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Abstract

We have identified for the first time an energy-time dispersion of precipitating electron flux in a pulsating aurora patch, ranging

from 6.7 keV to 580 keV, through simultaneous in-situ observations of sub-relativistic electrons of microburst precipitations

and lower-energy electrons using the LAMP sounding rocket launched from the Poker Flat Research Range in Alaska. Our

observations reveal that precipitating electrons with energies of 180-320 keV were observed first, followed by 250-580 keV

electrons 0-30 ms later, and finally, after 500-1000 ms, 6.7-14.6 keV electrons were observed. The identified energy-time

dispersion is consistent with the theoretical estimation that the relativistic electron microbursts are a high-energy tail of

pulsating aurora electrons, which are caused by chorus waves propagating along the field line.
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Key Points: 14 

• A sounding rocket observed simultaneously precipitating sub-relativistic electron 15 
microbursts and pulsating auroral electrons. 16 

• 250–580 keV electron precipitations were detected 0–30 ms after 180–320 keV electron 17 
precipitations in a single auroral patch. 18 

• The energy dispersion of observed electrons is consistent with the theory that they are 19 
due to chorus waves propagating to higher latitudes. 20 

  21 
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Abstract 22 

We have identified for the first time an energy-time dispersion of precipitating electron flux in a 23 
pulsating aurora patch, ranging from 6.7 keV to 580 keV, through simultaneous in-situ 24 
observations of sub-relativistic electrons of microburst precipitations and lower-energy electrons 25 
using the LAMP sounding rocket launched from the Poker Flat Research Range in Alaska. Our 26 
observations reveal that precipitating electrons with energies of 180-320 keV were observed 27 
first, followed by 250-580 keV electrons 0-30 ms later, and finally, after 500-1000 ms, 6.7-14.6 28 
keV electrons were observed. The identified energy-time dispersion is consistent with the 29 
theoretical estimation that the relativistic electron microbursts are a high-energy tail of pulsating 30 
aurora electrons, which are caused by chorus waves propagating along the field line. 31 

Plain Language Summary 32 

A sounding rocket observes both sub-relativistic electron precipitations called microbursts and 33 
electrons causing pulsating auroras simultaneously. The detection time differences of these 34 
electrons in an energy range from 6.7 keV to 580 keV are identified at the rocket altitude. A 35 
possible mechanism for generating these precipitations is the resonance scattering of electrons by 36 
chorus waves propagating from the equatorial plane to higher latitudes along the field line. The 37 
observed energy energy-time dispersion of precipitating electrons is consistent quantitatively 38 
with the theory about wide energy electron precipitations caused by chorus waves propagating 39 
toward higher latitudes. 40 

1 Introduction 41 

Microburst precipitations of relativistic/sub-relativistic electrons are observed as a train 42 
of bursty precipitations of high-energy (several hundred keV to several MeV) electrons into the 43 
Earth's atmosphere with typical time scales less than a second [e.g., Nakamura et al., 1995; Blake 44 
et al., 1996; Datta et al., 1997; Kurita et al., 2016; Douma et al., 2017; Lorentzen et al., 2001; 45 
O'Brien et al., 2003; Shumko et al., 2018, 2021a, 2021b; Kawamura et al., 2021]. The spatial 46 
scale of a microburst is typically tens of kilometers, and the time scale of a single burst is about 47 
100 ms [Shumko et al., 2018, 2021b]. Microbursts are often observed on the dawn-side 48 
(MLT=0–12 h) at L=3–8, and their occurrence frequency increases as geomagnetic activity 49 
increases [e.g., Blum et al. 2015, Lorenzen et al. 2001, O'Brien et al. 2003, Douma et al. 2017]. 50 

It is suggested that microbursts are vital loss mechanisms of the outer radiation belt 51 
electrons [e.g., Thorne et al., 2005; Clilverd et al., 2006; Dietrich et al., 2010; Lorentzen et al., 52 
2001]. In addition, the relativistic electron microbursts possibly make a significant impact on the 53 
Earth's upper atmosphere. Relativistic electron precipitations are estimated to cause 20–30% 54 
increase of atmospheric nitrogen oxide (NOx) and 10–20% depletion of upper mesospheric 55 
ozone (O3) [Miyoshi et al., 2015a, 2021; Seppälä et al., 2018; Duderstadt et al., 2021; Verronen 56 
et al., 2021]. Because of these close relationships between the radiation belt and the 57 
upper/middle atmosphere, we need to understand characteristics, generation conditions as well as 58 
mechanisms of microbursts. 59 

