Radiocarbon Measurements Reveal Underestimated Fossil CH4 and CO2 Emissions in London

Giulia Zazzeri¹, Heather Graven², Xiaomei Xu³, Eric Saboya⁴, Liam Peter Blyth², Alistair J. Manning⁵, Hannah Chawner⁴, Dien Wu⁶, and Samuel Alexander Hammer⁷

¹Department of Physics, ETH Zürich, Zürich, ²Imperial College London ³University of California, Irvine ⁴University of Bristol ⁵UKMet Office ⁶Cal Tech ⁷Institut für Umweltphysik

April 16, 2023

Abstract

Radiocarbon (14C) is a powerful tracer of fossil emissions because fossil fuels are entirely depleted in 14C, but observations of 14CO2 and especially 14CH4 in urban regions are sparse. We present the first observations of 14C in both methane (CH4) and carbon dioxide (CO2) in an urban area (London) using a recently developed sampling system. We find that the fossil fraction of CH4 and the atmospheric concentration of fossil CO2 are consistently higher than simulated values using the atmospheric dispersion model NAME coupled with emission inventories. Observed net biospheric uptake in June-July is not well correlated with simulations using the SMURF model with NAME. The results show the partitioning of fossil and biospheric CO2 and CH4 in cities can be evaluated and improved with 14C observations when the nuclear power plants influence is negligible.

Hosted file

959348_0_art_file_10840227_rs8hvb.docx available at https://authorea.com/users/601014/ articles/632406-radiocarbon-measurements-reveal-underestimated-fossil-ch4-and-co2emissions-in-london

Hosted file

959348_0_supp_10830291_rs0119.docx available at https://authorea.com/users/601014/articles/ 632406-radiocarbon-measurements-reveal-underestimated-fossil-ch4-and-co2-emissions-inlondon

Hosted file

959348_0_table_10830401_rs0v55.docx available at https://authorea.com/users/601014/articles/ 632406-radiocarbon-measurements-reveal-underestimated-fossil-ch4-and-co2-emissions-inlondon

Hosted file

959348_0_table_10830402_rs0v55.docx available at https://authorea.com/users/601014/articles/632406-radiocarbon-measurements-reveal-underestimated-fossil-ch4-and-co2-emissions-in-

london

Radiocarbon Measurements Reveal Underestimated Fossil CH₄ and CO₂ Emissions 1

in London 2

Giulia Zazzeri¹[†], Heather Graven¹, Xiaomei Xu², Eric Saboya^{1*}, Liam Blyth¹, Alistair J. 3 Manning³, Hannah Chawner⁴, Dien Wu⁵, Samuel Hammer⁶ 4

- ¹Imperial College, Physics Department, Huxley Building, 180 Queen's Gate, South Kensington, 5
- London SW7 2AZ, United Kingdom 6
- 7 [†]Now at: ETH Zurich, Physics Department, Otto-Stern-Weg 5, 8093 Zürich, Schweiz
- * Now at: School of Geographical Sciences, Bristol 8
- ² University of California Irvine, 2222 Croul Hall, Earth System Science 9
- ³ Met Office, Exeter, Devon 10
- ⁴ School of Chemistry, Bristol 11
- ⁵ Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, 12 13 USA
- ⁶ ICOS-CRL, Institute of Environmental Physics, Heidelberg University, Im Neuenheimer Feld 14 229, 69120 Heidelberg, Germany 15
- Corresponding author: Giulia Zazzeri (email: gzazzeri@phys.ethz.ch) 16
- [†]Additional author notes should be indicated with symbols (current addresses, for example). 17

Key Points: 18

- Atmospheric radiocarbon measurements in central London reveal higher fossil CH₄ and 19 CO₂ present, compared to simulations 20
- Radiocarbon measurements show biospheric uptake of CO₂ in July that is stronger than 21 22 simulations
- Nuclear power plants interfere with radiocarbon measurements in London when air is 23 coming from Europe
- 24 25

26 Abstract

Radiocarbon (¹⁴C) is a powerful tracer of fossil emissions because fossil fuels are entirely 27 depleted in ¹⁴C, but observations of ¹⁴CO₂ and especially ¹⁴CH₄ in urban regions are sparse. We 28 present the first observations of ¹⁴C in both methane (CH₄) and carbon dioxide (CO₂) in an urban 29 area (London) using a recently developed sampling system. We find that the fossil fraction of 30 CH₄ and the atmospheric concentration of fossil CO₂ are consistently higher than simulated 31 values using the atmospheric dispersion model NAME coupled with emission inventories. 32 33 Observed net biospheric uptake in June-July is not well correlated with simulations using the SMURF model with NAME. The results show the partitioning of fossil and biospheric CO₂ and 34 CH_4 in cities can be evaluated and improved with ¹⁴C observations when the nuclear power 35 plants influence is negligible. 36

