ϵ → 0 we608

could remove the different treatment of the condensate-free case. In our data set, equa-609

tion (10) yields a positive cloud cover prediction in 0.35% of condensate-free samples.610

Thus, the continuity constraint PC7 is almost always satisfied (in 99.65% of our condensate-611

free samples).612

To convince ourselves that all terms/parameters of equation (10) are indeed rel-613

evant to its skill, we examine the effects of their removal in an ablation study (Fig 7).614

We found that for the results to be meaningful, removing individual terms or parame-615

ters requires readjusting the remaining parameters; in a setting with fixed parameters616

the removal of multiple parameters often led to better outcomes than the removal of a617

single one of them. The optimizers (BFGS and Nelder-Mead) used to retune the remain-618

ing parameters show different success depending on whether the removal of terms is ap-619

plied to the equation formulated in terms of normalized or physical features (the latter620

being equation (10)). Therefore, each term is removed in both formulations, and the bet-621

ter result is chosen each time. To ensure robustness of the results, this ablation study622

is repeated for 10 different seeds on subsets with 106 data samples.623

We find that the removal of any individual term in equation (10) would result in624

a noticeable reduction in performance on the DYAMOND data (∆MSE ≥ 3.4(%)2 in625

absolute and (MSEabl − MSEfull)/MSEabl ≥ 3.2% in relative terms). Even though626

Fig 5g) suggests a cubic dependence of cloud cover on ∂zRH, it is the least important627

term to include according to Fig 7. Applied to the ERA5 data, we can even dispense with628

the entire I2 term. Furthermore, we find that the quadratic dependence on RH can be629

largely compensated by the linear terms. The most important terms to include are those630

with cloud ice/water and, concurring with the SFS polynomials in Sec 5.1.1, the linear631

dependence on RH and temperature. Coinciding with the SFS NN feature sequences in632

Sec 5.1.1, cloud ice (∆MSE = 96/102(%)2) is more important to take into account than633

cloud water (∆MSE = 88/63(%)2), especially for the ERA5 data set in which cloud634

ice is more abundant (see Fig 1). More generally, out of the functions I1, I2, I3 we find635

I1(RH,T ) to be most relevant (∆MSE = 1300/763(%)2), followed by I3(qc, qi) (∆MSE =636

119/139(%)2) and lastly I2(∂zRH) (∆MSE = 18/− 1(%)2), once again matching the637

order of features that the SFS NNs had chosen.638

–21–



manuscript submitted to Enter journal name here

7 Conclusion639

In this study, we derived data-driven cloud cover parameterizations from coarse-640

grained global storm-resolving simulation (DYAMOND) output. We systematically pop-641

ulated a performance × complexity plane with interpretable traditional parameteriza-642

tions and regression fits on one side and high-performing neural networks on the other.643

Modern symbolic regression libraries (PySR, GPGOMEA) allow us to discover interpretable644

equations that diagnose cloud cover with excellent accuracy (R2 > 0.9). From these645

equations, we propose a new analytical scheme for cloud cover (found with PySR) that646

balances accuracy (R2 = 0.94) and simplicity (12 free parameters in the physical for-647

mulation). This analytical scheme satisfies six out of seven physical constraints (although648

the continuity constraint is violated in 0.35% of our condensate-free samples), provid-649

ing the crucial third criterion for its selection. In a first evaluation, the (5-feature) an-650

alytical scheme was on par with the 6-feature NN in terms of reproducing cloud cover651

distributions (Hellinger distances < 0.05) in condensate-rich cloud regimes, yet under-652

estimating cloud cover more strongly in condensate-poor regimes.653

In addition to its interpretability, flexibility and efficiency, another major advan-654

tage of our best analytical scheme is its ability to adapt to a different data set (in our655

case, the ERA5 reanalysis product) after learning from only a few of the ERA5 samples656

in a transfer learning experiment. Due to the small amount of free parameters and the657

initial good fit on the DYAMOND data, our new analytical scheme outperformed all other658

