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Abstract

Stochastic Watershed Models (SWMs) are emerging tools in hydrologic modeling used to propagate uncertainty into model

predictions by adding samples of model error to deterministic simulations. One of the most promising uses of SWMs is

uncertainty propagation for hydrologic simulations under climate change. However, a core challenge with this approach is that

the predictive uncertainty inferred from hydrologic model errors in the historical record may not correctly characterize the

error distribution under future climate. For example, the frequency of physical processes (e.g., snow accumulation and melt,

droughts and hydrologic recessions) may change under climate change, and so too may the frequency of errors associated with

those processes. In this work, we explore for the first time non-stationarity in hydrologic model errors under climate change in

an idealized experimental design. We fit one hydrologic model to historical observations, and then fit a second model to the

simulations of the first, treating the first model as the true hydrologic system. We then force both models with climate change

impacted meteorology and investigate changes to the error distribution between the models in historical and future periods.

We develop a hybrid machine learning method that maps model input and state variables to predictive errors, allowing for

non-stationary error distributions based on changes in the frequency of internal state variables. We find that this procedure

provides an internally consistent methodology to overcome stationarity assumptions in error modeling and offers an important

path forward in developing stochastic hydrologic simulations under climate change.
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 45 
Abstract 46 

Stochastic Watershed Models (SWMs) are emerging tools in hydrologic modeling used to 47 

propagate uncertainty into model predictions by adding samples of model error to deterministic 48 

simulations. One of the most promising uses of SWMs is uncertainty propagation for hydrologic 49 

simulations under climate change. However, a core challenge with this approach is that the 50 

predictive uncertainty inferred from hydrologic model errors in the historical record may not 51 

correctly characterize the error distribution under future climate. For example, the frequency of 52 

physical processes (e.g., snow accumulation and melt, droughts and hydrologic recessions) may 53 

change under climate change, and so too may the frequency of errors associated with those 54 

processes. In this work, we explore for the first time non-stationarity in hydrologic model errors 55 

under climate change in an idealized experimental design. We fit one hydrologic model to 56 

historical observations, and then fit a second model to the simulations of the first, treating the 57 

first model as the true hydrologic system. We then force both models with climate change 58 

impacted meteorology and investigate changes to the error distribution between the models in 59 

historical and future periods. We develop a hybrid machine learning method that maps model 60 

input and state variables to predictive errors, allowing for non-stationary error distributions based 61 

on changes in the frequency of internal state variables. We find that this procedure provides an 62 

internally consistent methodology to overcome stationarity assumptions in error modeling and 63 

offers an important path forward in developing stochastic hydrologic simulations under climate 64 

change. 65 

 66 

 67 
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1. Introduction  68 

Climate change and its uncertain impacts on the hydrologic system pose major challenges to the 69 

adaptation of existing water resources infrastructure and the design and construction of new 70 

infrastructure (Stakhiv & Hiroki, 2021). This challenge is particularly notable in the developing 71 

world, where the infrastructure needed for robust and resilient water resources systems is either 72 

inadequate or non-existent (Stakhiv & Hiroki, 2021; Boland & Loucks, 2021), and data to 73 

support precise hydrologic modeling are limited. Considering this challenge, methods that 74 

quantify uncertainty in future hydrology play an increasingly critical role in the modern practice 75 

of water resources planning and management (Milly et al., 2008; Brown et al., 2015; Read & 76 

Vogel, 2015; Hui et al., 2018; Sterle et al., 2019). 77 

 78 

In the past, historical hydrologic variability was deemed an adequate representation of future 79 

hydrologic uncertainty, motivating the use of stationary, stochastic streamflow models in 80 

engineering design and planning (Thomas & Fiering, 1962; Loucks & Van-Beek, 2017; 81 

Teegavarapu et al., 2019). As the impacts of climate change (and other land use change) have 82 

become increasingly apparent, many have questioned the suitability of such stationary statistical 83 

models for infrastructure planning (Milly et al., 2008, Galloway, 2011, Montanari & 84 

Koutsoyiannis, 2014). While the parameters of these models can be modified to enable the 85 

simulation of new hydrologic behavior (e.g., Hadjimichael et al., 2020; Bracken et al., 2014), the 86 

range of plausible change is difficult to infer without a modeling framework that can predict 87 

emergent patterns of hydrologic response to climate change and other biological, biophysical, 88 

and human feedbacks on the hydrologic system.  89 

 90 
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Stochastic watershed models (SWM) have been forwarded to address this challenge (Vogel, 91 

2017). SWMs combine deterministic predictions from process-based hydrologic models with a 92 

stochastic element that captures model uncertainty (Steinschneider et al., 2015; Sikorska et al., 93 

2015, Farmer & Vogel, 2016; Vogel, 2017). The use of process-based models enables hydrologic 94 

projections that explicitly represent changes to meteorological forcings and landscape 95 

characteristics (e.g., vegetation or land use) and their non-linear impacts on hydrologic response. 96 

The stochastic component of a SWM represents hydrologic uncertainty that the deterministic 97 

model cannot capture. In the most straightforward case, this uncertainty is approximated by the 98 

predictive uncertainty of the model (i.e., based on errors between model predictions and the 99 

observations). The predictive uncertainty reflects the integration of input, parametric, and model 100 

uncertainty (Montanari & Koutsoyiannis, 2012) and can be represented by a variety of error 101 

modeling approaches (Vogel, 2017; McInerney et al., 2017; Koutsoyiannis & Montanari, 2022; 102 

Shabestanipour et al., 2023). The addition of simulated model errors and deterministic 103 

hydrologic model simulations creates a SWM simulation, and repetition of this process using 104 

multiple random samples of error yields a SWM ensemble that can be used for both short term 105 

probabilistic prediction (e.g., flood forecasting; Sikorska et al., 2015; McInerney et al., 2018; 106 

Koutsoyiannis & Montanari, 2022) and long-term planning (e.g., design event estimation; 107 

Farmer & Vogel, 2016; Shabestanipour et al., 2023). 108 

 109 

To date, one important issue in stochastic watershed modeling that remains unresolved relates to 110 

non-stationarity in the stochastic process for predictive uncertainty. When used to develop 111 

hydrologic projections under climate change, past studies have made the implicit assumption that 112 

predictive uncertainty inferred from historical errors is sufficient to characterize future 113 
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uncertainty (Sikorska et al., 2015; Vogel, 2017; Shabestanipour et al., 2023). Some have argued 114 

this approach is sufficient if the deterministic component of the model can account for non-115 

stationarity (Montanari & Koutsoyiannis, 2014). However, there are reasons to doubt this 116 

assumption in the context of hydrologic model prediction. The stochastic component of a SWM 117 

fit to historical prediction errors relies on historical relationships between model states and 118 

observed hydrology (Liu & Gupta, 2007; Renard et al., 2011; Vogel, 2017). The effects of 119 

climate change go deeper than simply amplifying or attenuating hydrologic response, instead 120 

affecting fundamental process relationships within catchments, including the timing and rate of 121 

snow accumulation and melt (Musselman, 2017; Mote et al., 2018), timing of peak soil moisture 122 

(Xu et al., 2021), and changes to runoff efficiency through both physical (Lehner et al., 2017; 123 