37 **1** Introduction

Urban environments hold more than half of the world's population and are responsible for more 38 than 60% of greenhouse gas emissions (World Bank, 2022). Atmospheric measurements of the 39 two major anthropogenic greenhouse gases, CO2 and CH4, in cities have expanded recently and 40 emissions inventories are available at increasingly higher spatial and temporal resolutions (Minx 41 et al. 2021). However, the attribution of emissions to specific source sectors is still largely 42 debated and sectoral emission estimates determined using statistical approaches and associated 43 emission factors are often found to be inconsistent with measurements (Saunois et al. 2020). 44 This is the case of CH_4 emissions in London, where several studies demonstrated that fossil CH_4 45 emissions are significantly underestimated by emission inventories (Zazzeri et al, 2017; Saboya 46 et al. 2022). CO_2 budgets at urban scale are also difficult to resolve, as processes such as 47 photosynthetic uptake, plant and soil respiration contribute to the net CO₂ exchange and need to 48

- 49 be accurately quantified (Miller et al. 2020).
- 50

At Imperial College London we have measured radiocarbon $({}^{14}C)$ in both atmospheric CO₂ and 51 CH₄. ¹⁴C measurements enable partitioning of the fossil and non-fossil influences on CO₂ and 52 CH₄. Fossil carbon is completely devoid of ¹⁴C, which has all decayed during millions of years 53 of fossil fuel formation, given a ¹⁴C half-life of 5700 years. When fossil carbon is re-introduced 54 into the atmosphere, it decreases the atmospheric ¹⁴C/C ratio, expressed as Δ^{14} C (Stuiver and 55 Polach, 1977), whereas biospheric influences have a much smaller impact on Δ^{14} C. By 56 measuring Δ^{14} C, we can estimate carbon added from fossil fuels relative to a background site. 57 58 However these measurements are challenging, especially for atmospheric CH₄, due to its 59 relatively low concentration (~1.9 ppm) and the large amount of air needed to collect enough carbon for the ¹⁴C analysis via Accelerator Mass Spectrometry (AMS). Another challenge lies in 60

accounting for ¹⁴CH₄ and ¹⁴CO₂ emissions from nuclear power plants (NPPs). In regions where many NPPs are sited, their ¹⁴C emissions can increase the atmospheric Δ^{14} C value enough to

63 counteract the fossil carbon dilution (Eisma et al. 1995; Graven and Gruber 2011).

64

65 While Δ^{14} C has been widely used to detect regional fossil CO₂ emissions (Levin 2011, Graven et

al. 2018, Wenger et al. 2019, Basu et al. 2020), only one study so far has presented a

 67 quantification of the fossil fraction of CH₄ emissions at a regional scale using 14 C in atmospheric

68 CH₄ (Zazzeri et al. 2021), finding that the fossil fraction was very high in London. In that study,

69 Δ^{14} CH₄ measurements were carried out using a new methodology, which addresses the main

- sampling challenge of Δ^{14} CH₄ measurements by separating carbon during sampling, allowing
- carbon from hundreds of litres of air to be collected onto a small molecular sieve trap. The
- trapping method also facilitates collection of CO₂ samples for Δ^{14} CO₂, enabling high precision
- 73 Δ^{14} CO₂ measurements (Zazzeri et al. 2021).
- 74
- 75 Here, we build on the previous study by using the same novel technique to collect atmospheric
- ⁷⁶ CH₄ and CO₂ samples for 14 C analysis between March and July 2020 in London, providing the
- first combined analysis of fossil CH_4 and CO_2 emissions at a regional scale using ¹⁴C. We then
- compare the observations to model simulations with an emission inventory and biosphere model.

79 2 Materials and Methods

80 2.1 Sampling and ¹⁴C analysis

81 CH₄ and CO₂ samples were collected using the sampling system described in Zazzeri et al.

- 82 (2021). The air was sampled from an air intake on the roof of the Physics department at Imperial
- 83 College London, at ~25 m height. Samples were taken in the afternoon and early evening, when
- air was well mixed, to avoid sampling of very local emissions. Collection of one CH_4 sample of
- $150 \ \mu gC$ took approximately 7 hours, usually from 13:00 to 20:00 (local time). CO₂ samples of
- $\sim 0.5 \text{ mg C}$ were collected at 12:00 over 30 minutes. A Picarro G2201-i analyser was used to measure the CO₂ and CH₄ mole fractions continuously from the air intake. A detailed description
- measure the CO_2 and CH_4 mole fractions continuously from the air intake. A d of the setup can be found in Saboya et al. (2022).
- 89
- 90 Sample traps were sent to the Accelerator Mass Spectrometry facilities in UC Irvine, where CO₂
- 91 was extracted and graphitised for ¹⁴C analysis (Xu et al. 2007). Δ^{14} CH₄ measurements are
- reported with uncertainties of 5 to 17 ‰, including background correction ($5.5 \pm 0.1 \mu g$ modern
- carbon, Zazzeri et al. 2021). Δ^{14} CO₂ measurements are reported with uncertainties of 2 ‰,
- 94 including background correction (1.5 μg of modern carbon, Zazzeri et al. 2021).

