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Abstract

Tropical lands play an important role in the global carbon cycle yet their contribution remains uncertain owing to sparse
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observations. Satellite observations of atmospheric carbon dioxide (CO2) have greatly increased spatial coverage over tropical

regions, providing the potential for improved estimates of terrestrial fluxes. Despite this advancement, the spread among

satellite-based and in-situ atmospheric CO2 flux inversions over northern tropical Africa (NTA), spanning 0-24*N, remains

large. Satellite-based estimates of an annual source of 0.8-1.45 PgC yr-1 challenge our understanding of tropical and global

carbon cycling. Here, we compare posterior mole fractions from the suite of inversions participating in the Orbiting Carbon

Observatory 2 (OCO-2) Version 10 Model Intercomparison Project (v10 MIP) with independent in-situ airborne observations

made over the tropical Atlantic Ocean by the NASA Atmospheric Tomography (ATom) mission during four seasons. We develop

emergent constraints on tropical African CO2 fluxes using flux-concentration relationships defined by the model suite. We find

an annual flux of 0.14 ± 0.39 PgC yr-1 (mean and standard deviation) for NTA, 2016-2018. The satellite-based flux bias

suggests a potential positive concentration bias in OCO-2 B10 and earlier version retrievals over land in NTA during the dry

season. Nevertheless, the OCO-2 observations provide improved flux estimates relative to the in situ observing network at other

times of year, indicating stronger uptake in NTA during the wet season than the in-situ inversion estimates.
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Plain Language Summary42

Satellite CO2 observations over land imply a major revision to our understanding of the43

global carbon cycle linked to large emissions from northern tropical Africa during the dry44

season, from October to May. We use aircraft observations made over the Atlantic Ocean in45

four seasons to evaluate flux models driven by a range of ground and satellite observations.46

Our results show that models using satellite observations over land overestimate annual47

emissions from northern tropical Africa by approximately 1 PgC yr−1, concentrated in the48

dry season. At other times of year, satellite CO2 observations provide improved estimates49

of northern tropical Africa exchange, with a stronger CO2 uptake during the wet season.50

Key Points:51

• Emergent constraints derived from aircraft CO2 measurements and inversions esti-52

mate a near neutral northern tropical African CO2 budget.53

–1–
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• Inversions using satellite observations overestimate annual emissions from northern54

tropical Africa by approximately 1 PgC yr−1.55

• Satellite CO2 observations imply a strong sink during the wet season over northern56

tropical Africa.57

Corresponding author: Benjamin Gaubert, gaubert@ucar.edu
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Abstract58

Tropical lands play an important role in the global carbon cycle yet their contribution59

remains uncertain owing to sparse observations. Satellite observations of atmospheric car-60

bon dioxide (CO2) have greatly increased spatial coverage over tropical regions, providing61

the potential for improved estimates of terrestrial fluxes. Despite this advancement, the62

spread among satellite-based and in-situ atmospheric CO2 flux inversions over northern63

tropical Africa (NTA), spanning 0-24◦N, remains large. Satellite-based estimates of an an-64

nual source of 0.8-1.45 PgC yr−1 challenge our understanding of tropical and global carbon65

cycling. Here, we compare posterior mole fractions from the suite of inversions participating66

in the Orbiting Carbon Observatory 2 (OCO-2) Version 10 Model Intercomparison Project67

(v10 MIP) with independent in-situ airborne observations made over the tropical Atlantic68

Ocean by the NASA Atmospheric Tomography (ATom) mission during four seasons. We69

develop emergent constraints on tropical African CO2 fluxes using flux-concentration re-70

lationships defined by the model suite. We find an annual flux of 0.14 ± 0.39 PgC yr−1
71

(mean and standard deviation) for NTA, 2016-2018. The satellite-based flux bias suggests a72

potential positive concentration bias in OCO-2 B10 and earlier version retrievals over land73

in NTA during the dry season. Nevertheless, the OCO-2 observations provide improved flux74

estimates relative to the in situ observing network at other times of year, indicating stronger75

uptake in NTA during the wet season than the in-situ inversion estimates.76

1 Introduction77

Tropical terrestrial ecosystems are an important component of the global carbon cycle78

as both a strong source of atmospheric CO2 from land-use emissions (e.g., Hong et al., 2021)79

and a strong sink in intact forests, most likely owing to the CO2 fertilization effect on photo-80

synthesis (Lewis et al., 2009; Schimel et al., 2015). African ecosystems are large contributors81

to the uncertain positive climate-carbon cycle feedback of reduced photosynthesis and in-82

creased soil and plant respiration associated with hotter, drier conditions (Friedlingstein et83

al., 2006, 2010; Cox et al., 2013; Wang et al., 2014; Arora et al., 2020). Atmospheric inverse84

models constrained with in-situ observations estimate that the sum of land carbon fluxes85

from the tropics and southern extratropics has been near-neutral since the 2000s (Gaubert86

et al., 2019). The Global Carbon Budget 2021 (Friedlingstein et al., 2022) also estimates87

a near-balanced budget (excluding fossil fuel) in the tropics during the past decade that is88

derived from both process models and a set of atmospheric inversions.89

CO2 biomass burning emissions from sub-Saharan Africa show a marked seasonal cycle90

with large sources during the dry season, from October to May in the northern hemi-91

sphere (e.g., Roberts et al., 2009). Satellite observations from the NASA Orbiting Carbon92

Observatory-2 (OCO-2) indicate a strong and rapid increase in column CO2 that coincides93

with the biomass burning season of northern hemispheric sub-Saharan Africa (Eldering et94

al., 2017; Crisp et al., 2022). Inversions of OCO-2 land nadir and land glint data (version95

B7.1) suggested that northern tropical Africa (NTA, 0-24 ◦N, Fig. 1) net biosphere exchange96

was a carbon source of approximately 1.5 PgC yr−1 to the atmosphere in 2015 and 201697

(Palmer et al., 2019; Crowell et al., 2019). OCO-2 land nadir and land glint inversions from98

version 9 of the OCO-2 Model Inter-comparison Project (v9 MIP, using version B9.1 OCO-299

data) also estimate a large source of carbon (1.26 ± 0.58 PgC yr−1) over NTA, for the 4-year100

period of 2015-2019 (Peiro et al., 2022). This contrasts with the far less constrained in-situ101

set of v9 MIP inversion results for NTA, which provide a mean value of 0.23 ± 0.4 PgC102

yr−1. Interannual variability in these in-situ inversions ranges between an NTA sink of 0.2103

PgC yr−1 in 2018 and a source of 0.6 PgC yr−1 in 2016, during the 2015-2016 El Niño104

(Peiro et al., 2022).105

In addition to the large uncertainties in the net budget, the component processes re-106

sponsible for the large source indicated by OCO-2 observations have yet to be corroborated.107

Conceptually, net carbon exchange results from the the balance of varying gross fluxes,108

–3–
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Figure 1. The TransCom 05b or northern tropical Africa (NTA) region. The NTA region

encompasses various ecoregions including tropical forests, sub-humid savanna, semi-arid savanna,

desert to semidesert, and shrubland areas. The four ATom flight tracks are also displayed.

including photosynthetic responses to drought, changes to plant and soil respiration, and109

direct effects of land use. Specific proposed mechanisms include soil emissions due to sus-110

tained land degradation (Palmer et al., 2019) and increased ecosystem respiration due to111

high surface temperature anomalies during the 2015-2016 El Niño (J. Liu et al., 2017). An-112

other possibility is biases in the satellite measurements. Generating accurate OCO-2 CO2113

retrievals remains a challenge despite continuous improvements in the bias correction proce-114

dure (O'Dell et al., 2018). CO2 retrieval biases can result from spectroscopic errors (Connor115

et al., 2008), aerosols and clouds over northern Africa (O'Dell et al., 2018; Nelson & O'Dell,116

2019) and from surface pressure errors that are maximal over the tropics (Kiel et al., 2019).117

The empirically derived bias correction to OCO-2 data has an isolated maximum over NTA118

that is approximately +0.6 ppm higher than the global average. This is illustrated in Fig-119

ure S1 and in Figure 4 of Taylor et al. (2023). Fires play an important role in the African120

carbon cycle, but are thought to be compensated by CO2 uptake during the growing season121

(Valentini et al., 2014). The sub-Saharan region is dominated by shifting agriculture that122

is characterized by small and human-induced fires (Curtis et al., 2018). Emission estimates123

for this type of fire are uncertain and likely to be underestimated because global-scale fire124

emission models are typically based on satellite-derived burned area from relatively coarse-125

resolution sensors that are unable to detect most small fires (Randerson et al., 2012; Ichoku126

et al., 2016; Roteta et al., 2019; T. Liu et al., 2020). For 2016, a recent study (Ramo et127

al., 2021) used Sentinel-2 enhanced spatial resolution images to estimate burned area, and128

calculated for the African continent an increase of 31 % in fire carbon emissions compared129

to the Global Fire Emissions Database with small fires GFED4s (van der Werf et al., 2017).130

Estimates of annual-mean CO2 emissions (Fig. S3) from fires range from 0.29 to 0.55 PgC/yr131

for 2016. Despite large uncertainties, an increase in 30 to 50 % in fire emissions does not132

suffice to explain the discrepancies in inversion results (Crowell et al., 2019; Palmer et al.,133

2019).134

The atmospheric transport pathways exporting emissions from the African continent135

have been thoroughly studied by monitoring plumes over the Atlantic ocean using satellite136

remote sensing observations to track desert dust, smoke aerosols, and trace gases such as137

carbon monoxide (CO) (e.g., Prospero, 1999; Edwards et al., 2006; Adams et al., 2012;138

Barkley et al., 2019). Given the sparsity of other CO2 observations downwind of tropical139

–4–
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Africa, the NASA airborne Atmospheric Tomography Mission (ATom) provides a unique140

opportunity to assess the ability of CO2 inverse models to reproduce the atmospheric signa-141

tures of tropical African carbon fluxes over the Atlantic basin. The ATom campaign utilized142

the fully instrumented NASA DC-8 research aircraft to survey the chemical environment143

of the remote atmosphere around the world (Thompson et al., 2022). The ATom payload144

included three in situ CO2 instruments and two whole air samplers with CO2 measurements.145

ATom sampled vertical profiles along meridional transects of the Pacific and Atlantic Ocean146

basins (Fig. 1) during four month-long campaigns between August 2016 and May 2018.147

In this study we use 54 OCO-2 v10 MIP inversions (Byrne et al., 2023) in the form of148

fourteen inverse models running five experiments assimilating different sets of observations.149

We apply an emergent-constraint approach (e.g., M. S. Williamson et al., 2021; Cox, 2019)150

in which we develop relationships between posterior CO2 concentrations over the Atlantic151

and net biosphere fluxes from NTA (Fig. 1), and then use these to derive new flux estimates152

by comparison to the aircraft observations. The NTA region (TransCom 05b) is a subregion153

of the TransCom 05 region defined in the original TransCom experiment (Gurney et al.,154

2002; Gurney & Denning, 2008), spanning 0-24◦N. The NTA region includes the Sahara155

desert and the CO2 fluxes are primarily confined south of ∼18◦N, across various ecoregions156

including tropical forests, sub-humid savanna, and semi-arid savanna.157

2 Materials and Methods158

2.1 OCO-2 v10 Model Intercomparison Project159

The OCO-2 v10 Model Intercomparison Project (v10 MIP) consists of a large ensemble160

of atmospheric inversions from 14 modeling groups using primarily five combinations of161

in situ and OCO-2 satellite observations (Byrne et al., 2023). The models have different162

unoptimized prior flux distributions, model transport, and data assimilation techniques.163

Byrne et al. (2023) presented a description of the participating inverse models and of the164

assimilated datasets used in the OCO-2 v10 MIP. One notable difference to the preceding165

v9 MIP (Peiro et al., 2022) is that the OCO-2 v10 MIP uses OCO-2 observations over166

a longer time period and from a new XCO2 retrieval, i.e. the B10 version (Taylor et167

al., 2023) of the Atmospheric Carbon Observations from Space (ACOS) column-averaged168

dry air mole fraction of atmospheric CO2 (XCO2) retrieval (Byrne et al., 2023; O'Dell169

et al., 2018; Kiel et al., 2019). The post-retrieval data processing also includes a quality170

filtering and a bias correction procedure (Kiel et al., 2019). The atmospheric inversions were171

conducted following a formal protocol with regard to the set of assimilated observations172

and their treatment. Five experiments were defined to investigate the impact of OCO-2173

assimilation across viewing modes and to compare to the assimilation of baseline in-situ174

network observations. The experiments consist of: 1) in situ (IS), 2) OCO-2 land nadir and175

land glint (LNLG), 3) OCO-2 ocean glint (OG), 4) joint LNLG with IS (LNLGIS) and 5)176

a combination of all in situ and satellite data (LNLGOGIS). There were 12 participating177

inversion systems that provided outputs at the ATom locations, but not for all experiments178

for all of the simulations. We included the LoFI simulation in only the IS group. We include179

all of the available submissions when calculating an experiment average, which are 10 for180

LNLG, 11 for IS when including LoFI, and 11 for OG, LNLGIS, and LNLGOGIS.181

2.2 Observations182

We first merge the 10-second ATom dataset (Wofsy et al., 2021) and the ObsPack183

(Masarie et al., 2014) formatted posterior concentration files provided by the OCO-2 v10184

MIP. Only airborne measurements along the northbound Atlantic transects were considered185

by selecting measurements made at longitudes between 70◦W and 15◦E. We excluded the186

last 15 min of the ATom-4 flight arriving in Recife, Brazil and the first 60 seconds of the187

flight departing to avoid local pollution influences. All of the data were then bin averaged188

on a 5◦ latitude by 50 hPa pressure grid. We define the metric ∆CO2 (Eq. 1) by subtract-189

–5–
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Figure 2. NOAA marine boundary layer reference CO2 concentrations used to define ∆CO2

for each ATom campaign. We also show the experiment average posterior marine boundary layer

references estimated by the inversions. We use model-specific reference curves in the model posterior

∆CO2 calculation.

