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Abstract

Meanders are significant features of the Antarctic Circumpolar Current in the Southern Ocean and sites of enhanced upwelling,

cross-frontal tracer fluxes, and exchanges between the surface and deep ocean. They usually overlap the locations of fronts

and are linked to topographic features. While much is known about Southern Ocean fronts and how they are changing, the

response of meanders to climate change is largely unexplored. In this study, we investigate the Campbell Plateau meander

south of New Zealand. We apply a local gradient maxima method to satellite altimetry data to identify the position of the

meander and estimate its width, geostrophic current speed and associated trends over the 1993-2020 period. We find that

the position of the meander has been relatively fixed, except for the section downstream from the Plateau, which has shifted

northward by about 0.4° latitude per decade. The meander has become flatter at the Plateau’s western edge, but steeper at the

eastern edge of the Plateau. Overall, the meander has been widening by 2 km per decade and accelerating by 0.01 m s-1 per

decade, particularly downstream from the Plateau. These findings are consistent with other work on standing meanders and

observed changes in the Southern Ocean. While we cannot attribute the observed trends of the Campbell Plateau meander to

one particular forcing mechanism, we discuss several hypotheses in the context of existing literature. Whether these trends are

similar for other Southern Ocean meanders and their implications remains to be verified.
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Abstract18

Meanders are significant features of the Antarctic Circumpolar Current in the South-19

ern Ocean and sites of enhanced upwelling, cross-frontal tracer fluxes, and exchanges be-20

tween the surface and deep ocean. They usually overlap the locations of fronts and are21

linked to topographic features. While much is known about Southern Ocean fronts and22

how they are changing, the response of meanders to climate change is largely unexplored.23

In this study, we investigate the Campbell Plateau meander south of New Zealand. We24

apply a local gradient maxima method to satellite altimetry data to identify the posi-25

tion of the meander and estimate its width, geostrophic current speed and associated trends26

over the 1993-2020 period. We find that the position of the meander has been relatively27

fixed, except for the section downstream from the Plateau, which has shifted northward28

by about 0.4° latitude per decade. The meander has become flatter at the Plateau’s west-29

ern edge, but steeper at the eastern edge of the Plateau. Overall, the meander has been30

widening by 2 km per decade and accelerating by 0.01 m s−1 per decade, particularly31

downstream from the Plateau. These findings are consistent with other work on stand-32

ing meanders and observed changes in the Southern Ocean. While we cannot attribute33

the observed trends of the Campbell Plateau meander to one particular forcing mech-34

anism, we discuss several hypotheses in the context of existing literature. Whether these35

trends are similar for other Southern Ocean meanders and their implications remains to36

be verified.37

Plain Language Summary38

In the Southern Ocean, meanders are parts of the Antarctic Circumpolar Current39

that deviate from the usual west-to-east flow by having a substantial north-south com-40

ponent, resulting in a wave-like appearance. Standing meanders are meanders that are41

stationary and do not move much over months and years. They are a special feature of42

the Antarctic Circumpolar Current and are fundamental for exchanges between the sur-43

face and deep ocean. While changes in the Antarctic Circumpolar Current have been44

well studied, especially in the context of climate change, very little is known about how45

Southern Ocean meanders are changing. This study focuses on the Campbell Plateau46

meander south of New Zealand in the Southern Ocean. Using ocean sea surface height47

data from satellites, we analyse the monthly position of this meander, estimate its monthly48

width and speed, and quantify how these characteristics have changed over the 1993-202049

period. Upstream from the Campbell Plateau, the meander has undergone almost no50

changes in its position, width or speed. However, downstream from the Plateau, the me-51

ander has shifted northward, widened and accelerated. These trends are consistent with52

other observations in the Southern Ocean and we discuss potential mechanisms to ex-53

plain them.54

1 Introduction55

The Southern Ocean is crucial in the context of global climate by being a major56

sink of anthropogenic heat and carbon dioxide (Rintoul & Naveira Garabato, 2013; Frölicher57

et al., 2015; Bindoff et al., 2019) through the upwelling of deep waters and their subse-58

quent downwelling, which produces a large proportion of global deep waters (Toggweiler59

& Samuels, 1995; Lumpkin & Speer, 2007; J. Marshall & Speer, 2012; Morrison et al.,60

2015). The Southern Ocean has absorbed about 40% of global oceanic carbon dioxide61

over the last two centuries (Sabine et al., 2004; Mikaloff Fletcher et al., 2006; Sallée et62

al., 2012). In the Southern Ocean, the predominant circulation feature is the deep-reaching63

Antarctic Circumpolar Current, which manifests as the southward shoaling of vigorously64

tilted isopycnals (Rintoul & Naveira Garabato, 2013) and carries approximately 170 Sv65

(Sverdrup; 1 Sv = 106 m3 s−1) of water eastward (Donohue et al., 2016). Primarily driven66

by the strong mid-latitude westerly winds and buoyancy forcing, the Antarctic Circum-67
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polar Current links the Atlantic, Indian, and Pacific Oceans, conveying climate signals68

through the transport of heat, momentum, and other tracers (Sabine et al., 2004; Sarmiento69

et al., 2004; Olbers et al., 2004; Sallée et al., 2012; Rintoul & Naveira Garabato, 2013).70

In the Southern Ocean, the transition from warmer subtropical waters to colder71

Antarctic waters as one travels south does not occur smoothly but is instead concentrated72

into a series of sharp transition zones (Deacon, 1937), called ‘fronts’, which are gener-73

ally east-west aligned (Deacon, 1937; Chapman et al., 2020; Thomas et al., 2021). Fronts74

delimit the borders of separate water masses that each have their own unique environ-75

mental characteristics (Orsi et al., 1995) and tend to correspond to sites of the Antarc-76

tic Circumpolar Current’s narrow, high-velocity currents known as ‘jets’ (Sokolov & Rin-77

toul, 2002, 2007b). These fronts suppress the meridional exchange of heat and tracers78

in the Southern Ocean (Naveira Garabato et al., 2011; Thompson & Sallée, 2012; Chap-79

man & Sallée, 2017).80

In some regions of the Southern Ocean, these fronts have a non-zonal orientation81