95 2.2 Quantification of CH₄ fossil fraction

- 96 The fossil fraction of CH_4 (i.e the ratio between fossil and total added CH_4) is calculated
- 97 following the mass balance approach in Graven et al. (2019). According to this method, fossil
- emissions will decrease the background atmospheric Δ^{14} CH₄ (~340 ‰) by a larger degree than
- biogenic emissions, due to the different ${}^{14}C$ signatures of fossil (-1000 ‰) and biogenic CH₄
- sources (28 ±15‰, based on a turnover time of 6 ± 3 years (Lassey et al. 2007) and the $\Delta^{14}CO_2$
- 101 record (Graven et al. 2017)). Since Δ^{14} CH₄ measurements of background air for 2020 were not
- available, we calculated the fossil fraction of differences in the CH₄ concentration between pairs
- 103 of samples collected within 7-11 days with similar air provenance, either from the Atlantic or
- north of the UK. Thus we assumed that the background air composition was the same for each
- pair and the influence from NPPs was neglible as there are no NPPs in these directions. We
- tested the assumption that the influence from NPPs was neglible for these samples with modelsimulations (Section 2.5).
- 107
- 109 Three samples were collected when air was coming from Europe, where many pressurised water
- reactors (PWRs) that emit ¹⁴CH₄ (Zazzeri et al. 2018) are sited. These samples showed Δ^{14} CH₄
- higher than the most recent background observations (341‰, Sparrow et al. 2018). We did not
- 112 quantify the fossil fraction for these days, but we simulated the influence of nuclear emissions

- using a regional atmospheric dispersion model coupled with ¹⁴C emission estimates from NPPs 113
- 114 (see section 2.5).

115 2.3 Quantification of fossil and biospheric CO₂

- Fossil and biospheric CO_2 are quantified using mass balances for atmospheric CO_2 116
- concentrations and Δ^{14} CO₂, following Graven et al. 2018 (Section S1). We use air samples from 117
- Mace Head, Ireland, collected by the University of Heidelberg cooperative global ¹⁴CO₂ 118
- background air network and analysed in cooperation with the Central Radiocarbon Laboratory 119
- (CRL) of the Integrated Carbon Observing System (ICOS) to define the ¹⁴CO₂ background air 120
- composition. We apply corrections for heterotrophic respiration of older carbon with higher Δ^{14} C 121
- and for NPP emissions, following Graven et al. (2018) (Section S1). Sources of NPP ¹⁴CO₂ 122
- 123 emissions include relatively strong emissions from gas-cooled nuclear reactors in the UK and the reprocessing sites at Sellafield, UK and La Hague, France (Graven and Gruber 2011), as well as
- 124 other reactor types present in the UK and Europe. We neglect biomass burning fluxes that are too 125
- small to affect our measurements (Crippa et al. 2020). Details on the quantification of NPP and 126
- heterotrophic respiration influences are given in Sections 2.4 and 2.5. Biospheric CO₂ is 127
- calculated as the difference between background CO_2 and fossil CO_2 , where background CO_2 128
- 129 concentration is specified for individual days using a model-data technique that combines
- observations at Mace Head from ICOS with NAME model simulations to identify background 130
- conditions at Mace Head, with interpolation and smoothing. 131

132 2.4 CO₂ and CH₄ simulations

- Model simulations were conducted using the UK Met Office's Numerical Atmospheric-133
- dispersion Modelling Environment (NAME v7.2; Jones et al., 2007). The NAME model 134
- produces source-receptor relationships, often referred to as "footprints", for atmospheric surface 135
- measurements i.e. the response of the observations at a measuring station to a source emission. 136
- We determined the mole fraction enhancement above background at a particular time by 137
- multiplying the footprints with CH₄ and CO₂ fluxes provided by the spatially gridded fluxes and 138
- 139 integrating over the domain. Footprints were computed for air-histories of 30 days. Footprints
- used for CH₄ simulations were time-integrated over the entire 30 days, a domain of -25° to 25° 140
- longitude and 30° to 70° latitude and resolution of $0.1^{\circ} \times 0.1^{\circ}$. These footprints, combined with 141
- EDGAR emission inventories, produced the best match between simulated CH₄ concentrations 142
- and our CH₄ observations in London (Saboya et al. 2022). Footprints used for CO₂ simulations 143
- had hourly resolution in the first 24 hours and 29-day integration thereafter, a domain of -97.9° 144
- to 39.4 ° longitude and 10.73° to 79.05° latitude, and a resolution of 0.23° x0.35° (White et al. 145 2019). Footprints can be found in section S3 of the supplementary material. 146
- 147
- 148 For CH₄ fluxes, we used monthly CH₄ fluxes from EDGARv6. We calculate fossil CH₄ (sectors:
- aviation, ship, coal, gas, oil, energy, chemical processes, fossil fuel building, fossil fuel fire) and 149
- total CH₄ enhancements separately and compute a simulated fossil fraction of CH₄ present. As 150
- with the observations, we compared between pairs of simulated CH_4 corresponding to the 151 observation pairs.
- 152
- 153
- For fossil fuel CO₂ fluxes, we used monthly fossil fuel emissions from EDGARv4.3 and resolved 154
- the monthly emissions into hourly emissions, accounting for the seasonal, weekly and daily 155
- variability in CO₂ emissions based on the UKGHG model (White et al. 2019). 156

