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Key Points:6

• Study examines the mental and behavioral disorder response to changing environ-7

mental conditions during summer months in North Carolina, USA.8

• Socio-demographics compared to environmental factors were more predictive of9

mental health outcomes in adolescents.10

• Findings indicate the effect of place-based differences in a youth’s mental health11

response to extreme heat.12
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Abstract13

Growing evidence indicates that extreme environmental conditions in summer months14

have an adverse impact on mental and behavioral disorders (MBD), but there is limited15

research looking at adolescent populations. The objective of this study was to apply a16

machine learning approach to identify key environmental conditions that predicted MBD-17

related emergency room (ER) visits in adolescents in select cities (i.e., Asheville, Char-18

lotte, Greenville, Hickory, Raleigh, Wilingminton) in North Carolina. Daily MBD-related19

ER visits, which totaled over 42,000 records were paired with daily environmental con-20

ditions, including hot ambient temperatures, as well as sociodemographic variables to21

determine if certain conditions lead to higher vulnerability to exacerbated mental health22

conditions. Four machine learning models (i.e., generalized linear model, generalized ad-23

ditive model, extreme gradient boosting, random forest) and a distributed lag non-linear24

model (DLNM) were used to assess the impact of multiple environmental and sociode-25

mographic variables had on MBD-related ER visits. The best-performing machine learn-26

ing model and a DLNM was then applied to each of the six individual cities. In the all-27

cities scenario, sociodemographic variables contributed the greatest to the overall MBD28

prediction. In the individual cities scenario, four cities had a 24-hour difference in the29

maximum temperature, and two of the cities had a 24-hour difference in the minimum30

temperature, maximum temperature, or NDVI as a leading predictor of MBD emergency31

department visits. Results can inform the use of machine learning models for predict-32

ing MBD during high-temperature events and identify variables that affect youth men-33

tal and behavioral responses during these events.34

Plain Language Summary35

There is new evidence showing that really hot weather during the summer might36

make it harder for people with mental and behavioral disorders to cope. But not much37

research has been done on adolescents. This study used machine learning to look at data38

from over 42,000 visits to the emergency room for mental and behavioral issues in ado-39

lescents in North Carolina. We examined the association between adolescent mental and40

behavioral disorders and environmental conditions using different types of computer mod-41

els. The research found that in some cities, environmental factors like the temperature,had42

a big impact, while in other cities, factors like where people lived and their sociodemo-43

graphic backgrounds were more important. Overall, this study suggests that really hot44

weather might make it harder for young people with mental and behavioral disorders to45

cope, but this might not be the case everywhere. And things like where people live and46

their backgrounds also play a big role in their mental health.47

1 Introduction48

The burden of mental illness in the United States is substantial; 1 in 5 individu-49

als experience a diagnosable mental illness each year [1]. Instances of mental health are50

the highest among young adults aged 18-25, with 1 in 3 reporting having a mental ill-51

ness [50]. The direct cost of addressing and treating mental illness in the United States52

is growing annually, with the annual cost increasing by 40% in the last seven years [52][50].53

Additionally, nearly $300 billion is estimated to be lost to the cost of disability payments54

and workers’ productivity [46].55

Environmental conditions such as air temperature have been associated with men-56

tal health disorders [38][35][5][59], but the majority of this work has been focused on adults57

rather than youth populations [56]. Despite a strong association, there is no universal58

temperature threshold for when mental health begins to be negatively affected. Researchers59

have identified a strong association between high ambient air temperatures (24.5-28°C)60

over a period of up to seven days and a strong increase (26-29%) in mental and behav-61

ioral disease emergency visits compared to days below this threshold [59][47]. Research62
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has also observed a positive association between increased hospital admissions for MBDs63

(7.3%) and heat-wave days [23]. Additionally, previous research has shown an overall in-64

crease in mental health admittance during summer months for select locations (Toronto65

Canada, 10 labor market regions in New York, and Erie and Niagara counties in New66

York) [58][64][63]. Despite many studies investigating the mental health susceptibility67

to extreme heat events, the lack of defined metrics of how environmental (e.g., vegeta-68

tion amount, ambient temperature, humidity) and socioeconomic factors (e.g., income69

and race) contribute to susceptibility means that there is still a need to better under-70

stand this relationship [45][58].71

Future projections show that the Southeastern United States will likely experience72

an increase in average temperature as high as 8°F along with an increase of up to 50 ad-73

ditional days over 95°F in some areas, all of which will lead to an increase in heat stress74

and heat-related deaths [57]. However, there has been little research on how different ge-75

ographical and climatological regions respond to high-temperature extremes and the sus-76

ceptibility of geographical differences, particularly in the southeastern US, a region reg-77

ularly impacted by high temperature and humidity [45]. The extreme heat and health78

associations are typically assessed by looking at a select individual area [23][51] or mul-79

tiple urban cities spread across a single country [43]. There is limited research across a80

large geographic area to understand how place-based disparities in access to greenspaces81

or other mental health-promoting resources influence the heat-health relationship [38].82

As a result, there is limited information about how neighboring cities differ in their re-83

sponse behavior and what contributes to this differing response.84

It would be useful to capture the driving risk factors in predicting the occurrence85

of MBDs for determining interventions to address climate change’s implications of men-86

tal health. However, the lack of identifiable risk factors delays an accurate prediction and87

lowers the utilization of available medical resources which could be provided in a more88

effective manner to improve response rates, decrease mortality, and reduce medical costs89