(Hughes, 2005; Sokolov & Rintoul, 2007a). Such ‘meanders’ are generated by the inter-82

actions between the Antarctic Circumpolar Current and large topographic features (Thompson,83

2010; Thompson & Sallée, 2012; Dove et al., 2021, 2022) such as the Campbell Plateau84

and the Kerguelen Plateau (e.g., Roach et al. (2016); Klocker (2018)). Standing mean-85

ders are meanders that have little to no temporal variability: they follow the same path86

over time. Several standing meanders such as the Campbell Plateau standing meander87

and the Agulhas-Kerguelen standing meander (e.g., Meyer et al. (2023)) are found along88

the Antarctic Circumpolar Current. The Southern Ocean standing meander regions are89

recognised as dynamical hotspots, where upwelling (Viglione & Thompson, 2016; Tam-90

sitt et al., 2017; Brady et al., 2021), subduction (Llort et al., 2018; Bachman et al., 2017;91

Dove et al., 2021), cross-frontal exchanges (Langlais et al., 2011; Thompson & Sallée, 2012),92

vertical momentum transport (Thompson & Naveira Garabato, 2014), and eddy energy93

(Gille & Kelly, 1996; Witter & Chelton, 1998; Lu & Speer, 2010; Chapman et al., 2015;94

Rosso et al., 2015; Foppert et al., 2017) are enhanced. Standing meanders can greatly95

impact horizontal current transport with strong meridional deviations from the zonal flow96

of up to 5° latitude (Nardelli, 2013; Phillips & Bindoff, 2014; Thompson & Naveira Gara-97

bato, 2014). Thompson and Naveira Garabato (2014) also show that the meanders ‘flex’98

under wind forcing, and this response propagates vertically through the water column.99

Compared with quieter downstream regions, Southern Ocean standing meanders regions100

stand out with larger lateral buoyancy gradients in mixed layer, increased variability in101

mixed layer depth, and show signs of stronger ocean mixing (Thompson & Naveira Gara-102

bato, 2014; Langlais et al., 2017)103

While studies have been undertaken to assess the response of the Antarctic Cir-104

cumpolar Current fronts to climate change, less work has focused on meanders and their105

trends. A majority of meander studies have looked at dynamic mechanisms, energy trans-106

port, and their role in the Southern Ocean system (e.g., Thompson and Sallée (2012);107

Chapman et al. (2015); Barthel et al. (2017); Youngs et al. (2017); Barthel et al. (2022);108

Meijer et al. (2022); X. Zhang et al. (2022); Cyriac et al. (2023)). Although a few stud-109

ies have investigated long-term changes and trends of meanders whether, in response to110

climate change, natural variability and changes in dynamics, such as Thompson and Naveira Gara-111

bato (2014) and Meyer et al. (2023), further research is needed to fully understand the112

trends of meanders over time. By modelling several Southern Ocean standing meanders,113

Thompson and Naveira Garabato (2014) report the response of meanders to increased114

wind forcing which includes steeper isopycnals, increased curvature, and changing wave-115

length and amplitude of the meanders. An observational study of the Agulhas-Kerguelen116

standing meander in the southwest Indian Ocean has also identified trends in the cur-117

vature of the meander, its width and speed over the past 30 years (Meyer et al., 2023).118

Considering the importance of meanders in the Southern Ocean, it is key that we119

better understand how they are changing and what the impacts of these changes might120
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be on the climate system. In this study, we apply a “local” front detection method on121

satellite altimetry data to identify and characterise the trends of the Campbell Plateau122

meander in the Southern Ocean over the 1993-2020 period. The Campbell Plateau is lo-123

cated in the southwestern Pacific sector of the Southern Ocean and most areas of the124

Plateau are shallower than 1000 m depth (Neil et al., 2004; Forcén-Vázquez et al., 2021).125

It extends about 1100 km southeast of the South Island, New Zealand. The Plateau largely126

constrains the eastward flow of the Antarctic Circumpolar Current (Gordon, 1972; Orsi127

et al., 1995), which leads to a significant northward deviation of the Antarctic Circum-128

polar Current along its eastern boundary (Heath, 1981; Carter & Wilkin, 1999; Morris129

et al., 2001). The Antarctic Circumpolar Current front forming the Campbell Plateau130

meander follows the southern edge of the Plateau. We find that, overall, the Campbell131

Plateau meander has been relatively spatially stable except for its downstream section132

which has moved northward. The meander has been significantly widening and accel-133

erating over the 1993-2020 period. For the remaining sections of this paper, Section 2134

describes the data and the meander analysis methods. Section 3 shows the character-135

istics and identified trends of the meander. In Section 4, we discuss the implications, and,136

finally, we summarise the key findings of this study in Section 5.137

2 Data and Methods138

2.1 Satellite Altimetry Data139

In this study, we use the AVISO absolute dynamic topography and surface geostrophic140

current speeds products from multi-mission satellite altimetry (CMEMS, 2019) spanning141

over the 1993-2020 period to identify and characterise the Campbell Plateau meander.142

2.2 Meander Position Identification143

The meander position identification methodology used in this study belongs to the144

broader family of “local gradient maxima” methods (Chapman, 2017; Chapman et al.,145

2020). Chapman (2017) applied this methodology to fronts in the Southern Ocean. The146

method was then modified by Meyer et al. (2023) for the Agulhas-Kerguelen standing147

meander and further adjusted in this study for the Campbell Plateau meander. Gener-148

ally speaking, there are two kinds of definitions for Southern Ocean fronts and thus me-149

anders: local definitions and global definitions (Chapman et al., 2020). In this study, we150

focus on local definitions. Local definitions use properties found in the local vicinity of151

a geographical position to evaluate if a front exists (Chapman et al., 2020). The ‘gra-152

dient thresholding’ method is perhaps used most frequently. In this method, a front or153

meander is identified when the gradient of a quantity (e.g., sea surface temperature: Moore154

et al. (1999); Dong et al. (2006); Freeman et al. (2016) or sea surface height: Hughes and155

