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Abstract

We present an application of quantile generalised additive models (QGAMs) to study spatially compounding climate extremes,

namely extremes that occur (near-) simultaneously in geographically remote regions. We take as an example wintertime

cold spells in North America and co-occurring wet or windy extremes in Western Europe, which we collectively term Pan-

Atlantic compound extremes. QGAMS are largely novel in climate science applications and present a number of key advantages

over conventional statistical models of weather extremes. Specifically, they remove the need for a direct identification and

parametrisation of the extremes themselves, since they model all quantiles of the distributions of interest. They thus make

use of all information available, and not only of a small number of extreme values. Moreover, they do not require any a priori

knowledge of the functional relationship between the predictors and the dependent variable. Here, we use QGAMs to both

characterise the co-occurrence statistics and investigate the role of possible dynamical drivers of the Pan-Atlantic compound

extremes. We find that cold spells in North America are a useful predictor of subsequent wet or windy extremes in Western

Europe, and that QGAMs can predict those extremes more accurately than conventional peak-over-threshold models.
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Abstract18

We present an application of quantile generalised additive models (QGAMs) to study19

spatially compounding climate extremes, namely extremes that occur (near-) simulta-20

neously in geographically remote regions. We take as an example wintertime cold spells21

in North America and co-occurring wet or windy extremes in Western Europe, which we22

collectively term Pan-Atlantic compound extremes. QGAMS are largely novel in climate23

science applications and present a number of key advantages over conventional statis-24

tical models of weather extremes. Specifically, they remove the need for a direct iden-25

tification and parametrisation of the extremes themselves, since they model all quantiles26

of the distributions of interest. They thus make use of all information available, and not27

only of a small number of extreme values. Moreover, they do not require any a priori knowl-28

edge of the functional relationship between the predictors and the dependent variable.29

Here, we use QGAMs to both characterise the co-occurrence statistics and investigate30

the role of possible dynamical drivers of the Pan-Atlantic compound extremes. We find31

that cold spells in North America are a useful predictor of subsequent wet or windy ex-32

tremes in Western Europe, and that QGAMs can predict those extremes more accurately33

than conventional peak-over-threshold models.34

Plain Language Summary35

In this paper we propose a new data-driven method to study climate extremes oc-36

curring simultaneously in multiple, possibly remote, locations. Such extremes can pose37

a greater threat to human societies than single, isolated extremes, as their effects may38

exacerbate each other and lead to correlated losses. The method we suggest requires fewer39

assumptions than conventional extreme value statistical techniques, and can help us to40

identify previously unknown relationships between the extremes themselves and their41

possible drivers. We exemplify its use by studying the co-occurrence of periods of un-42

usually cold weather in North America and uncommonly strong wind and abundant pre-43

cipitation in Western Europe. We find that the new method has better predictive power44

for the European extremes than conventional statistical approaches. Furthermore, we45

confirm the results of previous studies suggesting an association between the wintertime46

extremes in North America and Western Europe.47

1 Introduction48

The statistical properties of climate extremes have been extensively studied using49

parametric approaches to extreme value theory (EVT; e.g. Fisher & Tippett, 1928; Gum-50

bel, 1941; Davison & Smith, 1990; Coles, 2001; Mares et al., 2009; Elvidge & Angling,51

2018; French et al., 2019), and since its inception, parametric EVT regression has been52

successfully used to investigate extreme event drivers (Gumbel, 1958; Pickands, 1975;53

Coles, 2001; Mares et al., 2009; do Nascimento et al., 2021). Parametric EVT aims to54

identify and characterise extreme observations by identifying their underlying distribu-55

tion which, in turn, provides valuable information on the expected frequency and inten-56

sity of the extremes. Two fundamental approaches lie at the core of classic parametric57

EVT: the block maxima approach (BM) (Fisher & Tippett, 1928; Gumbel, 1958) and58

the peak over threshold (POT) approach (Pickands, 1975; Smith, 1984; Davison & Smith,59

1990).60

The BM approach defines k time periods (blocks) of equal length and extracts the61

n largest independent observations from each block (block maxima). According to the62

Fisher–Tippett–Gnedenko theorem (Fisher & Tippett, 1928), properly normalised block63

maxima converge to a distribution belonging to the generalised extreme value family of64

distributions (GEV). A challenge of the BM approach lies in finding a suitable size for65

the blocks (Ferreira & Haan, 2015). Small blocks may lead to the identification of some66

spurious extremes, whereas large blocks may ignore some extremes and slow down the67
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convergence to the GEV family of distributions. Furthermore, given that the Fisher–Tippett–Gnedenko68

theorem is an asymptotic theorem, there is no guarantee that the appropriately normalised69

block maxima belong to the GEV family of distributions when the sample size is lim-70

ited.71

The POT approach addresses these challenges by selecting a high threshold u, and72

defining as extremes observations above that threshold (the maxima, µ). The excesses73

follow approximately a generalised Pareto distribution (GPD), in accordance with Pickands’74

theorem (Pickands, 1975). The challenge in this case is to define an appropriate thresh-75

old: sufficiently high to isolate extremes yet sufficiently low to ensure an appropriate sam-76

ple size. Technical details of the BM and POT approaches are provided in the Support-77

ing Information text S1.78

While being a widely-used and versatile tool, implementing parametric EVT for79

studying climate extremes presents some challenges. The first is finding a suitable em-80

pirical definition for the extremes, as discussed above and also highlighted by Passow and81

Donner (2019). Second, using parametric EVT in a regression context to study extreme82

event drivers requires some a priori knowledge or assumption of the functional relation-83

ship between the drivers and the extremes. Defining this relationship a priori is often84

challenging and may result in simplistic or unrealistic assumptions about the relation-85

ship between the two. Third, parametric EVT does not make optimal use of all the sta-86

tistical information available, as it ignores all that is not an extreme (see also the dis-87

cussion in Passow & Donner, 2019).88

The literature offers extensions to the classic parametric EVT theory (Lucarini et89

al., 2016) as well as a number of non-parametric alternatives (Koenker & Hallock, 2001;90