[50]. Due to the distribution of environmental stressors, simple models (i.e., linear re-90

gression, additive model) are used for their ease of interpretation, but at the expense of91

accuracy [4][7][2]. Additionally, it can be troublesome to handle the problems of less ac-92

curate predictions and collinearity of multiple stressors in a data-driven problem. State-93

of-the-art machine learning approaches (e.g., random forest and XGBoost), can create94

useful predictions when handling multicollinearity within the data [65][3][28][48]. How-95

ever, the lack of interoperability has impacted their application in medical decision sup-96

port [33]. Recently, the SHapely Additive exPlanations (SHAP) has been used to allo-97

cate contribution values for model outputs among the explanatory variables [33].98

The aim of this study is to identify what regional differences in environmental and99

socio-demographic conditions predict ER visits for MBD in adolescents living within six100

metropolitan cities in the warm season. We hypothesize that there is an association be-101

tween hot ambient temperatures and youth mental health (ages 5 to 24) but that socioe-102

conomic and regional differences are the most influential factors involved in explaining103

mental health disparities. A secondary aim of this analysis is to identify the leading en-104

vironmental factors, with a focus on ambient temperature and greenspace, that predict105

adolescent mental health responses at the city level. We will explore multiple machine106

learning approaches (i.e., generalized linear model, generalized additive model, random107

forest, and extreme gradient boosting), with the best-performing model being selected108

to identify the leading contributors to the mental health outcome. These top contribut-109

ing variables will then be explored via SHAP analysis. Machine learning models offer more110

precise and robust results than traditional linear regression and additive models. SHAP111

values are able to quantify variable contribution, removing the previous lack of interop-112

erability in non-linear model results. Interpretability will enable us to identify high-impact113

non-linear environmental risk factors for ER visits related to MBDs in North Carolina114

adolescents. Results from this study can provide new guidance on the application of ma-115
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Figure 1: Study area with the ZIP Codes that comprise the six cities in North Carolina
that are part of the study highlighted in a unique color and the ZIP Codes not in the
study are shaded gray.

chine learning models for predicting mental health conditions during high-temperature116

events, as well as help inform what variables contribute to a communities mental and117

behavioral response during high-temperature events.118

2 Materials and Methods119

2.1 Data120

2.1.1 Study Population121

In this study, the MBD cases were obtained from the Shep’s Center for Health and122

Human Services Research dataset, which contains all ER visits across North Carolina123

[40]. Diagnosis of mental health and behavioral conditions were identified using ICD-10124

diagnosis codes (F00-F99) in any of the diagnostic categories. We collected the daily case125

counts of mental and behavior-related visits in Asheville, Hickory, Charlotte, Raleigh,126

Wilmington, and Greensville from the summer (June, July, and August) of 2016 to 2019127

of individuals between the ages of 5 and 24, which was used as the outcome variable. The128

study locations were selected because they represent a range of climates across NC while129

supporting a large enough sample size for the statistical analysis. ER visits were selected130

for between 2016 and 2020, this was determined based on the change from ICD-9 to ICD-131

10 codes in 2016, leading to a classification change in several mental health-related codes.132

Additional, 2019 was chosen as to not include data during the COVID-19 pandemic, as133

hospital visits decreased for mental health due to a lack of hospital space. The cities were134

treated as a categorical variable in the model analysis.135

2.1.2 Sociodemographic Data136

Additional sociodemographic information was obtained for each city including the137

median age, total population, the population of our study age, male-to-female ratio, per-138

cent of the population without a high school diploma, percent unemployment, percent139

English speakers, percentage of mobile homes, and the Index of Concentration at the Ex-140

tremes (ICE) metrics [29] (Table 2). The ICE income ratio is the number of persons in141
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Table 1: Sociodemographic information for each of the six cities in the dataset between
June and August from 2016 to 2019.

Asheville Hickory Charlotte Raleigh Greenville Wilmington

Total Population 194,953 103,044 907,489 739,710 140,723 169,921
Population between 5 and 24 42,633 26,607 240,923 199,645 50,559 47,975

Median Age of City 42.15 40.17 34.78 35.71 31.7 37.96

Male to Female Ratio 91.48 93.30 93.62 95.41 90.33 90.28

ICE Income1 -0.14 -0.27 0.06 0.28 -0.21 -0.16

ICE Race1 0.82 0.79 0.19 0.48 0.27 0.61

Total Mobile Home, % 2.08 2.07 0.58 0.81 1.53 1.22

Does not Speak English, % 8.03 14.80 18.81 15.34 7.58 7.30

Below Poverty Line, % 14.83 17.23 15.64 12.56 22.40 20.94

No High School Diploma, % 17.89 22.7 13.15 11.69 16.48 18.04

Unemployment, % 3.78 5.50 5.80 3.97 7.03 5.48

ICE metrics range from -1 (least privilege) to 1 (most privileged)

the 80th percentile of income subtracted from the 20th percentile, divided by the total142

population with a known income. The ICE race metric is derived from the ratio of white143

to black individuals [29]. The ICE metrics range from -1 (least privilege) to 1 (most priv-144

ileged) [29]. Variables were from the American Community Survey (2016). Lastly, the145

rural-urban commuting area (RUCA) codes collected from the United States Department146

of Agriculture, which use population density, urbanization, and daily commuting were147

used to delineate metropolitan, micropolitan, small-town, and rural commuting areas based148

on the size and direction of the primary (largest) commuting flows [12], for the ZIP Codes149

comprising the area within the chosen cities, city limits.150

Table 2: Variables considered as predictors of adolescent mental and behavioral disorders
in North Carolina, 2016-2019.