Ash (2001); Chapman (2014, 2017)) is larger than a predetermined threshold value.156

In this study, we choose to employ the local gradient method as sea surface height157

contours used in the global method are impacted on longer time scales by the large-scale158

steric height tendency that is linked to the Southern Ocean warming (Gille, 2014). As159

pointed out by Sokolov and Rintoul (2009), it is challenging to identify in long-term po-160

sition trends of sea surface height contours what is driven by frontal displacement and161

what is driven by sea level increases (Gille, 2014). Although some studies have explored162

frontal position changes using satellite sea surface temperature data (e.g., Moore et al.163

(1997, 1999); Dong et al. (2006)), we choose absolute dynamic topography because it cap-164

tures both surface and subsurface ocean processes (McDougall & Klocker, 2010), while165

sea surface temperature represents only ocean surface conditions. Here, we do not con-166

sider the Campbell Plateau meander’s vertical structure but only surface properties ob-167

tained from the altimetric product. Since the Antarctic Circumpolar Current is approx-168

imately equivalent barotropic (Killworth, 1992), particularly when averaged over several169
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eddy time cycles (Phillips & Bindoff, 2014). As such, we assume that the surface signa-170

ture of the meander is broadly reflective of the current at depth.171

W apply three main steps to identify the position of the Campbell Plateau mean-172

der:173

1. Derive the gradients of absolute dynamic topography in the Campbell Plateau174

region (30°S-70°S and 150°E-210°E; shown in Figure 1 (a) and (b)).175

2. Identify daily position of the meander. This is defined as areas where the ab-176

solute dynamic topography gradient exceeds a relative threshold. This definition177

is then applied to every daily snapshot of the absolute dynamic topography gra-178

dient maps over the 1993-2020 period to mark the meander signals. Selecting the179

appropriate relative threshold value requires striking a balance between identify-180

ing enough meander signals without including too many non-meander features such181

as eddies. We choose 25% of the maximum absolute dynamic topography gradi-182

ent as the relative threshold based on sensitivity tests (see Figure B.1 in Appendix183

B.1 of X. Liu (2022) for details).184

3. Obtain the time-averaged positions of the meander. By summing the total num-185

ber of times that the meander is identified at each point in the Campbell Plateau186

region over a certain period of time, we derive the meander frequency (similar to187

the frontal frequency in Chapman (2017)), which we can use to produce the me-188

ander’s monthly occurrence maps over a period of several months. We choose a189

4-month period as it smooths out the shorter time-scale variability including ed-190

dies, and retains the longer-term signals that are of interest (see Figure B.2 in Ap-191

pendix B.2 of X. Liu (2022) for details).192

The final product is the monthly longitude and latitude position of the meander.193

We zoom into a subsection of our domain (46°S-57°S and 150°E-210°E; Figure 1 (b), blue194

rectangle), which is the smallest area where we can identify the meander continuously195

in the Campbell Plateau region, to enable us to ignore frontal signals detected outside196

the marked meander area. Next, we determine the peak meander frequency at each lat-197

itude and longitude in this smaller domain, which identifies the position of the mean-198

der (Figure 2 (b) and (c) red star). We note that the monthly meander position some-199

times has ‘jumps’ and ‘spikes’ (Figure 2 (a), blue line). These ‘jumps’ are usually due200

to eddies freshly detached from the meander that have a strong gradient in absolute dy-201

namic topography (see Figure B.3 in Appendix B.3 of X. Liu (2022) for an example).202

2.3 Meander Characteristics203

We estimate the meander width by using the meander frequency: for each longi-204

tude, the width of the meander is taken to be the sum of the meridional distances be-205

tween the latitude of the meander frequency peak and latitude where the frequency is206

zero to the north and south (northern and southern boundaries) (Figure 2, blue line in207

(b) and blue arrow in (c)). We also identify the monthly position of four key standing208

peaks and four troughs of the meander and estimate the monthly amplitude in two re-209

gions (Table 1; Figure 3). We define the peaks as the southernmost points (farthest dis-210

tance from the equator) and troughs as the northernmost (in closest proximity to the211

equator) points of the meander’s trajectory (Newton, 1959; Meijer et al., 2022) for each212

month, within the manually-defined longitude ranges (Table 1). These peaks and troughs213

are consistently identifiable over the 1993-2020 period and are labelled Pk 1 to Pk 4 and214

Tr 1 to Tr 4 from west to east (Figure 3). The amplitude of the meander at two sets of215

peaks and troughs is then estimated as half of the meridional distance (in degrees lat-216

itude) between these adjacent peaks and troughs. While identifying the positions of the217

peaks and troughs is automated, quality control involves manual checks. We also cal-218

culate the monthly geostrophic current speed over the 4-month sum period using the daily219

zonal (Ugeos) and meridional (Vgeos) geostrophic velocities.220
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Figure 1. Snapshot of the absolute dynamic topography (ADT) gradients in m/100 km on 15

December 2007 in (a) the Southern Ocean and (b) the Campbell Plateau region. The red rectan-

gle in (a) represents the Campbell Plateau region shown in (b), which is the study region. The

blue rectangle in (b) indicates the smaller domain where the meander’s latitude and longitude

positions are identified. White areas are regions where no satellite altimetry data were available.
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Figure 2. (a) Meander’s monthly position (thick blue line) for December 2007 and 1993-2020

meander mean position (thin black line) over the meander frequency occurrence for the 4-month

sum period; (b) Meander’s width range (vertical solid blue line) together with its latitude posi-

tion (red star) at 162.375°W over the meander frequency occurrence for the 4-month sum period;

(c) Meander frequency transect at 162.375°W with meander latitude position (red star) and

width range (blue arrow). White areas in (a) are regions where no satellite altimetry data were

available.
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Table 1. Longitude ranges of the peaks, troughs, and sections of the Campbell Plateau mean-

der.

