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Abstract

Earth System Models (ESMs) project that the terrestrial carbon sink will continue to grow as atmospheric CO$ 2$ increases, but

this projection is uncertain due to biases in the simulated climate and how ESMs represent ecosystem processes. In particular,

the strength of the CO$ 2$ fertilization effect, which is modulated by nutrient cycles, varies substantially across models. This

study evaluates land carbon balance uncertainties for the Canadian Earth System Model (CanESM) by conducting simulations

where the latest version of CanESM’s land surface component is driven offline with raw and bias-adjusted CanESM5 climate

forcing data. To quantify the impact of nutrient limitation, we complete simulations where the nitrogen cycle is enabled or

disabled. Results show that bias adjustment improves model performance across most ecosystem variables, primarily due to

reduced biases in precipitation. Turning the nitrogen cycle on increases the global land carbon sink during the historical period

(1995-2014) due to enhanced nitrogen deposition, placing it within the Global Carbon Budget uncertainty range. During the

future period (2080-2099), the simulated land carbon sink increases in response to bias adjustment and decreases in response

to the dynamic carbon-nitrogen interaction, leading to a net decrease when both factors are acting together. The dominating

impact of the nitrogen cycle demonstrates the importance of representing nutrient limitation in ESMs. Such efforts may produce

more robust carbon balance projections in support of global climate change mitigation policies such as the 2015 Paris Agreement.
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Key Points:9

• Bias adjustment improves model performance across most ecosystem variables pri-10

marily due to reduced biases in precipitation.11

• The inclusion of the N cycle increases the C sink during the historical period, plac-12

ing it within the observed uncertainty range.13

• The future C sink increases with bias adjustment and decreases with the N cy-14

cle, resulting in a net decrease when both factors are at play.15
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Abstract16

Earth System Models (ESMs) project that the terrestrial carbon sink will continue to17

grow as atmospheric CO2 increases, but this projection is uncertain due to biases in the18

simulated climate and how ESMs represent ecosystem processes. In particular, the strength19

of the CO2 fertilization effect, which is modulated by nutrient cycles, varies substantially20

across models. This study evaluates land carbon balance uncertainties for the Canadian21

Earth System Model (CanESM) by conducting simulations where the latest version of22

CanESM’s land surface component is driven offline with raw and bias-adjusted CanESM523

climate forcing data. To quantify the impact of nutrient limitation, we complete simu-24

lations where the nitrogen cycle is enabled or disabled. Results show that bias adjust-25

ment improves model performance across most ecosystem variables, primarily due to re-26

duced biases in precipitation. Turning the nitrogen cycle on increases the global land car-27

bon sink during the historical period (1995-2014) due to enhanced nitrogen deposition,28

placing it within the Global Carbon Budget uncertainty range. During the future pe-29

riod (2080-2099), the simulated land carbon sink increases in response to bias adjust-30

ment and decreases in response to the dynamic carbon-nitrogen interaction, leading to31

a net decrease when both factors are acting together. The dominating impact of the ni-32

trogen cycle demonstrates the importance of representing nutrient limitation in ESMs.33

Such efforts may produce more robust carbon balance projections in support of global34

climate change mitigation policies such as the 2015 Paris Agreement.35

Plain Language Summary36

The implementation of global climate change policies relies on our ability to pre-37

dict how the global carbon cycle will evolve in the future. Climate models project that38

the biosphere will continue to absorb more CO2 than it emits, keeping atmospheric CO239

levels lower than they would be otherwise. However, the strength of this net CO2 up-40

take varies considerably among models. This is because of differences in the simulated41

climate as well as the use of different methods for simulating plant growth. This study42

evaluates the importance of both factors by running one model with different climate43

data sets and model configurations. Our results show that the future net CO2 uptake44

by plants increases when removing biases in climatic conditions and decreases when ac-45

counting for the impact of soil nutrients on plant growth, leading to a net decrease when46

both factors are acting together. The dominating impact of the nutrients demonstrates47

the importance of representing nutrient limitation in climate models. Such efforts may48

produce more robust carbon balance projections in support of global climate change mit-49

igation policies such as the 2015 Paris Agreement.50

1 Introduction51

The 2015 Paris Agreement is a legally binding international treaty designed to limit52

global warming to well below 2◦C, preferably to 1.5◦C, compared to pre-industrial lev-53

els (UNFCCC, 2015). To reach this goal, global net anthropogenic carbon dioxide (CO2)54

emissions must decline by about 45% from 2010 levels by 2030, reaching net-zero around55

2050 (Rogelj et al., 2018). Such mitigation measures are based on our understanding of56

how the terrestrial carbon cycle responds to anthropogenic CO2 emissions and associ-57

ated changes in climate.58

The terrestrial biosphere currently absorbs about one-third of total anthropogenic59

CO2 emission (Friedlingstein et al., 2022). Earth System Models (ESMs) that partic-60

ipate in the Coupled Model Intercomparison Project Phase 6 (CMIP6) project that the61

terrestrial carbon sink continues to increase in the future, but that the fraction of an-62

thropogenic CO2 emissions absorbed by the terrestrial biosphere declines as emissions63

continue to grow (Canadell et al., 2021). Such carbon cycle projections, however, have64

very large uncertainties, ranging from about 2 to 7 PgC per year for the projected land65
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sink towards the end of the 21st century under the Shared Socioeconomic Pathway SSP5-66

8.5.67

The large inter-model spread may be due to a variety of reasons, including vari-68

ations among ESMs in their representations of key processes. For instance, out of the69

eleven ESMs assessed in Canadell et al. (2021), only six include an interactive terrestrial70

nitrogen cycle, five account for forest fires, three allow for competition among Plant Func-71

tional Types (PFTs), and only two represent carbon dynamics in permafrost. Accord-72

ing to Arora et al. (2020), CMIP6 ESMs that take into account dynamic terrestrial carbon-73

nitrogen interaction take up less carbon than those without a terrestrial nitrogen cycle74

representation in response to future increases in atmospheric [CO2]. The same study found75

that the variability in feedback parameters, which represent the interactions between cli-76

mate and the carbon cycle, is less in ESMs that include the terrestrial nitrogen cycle.77

This finding suggests that the inter-model spread of carbon balance projections could78

decrease if all ESMs would account for the limiting impacts of nutrients on plant growth.79

Another source of uncertainty is the sensitivity of carbon cycle projections to bi-80

ases in the meteorological forcing. Model performance has generally improved from CMIP581

to CMIP6 (Eyring et al., 2021) in reproducing observed climatic variables. While the82

multi-model mean captures most aspects of the observed climate change well, biases can83

be substantial for individual models. For instance, biases in the annual mean surface tem-84

perature of individual CMIP6 models range between -7.5◦C (e.g. FGOALS-g3 in north-85

ern Eurasia) and +7.5◦C (e.g. MIROC6 in eastern Siberia) (Fan et al., 2020). Similarly,86

while the CMIP6 multi-model mean captures the observed global mean surface temper-87

ature trend well, trends from individual models can deviate substantially from observa-88

tions. In the case of the Canadian Earth System Model version 5 (CanESM5), warm-89

ing trends computed from 1981 to 2014 are about twice the observed rate over this pe-90

riod, possibly due to its larger-than-observed climate sensitivity (Swart et al., 2019).91