Category Variable & Operational defini-
tions

Association with Men-
tal Health Outcomes Citation
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Socioeconomic
Status

• % Unemployment - the
number of individuals unem-
ployed

• Total Mobile Homes - The
percentage of mobile homes
in a city

• Non-English Speakers -
The percentage of individuals
who do not speak English in
a city

• No High School Diploma
- The percentage of the cities
population without a high
school diploma

• Below Poverty Line -
The percentage of the cities
population that is below the
poverty line

• These variables
are proxies for low
income and low ed-
ucation attainment,
studies suggest
that individuals
without access to
more resources have
a greater risk of
temperature-related
shocks to mental
health.

[38][60]

Green Space • NDVI - Method of quantify-
ing vegetation greenness

• In urban environ-
ments green space
has been shown to
lower temperatures
and provide protec-
tion to pedestrians.

[53][27]
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Climate Condi-
tions

• TMAX - The daily maxi-
mum temperature.

• TMIN - The daily minimum
temperature.

• TAVG - The mean value
of the daily maximum and
minimum temperature.

• RH - The daily mean rela-
tive humidity.

• 24-hr TMAX- Current
day maximum temperature
subtracted from the previous
day’s maximum temperature.

• 24-hr TMIN - Current day
maximum temperature sub-
tracted from the previous
day’s minimum temperature.

• EHF - Method of calculating
the severity of a heatwave

• High-temperature
values have been
found to increase
mental health out-
comes risks.

• Increased relative
humidity values are
associated with an
increase in adverse
health outcomes.

• A lower 24-hour
temperature differ-
ence has been shown
to increase an indi-
vidual’s health risk
during the summer
months.

• EHF is an estab-
lished method of
identifying heat-
waves, heatwaves
have been shown to
increase an individ-
ual’s risk of adverse
health outcomes.

[38][60][43]

Residential
and economic
segregation

• ICE Race - Ratio of resi-
dential segregation

• ICE Income - Ratio of eco-
nomic segregation

• These metrics have
shown to be useful
for public health
monitoring, as they
capture the full
range of privilege
and deprivation and
are more versatile
than traditional
poverty metrics.

[9][29]
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Demographic

• Male-Female Ratio - The
ratio of males for every 100
females in a city

• Median age - The average
age of the cities population

• Sex was consid-
ered due to higher
rates of help-seeking
behavior being iden-
tified in females.

• The median age
was considered due
to more resources
being allocated to
the older population
than the younger
population which
will be more present
in cities with an
older median popu-
lation

[44][16]

2.1.3 Weather data151

Daily gridded raster temperature data at 4 km resolution was obtained from the152

PRISM Climate Group [49] the raster was aggregated to the city level by taking a weighted153

mean average of daily climate metrics; minimum temperature (TMIN) (°C), average tem-154

perature (TAVG) (°C), maximum temperature (TMAX) (°C), and dew point for all grid155

points within a city, where the values from each grid point are combined in order to cal-156

culate the mean value within the grid. In addition to the metrics obtained by PRISM,157

several other metrics were derived; the TMAX 24-hour difference (°C), TMIN 24-hour158

difference (°C), and TAVG 24-hour difference (°C) which were obtained by subtracting159

the current days’ value by the previous day’s value. Relative humidity (RH) (%) was ob-160

tained as a product of TAVG and dew point, and the heat index was calculated using161

TAVG and relative humidity. Lastly, excess heat factor (EHF) was calculated using TAVG162

and following the methodology from Nairn et al., 2014[39]. R 4.2.0 was utilized to per-163

form this raster analysis at the city level.164

2.1.4 Green Space data165

The Normalized Difference Vegetation Index (NDVI) was obtained from the Na-166

tional Oceanic and Atmospheric Administration [26]. NDVI is used to quantify vegeta-167

tion greenness and is used to understand vegetation density, ranging from 1 to -1 from168

dense vegetation to barren rock [41]. The spatial resolution of the data set was 5km with169

a temporal resolution of 24 hours. The raster was aggregated to the city level by tak-170

ing a weighted mean average of daily NDVI value for all grid points within a city, where171

the values from each point are combined in order to calculate the mean value within the172

grid. R 4.2.0 was utilized to perform this raster analysis at the city level.173

Cities received a categorical value depending on which of the three geographical174

regions of North Carolina they were located in, Mountains, Piedmont, and Coastal Plains.175

Additionally, the month of the year and day of the week was notated in the data set and176

incorporated into the final models.177

All variables calculated at the ZIP Code level were then aggregated with the other178

ZIP Codes corresponding to their given city.179

–8–



manuscript submitted to Geohealth

Table 3: Variable Inflation Factor of the chosen variables for GLM, GAM, Random For-
est, and XGBoost models.

Variable GLM and GAM Random Forest and XGBoost

Total Population - 6.12
Median Age of City 3.55 3.15
Male to Female Ratio 8.31 -
Population 5-24 per 1000 6.62 -
City 3.71 2.79
ICE Income1 - 3.01
Day of the week 1.00 1.00
Month of the year 1.12 1.12
NDVI 1.04 1.04
TMIN 6.95 6.73
TMAX 6.17 6.16
TMIN 24-hour difference2 1.71 1.70
TMAX 24-hour difference2 1.62 1.63
EHF3 1.28 1.28
Relative Humidity 3.48 3.43
Above 95th 1.38 1.38

1 ICE metrics range from -1 (least privilege) to 1 (most privileged).
2 24 hour difference, current days temperature subtracted by previous days temperature,
values range from negative to positive.
3 EHF (Excess Heat Factor) values begin at 0.