Longitude Ranges

Meander Peaks

Peak 1 156.6◦E-157.1◦E

Peak 2 159.1◦E-159.6◦E

Peak 3 164.9◦E-165.9◦E

Peak 4 180.2◦E-181.4◦E

Meander Troughs

Trough 1 157.9◦E-158.6◦E

Trough 2 159.9◦E-160.9◦E

Trough 3 177.1◦E-177.6◦E

Trough 4 183.9◦E-184.9◦E

Meander Sections

Upstream Section 150.0◦E-158.4◦E

Plateau Section 158.4◦E-184.4◦E

Downstream Section 184.4◦E-210◦E

Flat Region 191.6◦E-204.9◦E

2.4 Statistical Trends221

To investigate trends in the position, width and geostrophic current speed of the222

meander for the 1993-2020 period, we apply a linear regression to the monthly time se-223

ries. Then, a time-lagged analysis using multiple linear regression (ŷ = b0 + b1x1 +224

b2x2+ ...+bkxk) is applied to all the derived trends to test for statistical significance.225

Each of the k predictor variables has a coefficient corresponding to the slope in the lin-226

ear regression. The intercept (or regression constant) is expressed as b0. These k + 1227

coefficients are often recognised as the regression parameters. We also test for autocor-228

relations in the time series and the associated autocorrelation time scales. In this study,229

we choose a 3-month lag as it removes part of the seasonal and sub-seasonal variability230

in the time series that we are not investigating and is adequately short to avoid the po-231

tential autocorrelation time scales of the dataset. The sample autocorrelation functions232

of the monthly trends and their 95% confidence intervals are also estimated using the233

test of residual analysis with autocorrelation. Detailed figures for these autocorrelation234

tests are in Appendix A of X. Liu (2022).235

3 Results236

3.1 Meander Trajectory237

By investigating the trajectory of the meander, we identify 4 areas in the Camp-238

bell Plateau region where the meander dynamics are distinct: an ‘Upstream Section’ west239

of the Campbell Plateau, a ‘Plateau Section’ south of the Plateau, a ‘Downstream Sec-240
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Figure 3. The Campbell Plateau meander’s mean positions over three different decades (black

lines) and monthly positions at the ten-month interval (yellow lines) between 1993 and 2020.

Four peaks (white circles) and four troughs (white triangles) of the meander are marked along

the meander’s trajectory (Pk 1 to Pk 4 and Tr 1 to Tr 4). Also indicated are the three sections

(Upstream, Plateau, and Downstream) of the meander separated by two white vertical dashed

lines and the Flat Region (white dashed rectangle) is highlighted.

tion’ east of the Plateau, and a ‘Flat Region’ farther downstream from the Plateau where241

the shape of the meander is flatter than in other sections (Figure 3; details in Table 1).242

The meander enters the study domain from the west at approximately 55°S (Fig-243

ure 3, Upstream Section). It encounters and is modified by the Macquarie Ridge (Fig-244

ure 3, Trs 1 and 2; Pks 1 and 2). When the meander encounters the Macquarie Ridge,245

its long-term mean position flows through a shallower canyon (2000 m depth; at about246

52.0°S) rather than the deeper canyon (4000 m depth; at about 53.3°S) (Figure 3, Up-247

stream Section). However, we note that at shorter time scales of about one month, the248

meander switches between these two canyons (Chapman & Morrow, 2014; Rintoul et al.,249

2014). Next, the meander continues to flow eastward and is steered by the Campbell Plateau250

and the Subantarctic Slope, flowing along a boundary between 4000 m and 6000 m deep251

(Figure 3, Plateau Section). Eventually, the current flows into the Downstream Section,252

where the interaction between the meander and topography is weaker than upstream,253

with almost no topographic impact except near the far eastern boundary (Figure 3, Down-254

stream Section). The trajectory in the Downstream Section is relatively flat (less flexed)255

with fewer wave features, especially in the highlighted ‘Flat Region’ (Figure 3, Flat Re-256

gion). We also find that the locations of the peaks and troughs are related to the regional257

topography with several peaks and troughs associated with local ridges, seamounts and258

other topographic features (Figure 3).259

3.2 Observed Changes in Meander Position260

We now investigate the temporal trends of the meridional displacement, width, and261

geostrophic current speed of the Campbell Plateau meander to understand the long-term262

changes (if any) of this meander system. We estimate these trends based on both the263

full-resolution monthly time series and a smoothed rolling-mean time series. The trends264

for the meridional displacement, width, and geostrophic current speed of this meander265

are very similar whether from the monthly time series or from the rolling-mean data (not266

shown) and here, we present the monthly data results.267
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Figure 4. Monthly time series (solid lines) and corresponding linear trends (dashed lines)

over the 1993-2020 period of the Campbell Plateau meander’s (a) mean latitude position (de-

grees latitude per decade), (b) width (km per decade), and (c) geostrophic current speed (m s−1

per decade). Positive trend values in the mean latitude position, width, and geostrophic cur-

rent speed represent the northward movement, widening, and accelerating of the meander; while

negative trends indicate the southward movement, narrowing, and decelerating of the meander.

Statistically significant trends are indicated with ‘*’.