–6–
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Table 1. Optimized box boundaries (latitude in ◦N and pressure in hPa), flight dates intersecting

boxes, correlation coefficients between the NTA fluxes and posterior ∆CO2 in the corresponding

box estimated by the v10 MIP ensemble, observed ∆CO2 plus uncertainty, and estimated NTA

flux plus uncertainty.
ATom date lat min/max pressure max/min r Obs ± Unc. (ppm) ATom-EC ± Unc. (PgC yr−1)

ATom-1 17 Aug. 2016 10/25 850/650 0.74 -0.65 ± 0.25 -2.81 ± 0.6

ATom-2 15 Feb. 2017 -5/10 950/500 0.77 1.9 ± 0.24 3.15 ± 0.6

ATom-3 17-20 Oct. 2017 -5/10 600/400 0.77 -1.11 ± 0.26 -2.22 ± 0.48

ATom-4 14 May 2018 -5/10 650/450 0.65 -0.71 ± 0.1 -0.26 ± 0.37

ing from the ATom observations and inversion posterior CO2 the NOAA Greenhouse Gas190

Marine Boundary Layer (MBL) Reference surface (Dlugokencky et al., 2019) as defined by191

observations for ATom and as defined by the respective posterior CO2 simulated at surface192

stations for the inversions.193

∆CO2= COATom
2 - COMBL

2 (1)

The NOAA MBL reference product is derived from atmospheric CO2 mole fraction mea-194

surements from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network195

(Dlugokencky et al., 2019). In order to generate a consistent MBL reference for both the196

model and observations, we ran the Python version of the curve fitting and smoothing al-197

gorithm developed by Thoning et al. (1989) over the period 2015–2020 using the subset198

of stations available during this time. We linearly interpolate the MBL reference values199

to our 5◦ latitude bins. We use the weekly values that are closest in time to the ATom200

measurements, 16 August 2016 (ATom-1), 15 February 2017 (ATom-2), 16 October 2017201

(ATom-3), and 17 May 2018 (ATom-4). Figure 2 shows the selected MBL reference values202

used to define ∆CO2 for the observations and as averaged for each experiment. The ex-203

periment mean posterior MBL gradients diverge up to 1 ppm from the observations. Thus,204

subtracting reference values specific to each model and experiment is an important step to205

isolate NTA signals from those originating elsewhere.206

2.3 Averaging box selection207

We identified optimal pressure and latitude bounded boxes by maximizing the across-208

inversion correlation coefficient between ∆CO2 averaged over a given ATom box and fluxes209

for the same month from the NTA TransCom region. This results in a correlation calculation210

across 54 data pairs. Note that the ATom Atlantic flights all generally occurred in the middle211

of the month (Table 1) leading to our use of monthly mean fluxes. Also, back trajectories212

indicate that NTA had a strong influence on the measurements over the preceding several213

weeks (Fig. 3). We imposed that the boxes have a minimum width of 15◦ in latitude and a214

minimum height of 200 hPa, to avoid spurious correlations. We then calculated correlation215

coefficients for all different possible configurations spanning 40◦S to 40◦N in latitude and216

from the surface to 200 hPa. While significant relationships (with p-value lower than 0.05)217

are found for many different boundary options (Fig. S4), we select the box that provides218

the greatest correlation coefficient (Table 1). Given transport differences across models,219

we interpret these regions as having the greatest agreement across models as to where220

NTA fluxes influence the observed concentrations. Table 1 includes the boundaries of the221

optimized boxes and the Pearson correlation coefficient between the posterior ∆CO2 box222

average and the respective TransCom subregion monthly net land fluxes.223

2.4 Observation uncertainty224

We use CO2 measurements made by three in-situ analyzers: the NOAA Picarro instru-225

ment, the Harvard quantum cascade laser spectrometer (QCLS, Santoni et al., 2014), and226

–7–
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Figure 3. Relative contributions from the the NTA region (first row) and the rest of world

(second row) to the Atlantic ATom observations, based on 14-day back-trajectories. Distribution

of the U zonal wind speed (third row) and HCN (fourth row) over the Atlantic for all four ATom

campaigns. In these plots solid blue lines show the optimized boxes. Bins containing no flight data

are white.

–8–
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the National Center for Atmospheric Research (NCAR) airborne oxygen instrument (AO2,227

Stephens et al., 2021). We also use CO2 measured in flasks collected by the NCAR/Scripps228

Medusa whole-air sampler (Stephens et al., 2021) and NOAA Programmable Flask Packages229

(PFP) (Sweeney et al., 2015). The ∆CO2 values used in the emergent constraint have been230

calculated using the NOAA Picarro data as it is most closely tied to the WMO CO2 scale,231

has the greatest data coverage, and is the record the models used for reporting matched232

posterior concentrations. To assess uncertainty in these observations, we compare ∆CO2 es-233

timates among all five in-situ measurement or sampling systems. More specifically, to allow234

for different periods of missing data for each instrument owing to in-flight calibrations and235

the reduced coverage of the flask systems, we first calculate sensor-sensor differences using236

the NOAA Picarro data as the common reference and then calculate box averages of these237

differences. We then use the standard deviation of these four differences, also including zero238

for the NOAA Picarro minus itself, as the observational uncertainty on box-averaged ∆CO2239

for each campaign (Table 1).240

2.5 Emergent constraints241

We use weighted orthogonal distance regression (Boggs & Rogers, 1990), a method242

which accounts for errors in both the explanatory and response variables, to construct243

emergent constraints between ∆CO2 (here the explanatory variable) and NTA flux (here244

the response variable). Weighted ODR requires knowledge of the variances of the errors245

associated with each variable. As scaling factor for the flux errors we use the empirical246

standard deviation of the flux estimates, while for the ∆CO2 errors we use the empirical247

standard deviation of the ∆CO2 values. The linear fit and its associated coefficient un-248

certainty depend only on the ratio of these scaling factors, so we are implicitly assuming249

that the signal to noise ratio (defined as the variance of the data divided by the variance250

of the associated errors) of the fluxes is the same as that of ∆CO2. In the absence of more251

information about the sources of variation in the errors, this is a reasonable assumption.252

Recent comparisons of different statistical methods for estimating emergent constraints253

found broadly consistent results (Renoult et al., 2020; Simpson et al., 2021). The emergent254

constraints developed here are based on an ensemble with overall good structural diversity,255

thanks to the assimilation of various kinds of observations and using a range of transport256

models. Also, there are no attempts to quantify a range of projected responses from our257

ensemble, which can be a problem when assessing Earth system response to a forcing or the258

strength of a feedback (Sanderson et al., 2021). However, it remains important to accurately259

quantify uncertainties (e.g., K. W. Bowman et al., 2018; D. B. Williamson & Sansom, 2019).260

We account for uncertainties in both ATom observations and the MIP results through261

the following. First, we draw a sample of the regression line using the error covariance262

matrix of the estimated regression parameters, as well as a sample from the ATom ∆CO2263

observation error distribution (as derived in the previous section). Second, we find the264

corresponding flux estimate using this sampled regression line and the sampled ATom ∆CO2265

measurement. Third, a sample from the flux error distribution assumed by the ODR method266

is added onto this flux estimate; this is assumed to be a normal distribution with mean zero267

and variance equal to the empirical variance of the residuals from the ODR fit. We repeat268

this process 5000 times and then take the empirical standard deviation of the flux samples as269

the 1σ uncertainty of the ATom-EC flux. This method accounts for uncertainty associated270

with the emergent constraint fit and the ATom CO2 measurement uncertainty, but not for271

the uncertainty arising from the choice of the altitude-latitude box; we discuss this form of272

uncertainty in Section 3.3.2 and in the supplementary material. The resulting four monthly273

ATom-EC values with their uncertainties are reported in Table 1.274

–9–
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Figure 4. Terra/MOPITT V9J level 3 monthly average total column of carbon monoxide for

months corresponding to the ATom campaigns, and ATom flight tracks. The ATom observations

in purple correspond to the optimize boxes.

2.6 Source Contributions and Ancillary Measurements275

For qualitative assessment of sampled air origins, backward particle trajectories were276

computed using the Traj3D model (K. P. Bowman, 1993; K. P. Bowman & Carrie, 2002).277

Model trajectories were initialized at receptors spaced 1 min apart along the ATom flight278

tracks, and followed backwards for 30 d (Ray, 2022; Gonzalez et al., 2021). From these279

trajectories, we calculated for each receptor point the surface influence functions over land280

only. These footprints (Fig. S5) are in units of concentration mole fraction per emission281

flux or ppm/(µmol m−2 s−1). We define the relative contribution of the NTA TransCom282

subregion and the rest of the world (ROW) to the ATom tropical Atlantic measurements.283

The footprints, either for NTA or ROW, are summed and divided by the global total foot-284

prints. We show the contributions for 14-day back trajectories for each 5◦ latitude by 50285

hPa pressure grid bin (Fig. 3). The regions of strong NTA influence are large for all ATom286

missions. While these back trajectories were not used in the determination of the boxes,287

there is a good correspondence with a majority of the air in our optimized boxes strongly288

influenced by fluxes from the NTA TransCom subregion (Figs. 3, S4).289

Fig. 3 shows two additional ATom measurements, the eastward (U) wind speed com-290

ponent and hydrogen cyanide (HCN) concentration measured by the Chemical Ionization291

Mass Spectrometer (CIT-CIMS) instrument. HCN is an excellent biomass burning tracer292

(Li et al., 2003; Crounse et al., 2009).293

Fig. 3 also shows the optimized boxes. We also show on Fig. 4 maps of the the294

monthly mean CO total column from the V9J MOPITT product (Deeter et al., 2022). The295

biomass burning plumes characterized by enhanced CO column and in-situ HCN can clearly296

be identified. These features correspond to plumes from NTA on ATom-2 and ATom-4, and297

from southern tropical Africa on ATom-1 and ATom-3.298

3 Results299

3.1 NASA ATom Concentrations300

The four ATom campaigns observed both elevated and depleted CO2 over the trop-301

ical Atlantic relative to the NOAA Marine Boundary Layer (MBL, Fig. 2) Reference302

(Dlugokencky et al., 2019). We define a metric quantifying these anomalies, ∆CO2, by sub-303

tracting the NOAA MBL Reference at corresponding latitudes and times from the ATom304

CO2 observations (Fig. 5). We qualitatively attribute these CO2 variations to biomass305

burning or net ecosystem exchange in tropical Africa guided by observed winds, modeled306

–10–



manuscript submitted to Global Biogeochemical Cycles

Figure 5. Latitude and altitude distribution of ∆CO2 observations made over the Atlantic basin

for the four ATom deployments. ∆CO2 is defined by subtracting the observed or modeled NOAA

MBL Reference (Dlugokencky et al., 2019) at corresponding latitudes and times from the ATom

CO2 observations or inverse models, respectively. The second and third rows show the IS and

LNLG experiment mean bias, respectively. The optimized NTA-influenced boxes are delineating

by solid blue lines. Bins containing no flight data are white.

back-trajectories, satellite CO observations, and coincident in situ measurements of biomass307

burning tracers (Fig. 3, 4).308

The ATom-1 deployment occurred in August 2016. Typically at this time of year,309

the western African monsoon brings rain over western Africa, inducing a convection-driven310

upward and westward atmospheric pattern, which is strongest near the Inter-Tropical Con-311

vergence Zone (ITCZ) (Rodŕıguez et al., 2015). As a result of the NTA growing season312

CO2 uptake, ATom-1 observed negative ∆CO2 throughout the troposphere north of 15◦N313

and more broadly in the upper troposphere (Fig. 5). The mean values from the IS exper-314

iment tends to overestimate ∆CO2 in these negative CO2 anomaly regions, suggesting an315

underestimated uptake.316

ATom-2 occured in February 2017 during the NTA dry season and sampled biomass317

burning plumes from the region (Figs. 3, 5). During ATom-2, large positive ∆CO2 values318

were found centered around the equator, between 950 hPa and 500 hPa. The LNLG ex-319

periment mean strongly overestimates ∆CO2 within and adjacent to this observed positive320

anomaly, whereas the IS experiment mean slightly underestimates concentrations in the321

plume.322

ATom-3 occured in October 2017 during the NTA wet-to-dry transition season. The323

negative ∆CO2 values during ATom-3, located north of the Equator, between 600 and 400324

hPa in the mid-troposphere, appear to originate from eastern NTA (Fig. S5). South of325

the Equator between 600 and 800 hPa ATom-3 intercepted a biomass burning plume that326

originated from southern tropical Africa (Fig. 3). The IS mean experiment strongly under-327

estimates ∆CO2 in this biomass burning plume, but overestimates ∆CO2 in the negative328
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anomaly regions. The LNLG experiment mean performs better for both positive and nega-329

tive anomalies during ATom-3.330

ATom-4 measurements were made in May 2018 during the dry-to-wet transition season331

for NTA. Negative ∆CO2 values can be found over the optimized box between -5◦N and332

10◦N and 450-650 hPa. It is located just above a region of positive ∆CO2 values that333

correlate with elevated HCN in the ATom data (Fig. 3). This enhancement in ∆CO2 is334

slightly underestimated by both the IS and LNLG inversion means.335

3.2 Emergent Constraints336

Emergent constraints are powerful tools to reduce model spread and narrow uncertainty337

(e.g., K. W. Bowman et al., 2018; Eyring et al., 2019; M. S. Williamson et al., 2021; Simpson338

et al., 2021). They offer a promising way to further improve the quantification of carbon339

fluxes and the overall scientific understanding of the carbon cycle (e.g., Stephens et al., 2007;340