Overpeck & Udall, 2020) and biophysical (Mankin et al., 2019) effects. These climate change 124 

induced effects will alter the frequency, timing, and intensity of model states, activate model 125 

components in configurations not seen in the historical record, and change the way 126 

meteorological forcing is converted to streamflow. In turn, the model predictive errors would be 127 

expected to exhibit fundamental departures from the distributional properties observed in the 128 

historical period. For instance, if within the historical record a hydrologic model exhibits 129 

different error distributions during periods of snow accumulation and melt versus periods of 130 

direct rainfall-runoff response (e.g., because of different, incorrect process representations under 131 

those two different hydrologic regimes), and under climate change the former process becomes 132 

less frequent and the latter more frequent, the distribution of model errors under climate change 133 

would almost certainly change compared to the historical period. To the authors’ knowledge, this 134 

issue in SWM has not yet been documented in the literature.  135 

 136 



6 
 

The potential for non-stationary predictive errors complicates an already difficult problem in 137 

stochastic watershed modeling (Beven, 2016). Hydrologic prediction errors exhibit a number of 138 

challenging characteristics including autocorrelation, heteroscedasticity, and non-normality, even 139 

in the stationary case (Schoups & Vrugt, 2010; Mcinerny et al., 2017; Mcinerny et al., 2018; 140 

Hunter et al., 2021). Efforts to understand and quantify these errors (Liu & Gupta, 2007) have 141 

progressed from simple autoregressive techniques (Toth et al., 1999) to more complex statistical 142 

methods using either decomposition (Kuczera et al., 2006; Renard et al., 2011) or aggregate 143 

approaches to predictive error modeling (Montanari & Koutsoyiannis, 2012; Sikorska el., 2015; 144 

McInerny et al., 2018; Shabestanipour et al., 2023). One recent approach that has gained 145 

significant traction is the use of machine learning (ML) to correct prediction errors of process-146 

based hydrologic models (Konapala et al., 2020; Shen et al., 2022; Hah et al., 2022; Quilty et al., 147 

2022).  These approaches (often termed ‘hybrid’ or ‘physics informed data driven’ models) range 148 

from simpler ML-based error correction models (Shamseldin & O’Connor, 2001; Konapala et 149 

al., 2020; Shen et al., 2022) to more complex stochastic formulations that utilize ensembles of 150 

hydrologic model simulations, each with different parameter sets and ML-based error correction 151 

models (Quilty et al., 2021), and possibly including contributions from additional uncertainties 152 

(e.g., input, parameter; Quilty et al., 2022; Hah et al., 2022).  153 

 154 

Hybrid approaches capitalize on the capability of ML models to better capture non-linear 155 

hydrologic responses as compared to process models (Kratzert et al., 2018; Nearing et al., 2019; 156 

Nearing et al., 2021). However, they do so by mapping endogenous physical model states or 157 

exogenous information (e.g., meteorological variables) to process-model errors, enabling more 158 

accurate and reliable predictions while still being constrained by first order physical relationships 159 
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in the process-based model (Beven, 2020; Shen et al., 2021; Hah et al., 2022; Quilty et al., 2022). 160 

While hybrid methods do not consistently improve hydrologic predictive performance over more 161 

direct ML methods (Frame et al., 2021), they can help to address the issue of uncertainty 162 

representation in these methods (Klotz et al., 2022). In addition, some initial work suggests 163 

hybrid models may be more appropriate for long-term projections that extrapolate hydrologic 164 

responses under unprecedented climate change (Wi and Steinschneider, 2022). Hybrid methods 165 

that map process model states to predictive errors may also be able to exploit these relationships 166 

to capture non-stationarity in error structure based on changes in the frequency of hydrologic 167 

regimes (i.e., changing frequency of projected model state variables). This approach decouples 168 

the error models from static empirical relationships that may change fundamentally in a future 169 

climate, such as seasonality in the error distribution. To date, the potential of hybrid models to 170 

support non-stationary SWMs remains unexplored.  171 

 172 

In this work, we demonstrate for the first time the challenge of non-stationary prediction errors in 173 

stochastic watershed modeling under climate change, and we advance a novel, hybrid modeling 174 

framework to address this challenge. We demonstrate this work in a case study of the Feather 175 

River basin upstream of Oroville Dam in northern California, where climate change is expected 176 

to significantly impact hydrologic response through reduced snowpack, earlier snowmelt, and 177 

changing precipitation characteristics (Hanak et al., 2011; Huang et al., 2012; Sterle et al., 2019). 178 

We first forward an idealized experimental design where one hydrologic model is calibrated to 179 

observed streamflow and treated as the true hydrologic system (hereafter the “truth model”), 180 

while a second model (hereafter the “process model”) is then calibrated to simulations from the 181 

truth model. We force both models with the same set of non-stationary meteorological inputs and 182 
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document non-stationarity in the error distribution between them.  This approach is similar to so-183 

called ‘model-as-truth’ or ‘perfect model’ experiments that are relatively common in the 184 

assessment of climate model ensembles under non-stationary climate change scenarios 185 

(Abramowitz & Bishop, 2015; Knutti et al., 2017; Herger et al., 2018). 186 

 187 

We then develop a hybrid error model composed of an ML-based error correction model and a 188 

dynamic residual noise model, both of which use process model state variables to infer error 189 

properties. The ML correction model, based on the Random Forest (RF) approach in Shen et al. 190 

(2022), captures conditional bias in the process model. The dynamic residual model is based on a 191 

modified version of the generalized likelihood (GL) approach of Schoups and Vrugt (2010) and 192 

maps process model state variables into time-varying autocorrelation, variance, skew, and 193 

kurtosis of the ML-based error correction residuals. We assess the ability of this hybrid error 194 

model, coupled with simulations from the process model, to preserve the statistical properties of 195 

the truth model in out-of-sample cases with and without the impacts of climate change and 196 

compare results to a static SWM approach as a benchmark. We conclude the study by 197 

demonstrating the same technique for a process model fit to actual streamflow observations in 198 

the Feather River basin. 199 

 200 

2. Data  201 

The Feather River basin upstream of Lake Oroville drains an area of 9338 km2 on the west facing 202 

slopes of the northern Sierra Nevada mountain range (Figure 1). This portion of the Sierra 203 

Nevada reaches altitudes of nearly 3000 m, making the Feather River a snow-dominated 204 

catchment. The precipitation regime is driven by large, infrequent atmospheric rivers (ARs) that 205 
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exhibit significant inter-annual variability and occur primarily in the cold season (November – 206 

April). Accordingly, streamflow varies considerably across years and also across seasons, as 207 

snowmelt drives higher flows in the spring and early summer months and high 208 

evapotranspiration drives lower flows in late summer and fall. Winter flows can vary 209 

considerably in response to winter storms, particularly when associated with AR-induced 210 

warming or rain-on-snow events (Hanak et al., 2011; Huang et al., 2012). 211 

 212 

Observed daily streamflow data for this watershed were taken from the California Data 213 

Exchange Center (CDEC) Full Natural Flow (FNF) database for water years (WY) 1988-2013 at 214 

Oroville Dam on the Feather River (CDEC ID: ORO). These data account for human 215 

modifications to the natural hydrology, which occur at upstream reservoirs through diversions 216 

and export/import of water between watersheds (see Figure 1). We used daily precipitation and 217 

mean temperature from the 1/16-degree climate product of Livneh et al. (2015) as input forcings 218 

to all hydrologic models used in this work.  219 
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 220 

Figure 1. Geographical area of study depicting Feather River inflow to Oroville Dam (1) as well 221 
as significant upstream diversions (2-9). 222 
 223 