157

- 158 For biospheric CO₂ fluxes, we used hourly mean net ecosystem exchange (NEE) fluxes from the
- 159 Solar-Induced Fluorescence for Modeling Urban biogenic Fluxes ("SMUrF") Model (Wu et al.
- 160 2021). For the heterotrophic respiration correction term, heterotrophic respiration fluxes were
- approximated from the NEE and the mean gross primary production (GPP) fluxes
- 162 ([GPP+NEE]/2) from SMUrF. Δ^{14} C of heterotrophic respiration was assumed to be 50 ± 35 ‰
- 163 (Section S1, Graven et al. 2018).
- 164

165 2.5 ¹⁴C Enhancements from NPPs

166 The ¹⁴C enhancement due to the emissions from NPPs was also simulated using the NAME

footprints. The ${}^{14}CO_2$ and ${}^{14}CH_4$ emissions were specified in two ways: 1. using emission factors based on electrical power production, and 2. with ${}^{14}C$ measurements sourced from the European

169 Commission RAdioactive Discharges Database (RADD 2020).

170

171 When using emission factors, we followed the S1 emission factor database in Zazzeri et al. 2018.

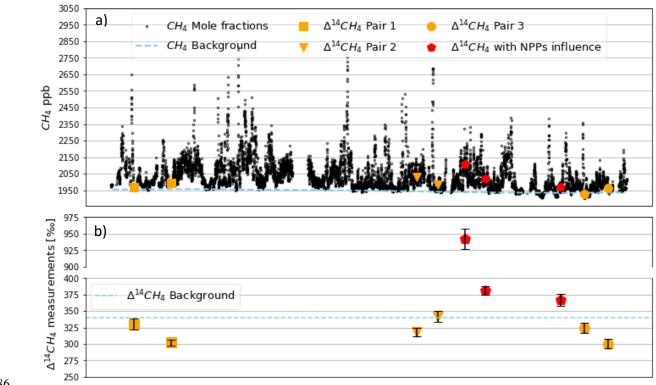
We attributed two different emission factors to PWRs, based on the reactor model: 0.407 ± 0.198

173 TBq/GWa for VVER (Russian design) and 0.193 ± 0.061 TBq/GWa for non-VVER reactors.

174 Emission factors were multiplied by 2020 energy outputs retrieved from the International Atomic

175 Energy Agency's Power Reactor Information System (IAEA PRIS 2020). Finally, the ¹⁴C

estimates were scaled down by a factor of 53 % to represent the ${}^{14}CH_4$ proportion of total ${}^{14}C$


emissions from PWRs (Kunz 1985, Zazzeri et al. 2018), and by a factor of 28% for ${}^{14}CO_2$

emissions from PWRs. We used the Graven and Gruber (2011) emission factors to estimate

- ¹⁴CO₂ from Gas-cooled reactors (GCRs), advanced Gas-cooled reactors (AGRs) in the UK and
- Boiling water reactors (BWRs) in Europe, assuming all 14 C emissions to be 14 CO₂. The 14 CO₂
- release from two reprocessing plants, one in the La Hague in France and one in Sellafield in the
- 182 UK, were retrieved from the RADD database.

Results 3 183

185

Δ^{14} CH₄ measurements and Fossil Fraction of CH₄ 184 3.1

186 187

Figure 1: a) Continuous record of 20 min averaged CH₄ mole fraction measurements (black), CH₄ 188

mole fractions of collected samples used for quantification of the fossil fraction (orange), CH₄ mole 189 fraction of samples influenced by ¹⁴CH₄ emissions from NPPs (red), CH₄ mole fraction of

190

background values measured at Mace Head (blue line) and fitted according to Manning et al. 2021. 191 b) Δ^{14} CH₄ values of collected samples using the same color coding, expected background Δ^{14} CH₄ of 192

- 340 ±4‰ (blue line), error bars in black. 193
- 194

Figure 1 shows the continuous record of CH₄ mole fractions measured at Imperial College 195

London over the study period and Δ^{14} CH₄ values of the samples collected. Sample pairs with 196

measured Δ^{14} CH₄ below the expected background level and air provenance from the north or 197

west UK were used for quantification of the CH₄ fossil fraction of the emissions (Table 1). 198

Samples with measured Δ^{14} CH₄ above the expected background level were not included. 199

202 S5).

Dates	Air Provenance	Measured ΔCH ₄ (ppb)	Simulated ΔCH ₄ (ppb)	Measured ΔΔ ¹⁴ C (‰)	Calculated ffCH ₄ (ppb)	Measured relative FF (%)	Simulated relative FF (%)
7 & 18 March	Atlantic	25 ± 3	2	28 ± 9	47 ± 18	186 ± 77	44
29 May & 4 June	North UK	47 ± 3	59	24 ± 10	32 ± 20	69 ± 43	4

Table 1: Measured FF of sample pairs collected in London in 2020. The uncertainty on the FF has 200 been calculated propagating the error on the Δ^{14} C values and mole fraction measurements (section 201