The microbursts are suggested to be caused by pitch angle scattering due to 60 
magnetospheric whistler-mode chorus waves propagating from the magnetic equator to higher 61 
magnetic latitudes [e.g., Miyoshi et al., 2020]. Theoretically, the chorus waves can scatter 62 
relativistic/sub-relativistic electrons when they propagate to high latitudes along the field line 63 
because the resonance energy of chorus waves becomes higher [Horne & Thorne, 2003; Miyoshi 64 
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et al. 2010, 2015a, 2020]. Microbursts and chorus waves have similar time scales and spatial 65 
distributions in L-value and MLT [e.g., Lorenzen et al., 2001, Nakamura et al., 2000]. Chorus 66 
waves and microbursts were also simultaneously observed on nearby magnetic field lines or 67 
same satellite [Breneman et al. 2017; Oliver and Gurnett, 1968]. 68 

Pulsating aurora is a type of diffuse aurora that exhibits intermittent modulation of 69 
luminosity whose period is typically several seconds. The precipitation of several to ~100 keV 70 
electrons scattered by the chorus waves causes the pulsating auroral emission in the Earth's 71 
auroral ionosphere [e.g., Miyoshi et al., 2010, 2015b, 2021; Kasahara et al., 2018; Ozaki et al., 72 
2019; Hosokawa et al., 2020]. A few Hz internal modulations are sometimes embedded in the 73 
main pulsation of the pulsating aurora. This time scale is very similar to that of rising tone 74 
elements of chorus waves and a single burst of a microburst. For higher-energy electrons, 75 
Sandahl et al. (1980) observed precipitations of about 140 keV electrons into the ionosphere 76 
during pulsating aurora by a sounding rocket experiment. Radar observations also indicated that 77 
relativistic/sub-relativistic electrons precipitate into the middle atmosphere in association with 78 
pulsating auroras [e.g., Miyoshi et al., 2015b, 2021; Oyama et al., 2017]. However, direct 79 
observational evidence on the relationship between microbursts and pulsating auroral electrons 80 
has not yet been obtained. 81 

Recently, based on the theory [Miyoshi et al., 2010; Saito et al., 2012], Miyoshi et al. 82 
(2020) proposed a model in which chorus waves propagating along the field line cause electron 83 
scattering in a wide energy range, and both pulsating aurora electrons and relativistic/sub-84 
relativistic electron microbursts are the same origin caused by the propagation of chorus waves. 85 
Kawamura et al. (2021) and Shumko et al. (2021a) reported that relativistic electron microbursts 86 
occurred with the pulsating auroral emission, which is consistent with the model proposed by 87 
Miyoshi et al. (2020). Another clue to confirm this model is the characteristic energy-time 88 
dispersion of the precipitating electron fluxes. The model predicts 'inverse' energy-time 89 
dispersion of the precipitating electron fluxes; electrons with energies a few hundred keV arrive 90 
at the ionosphere before higher-energy (MeV) electrons. This feature is caused by the 91 
propagation delay of chorus waves from the magnetic equator to higher latitudes, increasing the 92 
resonance energy of electrons due to increased background magnetic field strength along the 93 
wave propagation path, and elongation of the travel distance of electrons from the scattering 94 
point to the ionosphere. Kawamura et al. (2021) reported this inverse energy-time dispersion of 95 
precipitating electron fluxes in a patch structure of pulsating aurora by using simultaneous 96 
observations of high-energy electrons and auroral emissions with the FIREBIRD-II satellite and 97 
ground-based auroral imagers. However, they showed no direct observations of lower-energy 98 
electrons causing the pulsating aurora. 99 

This paper reports the first in-situ observation of the energy-time dispersion of 100 
precipitating electrons of microbursts and pulsating auroras obtained by the LAMP sounding 101 
rocket experiment. We analyzed the precipitating electron data covering from 6.7 keV up to 102 
MeV range. We successfully detected the timing differences of the electron precipitations for 103 
different energies in a pulsating auroral patch. We also performed a model calculation about the 104 
energy-time dispersion of electron fluxes, taking into account the interactions between chorus 105 
waves and electrons, and compared it with the LAMP observations. We describe the 106 
instrumental setup in the next section, followed by observational results in Section 3. Discussion 107 
and summary are provided in Sections 4 and 5, respectively. 108 
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2 Instrumentation 109 