 224 

3. Methods 225 

3.1. Experimental Design 226 

This study employs a stylized experimental design to demonstrate the challenge of non-227 

stationary prediction errors in SWMs under climate change and to evaluate whether a novel, 228 

hybrid modeling framework can address this challenge (Figure 2). We first select two hydrologic 229 

models, designating the ‘truth model’ and the ‘process model’. The truth model is taken to be the 230 

true hydrologic system, and simulations from this model under alternative meteorological forcing 231 

are taken to be the true hydrologic response to that forcing. The process model represents an 232 
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(imperfect) model of the true hydrologic system that can only approximate new hydrologic 233 

responses under alternative meteorological forcing. We use this ‘model-as-truth’ approach to 234 

overcome the practical conundrum of having no future observations with which to compare our 235 

process model, but fully acknowledge the limitations of using another model to represent the true 236 

system (discussed more in section 3.5). We describe the hydrologic models used for the truth and 237 

process models in Section 3.2 below.  238 

 239 

In the experiment, we split the available record into a training period for calibration and 240 

validation and a test period for out-of-sample model evaluation (WY 1988-2003 and 2004-2013 241 

in our case study, respectively). During a portion of the training period, we calibrate the truth 242 

model to observed streamflow data and then calibrate the process model to the truth model in 243 

that same period (gray dashed box in Figure 2). Errors between the truth and process model in 244 

the training period, along with state variables from the process model, are used to fit a hybrid 245 

SWM (described in Section 3.3). We then examine the distribution of hydrologic prediction 246 

errors between the truth and process models in the test period, calculated based on historical 247 

precipitation and temperature data from this period (Test), as well as historical precipitation and 248 

temperature warmed by 4o C (Test+4C). Hereafter, we occasionally use ‘historical’ and 249 

‘warmed’ when referring to the Test and Test+4C scenarios. Our primary focus is to 1) document 250 

changes to the error distribution between the truth and process models in the historical test period 251 

scenario versus the warmed test period scenario; and 2) evaluate whether our proposed hybrid 252 

SWM can capture potential changes in the error distribution between these two scenarios. We 253 

also use interpretability methods to understand how the hybrid SWM uses model state variables 254 

to estimate changes to the error distribution (see Section 3.4). Finally, we repeat the experiment 255 
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in a real-world (non-stylized) setting, training and testing the performance of a hybrid SWM 256 

against actual streamflow observations in the Feather River basin over the historical record 257 

(Section 3.5).  258 



259 

260 
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Figure 2. Conceptual diagram showing the stylized experimental design, where a ‘truth’ (Q) and 261 
‘process’ (F) model are designated to test the effect of alternate hydrologic model forcing on 262 
predictive errors between the two models. In the Test scenario, both models are forced with out-263 
of-sample but stationary forcings, whereas in the Test+4C scenario, both models are forced with 264 
non-stationary and out-of-sample forcings incorporating 4oC of applied warming. 265 
 266 

3.2. Hydrologic Model Setup 267 

We calibrate two hydrologic models for the Feather River basin, SAC-SMA (Burnash, 1995) and 268 

HYMOD (Boyle, 2001), that are used as the truth and process models, respectively. These two 269 

models are built using 828 hydrologic response units (HRUs) defined for the basin by 270 

segregating each 1/16° Livneh climate grid cell into different soil classes from the 1-km-271 

resolution State Soil Geographic dataset (Miller & White, 1998). The Livneh temperature 272 

forcings are adjusted for each HRU using the monthly lapse rates derived by Wi & 273 

Steinschneider (2022) for the area. The Lohmann routing model (Lohmann et al., 1998) traces 274 

the runoff from HRUs through the river channel to simulate streamflow at the basin outlet (i.e., 275 

daily inflows into Oroville Dam).   276 

 277 

We use a genetic algorithm (Wang et al., 1991) to calibrate the hydrologic models and use Nash 278 

Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970) as a performance metric. We first calibrate 279 

SAC-SMA (truth model) to the full natural flows for the period of WY1988-2003. The flows 280 

simulated by SAC-SMA were then used to calibrate HYMOD (process model) for the same 281 

period. For the training (test) periods of WY1988-2003 (WY2004-2013), SAC-SMA simulations 282 

achieved training (test) NSE of 0.92 (0.89), whereas HYMOD NSE was 0.95 (0.92).  283 

 284 

Internal state variables simulated by HYMOD (the process model) are used to inform our error 285 

model. These include simulated streamflow (sim), runoff, baseflow, snow water equivalent 286 
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(swe), and upper and lower soil moisture (upr_sm, lwr_sm), and represent basin-wide average 287 

states (i.e., the sum of HRU state variables weighted by percent area). We also include 288 

meteorological input variables (e.g., temperature, precipitation) in this list, and use the term 289 

‘state variables’ hereafter to refer to both meteorological and internal hydrologic model state 290 

variables, as in Shen et al. (2022). A summary table of state variables and their detailed 291 

descriptions is provided in supporting information (S1). 292 

 293 

3.3. Hybrid SWM 294 

We develop a novel, hybrid SWM that is composed of deterministic and stochastic components: 295 

 296 𝑄 = 𝐹(𝑋 , 𝜋) + 𝑒       (Eq. 1) 297 

 298 

Here, Qt is the true streamflow at time t, F(Xt,π) is a deterministic streamflow estimate from a 299 

process model F conditioned on meteorological and other inputs Xt and parameters π, and et is 300 

the stochastic prediction error. To estimate the SWM, we follow the approach of Montanari & 301 

Brath (2004) and first train the model F to observed flows Qt (i.e., estimate the model parameters 302 

π), and then afterwards we develop an error model to represent the stochastic behavior of et. 303 

While more sophisticated approaches are possible that estimate the error model jointly with F 304 

and quantify parameter uncertainty in π (Kuczera et al., 2006; Renard et al., 2011), we opt for a 305 

simpler, staged approach that is easier to implement and helps avoid complex interactions 306 

between process and error model estimation.   307 

 308 
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The primary methodological contribution of this work is an adaptive, state-variable-dependent 309 

hybrid model for et, illustrated in Figure 3. There are two main components of this model. The 310 

first is an initial model updating step referred to as ‘error correction’ (Shen et al. 2022). The error 311 

correction model f creates a mapping between the process model state variables (𝜃 , ) and the 312 

raw errors (𝑒 ), including autocorrelation in the errors through lagged error terms (𝑒 : ) out 313 

to lag p: 314 

 315 𝑒 = 𝑓 𝜃 , , 𝑒 : + 𝜀     (Eq. 2) 316 

 317 

This model corrects for conditional bias, i.e., biases in the process model predictions that are 318 

dependent on the internal states of the model and recent prediction errors. The second component 319 

is a dynamic residual model to capture the remaining stochasticity in the error correction model 320 

residual, 𝜀 , also as a function of process model state variables. Each of these components is 321 

described in more detail in Sections 3.3.1 and 3.3.2 below.  322 

 323 

Importantly, we use a split-sample calibration/validation approach to fit these two components in 324 

a similar fashion to Hah et al. (2022). That is, we first fit the error correction model f to one 325 

subset of the training data (termed the calibration set), and then we fit the dynamic residual 326 

model to a separate subset of the training data (termed the validation set), after the error 327 

correction model has been applied to that validation set (see Figure 3). This strategy helps ensure 328 

that the dynamic residual model will represent the true variability of out-of-sample residuals 329 

from the error correction model. In this work we employ an approximate 70%/30% split of the 330 

training data between calibration (WY 1988-1997) and validation (WY 1998-2003) periods, 331 
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following common practice in the ML literature (Shalev-Shwartz & Ben-David, 2013; Hastie et 332 

al., 2017).  333 

 334 

The hybrid model can then be used to simulate errors (𝑒∗) in a new time period using the state 335 

variables associated with the process model simulated in that new period. We hypothesize that 336 

the model-based hydrologic states will vary considerably in periods with very different climates 337 