2.2 Model Establish180

2.2.1 Preprocessing181

Prior research has documted a strong association between exposure to high tem-182

peratures and increased risk of MBD-related ER visits [55][58][60][43]. Therefore, this183

study focused on the warmer period (June through August). Multicollinearity among184

the sociodemographic and environmental variables was assessed against the outcome vari-185

able, mental and behavioral health conditions, using the variable inflation factor [20][42][15].186

Independent variables were removed when they had a Variable Inflation Factor (VIF)187

value greater than 10, an indication of multicollinearity [36][34]. To select the best vari-188

ables with low multicollinearity, the variable with the largest VIF value was removed,189

and the model was retested until all variable’s VIF values remained under 10 [10] (Ta-190

ble 3).191

2.2.2 Procedure of Prediction Models192

Four kinds of machine learning models were assessed including (1) generalized lin-193

ear model (GLM) assuming Poisson distribution with multivariable predictors and log194

of population size as the offset; (2) generalized additive model (GAM) assuming Pois-195

son distribution with multivariable predictors and log of population size as the offset;196

(3) random forest models with multivariable predictors; and (4) extreme gradient boost-197

ing trees (XGBoost) with multivariable predictors (Table 4). Among the four approaches,198

the best prediction model was determined to be the model with the lowest root-mean-199
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Table 4: Summary characteristics of machine learning algorithms, packages, and opti-
mized hyperparameters for the training dataset.

Model Package Optimized Hyperparameters Advantages

Generalized Linear Model glmnet penalty = 0.096
mixture = 0.1

• Linear regression is
straightforward to un-
derstand and explain
and can be regularized to
avoid overfitting.

• In addition, linear models
can be updated easily
with new data.

Generalized Additive Model gamSpline Degrees of freedom = 1

• Can model non-linear as-
sociations of independent
variables with a depen-
dent variable by using
spline functions.

Random Forest ranger
mtry = 1
trees = 506
minn = 101

• Can use the Boruta
algorithm as a prelimi-
nary selection of model
variables to reduce the
calculating time of final
random forest models.

• Capture the potential
non-linear relationship
between heat-health out-
come occurrence and
other metrological and
socioeconomic variables.

Extreme Gradient Boosting XGBoost

nrounds = 51
maxdepth = 3

eta = 0.1
gamma = 0.3

colsamplebytree = 0.8
minchildweight = 5
subsample = 0.4

• Able to handle missing
data, can be optimized
on different loss func-
tions and provides several
hyper parameter tuning
options that make the
function fit very flexible.

• Able to capture nonlin-
earity in the dependence
structure.

square error (RMSE) and mean absolute error (MAE) [43]. GLM is a generalized lin-200

ear model in which a dependent variable is linearly related to independent variables by201

a log link function when using a Poisson distribution [25]. By using spline functions, GAM202

can model non-linear associations between the independent variables and the dependent203

variable. Random forest is a tree-based machine learning model with an ensemble by fit-204

ting a number of decision trees on different subsamples of the training dataset and com-205

bining their predictions for a more accurate result [6]. XGBoost is an optimized distributed206

gradient-boosting decision tree model [61]. XGBoost trains a sequence of decision trees,207

with each iteration attempting to correct the errors of the trees already in the previous208

model.209

–10–



manuscript submitted to Geohealth

2.2.3 Feature selection and hyperparameter optimization210

For each model, 5-fold cross-validation (CV), which is a resampling procedure that211

randomly selects hold-out test data for every fold to test the performance of the train-212

ing model. This procedure is repeated based on the number of folds selected and leads213

to a more robust model, was used to identify the optimal predictors (i.e., feature selec-214

tion) by using recursive feature selection (RFE) and to identify optimal hyperparame-215

ters (i.e., hyperparameter tuning) using grid-search [8]. The optimal model and hyper-216

parameters were chosen based on having the lowest RMSE. This was performed using217

a randomly selected 80% of the data from the original data set.218

RFE is a wrapper method of backward feature selection that searches a defined sub-219

set of predictors by first training a model by using all possible predictors, calculating the220

models’ performance, and then calculating the variable importance of the model. After221

the first round, the model subsets the top-performing variables. This process occurred222

for each group of predictors in the first round. In the second iteration, an updated model223

of the optimally selected predictors was tested in the same manner as before; this pro-224

cess was repeated until the best subset of predictors was determined by having the low-225

est RMSE [30].226

In the final models, city-level socioeconomic information included median age, pop-227

ulation per 1000 of individuals between the ages of 5 and 24, ICE race ratio, and ICE228

income ratio. Calendar information included the day of the week and the month of the229

year. Landcover and location information included NDVI and geographic region. Cli-230

mate information included TMIN (°C), TMAX (°C), the TMIN 24-hour difference (°C),231

TMAX 24-hour difference (°C), EHF, and RH (%). The total population was modeled232

into a log of population per 1000 as the offset term in GLM and GAM but was excluded233

from the random forest and XGBoost.234

2.2.4 Model Selection and Validation235

We used the remaining randomly split 20% of the data from the original data set236

for model testing and validation. Predictive accuracies of the four different prediction237

models were evaluated using RMSE and MAE. RMSE is the mean difference between238

observed and predicted values and shows an average predictive error; thus, the smaller239

the RMSE, the better the model. MAE is the mean of the absolute value of the differ-240

ence between the predicted and observed values, a smaller MAE indicates a better pre-241

diction. The model with the lowest RMSE and MAE was selected as the best fit and used242

to identify which variables contribute to an individual’s susceptibility to being admit-243

ted to the ER for MBDs.244

2.3 Evaluation of Developed Prediction Model Variables245

We examined the impact that the most important variables had on the prediction246

of MBD cases for the best-performing model by using SHapley Additive exPlanations247