Cox, 2019; Keenan et al., 2021; Long et al., 2021; Barkhordarian et al., 2021). Overall, our341

approach here is to take advantage of the large model spread to derive robust relationships342

between the airborne observations and land fluxes. We utilize CO2 gradients (∆CO2) ob-343

served during ATom as a measurable variable (predictor) to obtain a constrained estimate344

of net land fluxes from NTA. For each ATom deployment, we use the v10 MIP ensemble to345

determine an altitude-latitude box boundary within the airborne transects that best cor-346

relates with NTA fluxes (Fig. 5). We also tried defining boxes centered on the observed347

biomass burning plumes and on the basis of back-trajectories (Fig. 3). The former only cap-348

tured strong positive emissions while ignoring uptake signals, and the latter showed worse349

correlations most likely owing to differences in transport between the back-trajectory model350

and the inversions. Thus we chose to optimize the boxes based on empirical correlations,351

which to some extent can allow for differences among the transport models by expanding352

the boxes. We calculated the Pearson correlation coefficient between model ∆CO2 and353

NTA fluxes The optimized Pearson correlation coefficients range from r=0.65 for ATom-4354

to r=0.77 for ATom-2. We consider the true relationship to be unknown and we expect355

scatter of the v10 MIP points about the true relationship because of transport differences356

and other sources of errors between inversions. We also do not expect the correlations to357

reach one because of variations in contributions to CO2 within the boxes from regions other358

than NTA.359

Fig. 6 shows the relationships between the NTA land fluxes (excluding fossil fuel360

emissions) and ∆CO2 averaged over the respective ATom box (Table 1, Fig. 5). We use361

these emergent relationships to estimate NTA fluxes for all four ATom periods. The fit362

slopes in Fig. 6 represent the sensitivity of concentrations to fluxes, as defined by this v10363

MIP collection of models. We plot the dependent concentration variable on the x-axis to364

be consistent with the emergent constraint predictor convention. We estimate fluxes in the365

months corresponding to each campaign as the intersection of the observation and fit lines366

shown in Fig. 6. We estimate the observation error by comparing the five different CO2367

observing systems aboard the DC-8, three in situ and two flask samplers. We estimate 1σ368

flux uncertainty by propagating the observation error onto the fit prediction interval (see369

Section 2).370

ATom-2 was characterized by a strong source as measured by a ∆CO2 of around 2371

ppm (Table 1). Yet, the LNLG and LNLGIS experiments show a strong overestimation of372

this signal, with almost all inversions simulating a ∆CO2 higher than observations. The IS373

models exhibit the largest spread of all experiments, but generally show a positive bias during374

ATom-1 and ATom-3 during the wet season and wet-to-dry season transition and a negative375

bias during ATom-4 during the dry season. During ATom-3, the IS group overestimates376

∆CO2 with biases up to 2 ppm. Even though ATom-3 occurred at the end of the wet377

season, some inversions indicate a land source of CO2 for NTA at this time. There was378

no clear ranking for inversion performance between experiments as their skills were not379
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Figure 6. Emergent constraints on northern tropical African CO2 fluxes during ATom. The

relationships represent the sensitivity of airborne posterior ∆CO2 to NTA land fluxes (excluding

fossil fuel emissions). Each point shows results for a single model within one of four experiments

(colors). Fluxes are averaged over the month of each campaign and the NTA TransCom subregion.

The ODR fits are plotted as an orange line with a brown shading indicating 1σ prediction intervals.

The vertical line in each panel represents the observed ∆CO2, averaged over the optimized boxes

shown in Fig. 5. Shading around the observation lines represents 1σ observation uncertainty (2).

Note the different axis ranges between panels. The same figure with simulations colored by inverse

models can be found in the supplement (Fig. S6).
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Figure 7. Monthly mean northern tropical Africa net land CO2 fluxes for the different OCO-2

MIP experiments compared to the observational estimates. Lines represent means across all models

within each experiment. The ATom emergent constraint (ATom-EC) is plotted in black with each

1σ prediction interval as an errorbar. We also show the mean prior fluxes used in the inversions and

biomass burning fluxes from GFED4s (v4.1) (van der Werf et al., 2017), used as prior fire fluxes by

3 out of 12 inversion models.

consistent across the four campaigns (Fig. 6). Although we present experiment means in380

Fig. 7 for visual clarity, Fig. 6 suggests that experiment means do not necessarily reflect381

best estimates. It is also not clear that any particular models perform better or worse than382

others across all four campaigns. Thus, we do not evaluate individual models, but do provide383

a version of Fig. 6 colored by model in the supplement (Fig. S6).384

3.3 Northern Tropical African Land Fluxes385

3.3.1 Monthly Time Series386

Figure 7 shows the monthly average land fluxes averaged for each experiment, from387

2016 to 2018, along with our ATom emergent constraint (hereafter ATom-EC) estimates388

for the four ATom missions. The ATom-1 emergent constraint suggests a strong wet-season389

land sink that is more closely reproduced with the inversions that assimilate OCO-2 LNLG390

data. During ATom-2, which occurred during the dry season, all the experiments indicate391

a larger source than was predicted by the prior fluxes. The spread between experiments is392

also maximal for ATom-2, with the LNLG and LNLGIS mean overestimating the ATom-EC393

and IS and OG slightly underestimating. The LNLGOGIS mean is closest to our ATom-2394

estimate as it combines the LNLG overestimation and the IS/OG underestimation, as shown395

on Fig. 6b. The IS flux mean underestimates the magnitude of the seasonal cycle as it is396

positively biased during ATom 1 and 3 and negatively biased during ATom 2 and 4. During397

the shoulder seasons, the spread among the four experiment means is smaller and the OCO-398

2 LNLG based inversion mean is in agreement with the ATom-EC for ATom-3 in showing399

a much lower flux. Our results indicate that the assimilation of OCO-2 data improves the400

inversions for ATom-1 and ATom-3.401

These campaign differences are related to seasonal patterns evident in the multi-year402

monthly-mean fluxes. On average, the inversions that assimilate OCO-2 land data (LNLG,403

LNLGIS, LNLGOGIS) have a stronger source during the dry season (Figure S7). The LNLG404

and LNLGIS fluxes are higher than the other experiments from January to May. However,405

the LNLG and LNLGIS inversion fluxes are more negative than the IS fluxes in the wet406
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Figure 8. NTA three-year mean emergent constraint: True modeled three-year means (2016-

2018) versus estimates based on model flux estimates corresponding to the four ATom campaigns.

The fit represents the correction of the ATom-based estimates to the true three-year means (2016-

2018) for temporal sampling biases. The ODR fit is plotted as an orange line with shading indicating

the 1σ prediction interval. The vertical line represents the ATom-derived preliminary three-year

mean flux estimate. Shading around the observation line represents the 1σ ATom-EC mean flux

uncertainty.

season, from August to October. As a result, all the experiments using OCO-2 land data407

have a stronger seasonal cycle than the IS experiment. This is in line with a recent study408

that found a stronger seasonal amplitude when comparing the OCO-2 LNLG inversions with409

the IS inversion over South Asia (Philip et al., 2022). The OG experiment fluxes are close410

to those of the IS experiment, but in 2018 higher than IS during the dry season. With no411

data constraints over NTA, the IS and OG inversions remain close to the prior estimates.412

It is important to note that for OG the land flux is estimated by data over the ocean only413

and also that potential biases in OG observations may impact the posterior fluxes (Crowell414

et al., 2019; Peiro et al., 2022).415

3.3.2 2016-2018 Mean Flux Estimates416

We derive an initial multi-year annual mean NTA flux estimate by scaling the inversion417

average climatological seasonal flux cycle to optimally fit the four ATom-EC flux estimates418

(2016-2018). We fit the 4 ATom estimates to the average seasonal cycle derived from all419

the inversions. We input the 1σ uncertainty described above to account for uncertainties in420

each ATom. To account for the assumption of a specified seasonal cycle shape, we repeat421

the fit using all the individual modelled seasonal cycles and add the standard deviation in422

quadrature to the fit error.423

The optimally scaled seasonal cycle represents a preliminary three-year annual mean424

flux estimate subject to potential seasonal and interannual sampling biases owing to the425

flights occurring at only select times of year and in select years. To correct for this, we use the426

inversion suite to estimate the difference between the annual mean estimated in this way from427

the four ATom-EC and the true three year mean from each inversion. This approach relies428

on the inversions, as internally consistent representations of seasonally and interannually429
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Figure 9. A) Annual mean net land CO2 fluxes for NTA averaged for each MIP experiment and

from the airborne observational constraint. The ATom emergent constraint (ATom-EC) is plotted

in cyan with a shaded 1σ error estimate. We also show the mean of five inversions for 2015 and

four inversions for 2016 from Palmer et al. (2019). B) 2016-2018 means for each inverse simulation

(dots), and the resulting boxplot (25th percentile, median and 75th percentile) by experiment, and

also showing priors.

varying fluxes and concentrations, to predict our temporal sampling biases in estimating430

three-year mean fluxes. We first calculate three-year mean fluxes for each inversion using a431

linear fit of the average seasonal cycle to the four monthly fluxes corresponding to the ATom432

months. We then compare these to the true mean fluxes (2016-2018) from each inversion.433

Because the inversions suggest both an offset and slope component to this correction (Fig.434

8), we again use an emergent constraint approach to define the correction and its uncertainty.435

We calculate the relationship between the true three-year annual means and the 4-ATom436

estimate using the same method as for the individual campaign estimates, an ODR fit437

with input uncertainties scaled according to the respective standard deviations (Fig. 8).438

We estimate a slope of 0.84 PgC yr−1 per PgC yr−1 with an intercept of 0.3 PgC yr−1,439

and a correlation coefficient of 0.87. We calculate the corrected ATom-EC 2016-2018 mean440

estimate and its 1σ uncertainty by propagating the uncertainty errors using the same three441

step Monte-Carlo approach described in the previous section, using as inputs each ATom-EC442

and its 1σ uncertainty for the observation.443

We obtain a corrected three-year annual mean flux estimate of 0.14 PgC yr−1 with a444

1σ uncertainty of 0.39 PgC yr−1 (Fig. 9). It is important to note that this estimate and its445

relatively small uncertainty come not just from the four ATom transects spread over three446

years but rather a combination of these transects and estimates of the underlying seasonal447

and interannual variations from the suite of 54 models.448

Although for differing time periods, our estimate contrasts with the findings of Palmer et449

al. (Palmer et al., 2019) for 2015-16, based on the assimilation of land Atmospheric Carbon450

Observations from Space (ACOS) v7.1 retrievals of GOSAT (Greenhouse Gas Observing451

Satellite) and OCO-2, and of the v9 MIP LNLG experiment for 2015-2018 (Peiro et al.,452

2022) that are on average 1.6 and 1.25 PgC yr−1, respectively. For the v10 MIP, the mean453

NTA fluxes for the same 2016-18 period are 1.03 ± 0.38 PgC yr−1 for the LNLG experiment.454

The NTA fluxes for the v10 MIP IS and OG experiments are much weaker with 2016-455

2018 means of 0.31 and 0.42 PgC yr−1, respectively. All the v10 MIP experiments are456
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consistent in showing an enhanced 2016 source, likely due to the 2015-2016 El Niño, and a457

∼0.5 PgC yr−1 reduction of the source between 2016 and 2018 (Fig. 9). The LNLGOGIS458

range (1.71 PgC yr−1) and that of IS (1.96 PgC yr−1) are larger than other experiments459

(Fig. 9).460

To evaluate the impact of the choice of a single box to determine the emergent con-461

straints, we repeated the entire annual-mean calculation with alternate altitude-latitude462

boundaries for the boxes. We varied one box at a time among the 12 highest correlated463

boxes for each ATom and calculated all different possibilities for 104 realizations. The result-464

ing distribution of annual mean estimates is a normal distribution with a median and mean465

that are both equal to the the mean estimate using only our optimal four-box ATom-EC466

estimate. We add the standard deviation of this distribution, 0.1 PgC yr−1, in quadrature467

with our uncertainty as an estimate of errors in the choice of box boundaries, resulting in a468

final uncertainty of ± 0.39 PgC yr−1.469

4 Discussion470

Previous studies estimated a near neutral African CO2 budget with photosynthesis471

being larger than the sum of respiration, biomass burning and fossil fuel emissions combined472

(Ciais et al., 2009; Valentini et al., 2014). The net biospheric carbon uptake is suggested473

to mainly occur in intact forests (Ciais et al., 2009; Lewis et al., 2009), as estimated by474

vegetation models and forest inventory plots. The long-term inventory plots of the African475

Tropical Rainforest Observatory Network, or AfriTRON, remained a live biomass carbon476

sink despite extreme environmental conditions during the 2015-2016 El Niño event (Bennett477

et al., 2021). This implies a strong uptake in intact, old-growth, tropical forests in line478

with above-ground carbon storage estimates (Pan et al., 2011). However, the 2015-2016479

El Niño (J. Liu et al., 2017) may have had long lasting impact with a slow recovery in480

forest uptake. There may be other sources of CO2 from unaccounted deforestation and481

degradation (Wigneron et al., 2020).482

Global CO2 inverse models rely on prior fluxes provided for example from model prod-483

ucts, such as biosphere models (Philip et al., 2019) and are subject to large-scale transport484

uncertainty, given their coarse horizontal and vertical resolutions (e.g., Schuh et al., 2019).485

Knowing the importance of transport errors through diffusive and convective vertical mix-486

ing in explaining the systematic differences between TM5 and GEOS-chem (Schuh et al.,487

2019, 2022), we repeated our emergent constraint approach using only the subset of 3 TM5488

(TM5-4DVAR, OU and CT) or the 5 GEOS-Chem (Ames, CMS-Flux, COLA, UT and489

WOMBAT) inversions (Fig. S6). A previous study on CO showed that we also expect the490

differences to be maximal in outflow pathways of large biomass burning sources (Ott et al.,491

2011). We found a three-year annual mean flux estimate of 0.27 ± 0.36 (TM5) and 0.8 ±492

0.43 (GEOS-Chem) PgC yr−1. These uncertainty estimates do not reflect the bias imposed493

by the choice of a single transport model. This reinforces the need for emergent constraints494

using relationships derived by a diverse suite of models.495

In addition, inversion algorithms are sensitive to the observations’ spatial coverage and496

temporal frequency, and with particular relevance for satellite CO2 observations also to mea-497

surement biases (e.g., Basu et al., 2018; Houweling et al., 2015). Inversion of SCIAMACHY498