(e.g., Test vs. Test+4C; see Figure 3), and this will propagate into new error distributions for the 338 

SWM. Simulated errors can be subtracted from the process model simulation to yield a single 339 

SWM trace of streamflow; a SWM ensemble is generated by repeating this process for many 340 

independent simulations of error.  341 



342 

343 
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the hybrid SWM, where an error correction model is first fitted to calibration data, which is then 345 
used to fit the residual model on the validation data. The resultant model can be used to generate 346 
new sequences of predictive uncertainty in out-of-sample scenarios (e.g. Test & Test+4C) using 347 
state variable timeseries associated with the ‘process’ model. 348 
 349 

3.3.1. Error Correction Model 350 

As described in Eq. 2, the error correction model f uses process model state variables (𝜃 , ) and 351 

lagged errors (𝑒 : ) to estimate current process model errors for time t. Many different error 352 

correction models could be selected for f (Konapala et al., 2020; Frame et al., 2021; Shen et al., 353 

2022). In this work, we select f to be a random forest (RF) model, leveraging its parsimony, 354 

demonstrated hydrologic performance, and out-of-sample robustness (Tyralis et al., 2019). The 355 

primary hyper-parameters of an RF model are the number of trees in the forest (‘ntree’) and the 356 

number of features to randomly select at each split (‘mtry’).  357 

 358 

The RF model was implemented using the ‘ranger’ package in R (Wright & Ziegler, 2017) and 359 

the default hyper-parameter settings of ‘ntree’ = 500 and ‘mtry’ = √𝑘, where 𝑘 is the number of 360 

variables.  While we found that some improvement in error correction was possible through 361 

hyper-parameter selection on the ‘out-of-bag’ prediction error, these improvements were modest 362 

and had the negative effect of apportioning more variable importance to the lagged errors, which 363 

degraded simulation performance (see supporting information S2).  364 

 365 

The RF model is fit to calibration period data and then used to predict the errors in the validation 366 

set (�̂� ). These predicted errors are subtracted from the raw errors 𝑒  to yield residuals 𝜀  367 

in the validation period, which are used to train the dynamic residual model, described next. 368 

 369 
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3.3.2. Dynamic Residual Model 370 

The residual model captures the stochastic properties of 𝜀 , and is ‘dynamic’ in the sense that it 371 

allows the stochastic properties to vary over time based on hydrologic model state. This model is 372 

fit to the validation set of error correction model residuals (𝜀 ), which ensures it does not 373 

underestimate the variability of out-of-sample residuals from the error correction model (see 374 

supporting information S3).   375 

 376 

To construct this model, we leverage the generalized likelihood (GL) approach of Schoups and 377 

Vrugt (2010) that utilizes the flexible skew exponential power (SEP) distribution (also known as 378 

the skew generalized error distribution; Wurtz et al., 2020). The original GL approach includes 379 

an autoregressive model and a linear model for heteroscedasticity which results in a set of 380 

random deviates (𝑎 ) that are modeled via the SEP with a mean 𝜇 of 0, a standard deviation 𝜎 of 381 

1 (i.e., after standardization by the heteroscedastic model), kurtosis 𝛽, and skew 𝜉. We modify 382 

this formulation to allow all free parameters of the GL model (standard deviation 𝜎, kurtosis 𝛽, 383 

skew 𝜉, and lag-1 autoregressive coefficient 𝜑) to vary over time:  384 

 385 

ℒ(𝜂|𝜀) = ∑ 𝑙𝑜𝑔 − 𝑙𝑜𝑔𝜎 − 𝑐 |𝑎 , | ( )   Eq. (3) 386 

𝜎 = 𝜎 + 𝜎 𝜃 ,                   Eq. (3a) 387 𝛽 = 𝛽 + 𝛽 𝜃 ,                   Eq. (3b) 388 𝑙𝑜𝑔 𝜉 = 𝜉 + 𝜉 𝜃 ,                  Eq. (3c) 389 𝜑 = 𝜑 + 𝜑 𝜃 ,                   Eq. (3d) 390 

 391 
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The log-likelihood function for the SEP distribution of 𝜀 (Eq. 3) is a function of the parameter 392 

vector 𝜂 = {𝜎 , 𝜎 , 𝛽 , 𝛽 , 𝜉 , 𝜉 , 𝜑 , 𝜑 }, which determines how the standard deviation, kurtosis, 393 

skew, and lag-1 autocorrelation change based on model state variables (𝜃 , ) (Eq. 3a-d). 394 

Maximization of the log-likelihood function simultaneously estimates all 4(𝑚 + 1) parameters 395 

in 𝜂, where 𝑚 is the number of state variables. In the Appendix, we define other intermediate 396 

terms (𝜎 , 𝜔 , 𝑐 , 𝑎 , ) required in the likelihood function, following Schoups and Vrugt 397 

(2010). Prior to maximum likelihood estimation, we scale all state variables to prevent 398 

discrepancies in magnitude from impacting the inferred parameters, and we preserve this scaling 399 

when simulating residuals from the SEP distribution in new time periods. When maximizing the 400 

likelihood function, we ensure the free parameters remain within valid ranges (𝜎 > 0; 𝛽 >401 (−1); 0.1 < 𝜉 < 10; 0 ≤ 𝜑 ≤ 1) by penalizing parameter selections that result in parameter 402 

values outside of these ranges. As part of this constraint for 𝜎 , we require 𝜎  to be no lower than 403 

the mean of the absolute value of the lowest decile of the residuals, and we require all elements 404 

of the vector 𝜎  to be non-negative. Finally, 𝜉  is log-transformed to linearize its relationship 405 

with 𝜃 ,  (see supporting information S4 for more detail). 406 

 407 

This modified GL approach allows the residual model to capture state dependent, time varying 408 

properties of variance, autocorrelation, and distributional form. Moreover, the dynamic model 409 

allows for adaptive prediction of residual error distributions even if the model state variables 410 

extend beyond their historical range, which is a challenge for other recently developed local 411 

uncertainty estimation procedures (e.g., BLUECAT, Montanari & Koutsoyiannis, 2022).  412 

 413 

3.3.3. SWM Ensemble Generation and Benchmark Static SWM 414 
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To generate SWM simulations, we first generate new sets of random deviates 𝑎  from the SEP 415 

distribution with 𝜇 = 0, 𝜎 = 1 and the time-varying estimates 𝛽  and 𝜉 , which are determined 416 

by the model state variables via Eq. 3b-c. These 𝑎  are then converted to new 𝜀̃  timeseries via 417 