The Loss through Auroral Microburst Pulsation (LAMP) mission is a US-Japan sounding 110 
rocket experiment designed to observe the microburst electrons and the pulsating auroras 111 
simultaneously. We used the data obtained by a high-energy electron detector (HEP: High 112 
Energy Particle detector), a low-energy electron detector (EPLAS: Electron PLASma detector), 113 
auroral imagers (AIC: Auroral Imaging Camera), and a magnetometer (MIM: Magneto-114 
Impedance Magnetometer). LAMP was launched from Poker Flat Research Range, Alaska 115 
(65.1°N, 147.5°W in geographic coordinates; 65.8°N 95.2°W in geomagnetic coordinates; L = 116 
5.94) at 11:27:30 UT on March 5, 2022. MLT of Poker Flat at the launch was 0.1 hr. 117 

HEP is an improved version of the detector installed in a previous sounding rocket 118 
experiment [Namekawa et al., 2021]. HEP consists of a mechanical collimator, eight-layered 119 
silicon semiconductor detectors (SSDs), which measure the energies of incident particles, and an 120 
anti-coincidence sensor used to remove the effects of cosmic rays. HEP can measure 975 keV 121 
electrons from 207Bi radiation source with an energy resolution ΔE = 53.5 keV. The anti-122 
coincidence sensor consists of a plastic scintillator and four avalanche photodiodes (APDs). A 123 
part of cosmic rays penetrating through the SSDs emit photons inside the plastic scintillator 124 
surrounding the SSDs, and the APDs detect these photons. Then, the contribution of cosmic rays 125 
can be eliminated by the detection signals generated by the APDs. HEP was mounted on the top 126 
of the rocket so that the center of the field of view of HEP was parallel to the thrust axis of the 127 
rocket, which was controlled to be parallel to the local geomagnetic field. 128 

EPLAS is an electron energy spectrum analyzer that covers 5 eV to 15 keV with 42 129 
energy steps. EPLAS has a 360-degree planar field of view divided by 36 angular bins. The 130 
sampling time of EPLAS for one energy step is 1 ms, providing a 2-D velocity distribution 131 
function every 42 ms. AIC consists of two high-speed CMOS monochromatic imagers. We used 132 
images obtained by Sensor 1 of AIC (AIC S1) that was sensitive to photons of N2 1PG emission 133 
of auroras with a 20 nm bandpass filter centering at 670 nm with a frame rate of 9.5 Hz. N2 1PG 134 
emission is the typical permitted line of auroral emission in the ionospheric E-region. The field 135 
of view and angular resolution of AIC S1 are 27° × 27° and 0.5° × 0.5°, respectively. MIM is a 136 
triaxial magnetometer based on the magneto-impedance effect. We calculated the pitch angles of 137 
observed electrons using MIM data. 138 
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the opposite direction of the local geomagnetic field. Since the field of view of HEP is 45.2° × 159 
45.2°, the electrons with pitch angles between 0° and 32.6° could be detected. We apply labels 160 
HEP-H (HEP-High) and HEP-L (HEP-Low) for observed electron count rates of energy 161 
channels 250–580 keV and 180–320 keV, respectively. Figures 1g-1i show the count rate of 162 
precipitating electrons observed by EPLAS with a time resolution of 42 ms, where the count rate 163 
is summed over all the azimuthal channels of the instrument. Again, we apply labels EPLAS-H 164 
(EPLAS-High), EPLAS-M (EPLAS-Medium), and EPLAS-L (EPLAS-Low) for electron count 165 
rates of energy channels 12.5–14.6 keV, 9.1–10.7 keV, and 6.7–7.6 keV, respectively. Figure 1j 166 
shows the auroral emission intensity (wavelength at 670 nm) at the magnetic footprint of the 167 
rocket, observed by AIC S1 with a time resolution of 105 ms. Since AIC S1 looked downward 168 
from the rocket, reflected photons from the ground surface were also detected. The photon count 169 
rate due to the reflection has been estimated and subtracted in Figure 1j. The black dotted lines in 170 
Figures 1e-1j correspond to the observation times of the auroral images shown in Figures 1a-1b 171 
and Figures 1c-1d, respectively. The red dotted box in Figures 1e-1f corresponds to the time 172 
range when a microburst train was observed, and the red dotted box in Figures 1g-1j corresponds 173 
to the time range when a pulsating auroral patch and a low-energy electron precipitation train 174 
were observed. 175 