(Kaminski et al., 2017), GOSAT and OCO-2 CO2 retrievals over land suggest a source in the499

tropics, driven by NTA region emissions (Houweling et al., 2015; Palmer et al., 2019; Crowell500

et al., 2019; Peiro et al., 2022). Mean estimates from previous GOSAT and OCO-2 studies501

range between 1.25-1.6 PgC yr−1. The magnitude of these unexpected sources equates to502

approximately half of the global net land carbon sink (Friedlingstein et al., 2022) and would503

require a major revision to our understanding of both the tropical and global carbon cycle.504

A large NTA source has not been seen in the most recent IS inverse model synthesis studies505

(Crowell et al., 2019; Gaubert et al., 2019; Peiro et al., 2022). Overall the larger CO2 land506

source estimates are driven by satellite retrievals during the dry season (Fig. 7), when there507
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is a high aerosol loading from biomass burning and dust which may increase biases (Fig. S1)508

in retrievals (O'Dell et al., 2018). The lack of ground-based observations over Africa makes509

it challenging to verify these estimates. Thus, airborne measurements such as those from510

ATom are uniquely valuable in assessing the divergent inversion estimates. During ATom-2,511

the ATom-EC indicates a smaller source of 3.15 ± 0.6 PgC yr−1 (mean ± 1σ uncertainty,512

Fig. 7) in February than the LNLG experiment with 4.6 ± 0.74 PgC yr−1 (mean ± 1σ513

across 10 models).514

It is possible that remaining biases in version B10 OCO-2 measurements over NTA515

led to erroneous flux estimates in inversions using these data. NTA during the dry season516

exhibits very high dust and smoke aerosol loading (Fig. S1d), associated with Harmattan517

winds (Evan et al., 2006). The OCO-2 retrievals undergo quality filtering based on multiple518

parameters, including aerosol optical depth (O'Dell et al., 2018), and for NTA during dry519

season typically less than 10 % of retrievals pass this filter (Fig. S1b). The OCO-2 retrievals520

also have a multi-parameter post-retrieval empirical bias correction applied (O'Dell et al.,521

2018), and this bias correction is largest over NTA, with adjustments of approximately +2.7522

ppm, or 0.6 ppm higher than the global average correction (Fig. S1a). This large bias523

correction is tied primarily to two terms, one encompassing dust, water, and sea-salt aerosol524

loading and a second related to the difference between retrieved surface pressure and that525

from meteorological reanalyses, which itself may result from aerosols (Kiel et al., 2019).526

The positive dry season OCO-2 bias correction over NTA would have to be overesti-527

mated if it were to explain the sign of the LNLG inversion versus ATom-EC differences we528

see. How large of an overestimate might be required to explain our result? Given the many529

interacting constraints in global CO2 inversions, and uncertain atmospheric transport, it530

is difficult to quantitatively estimate the magnitude of biases necessary. For example, the531

LNLG mean concentration bias in the ATom-2 optimized box is 0.88 ppm. However, we532

expect flux signals to be more concentrated in these optimized boxes than in full column533

XCO2 measurements because they only represent partial columns, but also less concen-534

trated because of lateral and vertical mixing between NTA and the mid-Atlantic. Previous535

synthetic inversion work has demonstrated a high sensitivity of continental scale inverse flux536

estimates to small biases in satellite XCO2 measurements, on the order of 1 PgC yr−1 per537

ppm (Chevallier et al., 2007). We find a correlation between the dry season XCO2 over NTA538

in posterior concentration fields and NTA fluxes from the inversions with a slope of 4.16539

PgC yr−1 per ppm or 1.39 PgC/ppm for 4 months (DJFM) (Fig. S2). This implies that540

the disagreement we find between the 1.03 PgC yr−1 LNLG inversion experiment mean and541

our ATom-EC estimate of 0.14 PgC yr−1 might potentially be explained by a +0.64 ppm542

bias concentrated in Dec-Mar or just a +0.21 ppm bias if it persists throughout the year.543

Despite the apparent overestimated source in the LNLG experiment, our ATom-EC544

estimate for ATom-2 still shows a stronger NTA source than in previous and v10 MIP IS545

inversions. Biomass burning emissions could play a role in the enhanced source, but need546

improved observational constraints. Recent studies have found that the dry matter burned547

estimates and the number of active fire detections over Africa could be underestimated by548

the 500-m resolution MODerate resolution Imaging Spectroradiometer (MODIS) instrument549

(Ichoku et al., 2016; Roteta et al., 2019; Nguyen & Wooster, 2020). The detection and550

inclusion of smaller fires detected by the higher-resolution 20-m Sentinel-2 Multispectral551

Instrument (MSI) suggests an increase in burned area and net higher emissions as well as a552

longer fire season (Roteta et al., 2019; Ramo et al., 2021). Overall, other reasons related to553

small-scale heterogeneity can explain discrepancies in the modelling of small fire emissions554

(van Wees & van der Werf, 2019).555

5 Summary556

We evaluated inverse model calculations of northern tropical African CO2 fluxes with557

aircraft measurements over the Atlantic Ocean. This collection of models shows a large558
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inter-model spread in mean land flux magnitudes and temporal variability in sub-Saharan559

Africa. The posterior fluxes for NTA averaged over the 2016-2018 period span from -0.2 PgC560

yr−1 to more than 1.8 PgC yr−1. For posterior CO2 concentrations averaged over optimized561

ATom boxes, i.e. subregions of the ATom flight transect, the range is around 3 ppm, with562

a standard deviation between 0.74 and 1 ppm for different campaigns. During the dry563

season, our ATom emergent constraint indicates that NTA land fluxes are overestimated564

by the LNLG experiment and underestimated by the IS and OG experiments. Inversion565

errors could be due to the lack of assimilated in-situ observations in the region, atmospheric566

transport uncertainties, in particular arising from convection, and the difficulty of achieving567

accurate and frequent satellite retrievals due to cloud obstruction during the wet season568

and aerosols during the dry season. The comparison by models, i.e., TM5 or GEOS-Chem,569

supports the important role of transport biases in the spread of inversions results, which570

underscores the importance of the Model Intercomparison Project to assess flux estimates.571

Based on the seasonal timing of the LNLG flux differences, we speculate that the high dust572

and smoke aerosol loading during the dry season may lead to an overestimated bias correction573

in the v10 OCO-2 data over NTA. Our results point to the need to better characterize the574

distribution and impact of biomass burning and dust aerosols to further refine the OCO-2575

retrieval or bias correction procedures.576

Overall, we found an enhanced seasonal cycle relative to IS inversions, with a larger577

source during the dry season and a stronger sink during the wet season (Figure S7). Outside578

of the dry season, the OCO-2 based inversions agree reasonably well with the airborne579

estimates. The OCO-2 inversions and the ATom-1 and ATom-3 emergent constraints imply580

a stronger sink during the NTA wet season. Our revised budget for NTA during 2016-2018581

is an annual source of 0.14 ± 0.39 PgC yr−1. This is much smaller than the v10 MIP LNLG582

mean of around 0.9 PgC yr−1.583

Past studies and this study suggest the sensitivity of continental scale fluxes to biases in584

XCO2 in inversions is high, implying the magnitude of remaining biases in OCO-2 data over585

NTAmay be relatively small and challenging to address. Furthermore, given the large spread586

in total emissions and seasonality of fire emission estimates, the sensitivity of posterior CO2587

to the choice of prior fire flux should be assessed in future studies. Additional constraints588

on fire fluxes could be obtained by the assimilation of satellite observations of chemical589

species related to combustion such as CO (Zheng et al., 2018; Gaubert et al., 2020) and590

nitrogen dioxide (NO2) and improved burned area estimates (Zheng et al., 2021). For the591

individual months of the ATom campaigns, we obtain an uncertainty reduction in NTA CO2592

fluxes of a factor of two compared to the full v10 MIP ensemble, highlighting the potential593

benefit of future airborne observations over and downwind of Africa and other continents. A594

regular ongoing program of global-scale airborne surveys would greatly improve our ability595

to resolve the global carbon cycle and validate satellite emission estimates.596

Data Availability597

The ATom data (Wofsy et al., 2021) is available as 10-sec, NOAA PFP, and Medusa598

merge products https://doi.org/10.3334/ORNLDAAC/1925(10.3334/ORNLDAAC/1925).599

The OCO-2 v10 MIP model results are publicly available (https://gml.noaa.gov/ccgg/600

OCO2 v10mip/, last accessed 2 March 2023) The NOAA Greenhouse Gas Marine Boundary601

Layer Reference (Dlugokencky et al., 2019) is publicly available (https://gml.noaa.gov/602

ccgg/mbl/data.php, last accessed 27 December 2022).603
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Plain Language Summary42

Satellite CO2 observations over land imply a major revision to our understanding of the43

global carbon cycle linked to large emissions from northern tropical Africa during the dry44

season, from October to May. We use aircraft observations made over the Atlantic Ocean in45

four seasons to evaluate flux models driven by a range of ground and satellite observations.46

Our results show that models using satellite observations over land overestimate annual47

emissions from northern tropical Africa by approximately 1 PgC yr−1, concentrated in the48

dry season. At other times of year, satellite CO2 observations provide improved estimates49

of northern tropical Africa exchange, with a stronger CO2 uptake during the wet season.50

Key Points:51

• Emergent constraints derived from aircraft CO2 measurements and inversions esti-52

mate a near neutral northern tropical African CO2 budget.53
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• Inversions using satellite observations overestimate annual emissions from northern54

tropical Africa by approximately 1 PgC yr−1.55

• Satellite CO2 observations imply a strong sink during the wet season over northern56

tropical Africa.57

Corresponding author: Benjamin Gaubert, gaubert@ucar.edu
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Abstract58

Tropical lands play an important role in the global carbon cycle yet their contribution59

remains uncertain owing to sparse observations. Satellite observations of atmospheric car-60

bon dioxide (CO2) have greatly increased spatial coverage over tropical regions, providing61

the potential for improved estimates of terrestrial fluxes. Despite this advancement, the62

spread among satellite-based and in-situ atmospheric CO2 flux inversions over northern63

tropical Africa (NTA), spanning 0-24◦N, remains large. Satellite-based estimates of an an-64

nual source of 0.8-1.45 PgC yr−1 challenge our understanding of tropical and global carbon65

cycling. Here, we compare posterior mole fractions from the suite of inversions participating66

in the Orbiting Carbon Observatory 2 (OCO-2) Version 10 Model Intercomparison Project67

(v10 MIP) with independent in-situ airborne observations made over the tropical Atlantic68

Ocean by the NASA Atmospheric Tomography (ATom) mission during four seasons. We69

develop emergent constraints on tropical African CO2 fluxes using flux-concentration re-70

lationships defined by the model suite. We find an annual flux of 0.14 ± 0.39 PgC yr−1
71

(mean and standard deviation) for NTA, 2016-2018. The satellite-based flux bias suggests a72

potential positive concentration bias in OCO-2 B10 and earlier version retrievals over land73

in NTA during the dry season. Nevertheless, the OCO-2 observations provide improved flux74

estimates relative to the in situ observing network at other times of year, indicating stronger75

uptake in NTA during the wet season than the in-situ inversion estimates.76

1 Introduction77

Tropical terrestrial ecosystems are an important component of the global carbon cycle78

as both a strong source of atmospheric CO2 from land-use emissions (e.g., Hong et al., 2021)79

and a strong sink in intact forests, most likely owing to the CO2 fertilization effect on photo-80

synthesis (Lewis et al., 2009; Schimel et al., 2015). African ecosystems are large contributors81

to the uncertain positive climate-carbon cycle feedback of reduced photosynthesis and in-82

creased soil and plant respiration associated with hotter, drier conditions (Friedlingstein et83

al., 2006, 2010; Cox et al., 2013; Wang et al., 2014; Arora et al., 2020). Atmospheric inverse84

models constrained with in-situ observations estimate that the sum of land carbon fluxes85

from the tropics and southern extratropics has been near-neutral since the 2000s (Gaubert86

et al., 2019). The Global Carbon Budget 2021 (Friedlingstein et al., 2022) also estimates87

a near-balanced budget (excluding fossil fuel) in the tropics during the past decade that is88

derived from both process models and a set of atmospheric inversions.89

CO2 biomass burning emissions from sub-Saharan Africa show a marked seasonal cycle90

with large sources during the dry season, from October to May in the northern hemi-91

sphere (e.g., Roberts et al., 2009). Satellite observations from the NASA Orbiting Carbon92

Observatory-2 (OCO-2) indicate a strong and rapid increase in column CO2 that coincides93

with the biomass burning season of northern hemispheric sub-Saharan Africa (Eldering et94

al., 2017; Crisp et al., 2022). Inversions of OCO-2 land nadir and land glint data (version95

B7.1) suggested that northern tropical Africa (NTA, 0-24 ◦N, Fig. 1) net biosphere exchange96

was a carbon source of approximately 1.5 PgC yr−1 to the atmosphere in 2015 and 201697

(Palmer et al., 2019; Crowell et al., 2019). OCO-2 land nadir and land glint inversions from98

version 9 of the OCO-2 Model Inter-comparison Project (v9 MIP, using version B9.1 OCO-299

data) also estimate a large source of carbon (1.26 ± 0.58 PgC yr−1) over NTA, for the 4-year100

period of 2015-2019 (Peiro et al., 2022). This contrasts with the far less constrained in-situ101

set of v9 MIP inversion results for NTA, which provide a mean value of 0.23 ± 0.4 PgC102

yr−1. Interannual variability in these in-situ inversions ranges between an NTA sink of 0.2103

PgC yr−1 in 2018 and a source of 0.6 PgC yr−1 in 2016, during the 2015-2016 El Niño104