Eq. 4, where estimates of the lag-1 autoregressive parameter 𝜑  and the heteroscedastic 418 

parameter 𝜎  are inferred from Eq. 3a and 3d:  419 

 420 𝜀̃ = 𝜑 𝜀̃ + 𝜎 𝑎   𝑤ℎ𝑒𝑟𝑒  𝑎 ~𝑆𝐸𝑃(0,1, 𝛽 , 𝜉 )   Eq. (4) 421 

 422 

We then combine the simulated residuals 𝜀̃  with the error correction model to simulate new 423 

errors �̃�  (Eq. 5). These errors are generated as the sum of the predicted error from the error 424 

correction model, 𝑓 𝜃 , , �̃� , �̃� , �̃� , which depends on the state variables at time 𝑡 (𝜃 , ) 425 

and the generated errors from the previous 3 timesteps (�̃� , �̃� , �̃� ), and the generated 426 

residual error (𝜀̃ ).  427 

         �̃� = 𝑓 𝜃 , , �̃� , �̃� , �̃� + 𝜀̃   Eq. (5)  428 

 429 

Since this model includes lag-1 to lag-3 errors, it is initialized with 3 randomly generated 430 

deviates from the residual error model. Importantly, this simulation procedure includes 431 

contributions from model state variables directly (via the error correction model), as well as 432 

through the stochastic distribution of 𝜀̃  (via the dynamic residual model). This novel integration 433 

of dynamic, state variable dependent components enables generalizable error simulation with 434 

intrinsic adaptability for out-of-sample and non-stationary error distributions. 435 

 436 



23 
 

To benchmark the hybrid error model, we also introduce a static SWM designed similar to the 437 

hybrid model but without dependence on hydrologic state variables. The static SWM has an error 438 

model fit to historical errors 𝑒  from the calibration period (1987-1997) on a monthly basis to 439 

capture seasonality. First, monthly mean biases are estimated and removed from 𝑒 , producing 440 

residuals similar to 𝜀  in Eq. 2. Then, an autocorrelative model (AR(3)) and a heteroscedastic 441 

transform are fit to 𝜀  to remove autocorrelation and capture variance that changes with simulated 442 

flow, and an SEP distribution is fit to the decorrelated and scaled residuals. This is the basic 443 

approach proposed in Schoups and Vrugt (2010) and is very similar to the dynamic residual 444 

model in Eq. 3, although these fits are conducted separately by month without dependence on 445 

state variables.  Simulation from the static SWM follows a similar procedure to the dynamic 446 

residual model, with monthly biases added back in during simulation. 447 

 448 

3.4. Local Interpretable Model-Agnostic Explanation (LIME)  449 

To understand the time dependent importance of state variables in the RF error correction 450 

process (section 3.3.1), we use an explainable artificial intelligence (xAI, Holzinger et al., 2022) 451 

technique referred to as LIME (Ribeiro et al., 2016).  LIME randomly perturbs the inputs around 452 

each model prediction to develop a local, sparse linear approximation to the more complex ML 453 

model’s predictive logic. This linear model provides a representation of the relative importance 454 

of each input to the ML model’s final prediction at each time step (Ribeiro et al., 2016; Hvitfeldt 455 

et al., 2022). In this context, LIME has similarities to time-varying sensitivity analyses used in 456 

hydrologic model diagnoses (Herman et al., 2013). Importantly, LIME offers a uniquely different 457 

perspective than the aggregate variable importance metrics generated internally by the RF 458 
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algorithm, since the explanations can be analyzed at the precision of individual events or 459 

aggregated over subsets of interest. 460 

  461 

3.5. Real-World Application 462 

As a final experiment, we apply the hybrid SWM framework developed in section 3.3 to a non-463 

stylized, real-world setting, where the hybrid error model is constructed on the errors between 464 

the actual observed streamflow and a process based hydrologic model (SAC-SMA) calibrated to 465 

those observations. In this case, the ‘truth model’ is now the more complex real world 466 

streamflow generating process against which hydrologic models are a simplified representation, 467 

and we assess the ability of the hybrid SWM framework to learn an error distribution in the 468 

training period that generalizes to the test period. We note that the actual observations are 469 

themselves modeled via a full natural flow estimation procedure that accounts for upstream 470 

diversions and reservoir operations (Zimmerman et al., 2018), but these human influences can 471 

change in nature over time in ways not totally captured by the natural flow estimation algorithm. 472 

Any non-stationarity in human influences over observed inflows not corrected by the natural 473 

flow estimation algorithm will lead to nonstationarity in errors between the observations and 474 

process model predictions unrelated to hydrologic model state variables, making the state 475 

variable – error relationships much more challenging to learn and simulate. 476 

 477 

4. Results 478 

4.1. Non-stationarity in raw errors  479 

To first highlight the potential for non-stationarity in predictive errors, we examine the raw error 480 

distribution (𝑒 , Eq. 1) by month between the process (HYMOD) and truth (SAC-SMA) models 481 
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in the out-of-sample test period with and without 4oC warming applied to the meteorological data 482 

(Figure 4a). Note that predictive errors are defined as truth minus process model output. There is 483 

a substantial divergence in error distributions between the historical and warmed scenarios across 484 

seasons, with the most notable differences occurring in the late winter and early spring 485 

(February-May). In February and March, when mean daily flows are rising towards their annual 486 

peak (Figure 4b), the errors in the two cases are biased in opposite directions, with process model 487 

outflows systematically overpredicting truth model flows in the Test case but underpredicting 488 

them in the Test+4C case. In April and May, when the two cases exhibit the greatest disparities 489 

in mean daily flow (Figure 4b), error biases are of the same sign but are more severe in the 490 

Test+4C case. In addition, there are several months when the error dispersion (i.e., interquartile 491 

range) differs substantially between the two cases, with January, March, and April being the 492 

most prominent examples. Overall, the error distribution between the truth and process models 493 

are significantly different under the Test and Test+4C scenarios, highlighting the potential for 494 

nonstationary predictive errors.  495 
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 496 

 497 

Figure 4. a) Monthly comparison of out-of-sample (WY2004-2013) raw error distributions (𝑒 ) 498 
between truth (SAC-SMA) and process (HYMOD) models without (Test) and with (Test + 4C) 499 
warming. B) Mean daily flow of the SAC-SMA truth model across WY2004-2013 for the two 500 
scenarios, smoothed with a 30-day moving average. 501 
 502 

4.2. RF error correction model performance 503 
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In the first step of our modeling approach, we apply RF error correction to remove systematic 504 

biases that can vary through time conditional on hydrologic state. Figure 5 shows the residual 505 

distributions (𝜀 , Eq. 2) for both Test and Test + 4C cases after fitting this error correction 506 

procedure to the training set and applying it to the test set. Figure 5 also shows the raw error 507 

distributions (𝑒 , Eq. 1) for comparison. There is a clear reduction in conditional bias across 508 

months, with residuals now consistently centered around zero. Notably, the raw errors were 509 

successfully debiased in both Test and Test + 4C cases in the late winter and spring (February-510 

May), when biases in the two cases were of different sign or substantially different magnitude. In 511 

addition, the error correction model reduces the dispersion of the raw predictive errors 512 

considerably across months. These results showcase three important properties of the error 513 

correction process: a) the model’s ability to learn state variable-error relationships that enable 514 

debiasing across varying seasonal behavior; b) the model’s resistance to overfitting (i.e., the RF 515 

model provides effective error correction on unseen data in both the Test and Test+4C case); and 516 

c) stability of the learned relationships even with prominent shifts to the raw error distributions 517 

under non-stationary forcing.  518 
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 519 

 520 

Figure 5. a) Monthly comparison of out-of-sample Test period (2003-2013) raw error (𝑒 ) 521 
distributions versus residual distributions (𝜀 ) after correction by the Random Forest (RF) 522 
model. b) As in a) but for the Test+4C period (2003-2013). 523 
 524 
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The RF model calculates variable importance as the fractional contribution of each variable to 525 

reducing prediction variance across the entire dataset. Figure 6 shows that lag-1 and -2 526 

autocorrelation in the raw errors are the most influential predictor variables. The most important 527 

state variables are the runoff component of simulated flow and the simulated flow itself, 528 

implying that conditional biases in the error are related to differences in how rainfall is 529 

apportioned to overland flow between the truth and process models. The remaining state 530 

variables show similar, lower values of importance, but we note that some variables that would 531 

be important only in specific times of year (e.g., snow water equivalent, SWE) will likely be less 532 

important in the aggregate.  533 

 534 

The dominance of autocorrelation in variable importance suggests that a simpler autoregressive 535 