One approach for assessing the impact of biases in climate forcing on future pro-92

jections is to adjust the model data for biases present in the historical period, under the93

assumption that these biases are stationary between the historical and future periods.94

To test this stationarity assumption, Krinner et al. (2020) bias-adjusted a climate model95

for the historical and future period using data from another climate model rather than96

observations as a reference. The authors then compared the differences between the bias-97

adjusted data and the reference climate model data for the historical and future peri-98

ods and concluded that biases are indeed stationary. This suggests that bias-adjusting99

the future climate model projections on the basis of historical biases is a valid approach.100

To evaluate the impact of climate forcing biases on terrestrial carbon cycle projec-101

tions, Ahlström et al. (2017) forced a terrestrial ecosystem model (LPJ-GUESS) with102

raw and bias-adjusted temperature, precipitation, and incoming shortwave radiation data103

provided by 15 models that form part of CMIP Phase 5 (CMIP5). Their study shows104

that bias adjustment reduces the ensemble’s spread of ecosystem carbon during the 1850-105

2100 period to about 20% of the ensemble’s original range. The projected ecosystem car-106

bon change from the 1996-2005 period to the 2091-2100 period was also affected by bias107

adjustment, reducing the ensemble’s original range of carbon uptake to about 60% of the108

ensemble’s original range. Note that the change in ecosystem carbon corresponds to net109

biome productivity (NBP), where positive values represent a carbon sink while negative110

values represent a carbon source. The authors conclude that climate biases play a ma-111

jor role in CMIP5 terrestrial carbon cycle simulations, with a larger impact on the car-112

bon pool sizes than on their changes in time.113

Padrón et al. (2022) on the other hand, show that the primary factors contribut-114

ing to projected NBP uncertainty of CMIP6 ESMs are the response of the land carbon115

cycle to temperature and soil moisture variability, followed by the sensitivity of NBP to116

atmospheric carbon dioxide concentration ([CO2], hereafter). Using multiple linear re-117
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gression and a resampling technique, the authors show that the influence of average cli-118

mate conditions is considerably less compared to the factors listed above, indicating that119

biases in climate models may have only a moderate impact on uncertainties in land car-120

bon balance projections.121

The relation between biases in the climate forcing, nutrient cycles, and land car-122

bon balance projections can be thought of as follows. Carbon cycle simulations conducted123

online with ESMs or offline with land models are based on a spinup followed by a tran-124

sient run. During the spinup, a land surface model is forced with meteorological data125

that mimic pre-industrial conditions. All other forcing data, such as [CO2] or nitrogen126

deposition, are set to constant values representative of pre-industrial times. The model127

is run until all carbon fluxes are in equilibrium with the environment, implying that NBP128

is close to zero. The spinup is followed by a transient run where all forcings evolve in time.129

The trends of the forcings then push the model into a non-equilibrium state, such that130

NBP starts to differ from zero, where positive values represent a carbon sink and neg-131

ative values a carbon source.132

From this perspective, biases in the mean climate state are irrelevant, since NBP133

is driven by the trends in climate forcing. However, biases in the mean climate state may134

affect NBP nevertheless, because of the non-linear relationship between carbon fluxes135

and a given forcing. For instance, net primary productivity (NPP) increases with increas-136

ing temperature until it reaches a temperature optimum, after which NPP declines (Fig-137

ure 1a). The model’s sensitivity to a trend of a given forcing, therefore, depends on the138

mean climate state. Furthermore, the relation between NPP and temperature changes139

if dynamic carbon-nitrogen coupling is enabled, implying that the impact of biases in140

the mean state depends on whether the nitrogen cycle is turned on or off (Figure 1b).141

Finally, the impact of the nitrogen cycle may also vary depending on the exact choice142

of parameter values.143

The extent to which NBP projections are affected by climate model biases versus144

nutrient limitation remains unclear and may vary considerably among models. The goal145

of our paper is to evaluate the impact of both drivers using the Canadian Earth System146

Model (CanESM) as a case study. To achieve this we conduct simulations where the lat-147

est version of the CanESM land surface component is run offline with quasi-observed data,148

raw CanESM5 climate data, and bias-adjusted CanESM5 data. Contrary to the study149

by Ahlström et al. (2017) we adopted a more consistent experimental design where of-150

fline and online runs are based on the same land surface model, with the restriction that151

the offline model version is more advanced to allow for dynamic carbon-nitrogen inter-152

action. Furthermore, we conducted a wide range of control experiments (26 in total) that153

allow us to explore our results in greater depth. Our main research questions are:154

• How do bias adjustment and the nitrogen cycle affect model performance across155

ecosystem variables, and which meteorological forcing variables deteriorate model156

performance most?157

• What are the relative impacts of bias adjustment and the nitrogen cycle for land158

carbon balance projections?159

• How sensitive are our results to different nitrogen cycle parameter values?160

The answers to these questions provide insights that contribute to preparation of161

the land component of CanESM for the upcoming CMIP Phase 7 and support our ef-162

forts to minimize uncertainties in carbon cycle projections. In the following, the Meth-163

ods section describes the forcing data sets, experimental protocol, the CanESM land sur-164

face component employed here, and the statistical framework used for quantifying model165

performance. The results section documents how bias adjustment, nitrogen cycle, and166

both factors combined affect model performance and carbon cycle projections. The dis-167
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cussion section elaborates on the main findings with a particular focus on the potential168

impacts of future model development on carbon cycle projections.169

2 Methods170

2.1 Meteorological forcing data sets171

The present study is based on a range of simulations where the latest version of172

the CanESM land surface component is forced offline with four different meteorological173

data sets. The first two meteorological data sets present quasi-observed values, which174

are (i) the blended Climate Research Unit - Japanese 55-year Reanalysis version 2.0 prod-175

uct (CRUJRAv2; 1901-2014; Harris et al. (2014); Kobayashi et al. (2015)) and (ii) the176

Global Soil Wetness Project Phase 3 (GSWP3) - WFDE5 over land merged with ERA5177

over the ocean (W5E5) (GSWP3-W5E5; 1901-2014; Cucchi et al. (2020)). The third data178

set presents meteorological forcing generated by CanESM5 (Swart et al., 2019), and the179

fourth data set is the bias-adjusted version of the CanESM5 meteorological forcing pro-180

vided by phase 3b of the Inter-Sectoral Impact Model Intercomparison Project, referred181

to as ISIMIP3b, hereafter (Lange, 2019).182

The bias adjustment is based on a parametric quantile mapping method that has183

been designed to robustly adjust biases in all percentiles of a distribution and to preserve184

trends in these percentiles (Lange, 2019). The corresponding bias adjustment target is185

the quasi-observed GSWP3-W5E5 dataset mentioned previously. Therefore, CRUJRAv2186

serves as our primary source of reference as it is independent of the bias-adjusted CanESM5187

data. Additional analysis with a GSWP3-W5E5-driven simulation enables us to eval-188

uate whether differences between model output and observation-based reference data,189

such as remotely sensed gross primary productivity, are due to shortcomings in the bias190

adjustment technique or due to observational uncertainties. All meteorological forcings191

are disaggregated from 6-hourly to half-hourly time steps, following the methodology ex-192

plained in Melton and Arora (2016). The bias-adjusted CanESM5 data are spatially in-193

terpolated to the same horizontal resolution as the parent CanESM5 data (T63; 128×194