Yee, 2015; Fasiolo et al., 2021). The main appeal of non-parametric techniques, such as91

quantile-based methods, is that they do not require an empirical definition of the extremes92

in the same way as parametric EVT does. Furthermore, they make use of all statisti-93

cal information available, rather than just the extreme data. This is particularly rele-94

vant when the interest lies in extreme events with a relatively short return period (e.g.95

windstorms recurring every 6 months or 1 year at a given location), for which the con-96

vergence of the GPD parameters may first be observed at quantiles larger than the one97

of interest.98

Here, we apply quantile generalised additive models (QGAMs, Fasiolo et al., 2021;99

Koenker, 2011) to the study of spatially compounding climate extremes and their drivers,100

namely extremes that occur (near-)simultaneously in geographically remote regions. The101

synchronised – or compound – occurrence of remote extremes is often associated with102

greater impacts than those of the corresponding individual extremes, for example expos-103

ing actors with international coverage to correlated losses (Mills, 2005) and imperilling104

global food security (Kornhuber et al., 2020). QGAMs are a non-parametric approach105

which is largely novel in the context of climate science. They are a recent extension to106

generalised additive models, bearing the promise of addressing the aforementioned three107

key limitations of parametric EVT. We benchmark QGAMs against other parametric108

and non-parametric approaches.109

To illustrate the methodology, we consider the repeated occurrence of wintertime110

cold spells in Eastern North America and wet or windy extremes in Western Europe, which111

we collectively term Pan-Atlantic compound extremes. The repeated occurrence of these112

extremes in recent winters (e.g. Coumou & Rahmstorf, 2012; Lee et al., 2015; Trenary113

et al., 2015; Dodet et al., 2019; Wild et al., 2015) has led to hypothesise a connection114

between the two sets of extremes (Messori et al., 2016; De Luca et al., 2020; Leeding et115

al., 2023; Messori & Faranda, 2023). Nonetheless, a systematic statistical characterisa-116

tion of such connection has largely been limited to simple co-occurrence statistics. The117

aim here is to provide a proof-of-concept for the use of QGAMs in the study of compound118

climate extremes. We therefore seek to evaluate the performance of QGAMs relative to119

alternative statistical models by applying them to a previously studied set of spatially120

compounding climate extremes, as opposed to investigating novel extreme occurrences121

and related large-scale atmospheric drivers. We further highlight that we do not aim to122
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use the regression models we present as self-standing forecasting tools. In other words,123

we do not aim to forecast extreme event occurrences using only information from sev-124

eral days before the extremes – as one would do in a conventional forecasting exercise.125

Rather, we see these models as useful tools to robustly quantify the statistical connec-126

tions between geographically remote extremes and investigate the roles of different po-127

tential dynamical drivers.128

The remainder of this paper is structured as follows: Section 2 provides a short in-129

troduction to parametric EVT regression, and introduces quantile-based non-parametric130

approaches as an alternative, including QGAMs. Section 3 defines the scope of this pa-131

per, and discusses practical concerns related to variable selection and model formulation.132

Section 4 compares the methods presented in previous sections, by studying the Pan-133

Atlantic compound extremes and their possible dynamical drivers, considering specif-134

ically the North Atlantic jet stream and the North Atlantic Oscillation (NAO). Section135

5 concludes the paper by providing a short summary of the findings and discussing the136

strengths and limitations of QGAM applications to study climate extremes.137

2 Extreme Value Statistical Models138

This section presents some parametric and non-parametric approaches to EVT re-139

gression and discusses how their performance can be compared in practice.140

2.1 Parametric EVT regression141

The relationship between the extremes and their likely precursors can be described142

parametrically through a generalised linear model, where the expected value of a BM143

or POT extreme at a time t, E(Mt) is a function of previous values of itself, Mt−k and144

other factors likely to affect its strength, Xt−k. Then:145

E(Mt|Mt−k, Xt−k) = Mt−kϕ+Xt−kβ. (1)146

Since the extremes are selected through the BM or the POT approach, paramet-147

ric EVT regression largely shares the same strengths and limitations of these approaches.148

2.2 Non-parametric EVT regression149

Non-parametric models are a broad class of methods which do not rely on a pre-150

determined functional relationship between the outcome and the predictor, but estimate151

it empirically (Härdle, 1990). Quantile-based models are a subset of non-parametric mod-152

els which are particularly suitable to the analysis of extremes, as they can be used to es-153

timate values in the tails of the distribution. A quantile Q(τ) is defined as the inverse154

of the cumulative distribution function, uniquely identifying the value of the cumulative155

distribution function corresponding to probability τ .156

2.2.1 Quantile Regression157

The linear relationship between a conditional quantile of an output and a predic-158

tor can be estimated non-parametrically through quantile regression (Koenker & Hal-159

lock, 2001; Koenker & Bassett, 1978). Quantile regression aims to estimate the condi-160

tional quantile of the dependent variable QY |X(τ) as a function of the regressors X, so161

that:162

QY |X(τ) = Xβτ (2)163

It solves the following minimisation problem:164
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minE{ρτ (Y −X∗β)}, (3)165

where ρτ = (τ − 1)zI(z < 0)+ τzI(z ≥ 0) is the so-called ”pinball loss”, punish-166

ing predictions which are further away from the quantile of interest. Here, z is the resid-167

ual and τ the quantile of interest.168

By estimating the effect of the regressors on an ensemble of extreme quantiles, it169

is possible to draw some conclusions on how the regressors affect the intensity of the ex-170

tremes. This is done without relying on the large sample asymptotics employed by para-171

metric EVT, thus without the need of reducing sample size.172

The main limitation of quantile regression is that it is a linear model, ignoring all173

possible non-linear effects of the regressors on the quantile of interest.174

2.2.2 Quantile Generalised Additive Models175

Generalised additive models (GAMs, Wood, 2017; Hastie & Tibshirani, 1986) are176

a broad family of non-parametric models describing the dependent variable as an addi-177

tive function of unknown smooths of the regressors. A smooth function is a function which178

is derivable up to certain order at each point throughout its domain. GAMs can be de-179

scribed as follows:180

g(E(Y )) = β0 + f1(X1) + f2(X2) + ...+ fi(Xi), (4)181

where E(Y ) is the expected value of the outcome, g() is the link function, β0 is an182

intercept, and f1(X1) + f2(X2) + ...+ fi(Xi) are smooth functions of the predictors.183