(AR) model could be sufficient as an error correction procedure. However, an AR model cannot 536 

simulate conditional bias that changes in nature under non-stationary conditions (Shabestanipour 537 

et al., 2023). A RF error correction model based solely on state variables (no lag terms) can infer 538 

conditional bias in both out-of-sample and non-stationary out-of-sample cases, but underpredicts 539 

the magnitude of the bias (see supporting information S5). This supports the integration of 540 

autoregressive and state variables in the RF error correction model.  541 

 542 
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 543 

Figure 6. Variable importance from RF error correction model fit to calibration period (1987-544 
1997). Note: ‘lag1’ variable importance equals 0.32, which extends outside of plot bounds. 545 
 546 

While the RF model calculates variable importance across the entire dataset, we use LIME to 547 

explore the time varying importance of state variables to the error correction model. This is 548 

shown in Figure 7 for the Test and Test+4C cases, using results in March for illustration. Here, 549 

we confine our analysis to daily empirical errors that bias in opposite directions for the Test and 550 

Test+4C cases, in order to better emphasize how state variable impacts on error correction 551 

change based on background climate state. That is, we take the daily feature weights from LIME 552 

in March only when the predictive errors are negative (positive) for the Test (Test+4C) cases, 553 
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and show the median feature weight for these days in Figure 7. We do not include the lag-1 to 554 

lag-3 features in Figure 7 to concentrate focus on the state variable effects (supporting 555 

information S6 shows all features).  556 

 557 

Figure 7 shows that the process model simulated flow (sim) and runoff exhibit the largest 558 

absolute feature weights, but these feature weights are of opposite sign between the Test and 559 

Test+4C cases and the Test+4C weights are of lower magnitude. The difference in sign between 560 

the two cases suggests that the RF model uses simulated flow and runoff in fundamentally 561 

different ways to correct bias in March depending on the background climate state. The lower 562 

magnitude weights in the Test+4C case likely reflect the smaller bias for the Test+4C errors in 563 

March (see Figure 5). We also note a change in sign for the feature weight on SWE, though the 564 

absolute weights are relatively small. There is also a noticeable reduction in the magnitude of the 565 

baseflow feature weight from the Test to the Test+4C case.  566 

 567 

Overall, the results from Figures 6 and 7 show that the RF error correction model is able to infer 568 

biases of changing sign and magnitude based on changes to the process model simulated flow 569 

itself, particularly the runoff component, with some lesser contributions from SWE.  570 
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 571 

 572 
Figure 7. Locally Interpretable Model-agnostic Explanation (LIME) median feature weight 573 
(white background, gray outline) comparison against median error (light orange background, 574 
black outline) for a selected month, where errors and associated feature weights are aggregated 575 
for errors less than (greater than) zero in the Test (Test+4C) cases. 576 
 577 

4.3. Dynamic residual model performance 578 

Overall, the error correction process yields residuals (𝜀 ) in both Test and Test+4C cases that are 579 

unbiased, but that still exhibit time dependent properties (e.g., variance that changes by month; 580 

see Figure 5). This suggests that important dependencies between the model states and the 581 

residuals may still exist after error correction. We assess the ability of the dynamic residual 582 

model to capture these dependencies by comparing the empirical residual distribution (i.e., the 583 

distribution of 𝜀  calculated from Eq. 2) to the residual distribution simulated by the dynamic 584 

residual model (𝜀̃  in Eq. 4), all for the out-of-sample Test and Test+4C cases. Figure 8 shows 585 

this comparison for selected months (March-May) that exhibited the most notable differences 586 
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between residual distributions in the Test and Test+4C cases (see Figure 5), but a comparison 587 

across all months is presented in Figure S7. Results from Figure 8 show that in the Test case (top 588 

row), the dynamic residual model captures seasonal changes to the residual distribution’s shape, 589 

variance, and skew. In the Test+4C case (bottom row), the empirical residual distributions 590 

become more peaked compared to the Test case, and the dynamic residual model is able to infer 591 

these changes. The close agreement between empirical and simulated residuals in Figure 8 592 

confirms that the dynamic residual model is able to use state variable information to capture 593 

changes in higher moments of the residuals 𝜀  across months and very different climate 594 

conditions. 595 

 596 

 597 

Figure 8. Top row: Empirical distribution of RF-corrected residuals 𝜀  (histogram) versus the 598 
kernel density estimate of a simulated sample of residuals 𝜀̃  from the dynamic residual model 599 
(red line) for selected months from the Test case. Bottom row: As in top row, but for the Test+4C 600 
case. 601 
 602 
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Table 1 shows the state variable effects for the different parameters in the SEP model (see Eqs. 603 

3a-3d), while Figure 9 shows the seasonality in SEP parameters in Test and Test+4C cases. For 604 

the parameter 𝜎  (heteroscedasticity), the runoff state variable is the most influential, followed 605 

closely by the simulated flow and then precipitation (Table 1). This result reflects the strong 606 

relationship between error variance and flow magnitude, as noted in previous literature (Schoups 607 

& Vrugt, 2010). This is also seen in the strong seasonal signal in both the mean and variability in 608 𝜎  (Figure 9, top left). Further, the greatest divergence in 𝜎  between the Test and Test+4C cases 609 

occurs in the late winter and spring months where mean flow magnitudes diverge most 610 

substantially (see Figure 4b). 611 

 612 

Skewness (𝜉 ) shows a relatively weak seasonal signal centered around 1 (i.e., 𝑙𝑜𝑔 𝜉 = 0; no 613 

skew) across months, with only weak relationships with evapotranspiration (et), snow water 614 

equivalent (swe), runoff, and soil moisture (sm). In contrast, the kurtosis parameter 𝛽  exhibits a 615 

strong seasonal signal that is primarily tied to temperature (tavg). The residual distributions 616 

exhibit values of 𝛽  close to 1 (i.e., a Laplace distribution) in the cold season that become 617 

progressively more peaked and fat-tailed (𝛽 > 1) in the summer months. This reflects a 618 

concentration of probability mass around small residuals 𝜀  in low flow months with high 619 

probability of large (scaled) residuals (see Figure S4). Both the Test and Test+4C cases show 620 

similar seasonal characteristics with slightly higher 𝛽  values in the late winter to spring for the 621 

Test case.  622 

 623 

Finally, lag-1 autocorrelation (𝜑 ) exhibits a seasonal peak in summer, similar to 𝛽  but with a 624 

decrease in variability during those months. The lowest values of 𝜑 , but highest variability, 625 



35 
 

occur in the cold season. It is important to note that the autocorrelation captured in the residual 626 

model is the leftover autocorrelation after error correction (which included lag-1 to lag-3 terms). 627 

Thus, the results highlight that the dynamic residual model infers relatively high degrees of 628 

additional autocorrelation in the summer months with little variability and moderate 629 

autocorrelation with more variability in other seasons. The greatest positive contributors to 𝜑  630 

are temperature and lower-zone soil moisture (lwr_sm), while precipitation is the most important 631 

negative contributor. Across the seasons, there is very little difference between the Test and 632 