64; 2.81◦).195

2.2 Experimental Protocol196

All simulations consist of a pre-industrial spinup period followed by a transient sim-197

ulation. CLASSIC is spun up until the terrestrial carbon cycle is in equilibrium with all198

forcing data including a prescribed [CO2]. This requires that all time-varying input vari-199

ables other than the meteorological forcing are kept constant, which includes [CO2], land200

cover, population density, lightning, and nitrogen deposition and fertilization, if appli-201

cable. The constant value corresponds to the value for the first year of the transient run.202

The duration of the spinup is 500 years when the nitrogen cycle is turned off and 2300203

years when the nitrogen cycle is turned on (Table 1). Once model pools are in equilib-204

rium, the model enters the transient run where [CO2], land cover, population density,205

nitrogen deposition and nitrogen fertilization (if applicable) vary in time. Since light-206

ning data are not available before 1990s, climatological monthly lightning (used in the207

fire module) is used for all years. The starting year of the transient run varies among208

simulations, with 1901 for CRUJRAv2 and GSWP3-W5E5, and 1850 for CanESM5 and209

ISIMIP3b. Historical simulations end in 2014, while the Shared Socioeconomic Pathway210

SSP5-8.5 projections span the period from 2015 to 2099 (Table 1).211

We conducted a total of 26 simulations for evaluating the impact of climate forc-212

ing biases and the nitrogen cycle on carbon cycle dynamics (Table 2). Each simulation213

has been spun up until carbon fluxes reached equilibrium with their environment (Ta-214

ble 1). For the first four simulations listed in Table 2, we force CLASSIC with CRUJRAv2,215

GSWP3-W5E5, CanESM5, and bias-adjusted CanESM5, here referred to as ISIMIP3b,216
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meteorological data. These simulations were completed for the historical period with the217

nitrogen cycle turned off. To identify what variables in CanESM5 deteriorate model per-218

formance most we ran seven additional experiments where we replaced one meteorolog-219

ical variable at a time from CanESM5 with the corresponding data from CRUJRAv2.220

For instance, the simulation CanESM5-CRUJRAv2.TAS-hist is based on CanESM5 forc-221

ing, except for near-surface air temperature, which has been replaced with values from222

CRUJRAv2. The next two simulations listed in Table 2 (CanESM5-SSP5-8.5 and CanESM5-223

ISIMIP3b-SSP5-8.5) show how bias adjustment affects future projections of carbon dy-224

namics for the period 2015-2099 when the nitrogen cycle is turned off. The following four225

simulations listed in Table 2 assess the sensitivity of carbon dynamics to dynamic nitro-226

gen coupling using the default nitrogen cycle parameter values. The next set of four sim-227

ulations are identical to the previous simulations, except that they are based on a dif-228

ferent set of nitrogen cycle parameter values (see section 2.4 for details). The last three229

simulations are used to compare the impact of increasing [CO2] versus changes in cli-230

mate on carbon dynamics under current and future climate conditions.231

2.3 Reference Data232

We evaluate model performance for 16 ecosystem variables using 33 globally grid-233

ded observation-based reference data sets (Table 3). The respective variables are net sur-234

face radiation (RNS), net shortwave (SW) radiation (RSS), net longwave (LW) radia-235

tion (RLS), surface albedo (ALBS), leaf area index (LAI), gross primary productivity236

(GPP), net biome productivity (NBP), emissions from fires (FIRE), fractional area burnt237

(BURNT), above-ground biomass (AGB), soil organic carbon (CSOIL), latent heat flux238

(HFLS), sensible heat flux (HFSS), soil heat flux (HFG), soil moisture (MRSLL), and239

snow water equivalent (SNW). NBP is defined as GPP minus RECO minus fluxes as-240

sociated with disturbances such as wildfires and land use change. Another variable dis-241

cussed in the results section is net ecosystem productivity (NEP), which is defined as242

GPP minus RECO. Details on each data set are provided by Seiler et al. (2021) and Seiler243

et al. (2022).244

2.4 Canadian Land Surface Scheme Including Biogeochemical Cycles245

(CLASSIC)246

The simulations presented here are conducted with the Canadian Land Surface Scheme247

Including Biogeochemical Cycles (CLASSIC) (Melton et al., 2020). CLASSIC, formally248

known as CLASS-CTEM, forms the land surface component of the Canadian Earth Sys-249

tem Model (CanESM) (Swart et al., 2019). The model configuration used here consid-250

ers five carbon pools (leaves, stem, roots, litter, and soil) and nine Plant Functional Types251

(PFTs) (needleleaf evergreen, needleleaf deciduous, broadleaf evergreen, broadleaf cold252

deciduous, broadleaf drought/dry deciduous, C3 Grass, C4 Grass, C3 Crop, and C4 Crop).253

Model inputs that vary in time include seven meteorological variables (downwelling SW254

radiation, downwelling LW radiation, surface precipitation rate, surface air pressure, spe-255

cific humidity, air temperature, and wind speed), [CO2], land cover, and population den-256

sity. Another input variable is lightning density, which is based on climatological monthly257

values. The main processes simulated by the biogeochemical component of CLASSIC in-258

clude photosynthesis, canopy conductance, tissue turnover, allocation of carbon, and phe-259

nology (Arora & Boer, 2005b), dynamic root distribution (Arora & Boer, 2003), main-260

tenance, growth and heterotrophic respiration (Melton et al., 2015), wildfires (Arora &261

Boer, 2005a; Arora & Melton, 2018), land use change (Arora & Boer, 2010), and nitro-262

gen cycle (Asaadi & Arora, 2021; Kou-Giesbrecht & Arora, 2022b). The land carbon bal-263

ance depends on how carbon fluxes respond to changes in environmental conditions and264

land use change. Of particular importance is how GPP and respiration respond to changes265

in temperature, precipitation, and [CO2]. Those dependencies are summarized next, with266

more details provided in the Supplementary Information (Text S1-6 and Figure S1).267
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The representation of photosynthesis is based on the parameterization by Farquhar268

et al. (1980) and Collatz et al. (1991, 1992). The Farquhar photosynthesis scheme es-269

timates the gross leaf photosynthesis rate, Go (mol CO2 m−2 s−1) as the minimum of270

three photosynthetic states: (1) the Rubisco-limited state (Jc), (2) the Ribulose 1,5-bisphosphate271

(RuBP)-limited state (Je), and (3) the triose-phosphate utilization (TPU)-limited state272

(Js). These photosynthetic states depend on four parameters that vary with tempera-273

ture, namely the Michaelis-Menten constants for (i) CO2 (Kc) and (ii) O2 (Ko), (iii) the274

selectivity of Rubisco for CO2 over O2 (σ), and (iv) the maximum carboxylation rate275