(SHAP) values. The goal of SHAP is to explain why the model predicts a certain out-248

come based on the variable values that are provided and the contribution that those val-249

ues contribute to the final prediction [37][33]. The SHAP value shows how much an in-250

dividual variable contributes (either negatively or positively) to the difference between251

the mean and the actual prediction in the context of the other variables in the data. The252

mean absolute contribution value is the SHAP value, which indicates the average abso-253

lute contribution value that variable makes to the overall predicted outcome. Analysis254

was conducted using gam [24], caret [31], tidymodels [32], iBreakDown [19], and vip [21]255

packages in R version 4.2.0.256
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2.4 Sensitivity Analysis: Distributed Lag Non-Linear Model257

Prior literature has demonstrated a non-linear and delayed (e.g., typically 3 to 7-258

day lag) relationship between temperature and MBD-related ER visits; therefore we per-259

formed the DLNM combined with a generalized linear model as a sensitivity analysis to260

further confirm the temperature-related results from our top-performing ML approach.261

In each city, a DLNM was applied as a quasi-Poisson distribution with a lag period of262

0 days in order to establish the associations between temperature and the relative risk263

of increased ER visits. DLNM can characterize the non-linear exposure-response rela-264

tionship at varying delayed exposure times [18]. For this analysis, the region-specific temperature-265

ER visit association for MBDs was calculated. In this study, DLNM was employed to266

investigate the relationship between exposure to varying temperatures in the summer267

months for each individual city and the corresponding mental and behavioral ER vis-268

its. The model is written as:269

logE(Yt) = α+ cb(Tempt, df1) + ns(RHt, df2) + ns(Timet, df3) + βDOWt (1)270

Where E(Yt) is the expected ER visits related to MBDs on day t as a logarithmic271

function of an intercept (α); cb() denotes the cross basis function for temperature (daily272

average temperature); ns() denotes the natural cubic spline applied to relative humid-273

ity and time trend. Three knots in the lag space of the cross basis-function were set equally274

spaced values in the log scale of lags for more flexible lag effects at shorter delays ([63][18].275

The day of the week (DOWt) and Time were used as controls for the temperature and276

relative humidity variables [14]. The degrees of freedom (df) for the predictors were set;277

df1= 4 for the temperature in the crossbasis function, df2= 2 for relative humidity, and278

df3= 7*number of years for the time trend to model for the season and long-term time279

trends. These parameters were identified based on previous studies [63][18][11][47][62]280

and then tested for the best fitting model based on qAIC [22]. Analysis was conducted281

using glm to analyze a quasi-Poisson generalized linear regression model and dlnm [17]282

and mixmeta ([54] packages for distributed lag models and meta-analyses, respectively283

in R version 4.2.0.284

3 Results285

3.1 Prediction for Mental Health across all cities286

We developed machine learning models to predict the number of MBDs using a gen-287

eralized linear model (GLM), generalized additive model (GAM), random forest, and ex-288

treme gradient boosting (XGBoost) using multivariable predictors in the training dataset.289

Amongst these models, GAM was chosen based on having the lowest root-mean-squared290

error (RMSE), 4.96, and lowest mean absolute error (MAE), 3.59, when applied to the291

testing data (Table 6). The performance across the entire test data set is graphically rep-292

resented in Fig. 2. The observed number of MBDs was found to be strongly correlated293

with the predicted values from all four machine-learning approaches. In the GAM, twelve294

of the predictor variables that had variable inflation factor values below 10 were selected295

(Median age, the population of our study age, male-to-female ratio, the city location, day296

of the week, TMAX 24-hour difference (°C), TMIN 24 hour difference (°C), relative hu-297

midity, TMAX, TMIN, month of the year, and NDVI of the city) as the top contribu-298

tors to the predictive outcome of the model set by the recursive feature elimination (RFE)299

method.300

The GAM model had all twelve top-performing variables’ SHAP values calculated301

which are summarized in Fig 3. and show the importance of its predictors. The SHAP302

summary model illustrates the leading variables in identifying what leads a city to be303

more prone to MBDs. The variables that lead to higher predictions of MBDs were a larger304

population between the ages of 5 and 24 per 1000, a smaller male-to-female ratio, higher305

median age, being located on the eastern side of the state, lower minimum temperature,306
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Figure 2: Comparison between observed and the predicted number of mental and behav-
ioral disorder-related emergency department visits across six North Carolina cities from
June to August 2016 to 2019 by GLM, GAM, RF, and XGBoost. The black line indi-
cates the observed totals of MBD-related emergency department visits per day across six
North Carolina cities and the red line indicates the predicted total number of mental and
behavioral-related emergency department visits per day in the six North Carolina cities.
These predictions were obtained from the following models: (1) GLM using multivariable
predictors, (2) GAM using multivariable predictors, (3) RF using multivariable predictors,
and (4) XGBoost using multivariable predictors.
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Table 5: Summary characteristics of machine learning algorithms, packages, and opti-
mized hyperparameters for the training dataset.