GAMs do not require determining the functional relationship between the outcome184

and the predictors a priori. This is instead determined empirically, through a data-driven185

process testing a large number of possible combinations. First, a set of bases is chosen186

for the predictors, so that the original covariates X1, X2...Xi are embedded into a larger187

feature space X∗ including higher order terms of the original covariates. Then, the best188

model is chosen out of the expanded feature space by minimising a loss function of choice,189

L(X∗), while penalising for excessive complexity. In the absence of a link function, a nat-190

ural choice of loss function is the quadratic loss, so the best model is chosen according191

to the following minimisation:192

minE{(Y −X∗β)2 + λJ}, (5)193

where (Y−X∗β)2 is the sum of squared residuals, λ is a smoothing parameter and194

J is a penalty term. A common penalty term is J =
∫
f”(x)2dx, with other forms of penalty195

also being possible (James et al., 2022). J is larger when the function becomes wigglier,196

punishing excessive functional complexity. Choosing larger values of the smoothing pa-197

rameter λ pushes the model towards a simpler functional form, so that λ → ∞ makes198

GAM equivalent to linear regression. The value of λ is usually determined empirically,199

through generalised cross-validation or restricted maximum likelihood. For technical de-200

tails, the reader is referred to Wood (2017).201

Classic GAMs as expressed in equation 4 model the expected value of the outcome202

and not of the maxima, making them unsuitable for extreme value analysis. One approach203

could be to model the expected value of a series of independent and identically distributed204

maxima (M1,M2, ...,MN ), by selecting the maxima through a BM or a POT approach;205

however, this reintroduces into the model the limitations related to those approaches.206

An alternative approach is to model a conditional quantile of the outcome as a function207

of the predictors, as in quantile regression: this approach goes under the name of quan-208

tile generalised additive model (QGAM).209
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QGAMs are a recent extension of GAMs and quantile regression, which model a210

chosen conditional quantile of interest as a sum of unknown smooth functions of the re-211

gressors (Fasiolo et al., 2021). This builds on earlier theoretical work from Koenker (2011).212

QGAMs can be expressed as follows:213

QY |X(τ) = f1(X1) + f2(X2) + ...+ fi(Xi), (6)214

where QY |X(τ) is a conditional quantile of choice of the dependent variable. They215

aim to minimise a loss function similar to the one described by equation 3,216

minE{ρ∗τ (Y −X∗β)}, (7)217

where ρ∗τ is defined as:218

ρ∗τ = (τ − 1)
z

σ
I(z < 0) + λlog(1 + e

z
λσ ) (8)219

ρ∗τ is the extended log-f loss, which, similarly to the pinball loss, punishes predic-220

tions which are further away from the quantile of interest. σ > 0 is a scale parameter221

and λ > 0 is a penalty term, meant to prevent excessive functional complexity. As λ222

approaches 0, ρ∗τ becomes equivalent to ρτ , the pinball loss used in quantile regression223

(Fasiolo et al., 2021).224

Similarly to quantile regression, QGAMs do not make any assumptions on the dis-225

tribution of the extremes, and only require defining a set of quantiles of interest to study226

the effect of the regressors on the output. Furthermore, similarly to GAMs, they model227

the relationship between the output and the regressors empirically, without requiring any228

previous knowledge of the functional relationship between the two.229

A possible limitation of GAMs and QGAMs is that they are additive in nature, and230

even though interactions between terms may be modelled, every interaction has a large231

effect on the computational burden of the model, thus limiting de facto the number of232

regressors which may be added to the model.233

2.3 Benchmarking EVT models234

In order to compare the performance of the EVT models presented so far, we ap-235

ply them to full-complexity climate data. We specifically consider the association between236

cold spells in North America and wet or windy extremes in Western Europe. Following237

previous literature looking at these extremes (Messori et al., 2016; De Luca et al., 2020;238

Leeding et al., 2023; Messori & Faranda, 2023), we consider surface extremes occurring239

one to a few times per year (e.g. 1% - 5% extreme quantiles), rather than extreme events240

with multiannual return times. A useful statistical model should be able to verify whether241

any relation between surface temperature in North America and surface extremes in West-242

ern Europe is present, and, if this is the case, make use of this and additional informa-243

tion on the state of the North Atlantic atmospheric circulation to improve the predic-244

tion of said extremes. In particular, we identify three key characteristics of a useful EVT245

model in this context:246

1. It should provide a spatially resolved prediction of extremes in Western Europe,247

which is more accurate than competing models, given that similar information is pro-248

vided.249

2. It should provide a consistent estimate of the spatially resolved return levels of250

the extremes in Western Europe, where consistency is the defined as the property of an251

estimator whose probability of being arbitrarily close to the true value tends to one for252

increasing sample size.253
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3. It should improve its performance whenever relevant information is added to the254

model.255

The following steps are implemented to assess the performance of the models:256

- For objective 1, we compute and compare the pseudo R2 quantile regression good-257

ness of fit introduced by Koenker and Machado (1999). This is defined as:258

R2
pseudo = 1− Lcomplete

Lbaseline
, (9)259

where Lcomplete is the pinball loss of the model of interest, and Lbaseline is the pinball260

loss of a model using the unconditional quantile QY (τ) of the anomalies at a given grid261

point as a fixed prediction for all observations at that same grid point.262

- For objective 2, we define P̂O as the percentage of overpredictions in the test sam-263