(Vm). The temperature dependence of those four parameters is expressed through four276

different standard Q10 functions (Figure S1). Finally, Je and Jc also depend on the par-277

tial pressure of CO2 in the leaf interior, which is affected by [CO2].278

In CLASSIC, autotrophic respiration (Ra; mol CO2 m−2 s−1) equals the sum of279

maintenance respiration (Rm) and growth respiration (Rg). The maintenance respira-280

tion of a plant is the sum of the maintenance respiration for leaves, stems, and roots. Main-281

tenance respiration varies with temperature following a Q10 function. For stems and roots,282

maintenance respiration also depends on PFT-specific base respiration rates. Growth res-283

piration is modelled as a fraction of net primary productivity. Heterotrophic respiration284

(Rh; mol CO2 m−2 s−1) equals the sum of respiration from litter and soil organic car-285

bon. Heterotrophic respiration rates depend on the size of their respective carbon pools,286

the availability of moisture, and temperature.287

If the nitrogen cycle is turned off, Vm is computed from a PFT-specific carboxy-288

lation rate (Vmax) and is adjusted for temperature and soil moisture (Figure 1c). If the289

nitrogen cycle is turned on, Vmax is expressed as a function of leaf nitrogen content (NL)290

(Figure 1d). We used two different sets of nitrogen cycle parameter values that differ with291

respect to the parameter values describing (i) the relationship between Vmax and leaf ni-292

trogen content (Γ1), (ii) the dimensionless mineral nitrogen distribution coefficient used293

for calculating passive root uptake (β), and (iii) the efficiency of fine roots to take up294

nitrogen (ε) (Table S1). The default Γ1 values were updated based on data provided by295

Kattge et al. (2009). The default β value was decreased while the default ε was increased296

to ensure that nitrogen uptake is dominated by active rather than passive uptake (Hopmans297

& Bristow, 2002). Using two different sets of parameter values allowed us to evaluate which298

of the two sets performs better when compared to observations and how sensitive car-299

bon balance projections are to different nitrogen cycle parameter values. The relation300

between NPP, temperature, [CO2], and leaf nitrogen content are illustrated in Figure 1.301

2.5 Automated Model Benchmarking R package302

The Automated Model Benchmarking R package developed by Seiler et al. (2022)303

quantifies model performance using a skill score system that is based on the International304

Land Model Benchmarking (ILAMB) framework (Collier et al., 2018). The method em-305

ploys five scores that assess the model’s annual mean bias (Sbias), monthly centralized306

root-mean-square-error (Srmse), the timing of the seasonal peak (Sphase), inter-annual307

variability (Siav), and spatial distribution (Sdist). The exact definition of each skill score308

is provided in the Supplementary Information. The main steps for computing a score usu-309

ally include (i) computing a dimensionless statistical metric, (ii) scaling this metric onto310

a unit interval, and (iii) computing a spatial mean. All scores are dimensionless and range311

from zero to one, where increasing values imply better performance. These properties312

allow us to average skill scores across different statistical metrics in order to obtain an313

overall score for each variable (Soverall).314
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3 Results315

3.1 Model performance316

This section evaluates how model performance is affected by climate model biases,317

bias adjustment, and the nitrogen cycle by comparing AMBER scores among historical318

simulations. Comparing the raw CanESM5 forcing data (CanESM5-hist) and the bias-319

adjusted CanESM5 forcing data (CanESM5-ISIMIP3b-hist) against quasi-observed val-320

ues from CRUJRAv2 shows that bias adjustment substantially improves scores across321

all seven meteorological forcing variables as well as all five statistical metrics (Figure 2).322

The largest improvements are generally found for the bias score and centralized root-323

mean-square error score. Bias adjustment substantially reduces the major temperature324

and precipitation biases, including a dry and warm bias in the Amazon basin, a wet bias325

in equatorial Africa, a warm bias in Eastern Siberia, and a cold bias in the Tibetan Plateau326

(Figure 3 a-b and e-f). Bias adjusting the meteorological forcing data translates into bet-327

ter model performance, as explained next.328

For the vast majority of ecosystem variables, model performance is considerably329

worse when forcing CLASSIC with raw CanESM5 rather than quasi-observed values from330

either CRUJRAv2 or GSWP3-W5E5 (Figure 4). The only exceptions are net SW radi-331

ation, net LW radiation, and the resulting net surface radiation. Control experiments332

show that the poor model performance is mainly due to biases in precipitation (CanESM5.CRUJRAv2.PRE.hist333

vs. CanESM5.hist). Bias adjustment substantially improves model scores across almost334

all ecosystem variables (CanESM5-ISIMIP3b-hist vs.CanESM5-hist). Despite the widespread335

improvement, bias adjustment has no statistically significant impact on the model’s abil-336

ity to reproduce NBP. The reason for this is that NBP is affected not just by the aver-337

age climate conditions but also by the trends in the climate forcing, in particular tem-338

perature trends, which remain unaffected by the bias adjustment technique.339

Turning the nitrogen cycle on generally causes a statistically significant (5%-level)340

reduction of model performance, including the model’s ability to reproduce NBP. This341

applies to simulations driven with CRUJRAv2, raw CanESM5 data, and bias-adjusted342

CanESM5 data. However, in the CanESM5-driven runs (raw and bias-adjusted), the ni-343

trogen cycle causes global total NBP to be larger and thereby more consistent with es-344

timates provided by the 2022 Global Carbon Budget (1.4 ± 0.9 PgC yr−1 during the 2000s;345

Friedlingstein et al. (2022)) (Figure 5). Updating the nitrogen parameter values (Ncy-346

cleV2) generally improves scores compared to simulations that are based on the default347

values, in particular for soil organic carbon (Figure 4). The model’s ability to reproduce348

wildfires (i.e. fractional area burnt and emissions from fires), on the other hand, wors-349

ens in response to the updated nitrogen parameter values. Again, this pattern applies350

to simulations driven by CRUJRAv2, raw CanESM5, and bias-adjusted CanESM5 data351

alike.352

3.2 Land carbon balance353

3.2.1 Without nitrogen cycle354

This section explores the sensitivity of the land carbon balance to climate model355

biases and bias adjustment under historical and future climate conditions. The annual356

mean values reported here are computed for the last 20 years of a given simulation (1995-357

2014 for the historical simulation and 2080-2099 for the SSP5-8.5 scenario), while trends358

are computed for the last 50 years of a given simulation (1965-2014 for historical and 2050-359

2099 for SSP5-8.5). The trend is determined through linear regression and is based on360

a longer time period to reduce the impact of inter-annual variability.361

Forcing CLASSIC with CRUJRAv2 and transient [CO2] leads to an annual mean362

carbon sink of 1.74 PgC yr−1 during the 1995-2014 period (Figure 6; CRUJRAv2). This363
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result is comparable to estimates provided by the 2022 Global Carbon Budget (1.4 ±364

0.9 PgC yr−1 during the 2000s; Friedlingstein et al. (2022)). The carbon sink is driven365

by a positive GPP trend of 0.27 PgC yr−2 during the 1965-2014 period, which exceeds366

the positive trends in autotrophic and heterotrophic respiration during the same period367

(0.10 and 0.14 PgC yr−2, respectively; Figure 6; CRUJRAv2). Trends in emissions from368

fires are negative, mainly due to an increase in population density and crop area over369

the historical period (Arora & Melton, 2018). Trends related to land use change emis-370

sions during the 1965-2014 period are an order of magnitude smaller compared to trends371

in net ecosystem productivity (NEP). Assessing the trends of the carbon pools shows372

that the vegetation acts as a carbon sink (1.03 PgC yr−1), while the soil acts as a weak373

carbon source (-0.08 PgC yr−1). The corresponding vegetation and soil organic carbon374

pools are 520 and 1130 PgC, respectively, which is within the uncertainty range of observation-375

based reference data (Seiler et al., 2022). As a comparison, the 2022 Global Carbon Bud-376

get reports a vegetation pool of 450 PgC and a soil organic carbon pool of 1700 PgC soil377