Variable Train Test

Mental and behavior disorders 31656 7976

Median Age of City 37.15
(33.68 - 40.82)

36.79
(33.33 - 40.24)

Male to Female Ratio 92.4
(90.54 - 94.29)

92.43
(90.51 - 94.34)

ICE Income -0.075
(-0.26 - 0.11)

-0.072
(-0.26 - 0.12)

ICE Race 0.53
(0.29 - 0.77)

0.51
(0.27 - 0.75)

Percent Unemployment 5.24
(4.13 - 6.35)

5.33
(4.21 - 6.45)

NDVI 0.39
(0.34 - 0.45)

0.40
(0.35 - 0.44)

TMAX, ◦C 30.67
(27.85 - 33.49)

30.68
( 27.80 - 33.56)

TAVG, ◦C 25.37
(22.67 - 28.07)

25.4
(22.82 - 27.99)

TMIN, ◦C 20.07
(17.02 - 23.12)

20.13
(17.32 - 22.94)

TMAX 24 hour difference, ◦C -0.002
(-2.17 - 2.16)

0.065
(-2.07 - 2.20)

TMIN 24 hour difference, ◦C -0.02
(-1.71 - 1.67)

0.024
(-1.66 - 1.71)

Relative Humidity, % 71.53
(63.81 - 79.25)

71.81
(64.05 - 79.57)

EHF, % 0.0052
(-0.046 - 0.0565)

0.0037
(-0.036 - 0.043)

higher relative humidity, being in the first half of the week, higher 24-hour minimum tem-307
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Table 6: Summary characteristics of machine learning algorithms, packages, and opti-
mized hyperparameters for the training dataset.

GLM GAM Random Forest XGBoost

Train RMSE 4.71 4.71 4.01 4.35

Test RMSE 4.97 4.96 4.96 5.00

Train MAE 3.45 3.45 2.94 3.20

Test MAE 3.59 3.59 4.62 3.68

perature difference, lower 24-hour maximum temperature difference, and lower NDVI all308

lead to higher rates of MBDs.309

3.2 Prediction for Mental Health in Each City310

Individual GAM models were developed for each of the six cities in this analysis311

to identify leading environmental contributors to an individual’s risk of an MBD, build-312

ing this model took into account land cover and temperature data and used temporal313

information as controls for the model (Table 7). The RMSE and MAE were summarized314

across all six cities (Table 8), the individual city approach had a smaller mean RMSE315

(4.43 versus 4.96) and a smaller mean MAE (3.53 versus 3.59) than the all cities approach.316

Table 7: Temperature and land cover information averaged across the study period for
each of the six cities in the dataset between June and August from 2016 to 2019, North
Carolina.

City Ashville Hickory Charlotte Raleigh Greenville Wilmington

Mental and
Behavioral Disorders 3773 1877 17533 9811 2462 4176

TMAX 28.05
(25.69 - 30.41)

30.32
(27.71 - 32.93)

31.76
(29.17 - 34.35)

30.86
(28.21 - 33.51)

31.56
(28.90 - 34.22)

31.49
(29.17 - 34.81)

Tmean 22.36
(20.35 - 24.37)

24.76
(22.59 - 26.93)

26.24
(24.05 - 28.43)

25.63
(23.27 - 27.99)

26.35
(23.94 - 28.76)

26.93
(24.82 - 29.04)

Tmin 16.67
(14.28 - 19.57)

19.21
(16.89 - 21.53)

20.72
(18.43 - 23.01)

20.40
(17.91 - 22.89)

21.14
(18.5 - 23.78)

22.36
(19.98 - 24.74)

Tmax 24hr diff 0.009
(-1.820 - 1.838)

0.012
(-2.278 - 2.304)

0.016
(-2.245 - 2.277)

0.019
(-2.268 - 2.306)

0.006
(-2.320 - 2.332)

0.005
(-1.921 - 1.931)

Tmin 24hr diff 0.0004
(-1.509 - 1.511)

-0.004
(-1.573 - 1.566)

-0.009
(1.601 - 1.583)

-0.012
(-1.693 - 1.678)

-0.018
(-2.055 - 2.026)

-0.021
(-1.736 - 1.694)

EHF 0.003
(-0.022 - 0.030)

0.002
(-0.018 - 0.021)

0.007
(-0.048 - 0.062)

0.001
(0.012 - 0.010)

0.010
(-0.064 - 0.083)

0.008
(-0.061 - 0.078)

Above 95th 0.029
(-0.125 - 0.183)

0.025
(-0.127 - 0.177)

0.047
(-0.159 - 0.252)

0.018
(-0.099 - 0.029)

0.046
(-0.161 - 0.253)

0.035
(-0.127 - 0.198)

NDVI 0.41
(0.16 - 0.66)

0.43
(0.22 - 0.62)

0.38
(0.16 - 0.60)

0.40
(0.18 - 0.62)

0.41
(0.16 - 0.66)

0.34
(0.20 - 0.48)
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Figure 3: SHAP (SHapley Additive exPlanations) values and contributions of the best-
performing variables in the best model (GAM model). The plot shows the importance of
the predictors, with the most important at the top, of the best-performing model using
SHAP values. The effect of the contribution is notated as a positive or negative point-
level contribution; the given variables’ value is represented with a sliding scale from yellow
representing a low variable value to purple representing a high variable value for each.
The x-axis SHAP value illustrates the contribution of every variable to the predicted
number of MBD emergency department visits, with positive values leading to a higher
number of predicted emergency room visits and a negative value leading to a lower num-
ber of predicted emergency room visits.
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Table 8: RMSE and MAE of the models for train and test performance of the GAM
model for all six cities individually. Normalized RMSE and normalized MAE for the test
dataset to better illustrate how the models performed on different datasets.