	17 & 24 July	Atlantic	36±1	1.2	24 ± 10	36 ±20	99 ± 55	11
--	--------------	----------	------	-----	-------------	--------	-------------	----

A fossil fraction (FF) of 99 % and higher was calculated from two pairs of samples collected

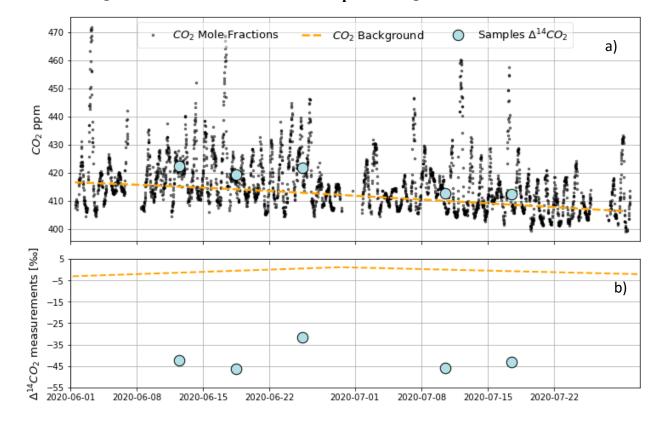
203 204

when air was coming from the Atlantic, and 69 % for one pair collected when air was coming from the north (Table 1). Here the fossil fraction is for the CH₄ added between the day with higher CH₄ and the day with lower CH₄, assuming the two days had similar background air composition (same air provenance) and a negligible NPP influence (see Table S1). Estimated background CH₄ concentrations at the Mace Head station were also comparable for each pair. The simulated FF for the CH₄ difference between the pairs of samples is smaller than the

- measured FF, meaning that the EDGAR v6 inventory coupled with the NAME model tend to underestimate fossil CH₄ emissions, similar to the result in Sabova et al. 2022 using δ^{13} CH₄ data.
- 212 The simulated CH_4 mole fraction difference for each pair is also not consistent with the
- measured one, being considerably smaller when air came from the Atlantic but slightly higher
- when air came from the north. The main source of uncertainty in the fossil fraction is the Δ^{14} CH₄
- 216 measurement uncertainty, which is in the range of 5 to 9 %.
- 217

 Δ^{14} CH₄ measurements on 12 June, 18 June and 10 July were higher than the expected

219 background level and NAME simulations indicated they were affected by nuclear power plant


emissions (Table S1). The measurement on 12 June was particularly high $(942 \pm 17 \%)$.

According to the NAME footprints, on 12 June air was coming from Germany, passing through

Belgium and then Suffolk, England, where the PWR Sizewell B is located. Sizewell B was

offline for a planned outage for a period including 12 June and high emissions are expected

during the first weeks of a temporary shut down of the reactor (Lehmuskoski et al. 2021).

225 3.2 Δ^{14} CO₂ measurements and fossil and biospheric CO₂

- Figure 2: a) Continuous record of 20 min averaged CO₂ mole fraction measurements
- (black), CO₂ mole fractions of collected samples (light blue), CO₂ mole fraction of
- background values measured at Mace Head (orange line); b) $\Delta^{14}CO_2$ values of collected
- 230 samples (light blue). Δ^{14} CO₂ of air collected at Mace Head over June and first week of July 231 in orange.
- Δ^{14} CO₂ observations in summer 2020 span a range between -46.2 and -31.5 ‰ (Figure 2), lower
- than the Mace Head data around 0 ‰, similar to reported Δ^{14} CO₂ depletions in large
- conurbations such as Los Angeles (Miller et al. 2020). The added $ffCO_2$ of samples is between
- 12 and 20 ppm, whereas the simulated added ffCO₂ is between 1 and 10 ppm (Table 3).
- 236

237 It is possible that very local emissions, such as CO₂ emissions from a gas-fired power plant

- located 200 metres east of our inlet, could interfere with our measurements. However, according
- to Sparks and Toumi (2010), the emission plume from the power station would cross our air inlet
- only for easterly winds, and with a bigger effect for moderate wind speeds (3 5 m/s). At lower
- wind speed the plume is going upwards and is not intersecting with our air inlet (see
- supplementary material for the CO₂ mole fraction record and wind data).
- 243

Table 3 includes the applied nuclear (β_{NPP}) and the heterotrophic respiration (β_{HR}) correction

terms on the final fossil CO₂ mole fraction (ffCO₂) expressed as ppm of ffCO₂. The nuclear

correction is within the uncertainty of $ffCO_2$. The highest value is on 18 June when air is coming

from northern France, where the La Hague reprocessing plant is sited, which, according to the

RADD database, releases about 80% of the total 14 C release from NPPs in Europe and the UK.

The correction for heterotrophic respiration is within 1 ppm, higher in June.