(Friedlingstein et al., 2022).378

To assess whether the sink in the CRUJRAv2 simulation is driven by trends in [CO2]379

or climate we conduct a counter-factual control experiment where [CO2] is kept constant380

at the year 1700 concentrations (276.59 ppmv). Results show that while GPP, autotrophic381

respiration, and heterotrophic respiration all benefit from climate trends, the increase382

in GPP is weaker compared to the increase in ecosystem respiration, causing NEP to de-383

cline. As a result, NBP is negative (-0.94 PgC yr−1; Figure 6; CRUJRAv2-CO2fixed)384

and vegetation and soil both act as a carbon source (-0.22 and -0.71 PgC yr−1 for veg-385

etation and soil pool, respectively). The vegetation and soil organic carbon pool are there-386

fore smaller compared to the CRUJRAv2 simulation (411 and 1050 PgC for vegetation387

and soil, respectively). Further analysis shows that the boreal zone is the only region that388

acts as a carbon sink when [CO2] is kept constant at its pre-industrial level (not shown).389

The following sections describe how [CO2], bias adjustment, and the nitrogen cycle af-390

fect NBP for simulations that are driven with CanESM5 data. The impacts are sum-391

marized in Figure 5 with more detail provided in Figure 6.392

Forcing CLASSIC with CanESM5-hist data causes the land carbon balance to be393

almost carbon-neutral during the 1995-2014 period (NBP = -0.15 PgC yr−1; Figure 5394

and 6; CanESM5-hist). The reason for the almost carbon-neutral balance is that the CanESM5-395

hist simulation shows a much less pronounced increase in GPP compared to the CRU-396

JRAv2 simulation. Consequently, the NEP values for the CanESM5-hist simulation are397

lower than those for the CRUJRAv2 simulations (3.69 and 4.76 PgC yr−1, respectively;398

Figure 6). Trends in carbon pools are positive for vegetation and negative for soil, al-399

most balancing each other (0.51 and -0.49 PgC yr−1, respectively; Figure 6). The result-400

ing carbon stocks of the vegetation and soil pools are considerably lower than the ones401

in the CRUJRAv2 simulation (360 and 968 PgC for vegetation and soil in CanESM5-402

hist, respectively). The almost carbon-neutral balance is driven by an underestimation403

of NBP in the boreal and temperate regions of Eurasia when compared to the simula-404

tion driven by CRUJRAv2 meteorological data (Figure 7g, h). A counter-factual con-405

trol experiment where [CO2] is kept constant at its pre-industrial level (276.59 ppmv)406

confirms that climate trends produced by CanESM5 have a negative impact on the land407

carbon balance (NBP = -2.02 PgC yr−1) because the positive trend in heterotrophic res-408

piration exceeds the positive trend in GPP (Figure 5 and 6; CanESM5-CO2fixed-hist and409

Figure).410

To identify what variables cause the almost carbon-neutral balance in the CanESM5-411

hist simulation we conducted seven experiments where we replaced each of the seven CanESM5412

meteorological forcing variables with data from CRUJRAv2 one at a time. Results show413

that the weak carbon source in the CanESM5-hist simulation was primarily driven by414

trends in temperature, followed by incoming LW radiation and precipitation (Table S2).415

Replacing CanESM5 with CRUJRAv2 near-surface temperature leads to a weak carbon416

–9–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

sink of 0.55 PgC yr−1 (Figure 6; CanESM5-CRUJRAv2.TAS-hist). The large impact of417

temperature is likely due to the larger-than-observed warming trend during the histor-418

ical period produced by CanESM5 (Swart et al., 2019).419

Forcing CLASSIC with CanESM5-SSP5-8.5 leads to a carbon sink of 2.69 PgC yr−1
420

by the end of this century (Figure 5 and 6). This sink is driven by a strong increase in421

GPP that exceeds the increase in respiration. The vegetation carbon pool responds with422

a strong positive trend (2.88 PgC yr−1), while the soil organic carbon pool exhibits a423

weak positive trend (0.01 PgC yr−1). The sink is mainly located in the boreal regions424

of North America and Eurasia, as well as the Eurasia temperature zone (Figure 7 a, g425

and h). A control experiment where [CO2] is kept at a constant level corresponding to426

the year 2014 (397.2 ppmv) yields a large carbon source by the end of this century, con-427

firming that the sink in CanESM5-SSP5-8.5 is driven by trends in [CO2] rather than cli-428

mate (-4.79 PgC yr−1; Figure 5 and 6; CanESM5-CO2fixed-SSP5-8.5). Although the ter-429

restrial biosphere is simulated to act as a net carbon sink as a whole under SSP5-8.5,430

the model also simulates net sources on a regional scale. This applies in particular to the431

Amazon basin (Figure 8e), where precipitation is projected to decline (Figure 3g). This432

regional carbon source is more evident when using bias-adjusted forcing data, as explained433

next.434

During the historical period, adjusting the CanESM5 forcing data for biases has435

only minor impacts on the carbon balance. However, these impacts become more pro-436

nounced during the future period. Under SSP5-8.5, bias adjustment causes NBP to be437

28% larger compared to the non-bias adjusted simulation (Figure 6, comparing CanESM5-438

ISIMIP3b-SSP5-8.5 against CanESM5-SSP5-8.5 and Figure 5). Bias adjustment favours439

GPP more than it favours respiration, resulting in more NEP and stronger positive trends440

in the vegetation and soil organic carbon pools. The tendency for larger NBP values in441

the bias-adjusted simulation is most evident in North American boreal and temperate442

regions, as well as Tropical Asia (Figure 7 and 8). Compared to the simulation that is443

driven with raw CanESM5 forcing data, bias adjustment also enhances the projected car-444

bon source in the Amazon basin (Figure 8e and g). Recall that bias adjustment mainly445

affects the absolute values of the forcing while the projected changes are largely preserved446