We find that the mean position of the whole meander has been moving northward268

by 0.12° latitude per decade from 1993 to 2020 (Figure 4 (a); Table 2). This overall trend269

hides regional variations in displacement (Figure 4 (a); Table 2). Apart from some small-270

scale variability, the Upstream and Plateau Sections of the meander are relatively sta-271

tionary between 1993 and 2020 with small non-significant trends (0.04° and -0.02° lat-272

itude per decade, respectively; Figure 3, Upstream and Plateau Sections; Figure 4 (a)).273

In contrast, the Downstream Section has a significant northward moving trend of 0.30°274

latitude per decade (R2=0.324, p=0.000; Figure 4 (a); Table 2). This significant north-275

ward trend is even stronger in the Flat Region (0.44° latitude per decade; R2=0.349, p=0.000;276

Figure 4 (a); Table 2). This regional analysis indicates that the slight northward trend277

of the whole meander (0.12° latitude per decade) is dominated by that of the meander278

downstream from the Plateau and, particularly, in the Flat Region.279
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Table 2. Linear decadal trends and their associated statistics for the Campbell Plateau mean-

der’s meridional displacement (position) in degrees latitude per decade (° lat/dec), width in km

per decade (km/dec), and geostrophic current speed (speed) in m s−1 per decade (m s−1/dec)

based on the monthly data time series over the 1993-2020 period. Statistically significant trends

are indicated with *.

Position (° lat/decade) Width (km/decade) Speed (m s−1/decade)

Whole Meander +0.12* (R2=0.264, p=0.000) +2.20* (R2=0.213, p=0.000) +0.01* (R2=0.120, p=0.000)

Upstream Section +0.04 (R2=0.030, p=0.007) +1.90 (R2=0.000, p=0.000) 0.00 (R2=0.010, p=0.450)

Plateau Section -0.02 (R2=0.160, p=0.007) +0.30 (R2=0.094, p=0.000) 0.00 (R2=0.020, p=0.000)

Downstream Section +0.30* (R2=0.324, p=0.000) +4.20* (R2=0.302, p=0.000) +0.02 (R2=0.000, p=0.000)

Flat Region +0.44* (R2=0.349, p=0.000) +2.90* (R2=0.164, p=0.000) +0.02* (R2=0.230, p=0.000)

Table 3. Meridional displacement (latitude position) trends of the peaks and troughs of the

Campbell Plateau meander in degrees latitude per decade (° lat/dec) based on the monthly data

time series over the 1993-2020 period. Positive trend values indicate northward movements while

negative trends indicate southward movements of peaks and troughs.

Trough 1 Trough 2 Trough 3 Trough 4

Position (° lat/dec) -0.17 (R2=0.018, p=0.052) -0.02 (R2=0.001, p=0.585) +0.39 (R2=0.024, p=0.159) +0.10 (R2=0.003, p=0.361)

Peak 1 Peak 2 Peak 3 Peak 4

Position (° lat/dec) +0.05 (R2=0.002, p=0.593) +0.26 (R2=0.122, p=0.000) +0.03 (R2=0.014, P=0.091) -0.31 (R2=0.035, p=0.001)

Investigating the meridional displacement trends of individual peaks and troughs280

of the meander between 1993 and 2020 shows that their migrations are not statistically281

significant, quite noisy, and of mixed signs (Table 3): some have moved northward (Trough282

4 and Peak 2: 0.10° and 0.26° latitude per decade, respectively), some southward (Trough283

1: -0.17° latitude per decade), while some are relatively stationary (Trough 2 and Peak284

3: -0.02° and 0.03° latitude per decade, respectively). While the changes are not signif-285

icant, some of these peaks and troughs have shifted meridionally over the 1993-2020 pe-286

riod: Trough 3 shows a non-significant northward trend of 0.39° latitude per decade, and287

Peak 4 has a southward moving trend of 0.31° latitude per decade.288

Based on the meridional displacement trends of the paired peaks and troughs, we289

derive a time series of the meander amplitude in two places along its trajectory as half290

of the meridional distance between the selected pair of peaks and troughs and estimate291

the trends of these two wave amplitudes over the 1993-2020 period. Wave 1, composed292

of Trough 1 and Peak 2, is upstream from the Campbell Plateau, while Wave 2, com-293

posed of Peak 4 and Trough 4, is downstream from the Plateau (Figure 3). The trends294

of the wave amplitude at these two spots indicate a flattening signal for Wave 1 and flex-295

ing for Wave 2: the meander amplitude in Wave 1 has reduced by 0.31° latitude per decade,296

indicating that the meander is flattening upstream from the Plateau (Figure 5, Wave 1),297

while for Wave 2, the meander amplitude has increased by 0.25° latitude per decade, in-298

dicating that the meander has been steepening downstream from the Plateau between299

1993 and 2020 (Figure 5, Wave 2).300

3.3 Observed Changes in Meander Width301

Over the 1993-2020 period, the mean width of the meander is 108 km (Figure 4 (b)).302

Upstream from the Campbell Plateau, the mean width is slightly wider (124 km for the303

Upstream Section and 117 km for the Plateau Section), while downstream from the Plateau,304
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Figure 5. Monthly time series of the Campbell Plateau meander’s wave amplitude in degrees

latitude (° lat) at Wave 1 (blue dots) and Wave 2 (magenta dots) and corresponding linear trends

in degrees latitude per decade (° lat/dec) over the 1993-2020 period (dashed lines).

the mean width is narrower (94 km for the Downstream Section and 85 km for the Flat305

Region).306

Based on our width definition (Figure 2 (b) and (c)), the whole meander has been307

significantly widening by 2.2 km per decade between 1993 and 2020 (Figure 4 (b); Ta-308

ble 2). Although each section of the meander has a widening trend, the Upstream and309

Plateau Sections have exhibited a lesser widening as the regions downstream from the310

Plateau, and their trends are not statistically significant (Figure 4 (b); Table 2). By com-311

paring the widening trend from the Downstream Section (4.2 km per decade) with that312

from the Flat Region (2.9 km per decade), we find that the Downstream Section con-313

tributes most to the overall widening trend (2.2 km per decade) over the 1993-2020 pe-314

riod (Table 2).315

3.4 Observed Changes in Meander Speed316

Based on the geostrophic current speed estimated from the AVISO data, we find317

the overall meander has been significantly accelerating by 0.01 m s−1 per decade over318

the 1993-2020 period, which is primarily driven by an acceleration in the Flat Region319