ple. An unbiased EVT model should overpredict the value of the output a percentage264

of times corresponding to the probability τ of the target conditional quantile QY |X(τ),265

so that P̂O = τ . An estimate of the bias of the model is then given by the absolute dif-266

ference between the percentage of overpredictions P̂O and τ , so that267

B̂ias = |P̂O − τ | (10)268

- For objective 3, we first use the models to make spatially resolved predictions of269

extreme wind or precipitation events in Western Europe based on the latitude and the270

longitude of each location. Then, we add some information on the upstream large-scale271

atmospheric circulation and compare the results. A model fulfilling objective 3 is expected272

to progressively improve its performance, given that more information is provided and273

that this information has been identified as relevant to the extremes in previous stud-274

ies (Messori et al., 2016; Leeding et al., 2023).275

Holdout cross-validation is performed by splitting the dataset into three parts: a276

training set, a validation set and a test set, containing approximately 50%, 25% and 25%277

of the available observations, respectively. The random split uses seasonal data blocks278

(we focus on the winter season, see Sect. 3) to minimise information leakage between the279

different sets. The models are trained using the training set, with feature selection aided280

by the use of the validation set in addition to previous research. All metrics of model281

performance are computed based on the test set.282

3 Defining Pan-Atlantic Compound Extremes and Prediction Mod-283

els284

Atmospheric data are taken from the ERA 5 global reanalysis (Hersbach et al., 2020)285

with a daily time resolution and a 0.5◦ horizontal resolution. We consider the period Novem-286

ber 1959–January 2022, and the months of November, December, January and Febru-287

ary (NDJF). The daily NAO values, are taken from the NOAA online archive (NOAA/288

National Weather Service, 2022). Cold spells in North America are defined as days with289

2m temperature (t2m) anomalies relative to the daily climatology, area-averaged over290

30◦ - 45◦ N, 100◦ - 70◦ W, below the 5th quantile of the distribution. The daily clima-291

tology is obtained by applying a 7 days running mean and then averaging over each cal-292

endar day over the full time period. The domain of the North American cold spells fol-293

lows Messori et al. (2016) and is illustrated in Figure 1, together with the t2m anoma-294

lies associated with the selected cold spells. To decluster the extremes, we require that295

at least five days elapse between separate cold spells. Whenever several days within a296

five-day period meet the criteria for being classified as a cold spell, only the first day is297

selected. The choice of selecting the first day rather than the coldest aims to prevent the298

skill of the statistical models from being affected by the duration of the cold spells.299
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Figure 1. Domain of North American cold spells and mean t2m anomaly during cold spells.

Darker shades are associated with larger negative t2m anomalies.

For Western Europe, we focus on daily mean 10m wind speed and daily precipi-300

tation over Iberia and Western France: regions that Messori et al. (2016) and Messori301

and Faranda (2023) highlighted as experiencing large anomalies following the North Amer-302

ican cold spells. We test the statistical model predictions on the 95th and 99th quan-303

tiles of the local distributions of these two variables. These correspond to return peri-304

ods of approximately six times and once per winter season, respectively.305

Based on previous work, we consider the characteristics of the Polar – or eddy-driven306

– jet stream over the North Atlantic region as a possible predictor of the European ex-307

tremes (Messori et al., 2016; Leeding et al., 2023). Jet stream speed is defined as the largest308

zonally averaged zonal wind anomaly from a seven-day smoothed climatology at 250 hPa309

over a North Atlantic domain spanning 30◦ - 75◦ N, 70◦ - 5◦ W. The location of the jet310

is given by the latitude displaying the largest zonal mean zonal wind anomaly as defined311

above. The choice of time lag of temperature in North America and zonal wind over the312

North Atlantic to be included in the models has been aided by cross-validation. The lag313

is relative to the prediction date for European extremes. Only one lag for each variable314

is included in the models in order to avoid multicollinearity issues, as both t2m in North315

America and the above jet indices display a high degree of autocorrelation.316

We provide the statistical models with three levels of information for predicting t2m317

and daily mean 10m wind speed in Western Europe:318

- Basic models, making predictions as a function of time, latitude, longitude, and319

a training-set based seasonal climatology, only.320

- Cold spell models, where t2m in North America from two days prior to the pre-321

diction date is added to the regressors.322

- Cold spell and jet stream models, where the NAO and strength and location of323

the Polar jet from one day prior are also added to the regressors. The NAO values are324

included here as a way to control for possible confounders affecting North American sur-325

face temperatures and surface weather in Western Europe, which might otherwise lead326

to biased estimates of the association between the two.327

For each information level, we build three models: a QGAM, a linear quantile re-328

gression (QREG) and a POT model. Therefore, a total of nine models is estimated for329

each target variable in Western Europe. The models’ performance on the test data is com-330

pared as outlined in Subsection 2.3. Technical details including the exact formulation331

of each model can be found in Supporting Information text S2.332
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4 Non-parametric EVT in practice: a QGAM approach to the study333

of Pan-Atlantic Compound Extremes334

This section applies the models presented in Sections 2 and 3 to study Pan-Atlantic335

compound extremes and their drivers. It aims to support previous analyses of the con-336

nection between cold spells in North America and wet or windy extremes in Europe (Messori337

et al., 2016; De Luca et al., 2020; Leeding et al., 2023; Messori & Faranda, 2023) through338

robust statistical estimation, and verify whether QGAMs outperform alternative statis-339

tical models.340

A first overview of the relation between cold spells in North America and wet or341

windy extremes in Western Europe can be obtained by means of a composite analysis342

(Fig. 2). There is a heightened frequency of positive anomalies in 10m wind speed and343

precipitation in Western Europe in conjunction with cold spells in North America (Fig.344

2a, b, c), with the largest effect in Western Europe being observed immediately after the345

cold spell in North America. This is particularly true for middle-sized to large positive346

anomalies, pointing to the possibility of near-simultaneous extremes in the two regions.347