(Figure 3c-d, g-h and Figure S2). Therefore, the effects of bias correction stem from the447

fact that the sensitivity of the carbon cycle to a given forcing trend depends on its av-448

erage state (Figure 1). In the case of the Amazon basin, bias adjustment reduces the dry449

bias and thereby enhances vegetation carbon. The projected decline in Amazonian pre-450

cipitation then causes greater carbon emissions in the bias-adjusted simulation as there451

is more biomass available for burning and decomposition (Figure S3 and S4).452

3.2.2 With nitrogen cycle453

The impact of the nitrogen cycle varies among simulations and the selection of pa-454

rameter values. In the case of simulations with CRUJRAv2 forcing, the nitrogen cycle455

in its default configuration leads to a weaker carbon sink compared to when the nitro-456

gen cycle is turned off (Figure 6; CRUJRAv2-NCycle vs CRUJRAv2). This is because457

the nitrogen cycle causes a weaker increase in GPP and a stronger increase in heterotrophic458

respiration compared to the corresponding simulation without the nitrogen cycle. As a459

result, the positive vegetation carbon trend becomes weaker and the vegetation and soil460

organic carbon pools are considerably smaller.461

Using the updated nitrogen cycle parameter values increases the carbon sink such462

that it exceeds the NBP from the CRUJRAv2 simulation, which is due to a stronger in-463

crease in GPP (Figure 5 and 6; CRUJRAv2-NCycleV2). The trend in vegetation car-464

bon increases more strongly and the soil becomes a carbon sink as the carbon flux from465

the vegetation to the soil pool increases, outpacing the losses due to heterotrophic res-466
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piration. The different responses are caused by differences in parameter values, where467

the updated values enhance active root nitrogen uptake.468

Simulations that are driven with CanESM5-hist data show that both nitrogen cy-469

cle parameter value sets enhance NBP during the historical period compared to the cor-470

responding simulation when the nitrogen cycle is turned off (Figure 6; CanESM5-NCycle-471

hist and CanESM5-NCycleV2-hist vs CanESM5-hist). Comparing the simulations that472

are based on the default and the updated nitrogen cycle parameter values shows that473

the latter yields larger values in NBP (0.33 and 0.82 PgC yr−1 for CanESM5-NCycle-474

hist and CanESM5-NCycleV2-hist, respectively). In both cases, the vegetation carbon475

pool acts as a sink while the soil carbon pool acts as a source. The NBP in the boreal476

regions of North America and Eurasia, as well as temperate Eurasia, benefit most from477

the nitrogen cycle (Figure 7 and 8).478

For future projections, both nitrogen cycle parameterizations reduce the increase479

in NBP compared to the corresponding simulation when the nitrogen cycle is turned off480

(54% less when using the updated nitrogen cycle parameter values) (Figure 5 and 6; CanESM5-481

NCycleV2-SSP5-8.5 vs CanESM5-SSP5-8.5). The impact of the nitrogen cycle is most482

evident in the boreal regions of North America and Eurasia, temperature Eurasia, Africa,483

and tropical Asia (Figure 7). In the Amazon basin, the nitrogen cycle diminishes the re-484

duction of NBP, which reduces the projected loss of vegetation carbon (Figure 8 and S4).485

The reason for this is that the dynamic carbon-nitrogen coupling results in less biomass486

buildup in the Amazon compared to when the nitrogen cycle is deactivated, causing the487

projected loss in biomass to be lower as well.488

The fact that the inclusion of the nitrogen cycle enhances the NBP increase dur-489

ing the historical period and reduces the NBP increase under SSP5-8.5 is consistent with490

how prescribed nitrogen inputs vary in time. Nitrogen fertilization and atmospheric de-491

position increase during the historical period and are projected to remain approximately492

constant after 2030 for SSP5-8.5 (Figure 9). The combined impact of bias adjustment493

and nitrogen cycle is dominated by the impact of the nitrogen cycle, with more NBP dur-494

ing the historical period and less NBP under SSP5-8.5 (-35%) when compared to the CanESM5-495

hist and CanESM5-SSP5-8.5 simulations, respectively (Figure 5).496

4 Discussion497

This study examines how biases in the climate forcing affect land carbon balance498

projections when dynamic carbon-nitrogen interactions are turned on or off. Using raw499

and bias-adjusted CanESM5 meteorological data, we find that bias adjustment improves500

model performance considerably across a wide range of ecosystem variables. This im-501

provement is primarily due to bias reduction in precipitation. In the case of NBP, how-502

ever, the impacts of bias adjustment on model performance is modest. This result aligns503

with the idea that NBP is mainly influenced by the trend of a forcing factor, which re-504

mains unaffected by the bias adjustment technique. Simulations that are based on raw505

and bias-adjusted CanESM5 meteorological forcing data do not reproduce the histor-506

ical land carbon sink as long as the nitrogen cycle is turned off. Control experiments show507

that this is due to the exaggerated warming trend present in CanESM5, which weakens508

GPP trends more than respiration trends. While the impact of bias adjustment on NBP509

is small during the historical period, it is considerably larger during the 2080-2099 pe-510

riod under SSP5-8.5, where NBP is 28% larger in the simulation that is based on the bias-511

adjusted CanESM5 forcing compared to the raw CanESM5 forcing when the nitrogen512

cycle is turned off. Note that an increase of NBP in response to bias adjustment may513

be an a-typical reaction, since the bias adjustment conducted by Ahlström et al. (2017)514

weakened NBP for the vast majority of CMIP5 models. This apparent contradiction may515

be related to differences in the two land surface models involved (i.e. CLASSIC versus516

LPJ-GUESS) and/or the particularities of CanESM5.517
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While the model performance is degraded when nitrogen cycle is turned on, its in-518

clusion increases NBP such that the CanESM5-driven simulations reproduce the carbon519

sink over the historical period. This response is consistent with the prescribed increase520

of the nitrogen fertilization and deposition during the historical period. During the 2080-521

2099 period, on the other hand, the nitrogen cycle weakens the increase of NBP, such522

that NBP is 54% less compared to projections when the nitrogen cycle is turned off. The523

impact of the nitrogen cycle during the future period is consistent with how nutrient avail-524

ability limits the CO2 fertilization effect, confirming findings from previous studies (Zaehle525

et al., 2010; Huntzinger et al., 2017; Meyerholt et al., 2020; Kou-Giesbrecht & Arora, 2022a).526

Simulations where the nitrogen cycle and bias adjustment act together show that the im-527

pact on NBP is dominated by the nitrogen cycle rather than by bias adjustment, where528

projected NBP is 35% lower compared to simulations that are based on raw CanESM5529

data and when the nitrogen cycle is turned off. In conclusion, our findings demonstrate530

that both climate model biases and the nitrogen cycle affect NBP projections consid-531

erably, with the latter having a more substantial impact.532

Some biases in CanESM5, such as the dry bias in the Amazon basin or the cold533

bias in the Tibetan plateau, have existed for decades and may not be resolved before the534

upcoming Coupled Model Intercomparison Project Phase 7 (CMIP7) (Swart et al., 2019).535

To address those biases nevertheless, one could apply an online bias-adjustment approach536

where the atmospheric model is nudged to a time-varying reference state (Guldberg et537

al., 2005). Applying an online bias adjustment to an earlier version of CanESM (CanESM2),538

Krinner et al. (2020) showed that this technique improves model performance for a wide539

range of variables, including precipitation. Online bias adjustment could therefore present540

a feasible path toward producing more reliable climate and carbon cycle projections.541

Over the past decade, CLASSIC has undergone significant advancements, with the542

incorporation of new processes that have been evaluated primarily offline. Some of these543

developments will enhance the capabilities of the CanESM version that will participate544

in CMIP7. A potential list of those processes includes the dynamic carbon-nitrogen in-545

teraction discussed here, wildfires (Arora & Boer, 2005a; Arora & Melton, 2018), PFT546

competition (Melton & Arora, 2016), shrubs (Meyer et al., 2021), and permafrost car-547

bon physics and dynamics (Melton et al., 2019). Future capabilities that are currently548

under development and that are likely to impact carbon balance projections include dy-549

namic tiling of land use and land cover change, representation of bryophytes, lateral hy-550

drological flow, explicit representation of plant hydraulics, and an improved represen-551

tation of wildfires in the boreal regions. Longer-term future development also includes552

the incorporation of a phosphorus cycle. Some of these processes and their relevance for553

carbon cycle projections are discussed next.554

Carbon emissions from wildfires originate mostly from the tropics, with about half555

of all global emissions coming from Africa, one quarter from South America and 9% from556