Figures 1g-1j show that the EPLAS-H/M/L electron counts increase with the auroral 176 
intensity enhancement. These electrons contribute to the main pulsation of the pulsating aurora 177 
[Miyoshi et al., 2015b]. In Figures 1g-1i, modulations are embedded in the electron count 178 
enhancements of EPLAS-H/M/L. It is clear from Figures 1e-1i that the increases in HEP-H/L 179 
electron counts preceded those of EPLAS-H/M/L electrons. Figures 1g-1i also show that several 180 
spiky enhancements with a short duration, i.e., microbursts, are embedded in the microburst 181 
train. There appears to be a correspondence between the peaks in the microburst train of HEP-182 
H/L and the modulations in the main pulsation of EPLAS-H/M/L. The electron counts observed 183 
by EPLAS show an energy-time dispersion that is similar to typical flux variations of pulsating 184 
auroral electrons reported in the previous studies [Miyoshi et al., 2010, 2015b; Nishiyama et al., 185 
2011]. 186 

Here, we identify the difference in the arrival timing of the same microbursts observed by HEP-187 
H and HEP-L in a more objective way. Figures 2a and 2c show the electron count rates (same as 188 
Figures 1e and 1f) together with smoothed values by applying 110 ms window sliding average. 189 
Figures 2b and 2d show the second time derivatives of the smoothed count rates, and the 190 
standard deviations of the second time derivatives for HEP-L and HEP-H, respectively. By using 191 
the second time derivative, the background can be subtracted without arbitrariness, and the 192 
locations of the peaks can be determined from the locations of their local minima. We applied 193 
the Savitzky-Golay method to calculate the smoothing, its second derivatives, and the standard 194 
deviations of the second derivatives. The standard deviations of the second time derivatives 195 
plotted in Figures 2b and 2d are sign-reversed for comparison with the local minima of the 196 
second time derivatives. The arrival timings of microbursts observed by the HEP-H and HEP-L 197 
were determined as the timings when the second time derivatives take local minima, and their 198 
absolute values are greater than the standard deviations. Only bursts with 0.6 counts per 10 ms or 199 
more were used in this analysis. The blue and red dotted lines show the timing of the microbursts 200 
at the HEP-L (Figures 2a and 2b) and the HEP-H (Figures 2c and 2d), respectively. We 201 
identified seven events in which the microburst at the HEP-H appears in close proximity to the 202 
microburst at the HEP-L. Red triangles in Figure 2c show the appearance timings of the 203 
identified seven microbursts of HEP-H. The HEP-L microbursts precede the HEP-H microbursts 204 
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 218 

Correlation coefficients on time profiles of microbursts between HEP-H and HEP-L were 219 
calculated to demonstrate the relevance of each burst. The correlation coefficients were 220 
calculated with a sliding window 600 ms wide, successively moved by 10 ms during the period 221 
from 235 to 237 s after the launch of LAMP. The HEP-H data were shifted with respect to the 222 
HEP-L electron data within ±100 ms to examine changes in the correlation coefficients. Figure 223 
3a shows the calculated correlation coefficients. The vertical axis shows the shifted time of the 224 
HEP-H electron data, and the horizontal axis is the start time of each correlation coefficient 225 
calculation window. A positive time shift of the HEP-H data indicates that HEP-L precedes 226 
HEP-H. Figure 3a demonstrates that the significant correlation coefficients appear when the 227 
HEP-H data are positively shifted in time, indicating that HEP-L tends to precede HEP-H at 228 
235.0–237.0 s after the launch of LAMP. Particularly large correlation coefficients (>0.5) are 229 
obtained when the HEP-L data precedes by 30 ms at 235.0 to 235.3 s and by 0–10 ms at 235.3 to 230 
235.7 s. This characteristic is consistent with that of the analysis by simple identification of the 231 
appearance timings of the HEP-H and HEP-L microbursts described in Figure 2. Note that the 232 
result of correlation coefficient calculation is more susceptible to bursts with higher count rates 233 
in the calculation window. 234 