Ashville Hickory Charlotte Raleigh Greenville Wilmington

Train RMSE 3.36 2.31 7.88 6.06 2.67 3.4 4.28

Test RMSE 3.39 2.51 8.24 6.05 2.87 3.5 4.43

Train MAE 2.69 1.82 6.56 4.85 2.17 2.75 3.47

Test MAE 2.81 1.98 6.6 4.83 2.24 2.73 3.53

normalized Test RMSE 0.331 0.486 0.173 0.227 0.416 0.303 0.32

normalized Test MAE 0.275 0.384 0.138 0.181 0.324 0.236 0.26

To better understand the difference in the influence of ambient temperature and317

land cover on MBD-related ER visits, SHAP values were calculated for each city. The318

top-performing variables which were identified within the GAM model were chosen to319

be represented in the SHAP model [33]. The SHAP value model can be seen in Fig 4.320

From these models, we can see that in Asheville, a higher relative humidity, lower min-321

imum temperature, higher 24-hour maximum temperature difference, and higher 24-hour322

minimum temperature difference all lead to a higher incidence of MBD. In Hickory, a323

lower 24-hour maximum temperature difference leads to higher incidences of MBD. A324

lower maximum temperature leads to higher incidences of MBD in Charlotte. A lower325

24-hour maximum temperature difference, higher NDVI value, a lower maximum tem-326

perature, and higher 24-hour minimum temperature difference all lead to higher incidences327

of MBD in Raleigh. In Greenville a higher NDVI and in Wilmington and higher 24-hour328

maximum temperature difference leads to higher incidences of MBD.329

3.3 Sensitivity Analysis330

Relying on a standard approach typically used in environmental health studies, the331

DLNM was employed. We investigated the association between daily average temper-332

ature and any MBD-related ER visit to confirm our machine-learning ambient temper-333

ature findings in the individual city models. Figure 5 shows the change in relative risk334

(RR) of ER visits associated with MBD for each of the individual six cities at the 2.5th335

and 97.5th percentile of temperature.336

The results indicate that in the all-cities model that there is not a significant as-337

sociation between ER visits related to mental and behavioral disorders and extreme daily338

average air temperature. For the 97.5th percentile of temperature across the all-cities339

model there was a significant decrease in the risk associated with emergency department340

visits (RR = 0.97; 95% CI: 0.93-0.99).341

Similar to the results found in the pooled cumulative effects model, no significant342

increase was observed at the 97.5th percentile of temperature, the results can be seen343

in Table 9. A significant decrease in risk associated with the temperature at the 97.5th344

percentile was observed for Asheville (RR = 0.91; 95% CI: 0.86-0.96) and Charlotte (RR345

= 0.96; 95% CI: 0.93-0.99).346

4 Discussion347

The objective of this study was to apply a machine learning approach to identify348

key environmental conditions that predicted MBD-related ER visits in adolescents. Our349
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Figure 4: Shows the SHAP values for (a) Asheville, (b) Hickory, (c) Charlotte, (d)
Raleigh, (e) Greenville, (f) Wilmington. SHAP values and contributions of the best-
performing variables in the best model (GAM model). The plot shows the importance of
the predictors, with the most important at the top, of the best-performing model using
SHAP values. The effect of the contribution is notated as a positive or negative point-
level contribution; the given variables’ value is represented with a sliding scale from yellow
representing a low variable value to purple representing a high variable value for each.
The x-axis SHAP value illustrates the contribution of every variable to the predicted
number of MBD emergency department visits, with positive values leading to a higher
number of predicted emergency room visits and a negative value leading to a lower num-
ber of predicted emergency room visits.
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Figure 5: The individual effect of daily average temperature for all MBD-related emer-
gency room visits for (a) Asheville, (b) Hickory, (c) Charlotte, (d) Raleigh, (e) Greenville,
(f) Wilmington. The optimal emergency room visit temperature was defined as the tem-
perature that corresponded with the minimum risk of emergency department visits. The
black line indicated the relative risk, with the shaded area representing the 95% con-
fidence intervals (CI), dotted lines representing the 2.5th and 97.5th temperature per-
centile, and the gray dashed line representing the optimal emergency room visit tempera-
ture.
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Table 9: Relative risk at the 2.5th and 97.5th percentile of temperature in the summer
months between 2016 and 2019.

Location Low (2.5th percentile) High (97.5th percentile)

North Carolina 0.99 (0.96-1.02) 0.97 (0.93-0.99)

Asheville 1.02 (0.96-1.09) 0.91 (0.86-0.96)

Hickory 1.00 (0.94-1.08) 1.01 (0.95-1.06)

Charlotte 0.98 (0.94-1.02) 0.96 (0.93-0.99)

Raleigh 0.98 (0.93-1.03) 0.99 (0.95-1.05)

Greenville 0.98 (0.91-1.06) 0.96 (0.89-1.03)

Wilmington 0.98 (0.92-1.05) 0.99 (0.94-1.05)

findings from the all-cities model indicate that socio-demographic variables contribute350

a greater impact on adolescents’ mental health compared to environmental variables. Im-351

portant sociodemographic factors that contributed the greatest to the predictive outcome352

included population between 5 and 24, male to female ratio, and the median age of the353

city; while important environmental variables included minimum temperature, relative354

humidity, and maximum temperature. These findings are consistent with previous stud-355

ies of extreme heat, which have demonstrated that the socio-demographic makeup of a356

city contributes to the overall MBD health of its adolescent population more than the357

environmental variables [13][60]. Further, the increase in hospital admissions on days of358

higher maximum temperature and higher relative humidity, found in the all-cities machine-359

learning model, is consistent with multiple studies, which identified an increased rela-360

tive risk at higher maximum temperatures, even after adjusting for relative humidity as361

a covariate [47] [38][11]. In the individual city models, we found no clear environmen-362

tal variable contributing to an increased risk of MBD-related ER visits. However, the363