Australia during the 1960-2000 period (Schultz et al., 2008). Carbon emissions from the557

temperate and boreal regions, on the other hand, contributed about 5% on average dur-558

ing the same period. In the last two decades, however, forest loss associated with wild-559

fires has roughly doubled in Eurasia (Tyukavina et al., 2022). The interannual variabil-560

ity of boreal forest fires is to a large extent driven by the interannual variability of light-561

ning, which is likely to increase with future warming and more convective precipitation562

(Veraverbeke et al., 2017). Wildfires in the boreal zone may, therefore, play an increas-563

ingly important role in the global carbon balance (Loehman, 2020). The CLASSIC ver-564

sion presented here is able to reproduce global total carbon emissions reasonably well565

but underestimates wildfire emissions in the boreal zone (Arora & Melton, 2018; F. Li566

et al., 2019; Seiler et al., 2021). Current model development efforts are working to im-567

prove the representation of boreal fires in CLASSIC to ensure that the model will be ca-568

pable of projecting potential changes in future fire regimes. This could reverse the pro-569

jected trend in wildfire emissions presented here and improve NBP projections.570
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The global carbon budget estimates that emissions from deforestation are approx-571

imately 1.8 (±0.4) PgC yr−1 during the 2012-2021 period (Friedlingstein et al., 2022).572

The corresponding value produced in the CRUJRAv2 simulation is considerably lower573

(0.69 PgC yr−1 for the 1995-2014 period when adding emissions from deforestation and574

the decomposition of wood products), possibly due to the following reason. In CLAS-575

SIC, deforestation occurs when natural vegetation is converted to croplands, while con-576

version to pasture area is not taken into account. Once the conversion to cropland takes577

place, the area remains cropland, until abandoned, and no regrowth can occur. Current578

model developments on dynamic tiling are expected to increase land use change emis-579

sions in the model bringing them closer to observation-based values from book-keeping580

models. It should be noted that neither the Global Carbon Budget (Friedlingstein et al.,581

2022) nor CLASSIC account for emissions associated with forest degradation.582

The strength of the carbon sink in northern high latitudes is still a matter of de-583

bate, with various studies providing conflicting results (McGuire et al., 2012; Belshe et584

al., 2013; Schuur et al., 2022; Friedlingstein et al., 2022). Concerning the future, the vast585

majority of CMIP6 ESMs predict that the northern high latitudes will act as a net car-586

bon sink under the SSP5-8.5 scenario (Canadell et al., 2021). However, since only two587

CMIP6 ESMs include a representation of permafrost carbon gradual thaw processes (Canadell588

et al., 2021), and none of the models represent abrupt thaw processes (Turetsky et al.,589

2020), such projections are subject to considerable uncertainty. Models explicitly designed590

for permafrost carbon cycle dynamics simulate a carbon release from the permafrost zone591

in response to global warming (Schneider von Deimling et al., 2015). Such models may592

overestimate the net release as they ignore the compensating effect of stimulated plant593

growth. To address this issue, the Permafrost Carbon Network organized a multi-model594

assessment with state-of-the-art land models that couple thaw depth with soil carbon595

exposure (McGuire et al., 2018). The study shows that four out of five models project596

a net carbon source, with a mean carbon loss of 208 PgC under a high-emission scenario597

(RCP8.5) by 2100. The permafrost carbon feedback is potentially so strong that it is in-598

cluded in the Intergovernmental Panel on Climate Change’s estimate of the remaining599

carbon budget for climate stabilization (Canadell et al., 2021). While CLASSIC is well600

suited to simulate the physics of permafrost regions (Melton et al., 2019), the model ver-601

sion used here still lacks processes relevant for simulating permafrost carbon dynamics.602

However, the implementation of permafrost carbon processes in CLASSIC is in progress,603

using an approach presented by Koven et al. (2011). Accounting for permafrost carbon604

dynamics presents another potentially essential step toward more reliable carbon bal-605

ance projections.606

The model version examined in this study includes a representation of dynamic carbon-607

nitrogen interaction but ignores the limiting impact of phosphorus on photosynthesis (Elser608

et al., 2007; Vitousek et al., 2010; Reed et al., 2015). Model results from previous stud-609

ies suggest that the strength of the projected land carbon sink is considerably lower when610

accounting for the limiting impact of nitrogen and phosphorus together (25% less com-611

pared to simulations without nitrogen or phosphorus cycling under the Special Report612

on Emissions Scenarios; Goll et al. (2012)). Longer-term model development will there-613

fore consider the addition of a phosphorus cycle to fully account for the impact of nu-614

trient limitation on land carbon sink projections.615

To conclude, this study evaluates the impact of climate forcing biases and the ni-616

trogen cycle on land carbon balance projections. Opportunities for future model devel-617

opment outlined above will allow us to explore the relative importance of additional pro-618

cesses and thereby advance our understanding of the terrestrial carbon cycle. Such ef-619

forts will yield more reliable carbon cycle projections and support the implementation620

of climate change policies designed to stabilize the climate system.621

5 Tables622
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Table 1. Spinup duration, transient period, and future period for different forcing data sets.

Forcing data Spinup Transient Future
N cycle off N cycle on

CRUJRAv2 500 years 2300 years 1901-2014 NA
GSWP3-W5E 500 years 2300 years 1901-2014 NA
CanESM5 500 years 2300 years 1850-2014 2015-2099
Bias-adjusted CanESM5 (ISIMIP3b) 500 years 2300 years 1850-2014 2015-2099
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Table 2. Simulations, meteorological forcing data, time period, and model configuration

Simulation ID Forcing Period Nitrogen Cycle Transient [CO2]

CRUJRAv2 CRUJRAv2 historical off true
GSWP3-W5E5 GSWP3-W5E5 historical off true
CanESM5-hist CanESM5 historical off true
CanESM5-ISIMIP3b-hist bias-adjusted CanESM5 (ISIMIP3b) historical off true

CanESM5-CRUJRAv2.RSDS-hist CanESM5 with CRUJRAv2 RSDS historical off true
CanESM5-CRUJRAv2.RLDS-hist CanESM5 with CRUJRAv2 RLDS historical off true
CanESM5-CRUJRAv2.TAS-hist CanESM5 with CRUJRAv2 TAS historical off true
CanESM5-CRUJRAv2.PRE-hist CanESM5 with CRUJRAv2 PRE historical off true
CanESM5-CRUJRAv2.HUSS-hist CanESM5 with CRUJRAv2 HUSS historical off true
CanESM5-CRUJRAv2.sfcWind-hist CanESM5 with CRUJRAv2 WIND historical off true
CanESM5-CRUJRAv2.PS-hist CanESM5 with CRUJRAv2 PS historical off true

CanESM5-SSP5-8.5 CanESM5 SSP5-8.5 off true
CanESM5-ISIMIP3b-SSP5-8.5 bias-adjusted CanESM5 (ISIMIP3b) SSP5-8.5 off true