A superposed epoch analysis was applied to bursts detected by both HEP-H and HEP-L to 235 
accurately estimate the appearance time lag between them. In this analysis, the reference time 236 
(t=0) is set as the timing when peaks of microbursts are identified in the HEP-H data, which is 237 
indicated by the red triangles (t0As) in Figure 2c. The result of the superposed epoch analysis is 238 
shown in Figure 3b. The time range of superposition is ±70 ms from the reference timing. A 239 
significant enhancement of HEP-L precedes that of HEP-H, with a time lag of 10 ms between 240 
peak appearances. Red and black dotted lines in Figure 3b indicate when the enhancements of 241 
counts of HEP-H and HEP-L reach 50% of their peaks, respectively. These values for HEP-L 242 
appear at 18.3 ms and 25.4 ms before those of HEP-H, respectively. This result also suggests that 243 
most of the microbursts at the HEP-L appear before the microbursts at the HEP-H, indicating the 244 
inverse energy dispersion feature of the observed microburst. Then, a similar superposed epoch 245 
analysis was performed on the EPLAS-H/M/L data to investigate the precipitation timing of 246 
lower-energy electrons relative to those of microbursts at the HEP-L and HEP-H. The reference 247 
time is set as the timing when peaks of microbursts at the HEP-L are identified (blue triangles 248 
(t0Bs) in Figure 2a). The microbursts at the HEP-L selected as t0Bs are obtained in the core of 249 
the microburst train and are most suitable for comparison with the low-energy electron 250 
precipitation train. Figure 3c shows the results of the analysis. An increase in count rates appears 251 
in the order of EPLAS-H, EPLAS-M, and EPLAS-L. The time lags from t0Bs are 546, 672, and 252 
840 ms for the peaks of EPLAS-H, EPLAS-M, and EPLAS-L, respectively.  253 
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density in the magnetosphere is assumed as 2.95 cm−3, which is uniformly distributed along the 283 
magnetic field line using the model of Sheeley et al. (2001).  284 

Figure 4 shows the arrival timings of precipitating electrons at the ionospheric altitude as 285 
a function of electron energies. Red, blue, and green lines show calculated timings by the test 286 
particle simulation, where the frequency of waves at the wave launch (𝜔) is 0.2, 0.3, and 0.42 287 
fc,eq (fc,eq is electron cyclotron angular frequency at the equator where the waves are launched), 288 
respectively. On the other hand, black dots indicate the observed timings which are plotted so 289 
that the peak timing of microbursts at the HEP-L matches the calculated timing of the electron 290 
precipitation with energies of 240 keV based on the simulation for 𝜔 = 0.2 fc,eq. Note that dots 291 
for the microbursts at the HEP-L and HEP-H are plotted at energies 380 and 240 keV, 292 
respectively. In the plot, we take 20 ms for the time lag between the appearance of the 293 
microbursts at the HEP-L and HEP-H. The inverse energy-time dispersion observed by HEP is in 294 
good agreement with the numerical simulation for 𝜔=0.2 fc,eq, and the observed peak timings of 295 
electron flux enhancement around 10 keV are consistent with the simulation for 𝜔=0.42 fc,eq. 296 
This mixture of multiple results is caused by the rising tone element of chorus waves which has 297 
certain frequency bandwidth at the same time [e.g., Santolík et al., 2003]. Note that the results 298 
may have been some ambiguities by the non-uniformity of the frequency chirping rate of the 299 
rising tones, as well as amplitude fluctuations during chirping and phase discontinuities. Also, 300 
the differences in arrival timings of observed electrons with energies around 10 keV are longer 301 
than those with energies 380 and 240 keV. This feature suggests that a flux enhancement of 302 
electrons with energies around 10 keV has a longer time scale than that of electrons with 303 
energies of a few hundred keV. These are consistent with the simulation results of Miyoshi et al. 304 
(2020). 305 

The black line shows the timings assuming electrons of all energies with a pitch angle of 306 
0 degrees depart from the magnetic equator at the same time. This assumption corresponds to the 307 
case that the pitch angle scatterings of all energy electrons take place at the magnetic equator. In 308 
this case, the 380 keV electrons are shown to arrive before the 240 keV electrons, which is not 309 
consistent with the observed energy-time dispersion.  310 

5 Conclusions 311 

The energy-time dispersion of precipitating electrons in the pulsating auroral patch was 312 
identified by in-situ observations with the energy range from 6.7 keV to 580 keV range for the 313 
first time. At energies above 180 keV, the observed microbursts show the inverse energy-time 314 
dispersion. The observed energy-time dispersion is consistent with the theoretical model. This 315 
observation is consistent with the model that relativistic electron microbursts are a high-energy 316 
tail of pulsating aurora; the pitch angle scattering of electrons by chorus waves generates the 317 
microburst precipitation of relativistic/sub-relativistic electrons as well as the precipitation of 318 
lower-energy electrons which is responsible for the photon emission of pulsating auroras. 319 
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