(Peiro et al., 2022).105

In addition to the large uncertainties in the net budget, the component processes re-106

sponsible for the large source indicated by OCO-2 observations have yet to be corroborated.107

Conceptually, net carbon exchange results from the the balance of varying gross fluxes,108
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Figure 1. The TransCom 05b or northern tropical Africa (NTA) region. The NTA region

encompasses various ecoregions including tropical forests, sub-humid savanna, semi-arid savanna,

desert to semidesert, and shrubland areas. The four ATom flight tracks are also displayed.

including photosynthetic responses to drought, changes to plant and soil respiration, and109

direct effects of land use. Specific proposed mechanisms include soil emissions due to sus-110

tained land degradation (Palmer et al., 2019) and increased ecosystem respiration due to111

high surface temperature anomalies during the 2015-2016 El Niño (J. Liu et al., 2017). An-112

other possibility is biases in the satellite measurements. Generating accurate OCO-2 CO2113

retrievals remains a challenge despite continuous improvements in the bias correction proce-114

dure (O'Dell et al., 2018). CO2 retrieval biases can result from spectroscopic errors (Connor115

et al., 2008), aerosols and clouds over northern Africa (O'Dell et al., 2018; Nelson & O'Dell,116

2019) and from surface pressure errors that are maximal over the tropics (Kiel et al., 2019).117

The empirically derived bias correction to OCO-2 data has an isolated maximum over NTA118

that is approximately +0.6 ppm higher than the global average. This is illustrated in Fig-119

ure S1 and in Figure 4 of Taylor et al. (2023). Fires play an important role in the African120

carbon cycle, but are thought to be compensated by CO2 uptake during the growing season121

(Valentini et al., 2014). The sub-Saharan region is dominated by shifting agriculture that122

is characterized by small and human-induced fires (Curtis et al., 2018). Emission estimates123

for this type of fire are uncertain and likely to be underestimated because global-scale fire124

emission models are typically based on satellite-derived burned area from relatively coarse-125

resolution sensors that are unable to detect most small fires (Randerson et al., 2012; Ichoku126

et al., 2016; Roteta et al., 2019; T. Liu et al., 2020). For 2016, a recent study (Ramo et127

al., 2021) used Sentinel-2 enhanced spatial resolution images to estimate burned area, and128

calculated for the African continent an increase of 31 % in fire carbon emissions compared129

to the Global Fire Emissions Database with small fires GFED4s (van der Werf et al., 2017).130

Estimates of annual-mean CO2 emissions (Fig. S3) from fires range from 0.29 to 0.55 PgC/yr131

for 2016. Despite large uncertainties, an increase in 30 to 50 % in fire emissions does not132

suffice to explain the discrepancies in inversion results (Crowell et al., 2019; Palmer et al.,133

2019).134

The atmospheric transport pathways exporting emissions from the African continent135

have been thoroughly studied by monitoring plumes over the Atlantic ocean using satellite136

remote sensing observations to track desert dust, smoke aerosols, and trace gases such as137

carbon monoxide (CO) (e.g., Prospero, 1999; Edwards et al., 2006; Adams et al., 2012;138

Barkley et al., 2019). Given the sparsity of other CO2 observations downwind of tropical139
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Africa, the NASA airborne Atmospheric Tomography Mission (ATom) provides a unique140

opportunity to assess the ability of CO2 inverse models to reproduce the atmospheric signa-141

tures of tropical African carbon fluxes over the Atlantic basin. The ATom campaign utilized142

the fully instrumented NASA DC-8 research aircraft to survey the chemical environment143

of the remote atmosphere around the world (Thompson et al., 2022). The ATom payload144

included three in situ CO2 instruments and two whole air samplers with CO2 measurements.145

ATom sampled vertical profiles along meridional transects of the Pacific and Atlantic Ocean146

basins (Fig. 1) during four month-long campaigns between August 2016 and May 2018.147

In this study we use 54 OCO-2 v10 MIP inversions (Byrne et al., 2023) in the form of148

fourteen inverse models running five experiments assimilating different sets of observations.149

We apply an emergent-constraint approach (e.g., M. S. Williamson et al., 2021; Cox, 2019)150

in which we develop relationships between posterior CO2 concentrations over the Atlantic151

and net biosphere fluxes from NTA (Fig. 1), and then use these to derive new flux estimates152

by comparison to the aircraft observations. The NTA region (TransCom 05b) is a subregion153

of the TransCom 05 region defined in the original TransCom experiment (Gurney et al.,154

2002; Gurney & Denning, 2008), spanning 0-24◦N. The NTA region includes the Sahara155

desert and the CO2 fluxes are primarily confined south of ∼18◦N, across various ecoregions156

including tropical forests, sub-humid savanna, and semi-arid savanna.157

2 Materials and Methods158

2.1 OCO-2 v10 Model Intercomparison Project159

The OCO-2 v10 Model Intercomparison Project (v10 MIP) consists of a large ensemble160

of atmospheric inversions from 14 modeling groups using primarily five combinations of161

in situ and OCO-2 satellite observations (Byrne et al., 2023). The models have different162

unoptimized prior flux distributions, model transport, and data assimilation techniques.163

Byrne et al. (2023) presented a description of the participating inverse models and of the164

assimilated datasets used in the OCO-2 v10 MIP. One notable difference to the preceding165

v9 MIP (Peiro et al., 2022) is that the OCO-2 v10 MIP uses OCO-2 observations over166

a longer time period and from a new XCO2 retrieval, i.e. the B10 version (Taylor et167

al., 2023) of the Atmospheric Carbon Observations from Space (ACOS) column-averaged168

dry air mole fraction of atmospheric CO2 (XCO2) retrieval (Byrne et al., 2023; O'Dell169

et al., 2018; Kiel et al., 2019). The post-retrieval data processing also includes a quality170

filtering and a bias correction procedure (Kiel et al., 2019). The atmospheric inversions were171

conducted following a formal protocol with regard to the set of assimilated observations172

and their treatment. Five experiments were defined to investigate the impact of OCO-2173

assimilation across viewing modes and to compare to the assimilation of baseline in-situ174

network observations. The experiments consist of: 1) in situ (IS), 2) OCO-2 land nadir and175

land glint (LNLG), 3) OCO-2 ocean glint (OG), 4) joint LNLG with IS (LNLGIS) and 5)176

a combination of all in situ and satellite data (LNLGOGIS). There were 12 participating177

inversion systems that provided outputs at the ATom locations, but not for all experiments178

for all of the simulations. We included the LoFI simulation in only the IS group. We include179

all of the available submissions when calculating an experiment average, which are 10 for180

LNLG, 11 for IS when including LoFI, and 11 for OG, LNLGIS, and LNLGOGIS.181

2.2 Observations182

We first merge the 10-second ATom dataset (Wofsy et al., 2021) and the ObsPack183

(Masarie et al., 2014) formatted posterior concentration files provided by the OCO-2 v10184

MIP. Only airborne measurements along the northbound Atlantic transects were considered185

by selecting measurements made at longitudes between 70◦W and 15◦E. We excluded the186

last 15 min of the ATom-4 flight arriving in Recife, Brazil and the first 60 seconds of the187

flight departing to avoid local pollution influences. All of the data were then bin averaged188

on a 5◦ latitude by 50 hPa pressure grid. We define the metric ∆CO2 (Eq. 1) by subtract-189
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Figure 2. NOAA marine boundary layer reference CO2 concentrations used to define ∆CO2

for each ATom campaign. We also show the experiment average posterior marine boundary layer

references estimated by the inversions. We use model-specific reference curves in the model posterior

∆CO2 calculation.
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Table 1. Optimized box boundaries (latitude in ◦N and pressure in hPa), flight dates intersecting

boxes, correlation coefficients between the NTA fluxes and posterior ∆CO2 in the corresponding

box estimated by the v10 MIP ensemble, observed ∆CO2 plus uncertainty, and estimated NTA

flux plus uncertainty.
ATom date lat min/max pressure max/min r Obs ± Unc. (ppm) ATom-EC ± Unc. (PgC yr−1)

ATom-1 17 Aug. 2016 10/25 850/650 0.74 -0.65 ± 0.25 -2.81 ± 0.6

ATom-2 15 Feb. 2017 -5/10 950/500 0.77 1.9 ± 0.24 3.15 ± 0.6

ATom-3 17-20 Oct. 2017 -5/10 600/400 0.77 -1.11 ± 0.26 -2.22 ± 0.48

ATom-4 14 May 2018 -5/10 650/450 0.65 -0.71 ± 0.1 -0.26 ± 0.37

ing from the ATom observations and inversion posterior CO2 the NOAA Greenhouse Gas190

Marine Boundary Layer (MBL) Reference surface (Dlugokencky et al., 2019) as defined by191

observations for ATom and as defined by the respective posterior CO2 simulated at surface192

stations for the inversions.193

∆CO2= COATom
2 - COMBL

2 (1)

The NOAA MBL reference product is derived from atmospheric CO2 mole fraction mea-194

surements from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network195

(Dlugokencky et al., 2019). In order to generate a consistent MBL reference for both the196

model and observations, we ran the Python version of the curve fitting and smoothing al-197

gorithm developed by Thoning et al. (1989) over the period 2015–2020 using the subset198

of stations available during this time. We linearly interpolate the MBL reference values199

to our 5◦ latitude bins. We use the weekly values that are closest in time to the ATom200

measurements, 16 August 2016 (ATom-1), 15 February 2017 (ATom-2), 16 October 2017201

(ATom-3), and 17 May 2018 (ATom-4). Figure 2 shows the selected MBL reference values202

used to define ∆CO2 for the observations and as averaged for each experiment. The ex-203

periment mean posterior MBL gradients diverge up to 1 ppm from the observations. Thus,204

subtracting reference values specific to each model and experiment is an important step to205

isolate NTA signals from those originating elsewhere.206

2.3 Averaging box selection207

We identified optimal pressure and latitude bounded boxes by maximizing the across-208

inversion correlation coefficient between ∆CO2 averaged over a given ATom box and fluxes209

for the same month from the NTA TransCom region. This results in a correlation calculation210

across 54 data pairs. Note that the ATom Atlantic flights all generally occurred in the middle211

of the month (Table 1) leading to our use of monthly mean fluxes. Also, back trajectories212

indicate that NTA had a strong influence on the measurements over the preceding several213

weeks (Fig. 3). We imposed that the boxes have a minimum width of 15◦ in latitude and a214

minimum height of 200 hPa, to avoid spurious correlations. We then calculated correlation215

coefficients for all different possible configurations spanning 40◦S to 40◦N in latitude and216

from the surface to 200 hPa. While significant relationships (with p-value lower than 0.05)217

are found for many different boundary options (Fig. S4), we select the box that provides218

the greatest correlation coefficient (Table 1). Given transport differences across models,219

we interpret these regions as having the greatest agreement across models as to where220

NTA fluxes influence the observed concentrations. Table 1 includes the boundaries of the221

optimized boxes and the Pearson correlation coefficient between the posterior ∆CO2 box222

average and the respective TransCom subregion monthly net land fluxes.223

2.4 Observation uncertainty224

We use CO2 measurements made by three in-situ analyzers: the NOAA Picarro instru-225

ment, the Harvard quantum cascade laser spectrometer (QCLS, Santoni et al., 2014), and226
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Figure 3. Relative contributions from the the NTA region (first row) and the rest of world

(second row) to the Atlantic ATom observations, based on 14-day back-trajectories. Distribution

of the U zonal wind speed (third row) and HCN (fourth row) over the Atlantic for all four ATom

campaigns. In these plots solid blue lines show the optimized boxes. Bins containing no flight data

are white.
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the National Center for Atmospheric Research (NCAR) airborne oxygen instrument (AO2,227

Stephens et al., 2021). We also use CO2 measured in flasks collected by the NCAR/Scripps228

Medusa whole-air sampler (Stephens et al., 2021) and NOAA Programmable Flask Packages229

(PFP) (Sweeney et al., 2015). The ∆CO2 values used in the emergent constraint have been230

calculated using the NOAA Picarro data as it is most closely tied to the WMO CO2 scale,231

has the greatest data coverage, and is the record the models used for reporting matched232

posterior concentrations. To assess uncertainty in these observations, we compare ∆CO2 es-233

timates among all five in-situ measurement or sampling systems. More specifically, to allow234

for different periods of missing data for each instrument owing to in-flight calibrations and235

the reduced coverage of the flask systems, we first calculate sensor-sensor differences using236

the NOAA Picarro data as the common reference and then calculate box averages of these237

differences. We then use the standard deviation of these four differences, also including zero238

for the NOAA Picarro minus itself, as the observational uncertainty on box-averaged ∆CO2239

for each campaign (Table 1).240

2.5 Emergent constraints241

We use weighted orthogonal distance regression (Boggs & Rogers, 1990), a method242

which accounts for errors in both the explanatory and response variables, to construct243

emergent constraints between ∆CO2 (here the explanatory variable) and NTA flux (here244

the response variable). Weighted ODR requires knowledge of the variances of the errors245

associated with each variable. As scaling factor for the flux errors we use the empirical246

standard deviation of the flux estimates, while for the ∆CO2 errors we use the empirical247

standard deviation of the ∆CO2 values. The linear fit and its associated coefficient un-248

certainty depend only on the ratio of these scaling factors, so we are implicitly assuming249

that the signal to noise ratio (defined as the variance of the data divided by the variance250

of the associated errors) of the fluxes is the same as that of ∆CO2. In the absence of more251

information about the sources of variation in the errors, this is a reasonable assumption.252

Recent comparisons of different statistical methods for estimating emergent constraints253

found broadly consistent results (Renoult et al., 2020; Simpson et al., 2021). The emergent254

constraints developed here are based on an ensemble with overall good structural diversity,255

thanks to the assimilation of various kinds of observations and using a range of transport256

models. Also, there are no attempts to quantify a range of projected responses from our257

ensemble, which can be a problem when assessing Earth system response to a forcing or the258

strength of a feedback (Sanderson et al., 2021). However, it remains important to accurately259

quantify uncertainties (e.g., K. W. Bowman et al., 2018; D. B. Williamson & Sansom, 2019).260

We account for uncertainties in both ATom observations and the MIP results through261

the following. First, we draw a sample of the regression line using the error covariance262

matrix of the estimated regression parameters, as well as a sample from the ATom ∆CO2263

observation error distribution (as derived in the previous section). Second, we find the264

corresponding flux estimate using this sampled regression line and the sampled ATom ∆CO2265

measurement. Third, a sample from the flux error distribution assumed by the ODR method266

is added onto this flux estimate; this is assumed to be a normal distribution with mean zero267

and variance equal to the empirical variance of the residuals from the ODR fit. We repeat268

this process 5000 times and then take the empirical standard deviation of the flux samples as269

the 1σ uncertainty of the ATom-EC flux. This method accounts for uncertainty associated270

with the emergent constraint fit and the ATom CO2 measurement uncertainty, but not for271

the uncertainty arising from the choice of the altitude-latitude box; we discuss this form of272

uncertainty in Section 3.3.2 and in the supplementary material. The resulting four monthly273

ATom-EC values with their uncertainties are reported in Table 1.274

–9–



manuscript submitted to Global Biogeochemical Cycles

Figure 4. Terra/MOPITT V9J level 3 monthly average total column of carbon monoxide for

months corresponding to the ATom campaigns, and ATom flight tracks. The ATom observations

in purple correspond to the optimize boxes.