Fig. 2d, e, f corroborate this hypothesis, by showing how the mean, the 95th and the 99th348

quantiles of daily mean 10m wind speed and daily precipitation in Western Europe are349

significantly higher than usual in the aftermath of North American cold spells (Fig. 2d-350

f).351
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Association between cold winter days in North America and near−surface weather in Western Europe

Figure 2. a-c: Kernel density estimate of daily mean 10m wind speed (left) and daily precip-

itation anomalies (right) in Western Europe: climatological distribution (blue) and distribution

of events two days before (a), the same day (b), and two days after (c) a cold spell in North

America (red). Mean (d-e), 95th quantile (f-g) and 99th quantile of (h-i) of daily mean 10m

wind speed (left) and daily precipitation anomalies (right) in Western Europe 15 days before and

after a cold spell in North America. The solid black lines are the overall mean/quantile, while

the dashed lines mark approximate 95% significance levels, computed by means of a Monte Carlo

permutation test with 20000 replications.
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We next test whether QGAMs and the other models introduced in Section 2 can352

leverage this association to make statistical forecasts of extreme events in Europe (95th353

and 99th quantiles of daily mean 10m wind speed and daily precipitation at locations354

in Iberia and Western France). We present the results for the three QGAM models de-355

scribed in Section 3 (basic, cold spell and cold spell and jet stream), and compare their356

performance to the quantile regression and POT models.357

QGAMs can identify the relation between t2m in North America and weather ex-358

tremes in Western Europe. Figure 3 shows the partial effect of t2m in North America359

on near-surface weather in Western Europe, when holding all other variables included360

in the model constant. Lower temperatures in North America are significantly associ-361

ated with higher values of the extreme quantiles and therefore more extreme weather events362

in Western Europe. This effect is at its strongest for temperature anomalies of two stan-363

dard deviations below the mean, i.e. cold spells. In the model also including jet stream364

and NAO information (Fig. 3e-h), the effect of North American temperatures is weaker365

due to the fact that part of the effect is likely mediated by the jet and/or NAO.366
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Partial effect of temperature at 2m height in North America on near−surface weather in Western Europe

Figure 3. Partial effect of t2m anomalies in North America at lag -2 days on the 95th and

99th quantiles of daily mean 10m wind speed (red) and daily precipitation (blue) in Western

Europe generated through QGAMs (standardised variables). The effect is measured in terms

of standard deviations of the dependent variable, when holding all other variables in the model

fixed. a-d: Cold spell model, holds latitude, longitude and time-variable fixed. e-h: Cold spell

and jet stream model, holds all of the above, NAO, and strength and location of the jet stream

fixed. The p-values indicate the overall significance of the smooth term in the respective model.

Figure 4 shows the bias associated with the prediction of extreme quantiles of daily367

mean 10m wind speed in Western Europe through QGAMs. Ideally, the bias of our mod-368

els should be held under 1-τ for most grid points, since a model with bias greater than369

1-τ has a larger bias than a model providing a systematic underprediction. At the same370

time, zero bias is not an aim itself due to the variance-bias trade-off, and thus some bias371

is to be expected. Figure 4 suggests that QGAMs mostly have a bias lower than 1-τ when372

predicting daily mean 10m wind speed for most grid points. The models predicting the373

95th quantile may appear to perform better than those predicting the 99th quantile, but374
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this is mostly a question of scale, since the figure colourscale is always capped at 1-τ ,375

which is lower for the 99th than for the 95th quantile.376
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QGAM bias: Daily 10m Wind Speed

Figure 4. Estimated bias of QGAMs in terms of absolute distance between the percentage of

overpredictions (P̂O) and the theoretical quantile (τ). Estimation of 95th quantile of daily mean

10m wind. Basic model (a), model with information on t2m in North America at lag -2 days (b),

model with same information as above plus jet stream and NAO information at lag -1 days (c).

d-f : As a-c, but for the 99th quantile of daily mean 10m wind speed. In each row, the colourscale

is capped at 1-τ .
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Similar conclusions can be drawn for daily precipitation extremes (Figure 5). The377

bias of the models at most grid points is acceptable, as it is well under the 1-τ thresh-378

old.379
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Figure 5. As Fig. 4 but for daily precipitation.

Figures 6 and 7 show the performance of QGAMs in terms of pseudo R2. The pseudo380

R2 can take any values between one and minus one, where one represents a perfect model381

and minus one the worst possible model. Here, a pseudo R2 over zero indicates that the382

model is better than the seasonal climatology of the quantile of interest at the given grid383

point, whereas values under zero indicate that it performs worse than the seasonal cli-384

matology. Stippling is added to grid points with a pseudo R2 lower than zero.385

All QGAMs predicting extreme quantiles of daily mean 10m wind speed appear386

to gradually improve their performance as they are provided with more information on387

the upstream large-scale atmospheric state. Sizeable gains can be observed already when388

adding information on t2m to the models, so that cold spell models (Figures 6 b and e)389

are better than the seasonal climatology alone at most grid points. However, the largest390

gains occur at the last step, after the information on the state of the North Atlantic and391

the Polar jet is added. Figures 6 c and f show that cold spell and jet stream models are392

better than the seasonal climatology alone at all grid points apart from on the Pyrenees393

and some mountainous areas in South-Eastern Spain, where the difference between the394

two models is in any case small.395
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QGAM performance: Daily 10m Wind Speed

Figure 6. As Figure 4 but for pseudo R2. Stippling indicates that the QGAM performs worse

than the seasonal climatology of the quantile of interest.