Pareto-optimal models. We found that as the number of samples in the transfer learn-659

ing sets increases, the models converged to the same performance rank on the ERA5 data660

as on the DYAMOND data, indicating strong similarities in the nature of the two data661

sets that could make which data set serves as the training set irrelevant. In an ablation662

study, we found that further reducing the number of free parameters in the analytical663

scheme would be inadvisable; all terms/parameters are relevant to its performance on664

the DYAMOND data. Key terms include a polynomial dependence on relative humid-665

ity and temperature, and a nonlinear dependence on cloud ice and water.666

Our sequential feature selection approach with NNs revealed an objectively good667

subset of features for an unknown nonlinear function: relative humidity, cloud ice, cloud668

water, temperature and the vertical derivative of relative humidity (most likely linked669

to the vertical variability of cloud cover within a grid cell). While the first four features670

are well-known predictors for cloud cover, PySR also learned to incorporate ∂zRH in its671

equation. This additional dependence allows it to detect thin marine stratocumulus clouds,672

which are difficult, if not impossible to infer from exclusively local variables. These clouds673

are notoriously underestimated in the vertically coarse climate models (Nam et al., 2012).674

In ICON this issue is somewhat attenuated by multiplying, and thus increasing relative675

humidity in maritime regions by a factor depending on the strength of the low-level in-676

version (Mauritsen et al., 2019). Using symbolic regression, we thus found an alterna-677

tive, arguably less crude approach, which could help mitigate this long-standing bias in678

an automated fashion. However, considering that this bias is still present in storm-resolving679

model simulations (Stevens et al., 2020), it could be advisable to further increase the res-680

olution of the high-resolution model, and train on coarse-grained output from targeted681

large-eddy simulations (Stevens et al., 2005).682

A crucial next step will be to test the cloud cover schemes when coupled to Earth683

system models, including ICON. We decided to leave this step for future work for sev-684

eral reasons. First, our focus was on the equation discovery methodology and the anal-685

ysis of the discovered equation. Second, our goal was to derive a cloud cover scheme that686

is climate model-independent. Designing a scheme according to its online performance687

within a specific climate model decreases the likelihood of inter-model compatibility as688

the scheme has to compensate the climate model’s parameterizations’ individual biases.689

For instance, in ICON, the other parameterizations would most likely need to be re-calibrated690

to adjust for current compensating biases, such as clouds being ‘too few and too bright’691
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(Crueger et al., 2018). Third, the metrics used to validate a coupled model remain an692

active research area, and at this point, it is unclear which targets must be met to accept693

a new ML-based parameterization. That being said, the superior transferability of our694

analytical scheme to the ERA5 reanalysis data not only suggests its applicability to ob-695

servational data sets, but also that it may be transferable to other Earth system mod-696

els.697

Our current approach has some limitations. Symbolic regression libraries are lim-698

ited in discovering equations with a large number of features. In many cases, five fea-699

tures are insufficient to uncover a useful data-driven equation, requiring a reduction of700

the feature space’s dimensionality. To measure model complexity, we used the number701

of free parameters, disregarding the number of features and operators. Although the num-702

ber of operators in our study was roughly equivalent to the number of parameters, this703

may not hold in more general applications and the complexity of individual operators704

would need to be specified (as in Appendix B).705

Our approach differs from similar methods used to discover equations for ocean sub-706

grid closures (Ross et al., 2023; Zanna & Bolton, 2020) because we included nonlinear707

dependencies without assuming additive separability, instead fitting the entire equation708

non-iteratively. Despite our efforts, the equation we found is still not as accurate as an709

NN with equivalent features in the cirrus-like regime (the Hellinger distance between the710

analytical scheme and the DYAMOND cloud cover distribution was more than twice as711

large as for the NN). Comparing the partial dependence plots of the equation with those712

of the NN could provide insights and define strategies to further extend and improve the713

equation, while reducing the computational cost of the discovery. There are various meth-714

ods available for utilizing NNs in symbolic regression for more than just feature selec-715

tion, one of which is AIFeynman (Udrescu et al., 2020). While AIFeynman is based on716

the questionable assumption that the gradient of an NN provides useful information, a717

direct prediction of the equation using recurrent neural networks presents a promising718

avenue for improved symbolic regression (Petersen et al., 2021; Tenachi et al., 2023).719