(Figure 4 (c); Table 2). Similar to the meridional displacement and widening trends, the320

Upstream and Plateau Sections have almost no change in geostrophic current speed (0.00321

m s−1 per decade), while the Downstream Section and the Flat Region show an increase322

in speed (0.02 m s−1 per decade) (Figure 4 (c); Table 2). However, only the Flat Region323

has a significant accelerating trend between 1993 and 2020 (R2=0.230, p=0.000; Table324

2). Shi et al. (2021) report a similar average increase in the surface eastward geostrophic325

velocity of 0.74±0.25 cm s−1 per century (i.e. 0.00074±0.00025 m s−1 per decade) be-326

tween 48°S and 58°S for the entire Southern Ocean over the 1993-2019 period. More in-327

terestingly, the various datasets Shi et al. (2021) used (including the AVISO product)328

identify the area downstream from the Campbell Plateau as a hotspot for this acceler-329

ation (Shi et al. (2021), Fig. 5 b). Their estimate of an acceleration of approximately330

0.01 m s−1 per decade (10 cm s−1 per century) matches our estimate of 0.01 m s−1 per331

decade (Figure 4 (c)). Peng et al. (2022) also identify this region as a hotspot for cur-332

rent speed acceleration. Although the overall speed trend is positive and significant, we333

see that there is large inter-annual and decadal variability in the monthly speed time se-334

ries (Figure 4 (c)). This variability is beyond the scope of this study but would be worth335

investigating in future.336
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4 Discussions and Conclusions337

4.1 Position338

In this study, we observe that the Upstream and Plateau sections of the meander339

have not moved significantly in the meridional direction between 1993 and 2020 (Fig-340

ure 3; Figure 6). This is consistent with previous studies showing no significant merid-341

ional displacement of fronts in the Southern Ocean over the past 30 years (e.g., Böning342

et al. (2008); Graham et al. (2012); Gille (2014); Shao et al. (2015); Freeman et al. (2016);343

Chapman (2017); Chambers (2018)). This is particularly true in regions near large to-344

pographic features, such as the Campbell and Kerguelen Plateaus, which constrain the345

movement of fronts, leading to the formation of standing meanders. It is noteworthy that346

absolute value contours, such as dynamic topography contours and sea surface temper-347

ature contours have moved southward over similar timescales (Sallée et al., 2008; Sokolov348

& Rintoul, 2009; Billany et al., 2010; Kim & Orsi, 2014); however, the position of their349

maximum gradients representing fronts, jets and meanders, has not (Gille, 2014; Cham-350

bers, 2018; Chapman et al., 2020). Interestingly, Shao et al. (2015); Freeman et al. (2016)351

show that the variability in the position of the Polar Front position is strengthened near352

the Campbell Plateau and the Kerguelen Plateau.353

While most of the Campbell Plateau meander (Upstream and Plateau Sections)354

displays no significant meridional displacement trend, the Downstream Section and, par-355

ticularly the Flat Region, indicates a significant northward moving trend of about 0.4°356

latitude per decade (Figure 3; Figure 4 (a); Figure 6). The section upstream from and357

around the Campbell Plateau is strongly constrained by the local topography, with a low358

eddy kinetic energy regime (Daniault & Ménard, 1985; Gille et al., 2000; Morrow et al.,359

2010), making it a true standing meander, however, the section downstream from the360

Plateau is not constrained by topographic features, and is in a highly dynamical area361

of the Southern Ocean, with high eddy kinetic energy activity (Gille et al., 2000; Mor-362

row et al., 2010; Y. Zhang et al., 2021; Beech et al., 2022).363

We propose two hypotheses to explain the northward displacement of the mean-364

der downstream from the Campbell Plateau. Our first hypothesis is that changes in the365

stability properties of the downstream jet could induce enhanced variability, which in366

turn leads to a net northward shift of the jet. The meander speed downstream from the367

Plateau has significantly increased over the 1993-2020 period (Fig 2 (c)), in line with other368

similar results at larger scales, which, given the minimal changes in width, could result369

in more shear in the jet, and potentially cause the jet to become more baroclinically un-370

stable (Tansley & Marshall, 2001; Barthel et al., 2017; Youngs et al., 2017; Barthel et371

al., 2022). Specifically, the zonal jets in this dynamic regime are dominated by baroclinic372

instability (Youngs et al., 2017; Barthel et al., 2022). Changes in the dynamic stability373

of the jet could lead to a changing eddy field and, therefore, the ability of the jet to me-374

ander downstream, possibly accounting for the observed northward displacement of the375

Downstream Section. The second hypothesis is that the northward displacement is due376

to changes in the interaction between the South Pacific Gyre and Antarctic Circumpo-377

lar Current jets. The subtropical gyre in the South Pacific Ocean has been accelerating378

and intensifying since the early 1990s due to the wind stress changes in this area (Cai379

et al., 2005; Saenko et al., 2005; Qiu & Chen, 2006; Roemmich et al., 2007; C. Liu & Wu,380

2012). The South Pacific Gyre is the northern boundary of the Subantarctic Front in381

the Southern Ocean (Siedler et al., 2013). If the Gyre is contracting and hence the bound-382

ary is moving northward, so might the Downstream Section of the meander (Roemmich383

et al., 2007). While such investigation is beyond the scope of this study, it could be ex-384

plored through an analysis based on both the realistic and theoretical models (i.e. J. Mar-385

shall et al. (1993)).386
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4.2 Width387