The overall trend is similar for models predicting extreme quantiles of daily pre-396

cipitation. All the models in Figure 7 show gradual improvements as more information397

is added, with the largest improvement occurring as above at the last step. This sug-398

gests that information on the state of the North Atlantic atmospheric circulation is key399

to the predictability of surface extremes in Western Europe following North American400

cold spells. The basic model is approximately equivalent to the seasonal climatology of401

the quantile, whereas the cold spell and jet stream models systematically outperform the402

seasonal quantile (and the base model) for both 10m wind speed and precipitation. Even403

in the case of precipitation, QGAMs perform poorly in some mountainous areas, sug-404

gesting that they may have difficulties in accounting for the effect of local orographic fea-405

tures.406

–13–



manuscript submitted to Journal of Advances in Modelling Earth Systems (JAMES)

35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5

−10  −8  −6  −4  −2   0

a

35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5

−10  −8  −6  −4  −2   0

b

35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5

−10  −8  −6  −4  −2   0

c

−0.2000

−0.1000

0.0000

0.1000

0.2000
Pseudo R2

95th percentile

35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5

−10  −8  −6  −4  −2   0

d

35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5

−10  −8  −6  −4  −2   0

e

35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5

−10  −8  −6  −4  −2   0

f

−0.2000

−0.1000

0.0000

0.1000

0.2000
Pseudo R2

99th percentile
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Figure 7. As Figure 5 but for pseudo R2. Stippling indicates that the QGAM performs worse

than the seasonal climatology of the quantile of interest.

Figure 8 and 9 compare the performance of QGAMs to conventional POT mod-407

els. The same set of variables is used for the two models, and a new Pseudo R2 is com-408

puted using the POT models as baseline. A negative pseudo R2 at a given grid point is409

to be interpreted as POT models performing better for that grid point, whereas a pos-410

itive pseudo R2 suggests that the QGAMs perform better.411
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Figure 8. As Figure 6, but using the linear POT model as baseline for the computation of the

pseudo R2. Stippling indicates that the QGAM performs worse than the baseline model.
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QGAMs become gradually better than POT models at most grid points as more412

information is added to the models, both when predicting daily mean 10m wind speed413

(Figure 8) and daily precipitation (Figure 9). This suggests that QGAMs are better than414

POT models at modelling the non-linear effects of upstream atmospheric factors on the415

surface extremes as a whole. However, some regional differences can be observed. In the416

case wind, QGAMs are clearly superior for Western and Central Iberia, whereas the dif-417

ference is smaller in Eastern Iberia and Western France. POT models outperform QGAMs418

in mountainous areas and in North-Western France. In the case of precipitation, QGAMS419

outperform POT models almost everywhere, with the exception of North-Western Iberia420

and the Pyrenees. The fact that the QGAMs struggle in mountainous areas is consis-421

tent with what found for the comparison with the seasonal climatology of the quantile422

(Figures 6 and 7)423
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Figure 9. As Figure 7, but using the linear POT model as baseline for the computation of the

pseudo R2. Stippling indicates that the QGAM performs worse than the baseline model.

–15–



manuscript submitted to Journal of Advances in Modelling Earth Systems (JAMES)

Figures 10 and 11 display a comparison between QGAMs and QREG models. The424

comparison is performed similarly to the previous case, where in this case the QREG mod-425

els are used as baseline for the Pseudo R2 computation.426
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Figure 10. As Figure 6, but using the quantile regression model as baseline for the computa-

tion of the pseudo R2

The difference between the two models is overall smaller in this case, with QREG427

models generally performing better for simpler models and QGAMs improving their per-428

formance relative to QREG models as more information is added (Figures 10 and 11).429

A difference between the models predicting daily mean 10m wind speed and those pre-430

dicting daily precipitation is that in the first case QGAMs show significant improvements431

compared to QREG models only when information on both t2m in North America and432

the Polar jet stream and NAO are added to the model (Figure 10), whereas in the sec-433

ond case the trend is less clear, as QGAMs outperform QREG models at most locations434

already when information on t2m is added to the model (Figure 11). In the cold spell435

and jet stream models, QGAMs outperform QREG models in inland Iberia, perform sim-436

ilarly to QREG models on the coast in North-Western France, and are outperformed in437

the Pyrenees and other mountainous regions (Figures 10 c,f and 11 c,f). This difference438

appears to be consistent across output variable and quantile of choice.439
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Figure 11. As Figure 7, but using the quantile regression as baseline for the computation of

the pseudo R2

An overview of the overall performance of the cold spell and jet stream models in440

terms of Pseudo R2 is given in Table 1. As suggested from previous figures, QGAMs per-441

form overall better than conventional alternatives (corresponding to positive Pseudo R2
442

values in the table 1) when both t2m and atmospheric circulation information is provided.443

This holds in all cases bar when estimating the 95th quantile of 10m wind speed, where444

QREG models perform approximately at the same level.445

Table 1. Overall pseudo R2 of cold spell and jet stream QGAMs used to forecast the 95th

and 99th quantiles of daily mean 10m wind speed and daily precipitation compared to different

baseline models.

Variable Baseline model 95th quantile 99th quantile

Daily mean 10m wind speed Quantile of seasonal climatology 0.0476 0.0495
Daily mean 10m wind speed POT 0.0316 0.0353
Daily mean 10m wind speed QREG -0.0036 0.0085
Daily precipitation Quantile of seasonal climatology 0.0982 0.0830
Daily precipitation POT 0.0713 0.0518
Daily precipitation QREG 0.0125 0.0155

In the supporting information (Figures S1-S8), we repeat the same analysis per-446

formed in this section while adding the previous lag of the variable of interest to the mod-447

els. This is done to show how the comparison between models changes when we correct448

for the autocorrelation in the extremes. This autocrorrelation is ignored here since the449

models do not make use of any information on the outcome variable of interest in Eu-450

rope, except for the training set-based seasonal climatology. The trends observed in the451

main analysis largely hold even in the supporting materials, with the key difference be-452

ing that QGAMs improve further in comparison to other models.453
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5 Discussion and Conclusions454

This paper has introduced QGAMs (Fasiolo et al., 2021) as an alternative to con-455

ventional parametric methods for the analysis of spatially compounding climate extremes.456

Through a case study on pan-Atlantic cold spells in North America and wet or windy457

extremes in Europe, it has been shown that non-parametric quantile-based methods gen-458

erally forecast near-surface weather extremes with a short return period more accurately459

than through a conventional POT approach (Tables 1 and S1). The difference between460