2.6 Source Contributions and Ancillary Measurements275

For qualitative assessment of sampled air origins, backward particle trajectories were276

computed using the Traj3D model (K. P. Bowman, 1993; K. P. Bowman & Carrie, 2002).277

Model trajectories were initialized at receptors spaced 1 min apart along the ATom flight278

tracks, and followed backwards for 30 d (Ray, 2022; Gonzalez et al., 2021). From these279

trajectories, we calculated for each receptor point the surface influence functions over land280

only. These footprints (Fig. S5) are in units of concentration mole fraction per emission281

flux or ppm/(µmol m−2 s−1). We define the relative contribution of the NTA TransCom282

subregion and the rest of the world (ROW) to the ATom tropical Atlantic measurements.283

The footprints, either for NTA or ROW, are summed and divided by the global total foot-284

prints. We show the contributions for 14-day back trajectories for each 5◦ latitude by 50285

hPa pressure grid bin (Fig. 3). The regions of strong NTA influence are large for all ATom286

missions. While these back trajectories were not used in the determination of the boxes,287

there is a good correspondence with a majority of the air in our optimized boxes strongly288

influenced by fluxes from the NTA TransCom subregion (Figs. 3, S4).289

Fig. 3 shows two additional ATom measurements, the eastward (U) wind speed com-290

ponent and hydrogen cyanide (HCN) concentration measured by the Chemical Ionization291

Mass Spectrometer (CIT-CIMS) instrument. HCN is an excellent biomass burning tracer292

(Li et al., 2003; Crounse et al., 2009).293

Fig. 3 also shows the optimized boxes. We also show on Fig. 4 maps of the the294

monthly mean CO total column from the V9J MOPITT product (Deeter et al., 2022). The295

biomass burning plumes characterized by enhanced CO column and in-situ HCN can clearly296

be identified. These features correspond to plumes from NTA on ATom-2 and ATom-4, and297

from southern tropical Africa on ATom-1 and ATom-3.298

3 Results299

3.1 NASA ATom Concentrations300

The four ATom campaigns observed both elevated and depleted CO2 over the trop-301

ical Atlantic relative to the NOAA Marine Boundary Layer (MBL, Fig. 2) Reference302

(Dlugokencky et al., 2019). We define a metric quantifying these anomalies, ∆CO2, by sub-303

tracting the NOAA MBL Reference at corresponding latitudes and times from the ATom304

CO2 observations (Fig. 5). We qualitatively attribute these CO2 variations to biomass305

burning or net ecosystem exchange in tropical Africa guided by observed winds, modeled306
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Figure 5. Latitude and altitude distribution of ∆CO2 observations made over the Atlantic basin

for the four ATom deployments. ∆CO2 is defined by subtracting the observed or modeled NOAA

MBL Reference (Dlugokencky et al., 2019) at corresponding latitudes and times from the ATom

CO2 observations or inverse models, respectively. The second and third rows show the IS and

LNLG experiment mean bias, respectively. The optimized NTA-influenced boxes are delineating

by solid blue lines. Bins containing no flight data are white.

back-trajectories, satellite CO observations, and coincident in situ measurements of biomass307

burning tracers (Fig. 3, 4).308

The ATom-1 deployment occurred in August 2016. Typically at this time of year,309

the western African monsoon brings rain over western Africa, inducing a convection-driven310

upward and westward atmospheric pattern, which is strongest near the Inter-Tropical Con-311

vergence Zone (ITCZ) (Rodŕıguez et al., 2015). As a result of the NTA growing season312

CO2 uptake, ATom-1 observed negative ∆CO2 throughout the troposphere north of 15◦N313

and more broadly in the upper troposphere (Fig. 5). The mean values from the IS exper-314

iment tends to overestimate ∆CO2 in these negative CO2 anomaly regions, suggesting an315

underestimated uptake.316

ATom-2 occured in February 2017 during the NTA dry season and sampled biomass317

burning plumes from the region (Figs. 3, 5). During ATom-2, large positive ∆CO2 values318

were found centered around the equator, between 950 hPa and 500 hPa. The LNLG ex-319

periment mean strongly overestimates ∆CO2 within and adjacent to this observed positive320

anomaly, whereas the IS experiment mean slightly underestimates concentrations in the321

plume.322

ATom-3 occured in October 2017 during the NTA wet-to-dry transition season. The323

negative ∆CO2 values during ATom-3, located north of the Equator, between 600 and 400324

hPa in the mid-troposphere, appear to originate from eastern NTA (Fig. S5). South of325

the Equator between 600 and 800 hPa ATom-3 intercepted a biomass burning plume that326

originated from southern tropical Africa (Fig. 3). The IS mean experiment strongly under-327

estimates ∆CO2 in this biomass burning plume, but overestimates ∆CO2 in the negative328
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anomaly regions. The LNLG experiment mean performs better for both positive and nega-329

tive anomalies during ATom-3.330

ATom-4 measurements were made in May 2018 during the dry-to-wet transition season331

for NTA. Negative ∆CO2 values can be found over the optimized box between -5◦N and332

10◦N and 450-650 hPa. It is located just above a region of positive ∆CO2 values that333

correlate with elevated HCN in the ATom data (Fig. 3). This enhancement in ∆CO2 is334

slightly underestimated by both the IS and LNLG inversion means.335

3.2 Emergent Constraints336

Emergent constraints are powerful tools to reduce model spread and narrow uncertainty337

(e.g., K. W. Bowman et al., 2018; Eyring et al., 2019; M. S. Williamson et al., 2021; Simpson338

et al., 2021). They offer a promising way to further improve the quantification of carbon339

fluxes and the overall scientific understanding of the carbon cycle (e.g., Stephens et al., 2007;340

Cox, 2019; Keenan et al., 2021; Long et al., 2021; Barkhordarian et al., 2021). Overall, our341

approach here is to take advantage of the large model spread to derive robust relationships342

between the airborne observations and land fluxes. We utilize CO2 gradients (∆CO2) ob-343

served during ATom as a measurable variable (predictor) to obtain a constrained estimate344

of net land fluxes from NTA. For each ATom deployment, we use the v10 MIP ensemble to345

determine an altitude-latitude box boundary within the airborne transects that best cor-346

relates with NTA fluxes (Fig. 5). We also tried defining boxes centered on the observed347

biomass burning plumes and on the basis of back-trajectories (Fig. 3). The former only cap-348

tured strong positive emissions while ignoring uptake signals, and the latter showed worse349

correlations most likely owing to differences in transport between the back-trajectory model350

and the inversions. Thus we chose to optimize the boxes based on empirical correlations,351

which to some extent can allow for differences among the transport models by expanding352

the boxes. We calculated the Pearson correlation coefficient between model ∆CO2 and353

NTA fluxes The optimized Pearson correlation coefficients range from r=0.65 for ATom-4354

to r=0.77 for ATom-2. We consider the true relationship to be unknown and we expect355

scatter of the v10 MIP points about the true relationship because of transport differences356

and other sources of errors between inversions. We also do not expect the correlations to357

reach one because of variations in contributions to CO2 within the boxes from regions other358

than NTA.359

Fig. 6 shows the relationships between the NTA land fluxes (excluding fossil fuel360

emissions) and ∆CO2 averaged over the respective ATom box (Table 1, Fig. 5). We use361

these emergent relationships to estimate NTA fluxes for all four ATom periods. The fit362

slopes in Fig. 6 represent the sensitivity of concentrations to fluxes, as defined by this v10363

MIP collection of models. We plot the dependent concentration variable on the x-axis to364

be consistent with the emergent constraint predictor convention. We estimate fluxes in the365

months corresponding to each campaign as the intersection of the observation and fit lines366

shown in Fig. 6. We estimate the observation error by comparing the five different CO2367

observing systems aboard the DC-8, three in situ and two flask samplers. We estimate 1σ368

flux uncertainty by propagating the observation error onto the fit prediction interval (see369

Section 2).370

ATom-2 was characterized by a strong source as measured by a ∆CO2 of around 2371

ppm (Table 1). Yet, the LNLG and LNLGIS experiments show a strong overestimation of372

this signal, with almost all inversions simulating a ∆CO2 higher than observations. The IS373

models exhibit the largest spread of all experiments, but generally show a positive bias during374

ATom-1 and ATom-3 during the wet season and wet-to-dry season transition and a negative375

bias during ATom-4 during the dry season. During ATom-3, the IS group overestimates376

∆CO2 with biases up to 2 ppm. Even though ATom-3 occurred at the end of the wet377

season, some inversions indicate a land source of CO2 for NTA at this time. There was378

no clear ranking for inversion performance between experiments as their skills were not379
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Figure 6. Emergent constraints on northern tropical African CO2 fluxes during ATom. The

relationships represent the sensitivity of airborne posterior ∆CO2 to NTA land fluxes (excluding

fossil fuel emissions). Each point shows results for a single model within one of four experiments

(colors). Fluxes are averaged over the month of each campaign and the NTA TransCom subregion.

The ODR fits are plotted as an orange line with a brown shading indicating 1σ prediction intervals.

The vertical line in each panel represents the observed ∆CO2, averaged over the optimized boxes

shown in Fig. 5. Shading around the observation lines represents 1σ observation uncertainty (2).

Note the different axis ranges between panels. The same figure with simulations colored by inverse

models can be found in the supplement (Fig. S6).
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Figure 7. Monthly mean northern tropical Africa net land CO2 fluxes for the different OCO-2

MIP experiments compared to the observational estimates. Lines represent means across all models

within each experiment. The ATom emergent constraint (ATom-EC) is plotted in black with each

1σ prediction interval as an errorbar. We also show the mean prior fluxes used in the inversions and

biomass burning fluxes from GFED4s (v4.1) (van der Werf et al., 2017), used as prior fire fluxes by

3 out of 12 inversion models.

consistent across the four campaigns (Fig. 6). Although we present experiment means in380

Fig. 7 for visual clarity, Fig. 6 suggests that experiment means do not necessarily reflect381

best estimates. It is also not clear that any particular models perform better or worse than382

others across all four campaigns. Thus, we do not evaluate individual models, but do provide383

a version of Fig. 6 colored by model in the supplement (Fig. S6).384

3.3 Northern Tropical African Land Fluxes385

3.3.1 Monthly Time Series386

Figure 7 shows the monthly average land fluxes averaged for each experiment, from387

2016 to 2018, along with our ATom emergent constraint (hereafter ATom-EC) estimates388

for the four ATom missions. The ATom-1 emergent constraint suggests a strong wet-season389

land sink that is more closely reproduced with the inversions that assimilate OCO-2 LNLG390

data. During ATom-2, which occurred during the dry season, all the experiments indicate391

a larger source than was predicted by the prior fluxes. The spread between experiments is392

also maximal for ATom-2, with the LNLG and LNLGIS mean overestimating the ATom-EC393

and IS and OG slightly underestimating. The LNLGOGIS mean is closest to our ATom-2394

estimate as it combines the LNLG overestimation and the IS/OG underestimation, as shown395

on Fig. 6b. The IS flux mean underestimates the magnitude of the seasonal cycle as it is396

positively biased during ATom 1 and 3 and negatively biased during ATom 2 and 4. During397

the shoulder seasons, the spread among the four experiment means is smaller and the OCO-398

2 LNLG based inversion mean is in agreement with the ATom-EC for ATom-3 in showing399

a much lower flux. Our results indicate that the assimilation of OCO-2 data improves the400

inversions for ATom-1 and ATom-3.401

These campaign differences are related to seasonal patterns evident in the multi-year402

monthly-mean fluxes. On average, the inversions that assimilate OCO-2 land data (LNLG,403

LNLGIS, LNLGOGIS) have a stronger source during the dry season (Figure S7). The LNLG404

and LNLGIS fluxes are higher than the other experiments from January to May. However,405

the LNLG and LNLGIS inversion fluxes are more negative than the IS fluxes in the wet406
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Figure 8. NTA three-year mean emergent constraint: True modeled three-year means (2016-

2018) versus estimates based on model flux estimates corresponding to the four ATom campaigns.