250

All samples show a negative biospheric CO_2 contribution (Cveg in Table 3), indicating that the biosphere acts as a net sink, taking up from 3-17 ppm. The simulated biospheric contribution is also negative, but there are significant differences in the magnitude of Cveg between the simulations and observations. The CO_2 uptake is stronger in June in the simulations, partly due to more influence from Europe (Figure S3), but not in the observations. In the simulations, the London urban region accounts for 15-44% of the biospheric uptake.

256 257

Table 2: Δ^{14} CO₂ measurements of samples collected in London in 2020, calculated and

simulated ffCO₂ and Cveg, and the NPP and heterotrophic correction terms (β_{NPP} and β_{HR}).

260 The uncertainties on $ffCO_2$ and Cveg have been calculated by propagating the error on the

 Δ^{14} C values and mole fraction measurements and the correction terms (Graven et al. 2018).

262

Date	CO ₂ (ppm)	Δ ¹⁴ CO ₂ (‰)	Meas ffCO ₂ (ppm)	Sim ffCO ₂ (ppm)	Meas Cveg (ppm)	Sim Cveg (ppm)	β _{NPP} (ppm)	β _{HR} (ppm)
12/06/2	422.2	-42.3	17.0	8.6	-9.8	-14.5	0.16	0.57
020	±2.2	±1.4	±1.0	8.0	± 1.0		±0.05	±0.4
18/06/2	419.4	-46.3	19.4	9.6	-14.0	-24.0	0.83	0.57
020	±2.0	±1.8	±1.1	9.0	± 1.1		±0.31	±0.4
25/06/2	421.8	-31.5	12.3	6.6	-3.3	-8.6	0.03	0.44
020	± 0.5	±2.0	±1.1	0.0	±1.2		±0.04	±0.4
10/07/2	412.7	-46.2	19.6	1.2	-16.8	-7.8	$2 \cdot 10^{-5}$	0.06

020	±0.1	±1.6	±1.0		±1.0			
17/07/2	412.2	-43.2	18.4	1.4	-14.8	-6.5	2.10 ⁻⁶	0.12
020	±0.3	±1.6	±0.9	1.4	± 1.0		5.10	0.15

263

264 4 Discussion and Conclusions

In this work we provide the first source characterisation of CH_4 and CO_2 using both $\Delta^{14}CH_4$ and $\Delta^{14}CO_2$ measurements, utilizing a new sampling system (Zazzeri et al. 2021). This study demonstrates the power of ¹⁴C observations to attribute the fossil fuel influence on both CO_2 and CH_4 , and that our atmospheric station in central London is well-suited for such measurements as long as sampling days are selected to minimize the influence of nearby nuclear reactors and the La Hague fuel reprocessing site.

271

272 The fossil fraction of added CH_4 was very high in sample pairs with air provenance from the

Atlantic or north of the UK that had no NPP influence. Simulated fossil fractions of added CH_4

between the samples in each pair were much lower, demonstrating that the EDGARv6 emissions inventory is likely to underestimate fossil CH_4 in the London region, similar to prior studies

inventory is likely to underestimate fossil CH₄ in the London region, similar to prior studies
 finding underestimated natural gas emissions in London (Saboya et al. 2022, Zazzeri et al. 2017,

finding underestimated natural gas emissions in London (Saboya et al. 2022, Zazzeri et al. 2017,
 Helfter et al. 2016). However, the uncertainty on the calculated CH₄ fossil fraction is high.

Improvements in Δ^{14} CH₄ measurements and higher CH₄ enhancements would improve the fossil

279 fraction uncertainty.

280

281 Our Δ^{14} CO₂ observations show that during summer in London the biosphere acts as a net sink of

282 CO₂ that strongly counteracts the influence from fossil fuel emissions. This highlights the 283 importance of tracer measurements such as Δ^{14} CO₂ for isolating fossil fuel CO₂ in urban areas

where urban or regional vegetation can have a significant impact on CO_2 concentrations. As

expected, the ffCO₂ concentrations we observed in London (12 to 20 ppm) are much higher than

those observed at a rural site in the UK, which were comparable to the measurement uncertainty

(~2 ppm, Wenger et al. 2019). Observations of ffCO₂ using Δ^{14} CO₂ in other large urban areas,

for example, in Los Angeles, show similar average values on the order of 10 ppm (Miller et al.

289 2020; Graven et al. 2018). The comparison of observed $ffCO_2$ and $bioCO_2$ with simulations in

London showed strong discrepancies, where a primary cause is likely to be the low resolution of

the NAME atmospheric model, but also potentially low resolution or errors in the fossil fuel and

biospheric fluxes in the EDGAR inventory and SMURF model. This study shows how

293 interpretation of in situ or satellite CO_2 measurements in urban areas requires tracer

294 measurements such as Δ^{14} CO₂ for quantifying fossil fuel and biospheric CO₂, as well as high

resolution atmospheric modelling and high resolution prior flux maps.

296 Acknowledgments

297 This project was funded by the European Research Council (ERC) under the European Union's

Horizon 2020 research and innovation programme (grant agreement 67910).

- 299 NAEI inventories were retrieved from the NAEI website: © Crown 2022 copyright Defra &
- 300 BEIS via naei.beis.gov.uk, licenced under the Open Government Licence (OGL).