QGAMs and QREG models is relatively small, with QGAMs generally being superior461

when introducing information on the state of Polar jet and the North Atlantic atmosphere462

into the models (Figures 10 and 11 and Tables 1 and S1). This suggests that QGAMs463

may be recommended over other techniques when a larger number of drivers is explored.464

The advantage of QGAMs over alternative techniques widens when information on the465

autocorrelation of the extremes is added to the models (Figures S7 and S8).466

Despite the overall superiority of QGAMs, some interesting regional differences could467

be observed, with QGAMs performing at their best in inland Iberia, and at their worst468

in the Pyrenees and in other mountainous regions (Figures 6 and 7). The poor perfor-469

mance of QGAMs in those regions is probably to be ascribed to the lack of orographic470

information in the models and the relatively coarse spatial resolution, which make it hard471

for QGAMs to reconstruct realistic spatial patterns. The fact that other models seems472

to suffer less from this may be due to the fact that simpler linear models give greater473

relative importance to the seasonal climatology compared to spatial features.474

Non-parametric quantile methods have additional applications for the analysis of475

near-surface extremes, which we have touched upon in this paper. First, they may be476

used to assess the impact of a particular driver on a given quantile of a downstream at-477

mospheric variable of interest. This is particularly useful for spatially compounding ex-478

tremes, namely extremes that occur (near-)simultaneously in geographically remote re-479

gions. In this study, we used QGAMs to show that lower area-averaged 2m temperatures480

in North America are significantly associated with higher values of the extreme quan-481

tiles of daily mean 10m wind speed and daily precipitation in Western Europe (Figures482

2 and 3). Second, non-parametric quantile-based methods may be used to provide ranges483

of uncertainty to deterministic numerical forecasts. In particular, Figures 4 and 5 show484

that QGAMs overpredict the value of the variable of interest a percentage of times close485

to τ , thus displaying a good empirical coverage of the upper boundary of uncertainty when486

used for estimation of the range of uncertainty of the forecast.487

This paper focused on a specific case study of previously studied spatially compound-488

ing extremes. We considered a limited range of conventional models for comparison to489

QGAMs, and only tested a small number of possible large-scale dynamical drivers of the490

extremes. Our work should be viewed as a proof-of-concept to show the potential of QGAMs491

compared to conventional parametric models for the study and understanding of spa-492

tially compounding extremes, rather than an attempt to build a statistical forecast model493

or to investigate novel extreme occurrences and the related large-scale atmospheric drivers.494

We also note that, even though QGAMs perform better than linear POT models in fore-495

casting near-surface extremes with short return periods, it does not mean that they are496

equally effective for extremes with longer return periods. More research may be needed497

to verify the robustness of QGAMs when analysing extremes of this nature.498

The statistical analysis in this paper should also be contextualised relative to pre-499

vious research on Pan-Atlantic compound extremes (Messori et al., 2016; De Luca et al.,500

2020; Leeding et al., 2023; Messori & Faranda, 2023). Our results strengthen the hypoth-501

esis of a connection between wintertime North American cold spells and wet or windy502

extremes in Western Europe, by showing that introducing information on surface tem-503

perature in North America has a clear effect in the model and significantly improves the504

prediction of extreme quantiles of 10m wind and precipitation in Iberia and Western France505

(Figures 3, 6, 7). The fact that the effect of temperature in North America is weakened506

but still significant when adding information on the Polar jet and the state of the North507

Atlantic atmosphere to the models, points to the presence of teleconnections which can-508
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not be fully explained by a simple causal flow in which cold spells influence the behaviour509

of the Polar jet, which in turn affects surface weather in Europe. This might suggest the510

presence of more complex or multiple pathways through which Pan-Atlantic compound511

extremes may be engendered.512

6 Open Research513

The ERA 5 data used in this study is freely available from the Copernicus Climate514

Change service at https://doi.org/10.24381/cds.adbb2d47 (Hersbach et al., 2020)515

and https://doi.org/10.24381/cds.bd0915c6(Hersbach et al., 2020). The daily NAO516

index is available through the NOAA online archive at https://www.cpc.ncep.noaa517

.gov/products/precip/CWlink/pna/nao.shtml (NOAA/ National Weather Service,518

2022). The models have been built and tested with the help of open-source R Statisti-519

cal Software (R Core Team, 2021). All software is freely available through CRAN at https://520

cran.r-project.org/. More details can be obtained by contacting the corresponding521

author L.Olivetti, leonardo.olivetti@geo.uu.se.522
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S2), and additional figures and tables where the analysis in the main paper is repeated

accounting for the autocorrelation in the residuals, assuming an AR 1 process.

Text S1. Parametric EVT

Block Maxima approach

BM follow the GEV family of distributions, which has the following density function

(Coles, 2001):

f(x) =
1

σ

(
1 + ξ

x− µ

σ

)− 1
ξ
−1

e−(1+ξ x−µ
σ )

− 1
ξ

,

where µ is the location parameter, σ is the scale parameter and ξ is the shape parameter.

The BM approach aims to reliably estimate the shape parameter ξ. This is because ξ

can be used to infer how often a certain value of the distribution is likely to occur (return

level), and obtain information on the thickness of the tail of the distribution. Based on

the value of ξ, the GEV family may be subdivided into three subfamilies of distributions:

- ξ < 0 corresponds to the Weibull family. Distributions within this family have a

well-defined upper bound and light tails.

- ξ = 0 corresponds to the Gumbel family. Distributions within this family have no

theoretical upper bound, but a fast decaying exponential tail, which makes extreme events

above a certain threshold very unlikely to occur.

- ξ > 0 corresponds to the Fréchet family. Distributions within this family have heavy,

slowly decaying tails and no upper bound, which makes it impossible to draw conclusions

on the maximum magnitude of the extremes.
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Peak-Over-Threshold approach

The excesses, defined as the difference between the selected maxima Mi and the thresh-

old u, given independence, belong asymptotically to the generalised Pareto distribution

(GPD), in accordance with Pickands’ theorem (Pickands, 1975).