CRUJRAv2-NCycle CRUJRAv2 historical on true
CanESM5-NCycle-hist CanESM5 historical on true
CanESM5-NCycle-SSP5-8.5 CanESM5 SSP5-8.5 on true
CanESM5-ISIMIP3b-NCycle-hist bias-adjusted CanESM5 (ISIMIP3b) historical on true
CanESM5-ISIMIP3b-NCycle-SSP5-8.5 bias-adjusted CanESM5 (ISIMIP3b) SSP5-8.5 on true

CRUJRAv2-NCycleV2 CRUJRAv2 historical on true
CanESM5-NCycleV2-hist CanESM5 historical on true
CanESM5-NCycleV2-SSP5-8.5 CanESM5 SSP5-8.5 on true
CanESM5-ISIMIP3b-NCycleV2-hist bias-adjusted CanESM5 (ISIMIP3b) historical on true
CanESM5-ISIMIP3b-NCycleV2-SSP5-8.5 bias-adjusted CanESM5 (ISIMIP3b) SSP5-8.5 on true

CRUJRAv2-CO2fixed CRUJRAv2 historical off false
CanESM5-CO2fixed-hist CanESM5 historical off false
CanESM5-CO2fixed-SSP5-8.5 CanESM5 SSP5-8.5 off false

–
1
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Table 3. Observation-based reference data used for model evaluation

Source Variables Approach Period Reference

AVHRR LAI artificial neural network 1982-2010 Claverie et al. (2016)
CAMS NBP atmospheric inversion 1979-2019 Agust́ı-Panareda et al. (2019)
CarboScope NBP atmospheric inversion 1999-2019 Rödenbeck et al. (2018)
CERES ALBS, RSS, RLS, RNS radiative transfer model 2000-2012 Kato et al. (2013)
CLASSr RNS, HFLS, HFSS, HFG blended product 2003-2009 Hobeichi et al. (2019)
Copernicus LAI artificial neural network 1999-2019 Verger et al. (2014)
CT2019 NBP, FIRE inversion model 2000-2017 Jacobson et al. (2020)
ECCC SNW blended product 1981-2017 Mudryk (2020)
ESA MRSLL land surface model 1979-2017 Liu et al. (2011)
ESACCI BURNT burned-area mapping 2001-2017 Chuvieco et al. (2018)
FluxCom GPP machine learning 1980-2013 Jung et al. (2020)
FluxCom RNS, HFLS, HFSS machine learning 2001-2013 Jung et al. (2019)
GEWEXSRB ALBS, RSS, RLS, RNS radiative transfer model 1984-2007 Stackhouse et al. (2011)
GEOCARBON AGB machine learning NA Avitabile et al. (2016),

Santoro et al. (2015)
GFED4S BURNT burned-area mapping 2001-2015 Giglio et al. (2010)
GOSIF GPP statistical model 2000-2017 X. Li and Xiao (2019)
HWSD CSOIL soil inventory NA Wieder (2014)

Todd-Brown et al. (2013)
MODIS ALBS bidirectional reflectance distribution function 2000-2014 Strahler et al. (1999)

LAI radiative transfer model 2000-2017 Myneni et al. (2002)
SG250m CSOIL machine learning NA Hengl et al. (2017)
Zhang AGB data fusion 2000s Zhang and Liang (2020)

–
1
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6 Figures623

Figure 1. The model’s sensitivity of (a, b) NPP and (c, d) maximum carboxylation rate to

temperature when carbon-nitrogen coupling is (a, c) disabled and (b, d) enabled, where ci is the

partial pressure of CO2 in the leaf interior in µmol mol−1 and NL is the leaf nitrogen content

in gN m−2 ground surface. The values are based on parameter values for a needleleaf evergreen

PFT and constant values of carbon stocks and LAI representative for a location in the Canadian

boreal forest.
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Figure 2. AMBER scores for meteorological forcing from raw CanESM5 data (CanESM5-

hist) and bias-adjusted CanESM5 data (CanESM5-ISIMIP3b-hist) when evaluated against CRU-

JRAv2, where HUSS is specific humidity, PR is precipitation, PS is surface pressure, RLDS is

downwelling LW radiation, RSDS is downwelling SW radiation, SFCWIND is near-surface wind

speed and TAS is near-surface air temperature. Score differences that are written in black font

denote statistically significant differences at the 5% level (Wilcoxon test).
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Figure 3. Annual mean near-surface temperature biases in (a) CanESM5-hist and (b)

CanESM5-ISIMIP3b-hist (1995-2014), and future changes projected by (c) CanESM5-SSP5-

8.5 and (d) CanESM5-ISIMIP3b-SSP5-8.5 (2080-2099 minus 1995-2014), as well as annual mean

precipitation biases in (e) CanESM5-hist and (f) CanESM5-ISIMIP3b-hist, and future changes

projected by (g) CanESM5-SSP5-8.5 and (h) CanESM5-ISIMIP3b-SSP5-8.5 (2080-2099 minus

1995-2014). The presence of fractional land cover in the CanESM5 land-sea mask explains the

occurrence of grid cells in locations dominated by the ocean.
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Figure 4. Model scores for each simulation, where higher scores imply better agreement with

reference data (see section 2.5). White frames indicate values that exceed the corresponding

multi-model mean values.
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Figure 5. Impact of bias adjustment (B.A.), nitrogen cycle (N) parameter values, bias ad-

justment and nitrogen cycle combined (B.A. + N) and fixed [CO2] on annual mean NBP. The

stippled lines correspond to the NBP obtained when forcing CLASSIC with raw CanESM5 data.

The grey swath provides the Global Carbon Budget 2022 uncertainty range for the years 2000-

2009 (Friedlingstein et al., 2022). The numbers and arrows show the impact of a factor compared

to the baseline simulation with raw CanESM5 data and no nitrogen cycle. Green arrows and

green numbers correspond to the default nitrogen cycle parameter values.
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Figure 6. Global annual mean net biome productivity (NBP), net ecosystem productivity

(NEP), vegetation carbon (CVEG) and soil organic carbon (CSOIL) of the last 20 years of sim-

ulations (1995-2014 for historical and 2080-2099 for SSP5-8.5) and linear trends of vegetation

carbon, soil organic carbon, NEP, gross primary productivity (GPP), autotrophic respiration

(RA), heterotrophic respiration (RH), and emissions from fires (Fire), deforestation (Defor), and

decomposition of wood products (PrDec) of the last 50 years of simulations (1965-2014 for his-

torical and 2050-2099 for SSP5-8.5) for a selection of experiments. Some simulations are listed

multiple times to facilitate visual comparison. Values for all simulations are provided in Table

S2-5.
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Figure 7. Annual net biome productivity and corresponding 95% confidence interval in differ-

ent ecoregions during the historical (1995-2014) and future period under SSP5-8.5 (2080-2099).

The periods of the reference data are listed in Table 3.
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Figure 8. (a-d) Annual mean net biome productivity during the historical period (1995-2014)

and (e-h) the corresponding projected changes (2080-2099) for a selection of simulations.
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Figure 9. Prescribed nitrogen fertilization and deposition provided by the Coupled Model

Intercomparison Project Phase 6.
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