301 Open Research

- 302 The data used for this study include the observations at Imperial College London, radiocarbon
- 303 measurements and simulated values using the Met Office model NAME. They are in a .csv
- format and available at the following repository:

305 <u>https://doi.org/10.5281/zenodo.7777987</u>

- 306 Data are accessible to the general public without any restrictions.
- 307 Figures were made with Matplotlib 3.6.0. (<u>https://matplotlib.org/</u>). Maps in the supplementary
- 308 material were made using Matplotlib with Cartopy (https://pypi.org/project/Cartopy/).
- 309

310 **References**

- Basu, S., Lehman, S.J., Miller, J.B., Andrews, A.E., Sweeney, C., Gurney, K.R., Xu, X.,
- 312 Southon, J. and Tans, P.P. (2020). Estimating US fossil fuel CO₂ emissions from measurements
- of ${}^{14}C$ in atmospheric CO₂. Proceedings of the National Academy of Sciences, 117(24), 13300-
- 314 **13307**.
- 315 Crippa, M., Solazzo, E., Huang, G., Guizzardi, D., Koffi, E., Muntean, M., Schieberle, C.,
- Friedrich, R. and Janssens-Maenhout, G. (2020). High resolution temporal profiles in the
- 317 Emissions Database for Global Atmospheric Research. Scientific data, 7(1), 1-17.
- Eisma, R., Vermeulen, A.T. and Van Der Borg, K. (1995). ¹⁴CH₄ emissions from nuclear power
- 319 plants in northwestern Europe. Radiocarbon, 37(2), pp.475-483.

- 320 Graven, H. D., & Gruber, N. (2011). Continental-scale enrichment of atmospheric ¹⁴CO₂ from
- 321 the nuclear power industry: potential impact on the estimation of fossil fuel-derived CO_2 .
- Atmospheric Chemistry and Physics, 11(23), 12339-12349.
- 323 Graven, H., Allison, C.E., Etheridge, D.M., Hammer, S., Keeling, R.F., Levin, I., Meijer, H.A.,
- Rubino, M., Tans, P.P., Trudinger, C.M. and Vaughn, B.H. (2017). Compiled records of carbon
- isotopes in atmospheric CO_2 for historical simulations in CMIP6. Geoscientific Model
- 326 Development, 10(12), pp.4405-4417.
- 327 Graven, H., Fischer, M.L., Lueker, T., Jeong, S., Guilderson, T.P., Keeling, R.F., Bambha, R.,
- Brophy, K., Callahan, W., Cui, X. and Frankenberg, C. (2018). Assessing fossil fuel CO₂
- 329 emissions in California using atmospheric observations and models. Environmental Research

330 Letters, 13(6), p.065007.

- 331 Graven, H., Hocking, T., & Zazzeri, G. (2019). Detection of fossil and biogenic methane at
- regional scales using atmospheric radiocarbon. Earth's future, 7(3), 283-299.
- Helfter, C., Tremper, A.H., Halios, C.H., Kotthaus, S., Bjorkegren, A., Grimmond, C.S.B.,
- Barlow, J.F. and Nemitz, E. (2016). Spatial and temporal variability of urban fluxes of methane,
 carbon monoxide and carbon dioxide above London, UK. Atmospheric Chemistry and Physics,
- 336 16(16), pp.10543-10557.
- Jones, A., Thomson, D., Hort, M., & Devenish, B. (2007). The UK Met Office's next-generation
- atmospheric dispersion model, NAME III. In Air pollution modeling and its application XVII
 (pp. 580-589). Springer, Boston, MA.
- Kunz, C. (1985). Carbon-14 discharge at three light-water reactors. Health Physics, 49(1), 25-35.
- Lassey, K. R., Lowe, D. C., & Smith, A. M. (2007). The atmospheric cycling of radiomethane
- and the" fossil fraction" of the methane source. Atmospheric Chemistry and Physics, 7(8), 21412149.
- 344 Lehmuskoski, J., Vasama, H., Hämäläinen, J., Hokkinen, J., Kärkelä, T., Heiskanen, K.,
- Reinikainen, M., Rautio, S., Hirvelä, M. and Genoud, G. (2021). On-Line Monitoring of