Test+4C cases, indicating that the autocorrelation structure of the residuals 𝜀  is not highly 633 

influenced by warming.  634 

 635 

 636 
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 656 
Figure 9. Values for the four free parameters in the dynamic residual model aggregated by 657 
month for the Test and Test+4C cases. The bold lines are the mean parameter values while the 658 
blue shading is the 90% confidence interval for the Test case and the orange dashed line is the 659 
90% confidence interval for the Test+4C case.  660 
 661 

4.4. Hybrid model simulation performance 662 

After fitting both components of the hybrid error model, we simulate new errors (�̃� , Eq. 5) via 663 

the generation procedure detailed in section 3.3.3 and evaluate how well their distribution 664 
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matches that of the raw empirical errors (𝑒 , Eq. 1). In Figure 10a,b, we show this comparison 665 

separately by month for both Test and Test+4C cases . The hybrid model is able to reproduce the 666 

direction of bias and general patterns of variance across both the Test and Test+4C cases. For 667 

instance, in February the Test empirical errors are negatively biased and have less variance in 668 

comparison to the Test+4C errors, which are positively biased and have greater variance. The 669 

model is able to simulate both of these shifts. A similar result is seen in March, although the 670 

variance is smaller in the Test+4C period. In April, the Test empirical errors have relatively low 671 

positive bias and large variance as compared to the Test+4C errors, which have a large positive 672 

bias and less variance. The simulated errors capture this general pattern.  673 

 674 

There are some deficiencies in the simulated errors, including biases that are often smaller than 675 

the observed bias (e.g., see March – May in Test+4C) and some overestimation of variance 676 

(particularly in the Test case). However, the hybrid model significantly outperforms a static 677 

SWM based purely on seasonality in the error distribution (Figure 10c,d). For the static model, 678 

although error distributions are well simulated by month during the Test case, changes in the 679 

direction of bias during the winter and spring are completely missed because monthly biases are 680 

fixed (further information on static model in supporting information S8). The state variable 681 

dependencies built into the hybrid model allow a more faithful emulation of these shifts, even if 682 

imperfect. We also note that there are some (albeit very minor) improvements over the static 683 

SWM simulations in terms of coverage probabilities in the Test+4C case, although both models 684 

tend to be overdispersed (see supporting information S9). 685 
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 686 

 687 

Figure 10. a) Monthly empirical distribution of errors in the Test subset (dark blue) versus 1000 688 
aggregated samples of hybrid model simulated errors (light blue). b) Same as (a) but for 689 
Test+4C errors, where empirical (simulated) errors are dark orange (coral). c-d) As in (a) and 690 
(b), but simulated errors are from the static SWM model.  691 
 692 

To further illustrate the performance of the hybrid SWM, Figure 11 shows the simulated 693 

timeseries of flow for a 6-month subperiod (February-July 2011) in the Test and Test+4C cases 694 

that spans both wet and dry seasons. We first highlight the markedly different truth model flows 695 

for the Test and Test+4C cases, where again the only difference is the applied +4oC temperature 696 

adjustment to the Test+4C forcings. The peak flow event in March in the Test case is weaker and 697 
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of shorter length compared to the larger, sustained multi-peak event in the Test+4C case. In 698 

contrast, the snowmelt recession is longer and of higher magnitude in the Test case versus the 699 

Test+4C case. The hybrid SWM results show that the largest uncertainty is inferred around peak 700 

events as well as flow recessions, with particularly large uncertainty in the Test April-June 701 

snowmelt season. The results also illustrate the method’s adaptive bias correction, where the 702 

hybrid SWM corrects much of the process model’s overprediction bias in the Test case, 703 

particularly in April-June, whereas in the Test+4C case for the same months, the model helps 704 

correct for process model underprediction bias. Around the larger peak flows in February-March 705 

for both Test and Test+4C, there is little bias correction for this particular year. Overall, the 706 

hybrid SWM simulations improve the process model simulation based on the ensemble median 707 

and capture many of the observations within the ensemble spread.  708 

 709 



41 
 

 710 

Figure 11. a) Truth model flow (black) compared against process model flow (dark blue) and the 711 
median flow of 1000 samples (light blue) from the hybrid SWM for the February-July period in 712 
2011 from the Test scenario. 95% coverage interval for the 1000 samples are shown in light 713 
gray. b) As in (a) but for the Test+4C scenario, where process model (SWM median) flow is dark 714 
orange (light orange). 715 
 716 
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4.5. Real-world application 717 

We conclude by employing the hybrid model in a real-world setting to assess whether the model 718 

is effectively inferring conditional error distributions when the truth model is the actual 719 

streamflow observations and the process model is SAC-SMA. In this application we utilize two 720 

sampling schemes to determine calibration, validation, and test periods: 1) a ‘split-sample’ 721 

approach identical to the idealized example described in Figure 3; and 2) a ‘skip-sample’ 722 

approach, where calibration, validation, and test periods are sampled evenly over the historical 723 

record in three-year increments (i.e., calibration water-years: 1988, 1991,…, 2012; validation 724 

water-years: 1989, 1992,…, 2013; testing water-years 1990, 1993,…, 2011). The skip-sample 725 

approach addresses the challenges associated with any non-stationarity in the observed data (and 726 

errors) over the period of record (WY1988-2013) that is not represented by modeled flows 727 

forced with historical climate (e.g., changes in diversions over time not captured by the natural 728 

flow estimation procedure; see Section 3.5). The hybrid model under the split-sample approach 729 

would not be able to capture this type of non-stationarity, since hydrologic state variables would 730 

be uncorrelated with these shifts in model error. We note that there is no appreciable trend in 731 

temperature or precipitation over the 1988-2013 period, so any non-stationarity in errors across 732 

the 1988-2013 period is not likely driven by climatic factors (see supporting information S10).  733 

 734 

Figure 12 shows the results of applying the hybrid model to errors between the process model 735 

(SAC-SMA) and observed streamflow. There is slightly more bias in the raw, empirical errors by 736 

month in the split-sample case as compared to the skip-sample case, although these biases are 737 

significantly smaller than those that emerged under the idealized Test+4C scenario. In addition, 738 

the test period empirical biases are relatively similar across the split-sample and skip-sample 739 
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approaches, despite the fact that there is little overlap in the test data under these two sampling 740 

methods. Under the split-sample approach, the hybrid model does capture the direction of biases 741 

in the summer season but not in the winter and spring months. This deficiency appears to stem 742 

from learned biases in the calibration period that do not transfer to the test period (see Figure 743 

S11). In addition, the model overestimates variance considerably across months. In contrast, the 744 

hybrid model does well in estimating both the error bias and variance in the ‘skip-sample’ case 745 

(also see Figure S12). Without more knowledge about what is driving changes in the error 746 

distribution across training and testing periods (e.g., climate, human activity), it is hard to draw 747 

strong conclusions about the hybrid model in this real-world setting. However, these results do 748 

suggest that the hybrid model’s performance may be sensitive to non-stationarity in errors 749 

associated with factors uncorrelated with hydrologic state variables. 750 

 751 
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 752 

 753 

Figure 12. a) Monthly empirical raw error distributions (dark blue) between observed 754 
streamflow and the process model (SAC-SMA) against simulated errors from the hybrid model 755 
(light blue) for the out-of-sample Test period (WY 2004-2013) under the split-sample approach. 756 
b) Same as (a), but for the ‘skip-sample’ approach. 757 