Nonetheless, our simple cloud cover equation already achieves high performance.720

Our study thus underscores that symbolic regression can complement deep learning by721

deriving interpretable equations directly from data, suggesting untapped potential in other722

areas of Earth system science and beyond.723
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Figure A1. Maps of I1(RH,T ), I2(∂zRH) and I3(qc, qi) on a vertical layer with an average

height of 1490m, averaged over 10 days (11 Aug - 20 Aug, 2016). The data source is coarse-

grained three-hourly DYAMOND data.

Appendix A Global Maps of I1, I2, I3724

In this section, we plot average function values for the three terms I1, I2, and I3725

of equation (10). We focus on the vertical layer roughly corresponding to an altitude of726

1500m to analyze if one of the terms would detect thin marine stratocumulus clouds. Due727

to their small vertical extent, these clouds are difficult to pick up on in coarse climate728

models, which constitutes a well-known bias. To compensate for this bias, the current729

cloud cover scheme of ICON has been modified so that relative humidity is artificially730

increased in low-level inversions over the ocean (Mauritsen et al., 2019).731

Analyzing Fig A1, we find that the regions of high I2-values correspond with re-732

gions typical for low-level inversions and low-cloud fraction (Mauritsen et al., 2019; Muhlbauer733

et al., 2014). These I2-values compensate partially negative I1- and I3-values in low-cloud734

regions of the Northeast Pacific, Southeast Pacific, Northeast Atlantic, and the South-735

east Atlantic. The I1-term is particularly small in the dry and hot regions of the Sahara736

and the Rub’ al Khali desert and largest over the cold poles. The I3-term decreases cloud737

cover over land and is mostly inactive over the oceans due to the abundancy of cloud wa-738

ter.739

Appendix B PySR Settings740

First of all, we do not restrict the number of iterations, and instead restrict the run-
time of the algorithm to ≈ 8 hours. We choose a large set of operators O to allow for
various different functional forms (while leaving out non-continuous operators). To aid
readability we show the operators applied to some (x, y) ∈ R2 which we denote by su-
perscripts. To account for the different complexity of the operators, we split O into four
distinct subsets

O
(x,y)
1 = {x · y, x+ y, x− y,−x}

O
(x,y)
2 = {x/y, |x|,

√
x, x3,max(0, x)}

O
(x,y)
3 = {exp(x), ln(x), sin(x), cos(x), tan(x), sinh(x), cosh(x), tanh(x)}

O
(x,y)
4 = {xy,Γ(x), erf(x), arcsin(x), arccos(x), arctan(x), arsinh(x), arcosh(x), artanh(x)}
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of increasing complexity. The operators in O2/O3/O4 are set to be 2/3/9 times as com-741

plex as those in O1. In this manner, for instance x3 and (x ·x) ·x have the same com-742

plexity. Furthermore, we assign a relatively low complexity to the operators in O3 as they743

are very common and have well-behaved derivatives. With the factor of 9, we strongly744

discourage operators in O4. We expect that for every occurrence of a variable in a can-745

didate equation it will also need to be scaled by a certain factor. We do not want to dis-746

courage the use of such constant factors or the use of variables themselves and leave the747

complexity of constants and variables at their default complexity of one.748

We obtain the best results when setting the complexity of the operators in O1 to749

3 and training the PySR scheme on 5000 random samples. Other parameters include the750

population size (set to 20) and the maximum complexity of the equations that we ini-751

tially set to 200 and reduced to 90 in later runs.752

Appendix C Selected Symbolic Regression Fits753

This section lists all equations found with the symbolic regression libraries GP-GOMEA
or PySR that are included in Fig 2, ranked in increasing MSE order. In brackets we pro-
vide the MSE/number of parameters. We list the equations according to their MSE. The
equations that lie on the Pareto frontier are highlighted in bold:

1) PySR [103.95/11] :

f(RH, T, ∂zRH, qc, qi) = 203RH2 + (0.06588RH− 0.03969)T 2 − 33.87RHT + 4224.6RH

+ 18.9586T − 2202.6 + (2 · 1010∂zRH+ 6 · 107)(∂zRH)2 − 1/(8641qc + 32544qi + 0.0106)

2) PySR [104.26/19] :

f(RH, T, ∂zRH, qc, qi) = (1.0364RH− 0.6782)(0.0581T − 16.1884)(−44639.6∂zRH+ 1.1483T − 262.16)

+ 171.963RH− 1.4705T + 158.433(RH− 0.60251)2 + (∂zRH)2(2 · 1011qc − 8 · 107RH+ 7 · 107) + 316.157

+ 93319qi − 1/(12108qc + 39564qi + 0.0111)

3) PySR [106.52/12] :

f(RH, T, ∂zRH, qc, qi) = (57.2079RH− 34.4685)(3.0985RH + 73.1646(0.0039T − 1)2 − 1.8669) + 123.175RH

− 1.4091T + 1.5 · 107(∂zRH)2(10619qc − 4.9155RH + 4.7178) + 333.1− 1/(10367qc + 35939qi + 0.0111)

4) PySR [106.95/11] :

f(RH, T, ∂zRH, qc, qi) = 19.3885(3.0076RH− 1.8121)(3.2825RH + 73.1646(0.0039T − 1)2 − 1.9777)

+ 118.59RH− 1.423T + 1.5 · 107(3.0125− 1.0129RH)(∂zRH)2 + 339.2− 1/(9325qc + 34335qi + 0.0109)

5) PySR [106.99/10] :

f(RH, T, ∂zRH, qc, qi) = (58.189RH− 35.0596)(3.3481RH+ 73.1646(0.0039T − 1)2 − 2.0172)

+ 116.873RH− 1.4211T + 3.6 · 107(∂zRH)2 + 339.9− 1/(9237qc + 34136qi + 0.0109)

6) PySR [111.76/15] :

f(RH, T, ∂zRH, qc, qi) = (3.2665RH− 2.9617)(0.0435T − 9.0274)(16073.2∂zRH+ 0.3013T − 68.4342)

97.5754RH− 0.6556T + 175 + 123823qi − 1/(9853qc + 36782qi + 0.0112)

7) GP-GOMEA [121.89/13] :

f(RH, T, qc, qi) = 8.459 exp(2.559RH)− 33.222 sin(0.038T + 109.878) + 24.184

− sin(3.767
√
|98709qi − 0.334|)/(30046qi + 5628qc + 0.01)

8) GP-GOMEA [136.64/11] :

f(RH, T, qc, qi) = (8.65RH− 0.22T − 93.14)
√
|0.62T − 414.23|+ 2368− 1/(28661qi + 4837qc + 0.01)

9) GP-GOMEA [159.80/9] :

f(RH, qc, qi) = 0.009e8.725RH + 12.795 log (229004qi + 0.774(e11357qc − 1))− 178246qc + 66

10) GP-GOMEA [161.45/12] :

f(RH, T, qc, qi) = (0.028e6.253RH + 5RH− 0.076T + 4)/(183894qi + 0.73e6565qc−91207qi − 0.62) + 92.3
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Note that the assessed number of parameters is based on a simplified form of the754

equations in terms of its normalized variables. The amount of parameters in a given equa-755

tion is at least equal to the assessed number of parameters minus one (accounting for756

the zero in the condensate-free setting).757

Data Availability Statement758

The cloud cover schemes and analysis code can be found at https://github.com/EyringMLClimateGroup/759

grundner23james EquationDiscovery CloudCover and are preserved at DOI:10.5281/760

zenodo.7817392. DYAMOND data management was provided by the German Climate761

Computing Center (DKRZ) and supported through the projects ESiWACE and ESiWACE2.762

The coarse-grained model output used to train and evaluate the neural networks amounts763

to several TB and can be reconstructed with the scripts provided in the GitHub repos-764

itory. The software code for the ICON model is available from https://code.mpimet765

.mpg.de/projects/iconpublic.766
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