- 346 Radiocarbon Emissions in a Nuclear Facility with Cavity Ring-Down Spectroscopy. Analytical
- 347 Chemistry, 93(48), pp.16096-16104.
- Levin, I., Münnich, K. O., & Weiss, W. (1980). The effect of anthropogenic CO2 and 14C
- sources on the distribution of 14C in the atmosphere. Radiocarbon, 22(2), 379-391.
- 350 Levin 2011 Phil. Trans. R. Soc. A (2011) 369, 1906–1924
- 351 Manning, A.J., Redington, A.L., Say, D., O'Doherty, S., Young, D., Simmonds, P.G., Vollmer,
- M.K., Mühle, J., Arduini, J., Spain, G. and Wisher, A. (2021). Evidence of a recent decline in
- 353 UK emissions of hydrofluorocarbons determined by the InTEM inverse model and atmospheric
- measurements. Atmospheric Chemistry and Physics, 21(16), pp.12739-12755.
- Miller, J.B., Lehman, S.J., Verhulst, K.R., Miller, C.E., Duren, R.M., Yadav, V., Newman, S.
- and Sloop, C.D. (2020). Large and seasonally varying biospheric CO2 fluxes in the Los Angeles
- 357 megacity revealed by atmospheric radiocarbon. Proceedings of the National Academy of
- 358 Sciences, 117(43), 26681-26687.
- 359 Minx, J.C., Lamb, W.F., Andrew, R.M., Canadell, J.G., Crippa, M., Döbbeling, N., Forster,
- 360 P.M., Guizzardi, D., Olivier, J., Peters, G.P. and Pongratz, J. (2021). A comprehensive and
- 361 synthetic dataset for global, regional, and national greenhouse gas emissions by sector 1970–
- 362 2018 with an extension to 2019. Earth System Science Data, 13(11), 5213-5252.
- 363 Saboya, E., Zazzeri, G., Graven, H., Manning, A. J., & Englund Michel, S. (2022). Continuous
- 364 CH 4 and δ 13 CH 4 measurements in London demonstrate under-reported natural gas leakage.
- Atmospheric Chemistry and Physics, 22(5), 3595-3613.
- Saunois, M., Stavert, A.R., Poulter, B., Bousquet, P., Canadell, J.G., Jackson, R.B., Raymond,
- 367 P.A., Dlugokencky, E.J., Houweling, S., Patra, P.K. and Ciais, P. (2020). The global methane
- 368 budget 2000–2017. Earth system science data, 12(3), pp.1561-1623.
- 369 Sparks, N. and Toumi, R. (2010). Remote sampling of a CO₂ point source in an urban setting.
- 370 Atmospheric Environment, 44(39), pp.5287-5294.

- 371 Sparrow, K.J., Kessler, J.D., Southon, J.R., Garcia-Tigreros, F., Schreiner, K.M., Ruppel, C.D.,
- 372 Miller, J.B., Lehman, S.J. and Xu, X. (2018). Limited contribution of ancient methane to surface
- 373 waters of the US Beaufort Sea shelf. Science advances, 4(1), p.eaao4842.
- Stuiver, M., & Polach, H. A. (1977). Discussion reporting of 14C data. Radiocarbon, 19(3), 355363.
- Wenger, A., Pugsley, K., O'Doherty, S., Rigby, M., Manning, A. J., Lunt, M. F., & White, E. D.
- 377 (2019). Atmospheric radiocarbon measurements to quantify CO₂ emissions in the UK from 2014
- to 2015. Atmospheric Chemistry and Physics, 19(22), 14057-14070.
- 379 White, E.D., Rigby, M., Lunt, M.F., Smallman, T.L., Comyn-Platt, E., Manning, A.J., Ganesan,
- A.L., O'Doherty, S., Stavert, A.R., Stanley, K. and Williams, M., (2019). Quantifying the UK's
- 381 carbon dioxide flux: an atmospheric inverse modelling approach using a regional measurement
- network. Atmospheric Chemistry and Physics, 19(7), pp.4345-4365.
- World Bank (2022), "Urban development", available at: www.worldbank.org/en/topic/
 urbandevelopment/overview (accessed 02 March 2023).
- Wu, D., Lin, J. C., Oda, T., & Kort, E. A. (2020). Space-based quantification of per capita CO₂
 emissions from cities. Environmental Research Letters, 15(3), 035004.
- 387 Wu, D., Lin, J. C., Duarte, H. F., Yadav, V., Parazoo, N. C., Oda, T., & Kort, E. A. (2021). A
- 388 model for urban biogenic CO₂ fluxes: Solar-Induced Fluorescence for Modeling Urban biogenic
- ³⁸⁹ Fluxes (SMUrF v1). Geoscientific Model Development, 14(6), 3633-3661.
- Xu, X., Trumbore, S. E., Zheng, S., Southon, J. R., McDuffee, K. E., Luttgen, M., & Liu, J. C.
- 391 (2007). Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets:
- 392 reducing background and attaining high precision. Nuclear Instruments and Methods in Physics
- Research Section B: Beam Interactions with Materials and Atoms, 259(1), 320-329.
- Zazzeri, G., Lowry, D., Fisher, R. E., France, J. L., Lanoisellé, M., Grimmond, C. S. B., &
- Nisbet, E. G. (2017). Evaluating methane inventories by isotopic analysis in the London region.
- 396 Scientific reports, 7(1), 1-13.

- 397 Zazzeri, G., Yeomans, E. A., & Graven, H. D. (2018). Global and regional emissions of
- radiocarbon from nuclear power plants from 1972 to 2016. Radiocarbon, 60(4), 1067-1081.
- 399 Zazzeri, G., Xu, X., & Graven, H. (2021). Efficient Sampling of Atmospheric Methane for
- 400 Radiocarbon Analysis and Quantification of Fossil Methane. Environmental Science &
- 401 Technology, 55(13), 8535-8541.

402