We found that the Campbell Plateau meander has been significantly widening by388

2.2 km per decade between 1993 and 2020 (Figure 4 (b); Figure 6). It is noteworthy that389

our definition for the meander width (Figure 2 (b) and (c)) does not consider the indi-390

vidual frontal path, but regards the gradients of absolute dynamic topography as a whole391

meander. As such, the meander width estimated here might indicate the variability in392

the meander position over short time scales (about 4 months). When trying to under-393

stand the changes in the meander width, we also note that there is very little literature394

on the width of meanders, fronts and jets in the Southern Ocean. We are aware of two395

studies, Gille (1994) and Shao et al. (2015), which estimate the width of the Subantarc-396

tic Front and the Polar Front over the 1986-1989 and 1992-2013 period, respectively. Gille397

(1994) shows that the Subantarctic Front and the Polar Front both have a mean width398

of 44 km (0.4° latitude) in the meridional direction and meander (oscillate around a cen-399

tral point) about 75 km to the northern or southern side of their mean positions. These400

frontal widths vary by approximately 20% in a broader geographical range (Gille, 1994).401

Shao et al. (2015) also report similar circumpolar-average widths (85 km) for both the402

Subantarctic Front and the Polar Front. In the case of the Campbell Plateau meander,403

its mean width of 108 km between 1993 and 2020 (Figure 4 (b)), while about 2.5 times404

wider than those in Gille (1994) and 1.3 times wider than those in Shao et al. (2015),405

it is still comparable, especially considering the differences in the width definitions and406

existing spatio-temporal viability.407

Gille (1994) discusses two factors that impact the width of fronts and jets in the408

Southern Ocean: baroclinic Rossby radius of deformation RD, and the conservation of409

total current transport along the Antarctic Circumpolar Current. The former is also men-410

tioned by Shao et al. (2015) together with another new factor, topography. Gille (1994)411

and Shao et al. (2015) both demonstrate that the frontal widths estimated in their anal-412

ysis are correlated with the size of the local value of RD. This value depends on latitude:413

narrower when further south and wider when closer to the equator, and on stratification414

of the water column (Chelton et al., 2011). For the Campbell Plateau meander, its baro-415

clinic Rossby radius is extremely unlikely to have changed over our period of observa-416

tions. Although the stratification of the water column is changing (Sallée et al., 2021)417

and the baroclinic Rossby radius is influenced by the stratification, these changes are likely418

too small to significantly impact the value of the radius (Venaille et al., 2011), and thus419

cannot explain the widening trend in this study. Shao et al. (2015) also suggest that the420

narrowing trend of the Polar Front is probably due to changes in the baroclinic Rossby421

radius (Chelton et al., 2011), which is contrary to the widening trend in our study.422

As for topography, Shao et al. (2015) show that the frontal widths will be reduced423

after passing significant topographic features such as the Campbell Plateau (the width424

of the Polar Front decreases from 90 km to 50 km while the width of the Subantarctic425

Front decreases from 100 km to 70 km) and the Kerguelen Plateau (the width of the Po-426

lar Front reduces from 90 km to 75 km while the width of the Subantarctic Front reduces427

from 100 km to 80 km). This matches our observations that the mean width of the Camp-428

bell Plateau meander decreases from the Upstream Section to the Downstream Section429

(from 124 km to 94 km; Figure 4 (b)). These topography-induced narrower frontal widths430

are possibly caused by the sharpening of jets or the decrease in the distance between jet431

cores (Shao et al., 2015). Furthermore, in the Downstream Section, where there is al-432

most no topography constraining the flow (Figure 3, Downstream Section), the front may433

be separated into more jets or become more diffusive (Thompson & Sallée, 2012), which434

could increase the width of the meander.435

Therefore, we are left with changes in the volume transport potentially driving the436

widening trend of the meander. While there is no detected or modelled trend in the net437

transport of the Antarctic Circumpolar Current in regions with long observational time-438

series (Meredith et al., 2011; Koenig et al., 2014; Xu et al., 2020), trends in the individ-439
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ual Southern Ocean front or fronts (e.g., Chouaib et al. (2006)) cannot be ruled out. These440

trends could potentially contribute to the widening of the Campbell Plateau meander441

through processes such as enhanced baroclinic instability downstream from the Plateau442

and increased eddy occurrence (Thompson et al., 2010). Such dynamic adjustments could443

affect the vertical and horizontal structures in the meander, the latter of which includes444

its width. Follow-up work regarding the meander width should involve improving the445

width definition and testing the sensitivity of those previously-derived widening trends446

to different width definitions. The potential consequences of changes in the meander width447

would also be worth investigating. For example, the impacts of width changes on cross-448

frontal transport are relevant across many research fields including the anthropogenic449

heat and carbon budgets, tracer cycles, upwelling in the Southern Ocean, and even habi-450

tat and ecosystem changes (e.g., Hogg et al. (2008); Thompson and Sallée (2012); Barthel451

et al. (2017); Foppert et al. (2017); Murphy et al. (2021)).452

4.3 Geostrophic Current Speed453

In this study, we show that the surface geostrophic current speed of the Campbell454

Plateau meander has been significantly increasing by 0.01 m s−1 per decade from 1993455

to 2020. This is primarily driven by the acceleration downstream from the Plateau, i.e.456

the Flat region (0.02 m s−1 per decade; Figure 4 (c); Figure 6). These findings are con-457

sistent with recent studies investigating the trends in current speed and transport, both458

globally and in the Southern Ocean (e.g., Roemmich and Gilson (2009); Shi et al. (2021);459

Peng et al. (2022)).460

In the past few decades, the research community has made great efforts to estimate461

the trends in current speed and understand their driving mechanisms. In the case of the462