The fit represents the correction of the ATom-based estimates to the true three-year means (2016-

2018) for temporal sampling biases. The ODR fit is plotted as an orange line with shading indicating

the 1σ prediction interval. The vertical line represents the ATom-derived preliminary three-year

mean flux estimate. Shading around the observation line represents the 1σ ATom-EC mean flux

uncertainty.

season, from August to October. As a result, all the experiments using OCO-2 land data407

have a stronger seasonal cycle than the IS experiment. This is in line with a recent study408

that found a stronger seasonal amplitude when comparing the OCO-2 LNLG inversions with409

the IS inversion over South Asia (Philip et al., 2022). The OG experiment fluxes are close410

to those of the IS experiment, but in 2018 higher than IS during the dry season. With no411

data constraints over NTA, the IS and OG inversions remain close to the prior estimates.412

It is important to note that for OG the land flux is estimated by data over the ocean only413

and also that potential biases in OG observations may impact the posterior fluxes (Crowell414

et al., 2019; Peiro et al., 2022).415

3.3.2 2016-2018 Mean Flux Estimates416

We derive an initial multi-year annual mean NTA flux estimate by scaling the inversion417

average climatological seasonal flux cycle to optimally fit the four ATom-EC flux estimates418

(2016-2018). We fit the 4 ATom estimates to the average seasonal cycle derived from all419

the inversions. We input the 1σ uncertainty described above to account for uncertainties in420

each ATom. To account for the assumption of a specified seasonal cycle shape, we repeat421

the fit using all the individual modelled seasonal cycles and add the standard deviation in422

quadrature to the fit error.423

The optimally scaled seasonal cycle represents a preliminary three-year annual mean424

flux estimate subject to potential seasonal and interannual sampling biases owing to the425

flights occurring at only select times of year and in select years. To correct for this, we use the426

inversion suite to estimate the difference between the annual mean estimated in this way from427

the four ATom-EC and the true three year mean from each inversion. This approach relies428

on the inversions, as internally consistent representations of seasonally and interannually429
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Figure 9. A) Annual mean net land CO2 fluxes for NTA averaged for each MIP experiment and

from the airborne observational constraint. The ATom emergent constraint (ATom-EC) is plotted

in cyan with a shaded 1σ error estimate. We also show the mean of five inversions for 2015 and

four inversions for 2016 from Palmer et al. (2019). B) 2016-2018 means for each inverse simulation

(dots), and the resulting boxplot (25th percentile, median and 75th percentile) by experiment, and

also showing priors.

varying fluxes and concentrations, to predict our temporal sampling biases in estimating430

three-year mean fluxes. We first calculate three-year mean fluxes for each inversion using a431

linear fit of the average seasonal cycle to the four monthly fluxes corresponding to the ATom432

months. We then compare these to the true mean fluxes (2016-2018) from each inversion.433

Because the inversions suggest both an offset and slope component to this correction (Fig.434

8), we again use an emergent constraint approach to define the correction and its uncertainty.435

We calculate the relationship between the true three-year annual means and the 4-ATom436

estimate using the same method as for the individual campaign estimates, an ODR fit437

with input uncertainties scaled according to the respective standard deviations (Fig. 8).438

We estimate a slope of 0.84 PgC yr−1 per PgC yr−1 with an intercept of 0.3 PgC yr−1,439

and a correlation coefficient of 0.87. We calculate the corrected ATom-EC 2016-2018 mean440

estimate and its 1σ uncertainty by propagating the uncertainty errors using the same three441

step Monte-Carlo approach described in the previous section, using as inputs each ATom-EC442

and its 1σ uncertainty for the observation.443

We obtain a corrected three-year annual mean flux estimate of 0.14 PgC yr−1 with a444

1σ uncertainty of 0.39 PgC yr−1 (Fig. 9). It is important to note that this estimate and its445

relatively small uncertainty come not just from the four ATom transects spread over three446

years but rather a combination of these transects and estimates of the underlying seasonal447

and interannual variations from the suite of 54 models.448

Although for differing time periods, our estimate contrasts with the findings of Palmer et449

al. (Palmer et al., 2019) for 2015-16, based on the assimilation of land Atmospheric Carbon450

Observations from Space (ACOS) v7.1 retrievals of GOSAT (Greenhouse Gas Observing451

Satellite) and OCO-2, and of the v9 MIP LNLG experiment for 2015-2018 (Peiro et al.,452

2022) that are on average 1.6 and 1.25 PgC yr−1, respectively. For the v10 MIP, the mean453

NTA fluxes for the same 2016-18 period are 1.03 ± 0.38 PgC yr−1 for the LNLG experiment.454

The NTA fluxes for the v10 MIP IS and OG experiments are much weaker with 2016-455

2018 means of 0.31 and 0.42 PgC yr−1, respectively. All the v10 MIP experiments are456
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consistent in showing an enhanced 2016 source, likely due to the 2015-2016 El Niño, and a457

∼0.5 PgC yr−1 reduction of the source between 2016 and 2018 (Fig. 9). The LNLGOGIS458

range (1.71 PgC yr−1) and that of IS (1.96 PgC yr−1) are larger than other experiments459

(Fig. 9).460

To evaluate the impact of the choice of a single box to determine the emergent con-461

straints, we repeated the entire annual-mean calculation with alternate altitude-latitude462

boundaries for the boxes. We varied one box at a time among the 12 highest correlated463

boxes for each ATom and calculated all different possibilities for 104 realizations. The result-464

ing distribution of annual mean estimates is a normal distribution with a median and mean465

that are both equal to the the mean estimate using only our optimal four-box ATom-EC466

estimate. We add the standard deviation of this distribution, 0.1 PgC yr−1, in quadrature467

with our uncertainty as an estimate of errors in the choice of box boundaries, resulting in a468

final uncertainty of ± 0.39 PgC yr−1.469

4 Discussion470

Previous studies estimated a near neutral African CO2 budget with photosynthesis471

being larger than the sum of respiration, biomass burning and fossil fuel emissions combined472

(Ciais et al., 2009; Valentini et al., 2014). The net biospheric carbon uptake is suggested473

to mainly occur in intact forests (Ciais et al., 2009; Lewis et al., 2009), as estimated by474

vegetation models and forest inventory plots. The long-term inventory plots of the African475

Tropical Rainforest Observatory Network, or AfriTRON, remained a live biomass carbon476

sink despite extreme environmental conditions during the 2015-2016 El Niño event (Bennett477

et al., 2021). This implies a strong uptake in intact, old-growth, tropical forests in line478

with above-ground carbon storage estimates (Pan et al., 2011). However, the 2015-2016479

El Niño (J. Liu et al., 2017) may have had long lasting impact with a slow recovery in480

forest uptake. There may be other sources of CO2 from unaccounted deforestation and481

degradation (Wigneron et al., 2020).482

Global CO2 inverse models rely on prior fluxes provided for example from model prod-483

ucts, such as biosphere models (Philip et al., 2019) and are subject to large-scale transport484

uncertainty, given their coarse horizontal and vertical resolutions (e.g., Schuh et al., 2019).485

Knowing the importance of transport errors through diffusive and convective vertical mix-486

ing in explaining the systematic differences between TM5 and GEOS-chem (Schuh et al.,487

2019, 2022), we repeated our emergent constraint approach using only the subset of 3 TM5488

(TM5-4DVAR, OU and CT) or the 5 GEOS-Chem (Ames, CMS-Flux, COLA, UT and489

WOMBAT) inversions (Fig. S6). A previous study on CO showed that we also expect the490

differences to be maximal in outflow pathways of large biomass burning sources (Ott et al.,491

2011). We found a three-year annual mean flux estimate of 0.27 ± 0.36 (TM5) and 0.8 ±492

0.43 (GEOS-Chem) PgC yr−1. These uncertainty estimates do not reflect the bias imposed493

by the choice of a single transport model. This reinforces the need for emergent constraints494

using relationships derived by a diverse suite of models.495

In addition, inversion algorithms are sensitive to the observations’ spatial coverage and496

temporal frequency, and with particular relevance for satellite CO2 observations also to mea-497

surement biases (e.g., Basu et al., 2018; Houweling et al., 2015). Inversion of SCIAMACHY498

(Kaminski et al., 2017), GOSAT and OCO-2 CO2 retrievals over land suggest a source in the499

tropics, driven by NTA region emissions (Houweling et al., 2015; Palmer et al., 2019; Crowell500

et al., 2019; Peiro et al., 2022). Mean estimates from previous GOSAT and OCO-2 studies501

range between 1.25-1.6 PgC yr−1. The magnitude of these unexpected sources equates to502

approximately half of the global net land carbon sink (Friedlingstein et al., 2022) and would503

require a major revision to our understanding of both the tropical and global carbon cycle.504

A large NTA source has not been seen in the most recent IS inverse model synthesis studies505

(Crowell et al., 2019; Gaubert et al., 2019; Peiro et al., 2022). Overall the larger CO2 land506

source estimates are driven by satellite retrievals during the dry season (Fig. 7), when there507
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is a high aerosol loading from biomass burning and dust which may increase biases (Fig. S1)508

in retrievals (O'Dell et al., 2018). The lack of ground-based observations over Africa makes509

it challenging to verify these estimates. Thus, airborne measurements such as those from510

ATom are uniquely valuable in assessing the divergent inversion estimates. During ATom-2,511

the ATom-EC indicates a smaller source of 3.15 ± 0.6 PgC yr−1 (mean ± 1σ uncertainty,512

Fig. 7) in February than the LNLG experiment with 4.6 ± 0.74 PgC yr−1 (mean ± 1σ513

across 10 models).514

It is possible that remaining biases in version B10 OCO-2 measurements over NTA515

led to erroneous flux estimates in inversions using these data. NTA during the dry season516

exhibits very high dust and smoke aerosol loading (Fig. S1d), associated with Harmattan517

winds (Evan et al., 2006). The OCO-2 retrievals undergo quality filtering based on multiple518

parameters, including aerosol optical depth (O'Dell et al., 2018), and for NTA during dry519

season typically less than 10 % of retrievals pass this filter (Fig. S1b). The OCO-2 retrievals520

also have a multi-parameter post-retrieval empirical bias correction applied (O'Dell et al.,521

2018), and this bias correction is largest over NTA, with adjustments of approximately +2.7522

ppm, or 0.6 ppm higher than the global average correction (Fig. S1a). This large bias523

correction is tied primarily to two terms, one encompassing dust, water, and sea-salt aerosol524

loading and a second related to the difference between retrieved surface pressure and that525

from meteorological reanalyses, which itself may result from aerosols (Kiel et al., 2019).526

The positive dry season OCO-2 bias correction over NTA would have to be overesti-527

mated if it were to explain the sign of the LNLG inversion versus ATom-EC differences we528

see. How large of an overestimate might be required to explain our result? Given the many529

interacting constraints in global CO2 inversions, and uncertain atmospheric transport, it530

is difficult to quantitatively estimate the magnitude of biases necessary. For example, the531

LNLG mean concentration bias in the ATom-2 optimized box is 0.88 ppm. However, we532

expect flux signals to be more concentrated in these optimized boxes than in full column533

XCO2 measurements because they only represent partial columns, but also less concen-534

trated because of lateral and vertical mixing between NTA and the mid-Atlantic. Previous535

synthetic inversion work has demonstrated a high sensitivity of continental scale inverse flux536

estimates to small biases in satellite XCO2 measurements, on the order of 1 PgC yr−1 per537

ppm (Chevallier et al., 2007). We find a correlation between the dry season XCO2 over NTA538

in posterior concentration fields and NTA fluxes from the inversions with a slope of 4.16539

PgC yr−1 per ppm or 1.39 PgC/ppm for 4 months (DJFM) (Fig. S2). This implies that540

the disagreement we find between the 1.03 PgC yr−1 LNLG inversion experiment mean and541

our ATom-EC estimate of 0.14 PgC yr−1 might potentially be explained by a +0.64 ppm542

bias concentrated in Dec-Mar or just a +0.21 ppm bias if it persists throughout the year.543

Despite the apparent overestimated source in the LNLG experiment, our ATom-EC544

estimate for ATom-2 still shows a stronger NTA source than in previous and v10 MIP IS545

inversions. Biomass burning emissions could play a role in the enhanced source, but need546

improved observational constraints. Recent studies have found that the dry matter burned547

estimates and the number of active fire detections over Africa could be underestimated by548

the 500-m resolution MODerate resolution Imaging Spectroradiometer (MODIS) instrument549

(Ichoku et al., 2016; Roteta et al., 2019; Nguyen & Wooster, 2020). The detection and550

inclusion of smaller fires detected by the higher-resolution 20-m Sentinel-2 Multispectral551

Instrument (MSI) suggests an increase in burned area and net higher emissions as well as a552

longer fire season (Roteta et al., 2019; Ramo et al., 2021). Overall, other reasons related to553

small-scale heterogeneity can explain discrepancies in the modelling of small fire emissions554

(van Wees & van der Werf, 2019).555

5 Summary556

We evaluated inverse model calculations of northern tropical African CO2 fluxes with557

aircraft measurements over the Atlantic Ocean. This collection of models shows a large558
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inter-model spread in mean land flux magnitudes and temporal variability in sub-Saharan559

Africa. The posterior fluxes for NTA averaged over the 2016-2018 period span from -0.2 PgC560

yr−1 to more than 1.8 PgC yr−1. For posterior CO2 concentrations averaged over optimized561

ATom boxes, i.e. subregions of the ATom flight transect, the range is around 3 ppm, with562

a standard deviation between 0.74 and 1 ppm for different campaigns. During the dry563

season, our ATom emergent constraint indicates that NTA land fluxes are overestimated564

by the LNLG experiment and underestimated by the IS and OG experiments. Inversion565

errors could be due to the lack of assimilated in-situ observations in the region, atmospheric566

transport uncertainties, in particular arising from convection, and the difficulty of achieving567

accurate and frequent satellite retrievals due to cloud obstruction during the wet season568

and aerosols during the dry season. The comparison by models, i.e., TM5 or GEOS-Chem,569

supports the important role of transport biases in the spread of inversions results, which570

underscores the importance of the Model Intercomparison Project to assess flux estimates.571