45 
 

 758 

5. Discussion and Conclusion 759 

In this work, we examined the assumption that historical predictive uncertainty of hydrologic 760 

models is sufficient to characterize future predictive uncertainty under non-stationary climate. 761 

We developed an idealized ‘model as truth’ experimental design to test this assumption, where 762 

we designated one hydrologic model as ‘truth’ and another as the ‘process’ model. This design 763 

allowed us to analyze predictive uncertainty under both the historical meteorological conditions 764 

to which the models were fit and also under significant warming. We found that there were 765 

substantial shifts in the predictive error distribution under climate change, which were manifest 766 

in changes to bias, variance, and (to a lesser extent) higher moments of error. These results 767 

suggest that SWMs fit to historical data may not perform well when used to simulate future, 768 

climate change impacted hydrology. 769 

 770 

One of the most important contributions of SWMs is the reduction of simulation bias in 771 

hydrological model predictions at the upper and lower flow quantiles (Farmer & Vogel, 2016; 772 

Vogel, 2017). This simulation bias often leads to systematic errors in the estimation of extreme 773 

low flow (e.g., 7Q10), high flow (e.g., 100-year flood), and other design events (Shabestanipour 774 

et al., 2023). Although not explicitly shown here, the differences in error distributions between 775 

the Test and Test+4C cases imply that the current generation of SWMs trained to a historical 776 

period may not improve the estimation of these design criteria under future climate conditions.  777 

 778 

To address these issues, we developed a novel, hybrid SWM to leverage information in 779 

hydrologic model state variables to predict changes in predictive uncertainty. The model used 780 
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ML error correction to remove biases conditional on hydrologic state, and then used dynamic 781 

residual modeling to capture the dependencies between hydrologic state and higher order 782 

moments of the error distribution. To better emulate out-of-sample predictive uncertainty, we 783 

introduced a training approach whereby we fit the error correction model to a calibration set and 784 

then subsequently fit the dynamic residual model to a separate validation set, before evaluating 785 

the approach on an independent test set.  786 

 787 

We found that the hybrid model was able to capture prominent shifts in predictive uncertainty in 788 

the test set, both for historical climate (Test) and under warming (Test+4C). This included 789 

significant changes in bias during the winter and spring months, when snow accumulation and 790 

melt dynamics differed significantly between the truth and process models in the Test and 791 

Test+4C cases. Notably, a static benchmark SWM was unable to emulate these shifting biases.  792 

The hybrid modeling framework was also able to predict changes in error variance and kurtosis 793 

in the spring months under warming, and autocorrelation that varied across the year. Overall, 794 

predictive uncertainty estimated using the hybrid error model matched that observed between the 795 

truth and process model reasonably well, even though some attributes of predictive uncertainty 796 

(e.g., magnitude of bias; coverage probabilities) were not captured. While improvements in some 797 

of these attributes should be the focus of future work, our methodology provides an important 798 

step towards addressing a gap in the hydrologic ML literature of how to adequately assess 799 

uncertainty under plausible but unprecedented future conditions (Klotz et al., 2022). 800 

 801 

Using different approaches for model interpretability (e.g., feature importance, LIME), we 802 

showed that lagged error terms and components of simulated streamflow were the most 803 
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important features when correcting for bias, while a variety of meteorological and internal state 804 

variables helped model changes in higher order moments and autocorrelation of the residuals. 805 

Importantly, the effects of certain features in the error correction model changed in sign 806 

depending on the background climate and month of interest, suggesting that changes to 807 

predictive uncertainty under non-stationarity are more complex than just shifts in timing (e.g., 808 

Xu et al., 2021) or simple scaling relationships (e.g., Read & Vogel, 2015). This work 809 

demonstrates an approach to leverage relationships between model state and model error to infer 810 

these complex changes, paving the way for future work in this area. 811 

 812 

We also tested the hybrid model in a more challenging real-world setting, where the hybrid error 813 

model had to predict changes in predictive uncertainty between a process model and actual 814 

streamflow observations in the context of (potentially unobserved) changes to the real hydrologic 815 

system that would be uncorrelated with hydrologic model state. We found that the hybrid error 816 

model worked reasonably well in some months but struggled in others when the data were 817 

separated into sequential training and testing periods. These issues were resolved if data used for 818 

model training and testing were evenly spread out across the record, suggesting that the hybrid 819 

error model may be sensitive to nonstationarity in the true hydrologic system, especially if the 820 

source of nonstationarity is unrelated to features simulated by the process model. Future work 821 

should examine this problem in more depth, since understanding how hydrologic predictive 822 

uncertainty might change against a future, unobserved real world system under non-stationarity 823 

is the ultimate goal. 824 

 825 
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In constructing the hybrid error model used in this work, we emphasized generalizability, 826 

interpretability, and parsimony over complexity. Future work could explore more complex error 827 

correction procedures (boosted trees, convolutional neural networks, or long short-term memory 828 

networks), more complex optimization schemes for the dynamic residual model, or non-linear 829 

relationships to state variables in the dynamic residual model. Furthermore, this study only 830 

evaluated the hybrid error model in one location, and so future work should assess the spatial 831 

generalizability of the approach and whether performance varies by region.  832 

 833 

Finally, the experimental design forwarded in this study offers a unique way to explore the 834 

tradeoff between traditional ‘predictive’ performance objectives (e.g., NSE) of hydrologic 835 

modeling versus ‘functional’ performance (structural adequacy) objectives (Ruddel et al., 2019) 836 

in the context of SWMs. Complexity in hydrologic model predictive uncertainty arises from the 837 

predictive errors ‘doing the work the model should be doing’ (Vogel, 2017). Thus, a structurally 838 

deficient hydrologic model coupled with a sufficiently complex error model may perform well in 839 

scenarios that are similar to its training data, but will likely perform poorly under nonstationarity, 840 

where the hydrologic model’s structural faults will be amplified. In contrast, a more structurally 841 

adequate hydrologic model may exhibit more (but less complex) predictive uncertainty in 842 

stationary conditions, but show more consistency in error distributions under nonstationarity. 843 

Using the information theoretic framework developed in Ruddel et al. (2019), one could explore 844 

this tradeoff explicitly across different hydrologic models (or hydrologic model 845 

parameterizations) in relation to its effect on the complexity of the predictive error distributions 846 

as well as their homogeneity between the stationary and non-stationary cases.   847 

 848 



49 
 

Appendix 849 

We provide the intermediate equations derived in Schoups and Vrugt (2010) to define the 850 

conditional generalized likelihood (GL) function with modifications to account for time varying 851 

kurtosis (𝛽 ), skew (𝜉 ), and lag-1 autocorrelation (𝜑 ). The reader is referred to this manuscript 852 

for further details on the derivations. 853 

 854 𝜔 , = / [ ( )/ ]( ) / [( )/ ]    Eq. (A1) 855 

𝑐 , = [ ( )/ ][( )/ ] /( )
    Eq. (A2) 856 

𝑀 , = [ ]/ [ ( )] / [( )/ ]   Eq. (A3) 857 𝑀 = 1      Eq. (A4) 858 𝜇 , = 𝑀 , (𝜉 + 𝜉 )     Eq. (A5) 859 

𝜎 , = 𝑀 − 𝑀 , (𝜉 + 𝜉 ) + 2𝑀 . − 𝑀  Eq. (A6) 860 𝑎 =      Eq. (A7) 861 

𝑎 , = 𝜉 , , (𝜇 , + 𝜎 , 𝑎 ) Eq. (A8) 862 

 863 

 864 

 865 
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