Southern Ocean, the mid-latitude westerly winds are one of the key drivers of the Antarc-463

tic Circumpolar Current (Swart & Fyfe, 2012) and they have been observed to inten-464

sify from 1950 to the present (Swart & Fyfe, 2012; Fox-Kemper et al., 2021), impact-465

ing surface currents. In addition to the westerly winds, however, based on the Commu-466

nity Earth System Model outputs (Gent & Mcwilliams, 1990; Gent & Danabasoglu, 2011),467

previous studies demonstrate that the buoyancy forcing triggered by ocean warming ac-468

celerates the zonal-mean upper-layer (0-2000 m) current in the Southern Ocean more strongly469

than the wind-driven forcing (Shi et al., 2020). This is due to the fact that the thermal470

wind response of the zonal current is stronger on the northern edge of the Antarctic Cir-471

cumpolar Current than within and to the south, leading to higher meridional density gra-472

dients (Shi et al., 2020). However, according to the eddy saturation theory (Straub, 1993;473

Meredith & Hogg, 2006), an increase in the westerly winds over the Southern Ocean would474

lead to an increase in Ekman transport, which would tilt the isopycnals and cause an475

increase in the baroclinicity of water masses. This would lead to an increase in eddy ki-476

netic energy, causing the isopycnals to then relax and ultimately, there would be no net477

wind-induced transport (Hogg & Blundell, 2006; D. Marshall et al., 2017; Meredith &478

Hogg, 2006). Continuing changes in the wind-driven forcing and ocean warming in the479

future might even further accelerate the Southern Ocean zonal flow (Fox-Kemper et al.,480

2021; Shi et al., 2021).481

Based on our findings, however, we can not simply attribute the Campbell Plateau482

meander’s overall accelerating trend over the 1993-2020 period to either increased wind483

forcing or enhanced meridional density gradients. Future work could investigate the me-484

ander’s eddy kinetic energy trends. By comparing the eddy kinetic energy trends with485

current speed changes, we could check the role of eddy saturation in the Campbell Plateau486

Region, which is one of the eddy kinetic energy hotspots in the Southern Ocean (Morrow487

et al., 2010; Y. Zhang et al., 2021; Beech et al., 2022). It is also worth noting that the488

increased speed or shear in the front that forms the meander could be either local im-489

pacts or global impacts manifesting locally, but it is difficult to disentangle those two mech-490

anisms.491
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4.4 Changing Meanders in the Southern Ocean492

While there are few studies on trends of the Southern Ocean meanders (e.g., Thompson493

and Naveira Garabato (2014)), our findings for the Campbell Plateau meander can be494

compared with a recent study on the Agulhas-Kerguelen standing meander by Meyer et495

al. (2023). They analysed the characteristics and trends of the Agulhas-Kerguelen stand-496

ing meander over the 1993-2019 period using satellite sea surface height data and sim-497

ilar meander identification methods. Interestingly, the overall trends of both meanders,498

despite different geographical locations and slightly different dynamical regimes, are sim-499

ilar: no southward migration of the standing meanders and both meanders are widen-500

ing and accelerating. Observing similar trends in position, wave amplitude, width, and501

geostrophic current speed for these two meanders suggests that these changes and im-502

pacts of these trends on cross-frontal transport of heat, carbon, and other tracers, might503

not be limited to only one Southern Ocean meander but potentially to many meanders504

in the Southern Ocean.505

4.5 Conclusions506

Standing meanders are a special feature of the Southern Ocean, and their response507

to climate change has been insufficiently studied. In this study, we identified and char-508

acterised the Campbell Plateau meander, located south of New Zealand in the South-509

ern Ocean over the 1993-2020 period, using satellite observations. We estimated the po-510

sition and associated trends in the meander’s amplitude, width, and surface geostrophic511

current speed (see Figure 6 for the summary). Between 1993 and 2020, the position of512

the Campbell Plateau meander remained relatively stationary, except for a section down-513

stream from the Plateau moving northward by 0.4° latitude per decade. The meander514

has been flattening at the western edge of the Plateau while flexing at the eastern edge.515

Moreover, the meander has been significantly widening (2 km per decade) and its sur-516

face geostrophic current speed has been increasing (0.01 m s−1 per decade), in partic-517

ular downstream from the Plateau, matching values in the limited existing literature.518

Interestingly, despite differences in geographical settings and dynamical regimes, the Camp-519

bell Plateau meander and the Agulhas-Kerguelen standing meander share similar trends520

in their position, amplitude, width, and surface geostrophic current speed. Future work521

should investigate the drivers behind the changes in the Campbell Plateau meander’s522

amplitude and resulting dynamic adjustments, along with the impacts of these observed523

trends on the cross-frontal transport of the Antarctic Circumpolar Current.524

5 Data Availability Statement525

The satellite altimetry absolute dynamic topography data as well as zonal and merid-526

ional surface geostrophic current velocities data (Product: Global Ocean Gridded L 4527

Sea Surface Heights And Derived Variables Reprocessed 1993 Ongoing) used for iden-528

tifying, characterising and analysing the trends of the Campbell Plateau meander in the529

study are publicly available at Marine Data Store, European Union Copernicus Marine530

Environment Monitoring Service via https://doi.org/10.48670/moi-00148 (CMEMS,531

2019). The bathymetric data used for mapping the local bathymetry in the Campbell532

Plateau region in the study are publicly available at Global Multi-Resolution Topogra-533

phy GridServer Web Service via https://www.gmrt.org/services/gridserverinfo534

.php#!/services/getGMRTGrid (Ryan et al., 2009). MATLAB R2020a was used for analysing535

the characteristics and trends of the Campbell Plateau meander. The MATLAB cmo-536

cean perceptually-uniform colourmaps toolbox used for plotting the colourmaps of Fig-537

ure 1 and Figure 2 in the study are publicly available at GitHub via https://github538

.com/chadagreene/cmocean (Thyng et al., 2016).539
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Figure 6. Schematic illustrating the trends of the Campbell Plateau meander’s position, flat-

tening and flexing of the meander’s shape, widening of the meander in some parts, and increasing

geostrophic current speed over the 1993-2020 period. The Campbell Plateau is represented by the

shaded area. This schematic is based on and modified from FIG. 16 in X. Zhang et al. (2022).
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