Based on the seasonal timing of the LNLG flux differences, we speculate that the high dust572

and smoke aerosol loading during the dry season may lead to an overestimated bias correction573

in the v10 OCO-2 data over NTA. Our results point to the need to better characterize the574

distribution and impact of biomass burning and dust aerosols to further refine the OCO-2575

retrieval or bias correction procedures.576

Overall, we found an enhanced seasonal cycle relative to IS inversions, with a larger577

source during the dry season and a stronger sink during the wet season (Figure S7). Outside578

of the dry season, the OCO-2 based inversions agree reasonably well with the airborne579

estimates. The OCO-2 inversions and the ATom-1 and ATom-3 emergent constraints imply580

a stronger sink during the NTA wet season. Our revised budget for NTA during 2016-2018581

is an annual source of 0.14 ± 0.39 PgC yr−1. This is much smaller than the v10 MIP LNLG582

mean of around 0.9 PgC yr−1.583

Past studies and this study suggest the sensitivity of continental scale fluxes to biases in584

XCO2 in inversions is high, implying the magnitude of remaining biases in OCO-2 data over585

NTAmay be relatively small and challenging to address. Furthermore, given the large spread586

in total emissions and seasonality of fire emission estimates, the sensitivity of posterior CO2587

to the choice of prior fire flux should be assessed in future studies. Additional constraints588

on fire fluxes could be obtained by the assimilation of satellite observations of chemical589

species related to combustion such as CO (Zheng et al., 2018; Gaubert et al., 2020) and590

nitrogen dioxide (NO2) and improved burned area estimates (Zheng et al., 2021). For the591

individual months of the ATom campaigns, we obtain an uncertainty reduction in NTA CO2592

fluxes of a factor of two compared to the full v10 MIP ensemble, highlighting the potential593

benefit of future airborne observations over and downwind of Africa and other continents. A594

regular ongoing program of global-scale airborne surveys would greatly improve our ability595

to resolve the global carbon cycle and validate satellite emission estimates.596

Data Availability597

The ATom data (Wofsy et al., 2021) is available as 10-sec, NOAA PFP, and Medusa598

merge products https://doi.org/10.3334/ORNLDAAC/1925(10.3334/ORNLDAAC/1925).599

The OCO-2 v10 MIP model results are publicly available (https://gml.noaa.gov/ccgg/600

OCO2 v10mip/, last accessed 2 March 2023) The NOAA Greenhouse Gas Marine Boundary601

Layer Reference (Dlugokencky et al., 2019) is publicly available (https://gml.noaa.gov/602

ccgg/mbl/data.php, last accessed 27 December 2022).603
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1. OCO-2 filtering and bias correction

The v10 MIP assimilates OCO-2 retrievals produced by the Atmospheric Carbon Ob-32

servations from Space (ACOS) B10 (O'Dell et al., 2012; Kiel et al., 2019) algorithm.33

The algorithm retrieves column average dry-air mole fraction of CO2 in the atmosphere34

(XCO2) using solar reflectance spectra centered around 1.6 and 2.0 µm for CO2 and 0.7635

µm for O2 to estimate the air mass. The retrievals optimize a state vector of 60 elements36

with nine parameters related to clouds and aerosols, including retrieved aerosol optical37

depth (AOD). The post-retrieval data processing also includes a quality filtering and a38

bias correction procedure. The filtering of bad quality data is made by applying a series39
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of threshold-based filters (Kiel et al., 2019). Figure S1b shows the fraction of Dec–Mar40

data that passed all the quality filter tests. Figure S1d,f shows retrieved AOD by OCO-241

for Dec–Mar, before and after quality filtering, respectively.42

The parametric bias correction is derived from a multivariate regression between XCO243

spurious variability and parameters in the retrieval state vector. The bias correction over44

western NTA during Dec–Mar is 2.7 ppm on average (Figure S1a). Errors in retrieved45

surface pressure with respect to reanalyses, the dP term, contribute about 1 ppm over west46

Africa (Figure S1c) while the dust, water cloud, and sea salt (DWS) aerosol term adds47

slightly less than a 1 ppm (Figure S1e). The bias correction is defined globally, and NTA48

lacks in situ validation data. One possible explanation for the positive flux biases in LNLG49

inversions might be that this correction is too large in the version 10 OCO-2 product, and50

has also been too large in earlier version. We looked at the relationship between NTA51

fluxes estimated during the dry season and posterior XCO2 simulated by the v10 MIP. We52

subtracted XCO2 averaged for the entire globe except for over NTA from that averaged53

over NTA for each inversion to isolate at NTA anomalies, as the inversions differ widely54

on global average posterior XCO2. We find a linear relationship with higher posterior55

XCO2 resulting from higher fluxes, and the LNLG experiment having the highest XCO256

and fluxes during these 4 months (DJFM, Fig. S2). The linear regression of the individual57

model points has an r2 of 0.56 and a slope of 4.16 PgC yr−1 per ppm. This slope implies58

that a flux error of 1 PgC yr−1 could result from an XCO2 bias of +0.75 ppm if entirely59

within DJFM, or +0.25 ppm if the bias persisted all year. We calculated the same NTA60

XCO2 anomaly from the observations, both before and after the bias correction, and show61

these as vertical lines in Fig. S2. The bias correction leads to an increase of 0.73 ppm for62

the NTA XCO2 anomaly.63
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2. Fire emission estimates

We compare three different bottom-up fire emission estimates that are available for the64

African continent in 2016, FireCCISFD11, MCD64A1 (Ramo et al., 2021), and GFED4s65

(van der Werf et al., 2017). We show burned area and monthly emissions for the NTA66

region only (Fig. S3). The Global Fire Emissions Database with small fires (GFED4s) uses67

the 500 m MODIS MCD64A1 Collection 5.1 (C5.1) burned area product and additional68

small-fire burned areas derived using active fire detections. Burned area is combined with69

fuel load and fuel consumption estimates based on the Carnegie–Ames–Stanford Approach70

(CASA) biogeochemical model to estimate emissions at 0.25◦x0.25◦ (van der Werf et al.,71

2017). van Wees and van der Werf (2019) adapted the GFED modelling framework to72

calculate emissions at 500 m, and used MCD64A1 C6 burned area. The FireCCISFD1173

and MCD64A1 emission estimates are both based on the 500-m fire emission model (van74

Wees & van der Werf, 2019), where the MCD64A1 estimate is based on MODIS MCD64A175

500-m burned area and the FireCCISFD11 estimate is based on the Sentinel-2 20-m burned76

area product, which detects 80 % more burned area than MCD64A1. While the MCD64A177

C6 product includes more burned area than C5.1, GFED4s still includes more burned area78

because of the small fire algorithm (Fig. S3A).79

The combination of lower burned area and the higher resolution of the 500 m model led80

to a net reduction in emissions compared to GFED4s, as illustrated for NTA in Figure81

S3B. The annual total NTA emissions for 2016 went from 0.46 PgC for GFED4s to 0.2982

PgC for the 500 m model. The third estimate (Ramo et al., 2021) also employed a 50083

m model (van Wees & van der Werf, 2019), but used higher-resolution 20 m burned area84

observations from the Sentinel-2 FireCCISFD11 instead of MCD64A1 C6. As a result85

of substantially more detected burned area at 20 m resolution (63 % more burned area86

than GFED4s), Sentinel-2 FireCCISFD11 estimates a larger annual total for 2016 of 0.5587
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PgC, and notably higher emissions during Mar-May at the end of the dry season when the88

other two estimates are much lower. We also show two fire emission estimates constrained89

by CO observations from the Measurements of Pollution in the Troposphere (MOPITT)90

with two different inversion system, the CMS-Flux-4DVAR (Bowman et al., 2017) and the91

CMS-Flux-LETKF (Miyazaki et al., 2020). The CO-based emission estimates are based92

upon a 4◦x5◦ grid and so have a slightly coarser representation. The CO-based approaches93

are between the other estimates with substantial differences in March 2016. For NTA,94

the annual mean fire emissions for 2016 are 0.46 PgC yr−1 (GFED4s), 0.29 PgC yr−1
95

(MCD64A1), and 0.55 PgC yr−1 for FireCCISFD11. For the CO-based estimates, despite96

their different seasonality, their annual mean fire emissions remain close to the GFED4s97

with 0.45 PgC yr−1 for the CMS-Flux-LETKF and 0.43 PgC yr−1 the CMS-Flux-4DVAR.98

During ATom-4, the ATom-EC indicates a dry-to-wet transition season flux of -0.26 ±99

0.37 PgC yr−1 (mean±standard-deviation), while all the inversions suggest small positive100

fluxes. Fig. 3 shows large concentrations of HCN below the optimized ATom-4 subregion,101

indicating a biomass burning signature. Small agricultural fires are set to burn crop waste,102

and to clear the land for the next planting season (Yevich & Logan, 2003; Curtis et al.,103

2018; Hickman et al., 2021). This practice could explain the presence of small fires detected104

at higher spatial resolution including for the month of April and May in NTA. This is105

illustrated on Fig. S3 where the FireCCISFD11 estimate shows larger emissions than106

GFED4s for the months of March, April and May 2016. It is possible that despite finding107

a stronger correlation with all NTA fluxes, the optimized ATom-4 region undersamples108

fire influence (see next section). However, comparing back-trajectory footprints (Fig. S5)109

and CO concentrations (Fig. 4) shows reasonably good spatial correspondence.110

3. Sensitivity to the choice of box boundaries
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We quantify the impact of the choice of alternate box boundaries on our flux estimates111

via the flux-∆CO2 emergent constraint relationships. Fig. S4 shows the location of the112

top 12 highest correlation derived boxes for each campaign. These are all in similar113

locations generally with shifts by 5 degrees and 100 hPa around the optimal box, with114

the exception of ATom-4 which shows alternate boxes capturing the fire plume mentioned115

above. In these lower boxes, the CO2 concentrations are higher and the ATom-4 emergent116

constraint produces positive flux estimates averaging between 0 and 2 PgC yr−1 in closer117

agreement with the inversions. For each ATom we use these 12 different boxes to calculate118

monthly fluxes and the 104 combinations of these to calculate annual mean fluxes. The119

mean of all the annual estimates is 0.28 PgC yr−1 (similar to our optimal estimate of 0.14120

PgC yr−1) with a standard deviation of 0.1 PgC yr−1. We add this standard deviation121

in quadrature with other components of our uncertainty estimate (see Materials and122

Methods).123

4. Back trajectories

The global 14-day land flux contributions are shown in Fig. S5 for NTA-optimized124

boxes.125
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Figure S1. Aspects of the OCO-2 B10 Dec-Mar filtering and bias correction. A)

Average bias correction after quality filtering. B) Fraction of observations passing quality

filters. C) Bias correction caused by the dpfrac term. D) OCO-2 retrieved AOD before

quality filtering. E) bias correction due to the dust, water cloud, and sea salt (DWS). F)

OCO-2 retrieved AOD after quality filtering. All plots present December through March

(2014-2019) averages and are aggregated into 5° × 5° latitude–longitude square bins.

April 10, 2023, 9:52pm



X - 8 :

Figure S2. Dec-Mar mean net land CO2 fluxes averaged over NTA (2016-2018) versus

XCO2 simulated by the v10 MIP for NTA relative to the rest of the world. Black symbols

show experiment means. The same NTA XCO2 anomaly metric for the observations is

shown as vertical lines for with and without the bias correction.
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delineated by dark dashed lines, the second 7 (rank 5-12) by green solid lines. Lighter

pinks represents smaller correlations. Bins containing no flight data are white. Note that

all 12 boxes are different despite the apparent redundancy due to inclusion of bins with

no data.
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Figure S5. Left column: Pressure-latitude coverage of the NOAA Picarro CO2 mea-

surements from the ATom DC-8 flights in the Atlantic basin. Optimized boxes for NTA

influence are shown in blue and dates intersecting these boxes are listed above each panel.

Right column: 14-day footprints averaged over the NTA optimized boxes. The locations

of the measurements made within the optimized boxes are indicated by blue dots.
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Figure S6. Same as Fig. 6 but with points colored by model. Point shape indicates

experiment for IS (squares), OG (circles), LNLG (diamonds), and LNLGOGIS (triangles).

April 10, 2023, 9:52pm



X - 12 :

Figure S7. Average NTA land seasonal cycle (2016-2018). The ATom-EC and the

scaled averaged seasonal cycle are also shown.
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Figure S8. Same as Fig. 6 but with points colored by model. The 3 TM5 models are

TM5-4DVAR, OU and CT, and the 5 GEOS-Chem models are Ames, CMS-Flux, COLA,

UT and WOMBAT. Point shape indicates experiment for IS (squares), OG (circles),

LNLG (diamonds), and LNLGOGIS (triangles).

April 10, 2023, 9:52pm



X - 14 :

References

Bowman, K. W., Liu, J., Bloom, A. A., Parazoo, N. C., Lee, M., Jiang, Z., . . . Wunch, D. (2017,126

October). Global and brazilian carbon response to el niño modoki 2011-2010. Earth and127

Space Science, 4 (10), 637-660. doi: 10.1002/2016EA000204128

Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A., & Hansen, M. C. (2018, September).129

Classifying drivers of global forest loss. Science, 361 (6407), 1108–1111. doi: 10.1126/130

science.aau3445131

Hickman, J. E., Andela, N., Dammers, E., Clarisse, L., Coheur, P.-F., Damme, M. V., . . .132

Bauer, S. E. (2021, November). Changes in biomass burning, wetland extent, or agriculture133

drive atmospheric nh 3 trends in select african regions. Atmospheric Chemistry and Physics ,134

21 (21), 16277–16291. doi: 10.5194/acp-21-16277-2021135

Kiel, M., O'Dell, C. W., Fisher, B., Eldering, A., Nassar, R., MacDonald, C. G., & Wennberg,136

P. O. (2019, April). How bias correction goes wrong: measurement of affected by erroneous137

surface pressure estimates. Atmospheric Measurement Techniques , 12 (4), 2241–2259. doi:138

10.5194/amt-12-2241-2019139

Miyazaki, K., Bowman, K. W., Yumimoto, K., Walker, T., & Sudo, K. (2020, January).140

Evaluation of a multi-model, multi-constituent assimilation framework for tropospheric141

chemical reanalysis. Atmospheric Chemistry and Physics , 20 (2), 931–967. doi: 10.5194/142

acp-20-931-2020143
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