GAM model with the use of the SHAP model to quantify the results indicated that the364

traditional association between temperature and MBD-related ER visits was not con-365

sistent within our study area, with lower minimum temperatures increasing MBD-related366

ER visits.367

The secondary aim of this analysis was to identify the leading environmental fac-368

tors of mental health responses at the city level for six cities in North Carolina in the369

summer months between 2016 and 2019. The results of this analysis illustrate how en-370

vironmental factors affect the mental health response across varying geographic locations371

within North Carolina. All but two cities had different environmental metrics as their372

leading predictors (i.e., Hickory and Willmington). However, there were some shared com-373

monalities, with four cities having a 24-hour difference in the maximum temperature,374

and two of the cities having a 24-hour difference in the minimum temperature, maximum375

temperature, or NDVI as a leading predictor of MBD emergency department visits. Our376
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work highlights the importance of local-level understanding when trying to understand377

how temperature may influence MDB.378

Our results indicate that when the city comprises a higher ratio of females to males,379

we see an increase in the predicted number of MBD emergency room visits. Previous re-380

search has indicated that females are more likely to display help-seeking behaviors com-381

pared to males [44]. We also see that the population of our study age is a strong pre-382

dictor, which indicates in cities with a larger youth population, there are higher instances383

of MBD ER visits for that age group.384

In contrast to previous studies, our minimum temperature results in the all-cities385

model indicate that as the minimum temperature decreases, we see a rise in MBD ER386

visits. These results contrast with previous research, which has indicated that minimum387

temperature plays a stronger role than maximum temperature, which we see in our study,388

but that an increase in minimum temperature corresponds with an increase in MBD ER389

visits rather than our observed decrease [38].390

Our study contrasts with previous work focusing on an individual city’s response391

during the summer. Studies have found that as temperature increases, the risk for MBD392

increases, with studies finding that at the 99th percentile of temperature, an individual393

is over 25% more likely to suffer from a mental or behavioral disorder than at the 50th394

percentile of temperature [63][59][47]. However, in our analysis, we found that not only395

was maximum temperature normally not the most predictive variable, but a high max-396

imum temperature resulted in lower MBD-related hospital visits when it was a top con-397

tributing variable. We confirmed our results by conducting a sensitivity analysis using398

a distributed lag non-linear model (DLNM) and pooling our results across all cities.399

More specifically, the maximum temperature was a top contributing variable for400

Charlotte and Raleigh in the individual city models. The SHAP values indicate that nei-401

ther the highest nor lowest maximum temperature values contributed to higher predicted402

ER visits. Still, rather temperatures near the median contributed to higher predicted403

MBD emergency department visits. These results are consistent with the results from404

the DLNM, which had a significant decrease in ER visits in Charlotte at the highest av-405

erage temperatures and no significant correlation between high average temperature and406

ER visits in Raleigh.407

The reason for this temperature-mental health difference could be based on the lo-408

cation of the study. Previous studies have focused further north and therefore have cooler409

summers, with extreme temperatures falling between 23°C and 27°C for the 75th to 97.5th410

percentile of temperature, whereas in the Southeast US, where North Carolina is located,411

the 75th and 97.5th percentile of maximum temperature being 33°C to 37°C[59][47] [63].412

Due to the temperature reaching much higher levels, individuals might be more inclined413

to seek shelter during these events, leading to fewer extreme heat exposures for adoles-414

cents in North Carolina and mitigation of the environmental risk factors of heat-related415

MBD.416

4.1 Strengths and Limitations417

This study had several notable strengths. First, we evaluated the association be-418

tween summer environmental data, sociodemographic information, and ER visits for any419

MBD in multiple cities across North Carolina, which allowed for a more general state-420

wide analysis as well as a secondary analysis looking at each city individually. We in-421

cluded variables that were not related to temperature to assess if the MBD-related hos-422

pital visits were primarily affected by the climate or if sociodemographic factors. Sec-423

ond, unlike most nonlinear model results that will indicate the top contributing variables424

to the prediction [60], through the use of SHAP, we provide precisely how each variable425

contributes to the outcome of the model. Unlike previous studies that have used tradi-426
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tional additive models or DLNM, machine learning was employed to identify the top pre-427

dictive variables, and SHAP models were used to quantify the contribution that each of428

the top variables made in the overall prediction of the model. Lastly, we tested multi-429

ple machine learning approaches to ensure our results were robust (e.g., random forest).430

This study had a few limitations. First, a longer study period could increase the431

robustness of results and better identify trends. Second, an analysis of specific MBD would432

be more informative. Lastly, ozone pollution generally has a high correlation with tem-433

perature and has been shown to impact mental health [59], and should have been tested434

as a possible effect modifier in the temperature-mental health relationship. However, our435

analysis was conducted at the ZCTA scale, and ozone data was not readily available for436

this scale.437

5 Conclusion438

This study is among the first to examine the driving factors behind MBD ER vis-439

its in North Carolina, USA. Our study leveraged a daily ER inpatient dataset for the440

entire state of North Carolina, allowing us to examine the daily MBD response in youth441

to varying environmental conditions and socioeconomic changes. This study suggests that442

at the state level, socioeconomic factors contribute more to an individual’s mental and443

behavioral well-being during the summer than environmental factors. At the city level,444

this study indicates that no clear environmental factor contributes to the greatest risk445

of MBDs. Results from this study can provide new guidance on the application of ma-446

chine learning models for predicting mental health conditions and help inform what vari-447

ables contribute to youth mental and behavioral response during high-temperature events.448
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