The probability density function of the GPD is defined as follows (Coles, 2001):

f(x) =
1

σ

(
1 + ξ

x− µ

σ

)− 1
ξ
−1

,

where µ is the location parameter, σ is the scale parameter and ξ is the shape parameter.

The shape parameter can be interpreted in relation to the tails of the distribution similar

to the BM approach, where a larger value of ξ is associated with heavier tails. Given the

same underlying distribution, the shape parameter estimated through the BM and the

POT approach is approximately the same (Coles, 2001).

S2. Model Formulation

Below, we describe the statistical models used in the main text and Figures in the

supporting materials. The same models are used for the prediction of daily mean 10m

wind speed and daily precipitation.

QGAM models presented in the Main Text

Base model:

QY |X(τ) = s(lat, lon, k = 20, d = 2) + s(time, k = 5)

+seaonsal quantile climatology +month, (1)
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where k is the basis dimension, s is a smooth, and d the dimension of the product

smooth. Month is treated as a categorical variable.

Cold spell model:

QY |X(τ) = s(lat, lon, k = 20, d = 2) + s(time, k = 5) +month

+seaonsal quantile climatology + s(US temp lag2, k = 5) (2)

cold spell and jet stream model:

QY |X(τ) = s(lat, lon, k = 30, d = 2) + s(time, k = 5) +month

+seaonsal quantile climatology + s(US temp lag2, k = 5)

+s(Jet strength lag1, k = 10) + s(NAO lag1, k = 10)

+s(lat jet lag1, k = 10) + s(jet proximity, k = 10), (3)

where jet proximity is given by the distance in degrees between the latitude of the

maximum zonally averaged jet and the latitude of the grid point of interest.

QREG models presented in the Main Text

Base model:

QY |X(τ) = lat+ lon+ lat · lon+ seaonsal quantile climatology + year +month (4)

Cold spell model:
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QY |X(τ) = lat+ lon+ lat · lon+ seaonsal quantile climatology

+year +month+ US temp lag2 (5)

Cold spell and jet stream model:

QY |X(τ) = QY |X(τ) = lat+ lon+ lat · lon+ seaonsal quantile climatology

+year +month+ US temp lag2 + Jet strength lag1 +NAO lag1

+lat jet lag1 + jet proximity (6)

POT models presented in the Main Text

Since information on previous lags of the outcome in Europe apart from seasonal quan-

tile climatology is not available to the model, declustering is based on the lag -1 of the jet

speed, which is the variable most closely correlated to the extremes in 10m wind speed

and precipitation.

A threshold is set at the 90th quantile of the outcome of interest, and values above

that are considered extreme. Then declustering is performed, by requiring that at least

five days elapse between days with lag -1 of the jet speed over the 90th quantile of the

seasonal climatology. Whenever several days within 5 days of each other meet the criteria

for being classified as extreme, only the first day to meet the criteria is selected.
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Otherwise, the same regressors as QREG models are used, but predicting the location

parameter of the GPD. The shape parameter is held fixed. The estimated parameters are

then used to generate the predictions, assuming that extremes follow a GPD.

QGAMs presented in the Supporting Information

As the QGAMs in the main paper, but adding s(yij lag 1, k = 5) as a regressor to all

the models, where yij is the outcome variable of interest at the grid point of interest, i.e.

lag -1 of 10m wind speed for the wind speed models, and lag -1 of precipitation for the

precipitation models.

QREG models presented in the Supporting Information

As the QREG models in the main paper, but adding yij lag 1 as a regressor to all the

models.

POT models presented in the Supporting Information

Declustering is based on lag -1 of the outcome of interested instead of on the speed of

the jet, following the same declustering technique described for the models in the main

paper.

Otherwise, as the POT models in the main paper, but adding yij lag 1 as a regressor

to all the models.
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Results of the autoregressive models

The figures below, differently from those in the main paper, make use of the last lag of the

outcome variable of interest among the regressors (AR 1 models) in addition to all other infor-

mation, and in the case of the POT models also use information of previous lags for declustering

purposes (see above for details).
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Figure S1. Estimated bias of QGAMs in terms of absolute distance between the percentage

of overpredictions (P̂O) and the theoretical quantile (τ). a-c: Estimation of 95th quantile of

daily mean 10m wind speed. Basic model with no information on the state of the North Atlantic

atmosphere (a), model with information on surface temperature in North America at lag -2 days

(b), model with same information as above plus speed and location of the Polar jet stream at

lag -1 days (c). d-f : As a-c, but for the 99th quantile of daily mean 10m wind speed.
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Figure S2. As Fig. S1 but for daily precipitation.
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Figure S3. As Figure S1 but for pseudo R2
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QGAM performance: Daily Precipitation

Figure S4. As Figure S2 but for pseudo R2
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Figure S5. As Figure S3, but using the linear POT model as baseline for the computation of

the pseudo R2
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QGAM vs POT performance: Daily Precipitation

Figure S6. As Figure S4, but using the linear POT model as baseline for the computation of

the pseudo R2
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Figure S7. As Figure S3, but using the quantile regression model as baseline for the compu-

tation of the pseudo R2
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Figure S8. As Figure S4, but using the quantile regression as baseline for the computation of

the pseudo R2

Table S1. Overall pseudo R2 of cold spell and jet stream QGAMs used to forecast the 95th

and 99th quantiles of daily mean 10m wind speed and daily precipitation compared to different

baseline models.
Variable Baseline model 95th quantile 99th quantile
Daily mean 10m wind speed Quantile of the climatology 0.2210 0.2118
Daily mean 10m wind speed POT 0.1733 0.1302
Daily mean 10m wind speed QREG 0.0047 0.0209
Daily precipitation Quantile of the seasonal climatology 0.2171 0.2005
Daily precipitation POT 0.1850 0.1574
Daily precipitation QREG 0.0295 0.0443
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