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Abstract

A large ensemble of 51 simulations with the Model for Prediction Across Scales (MPAS) has been applied to assess its ability

to reproduce extreme temperatures and heat waves in the area of West Africa and the Eastern Sahel. With its global approach

the model avoids transition errors influencing the performance of limited area climate models. The MPAS simulations were

driven with sea surface temperature (SST) and sea ice extent as the only boundary condition. The results reveal moderate

cold biases in the range from -0.6° to -0.9° C for the daily mean temperature and -1.4° to -2.0° C for the area mean of the

daily maximum temperature. The bias in the number of tropical nights ranges from +3 to -10 days. An underestimation by

up to 50% is also present regarding the number of summer days. The heat wave duration index is underestimated regionally

by 10% to 60%. Compared to the reanalyses, the biases revealed by the MPAS simulations are generally smaller than with

measured observational reference. The results from long term runs and from short term runs with selected SST years are similar.

Shortcomings in the reproduction of the temperature and precipitation indices found in the present investigation indicate that

the global MPAS approach does provide a fidelity similar to that of the regional climate models.
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Key Points:11

• Multiple MPAS runs with SST and sea ice extent as the only boundary condition12

are used to investigate extremes of temperature and heat waves.13

• MPAS reveals moderate cold biases for all investigated temperature indices.14

• Long term runs as well as short term runs with selected SST years yield similar15

results.16
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Abstract17

A large ensemble of 51 simulations with the Model for Prediction Across Scales (MPAS)18

has been applied to assess its ability to reproduce extreme temperatures and heat waves19

in the area of West Africa and the Eastern Sahel. With its global approach the model20

avoids transition errors influencing the performance of limited area climate models. The21

MPAS simulations were driven with sea surface temperature (SST) and sea ice extent22

as the only boundary condition. The results reveal moderate cold biases in the range from23

−0.6◦to −0.9◦ C for the daily mean temperature and −1.4◦to −2.0◦ C for the area mean24

of the daily maximum temperature. The bias in the number of tropical nights ranges from25

+3 to −10 days. An underestimation by up to 50% is also present regarding the num-26

ber of summer days. The heat wave duration index is underestimated regionally by 10%27

to 60%. Compared to the reanalyses, the biases revealed by the MPAS simulations are28

generally smaller than with measured observational reference. The results from long term29

runs and from short term runs with selected SST years are similar. Shortcomings in the30

reproduction of the temperature and precipitation indices found in the present investi-31

gation indicate that the global MPAS approach does provide a fidelity similar to that32

of the regional climate models.33

Plain Language Summary34

Large number of simulations with the global weather and climate model MPAS has35

been applied to investigate extreme temperatures and related heat waves. The consid-36

ered area is West Africa and the Eastern Sahel. In the simulations sea surface temper-37

ature and sea ice extent were the only boundary condition. The results reveal moder-38

ate underestimation in the range from −0.6◦to −0.9◦ C for the daily mean temperature.39

The error the area mean of the daily maximum temperature was −1.4◦to −2.0◦ C. An40

underestimation by up to 50% is also present in the number of summer days. The heat41

wave duration index is underestimated regionally by 10% to 60%. Obtained results in42

the reproduction of the observed temperatures and precipitation show that the global43

MPAS model provides results similar to that of the regional climate models.44

1 Introduction45

West Africa (WA) and the Eastern Sahel are characterized by high temperatures46

and large variability in rainfall (Nicholson & Webster, 2007; Sultan et al., 2013; Poan47

–2–



manuscript submitted to JGR: Atmospheres

et al., 2016) and have been historically affected by extreme weather anomalies. A long-48

standing example are the droughts of 1974–1975 over the Sahel. They caused severe in-49

creases in mortality in the population and and livestock, and despite the recent occur-50

rence of a regreening, the Sahel region is still suffering from these droughts (Janicot et51

al., 1996; Cook, 2008).52

Several studies have provided evidence for a considerable warming in West Africa53

and the Sahel in the recent past. New et al. (2006) showed that most stations in West54

Africa reveal positive trends in the minimum and maximum temperature over the pe-55

riod 1961–2000. That study also found increases in both the number of hot days and of56

cold days. Evaluating reanalyses and CORDEX models, Adeniyi and Oyekola (2017) found57

that the magnitude of the frequencies of heat waves in West Africa has increased. Oueslati58

et al. (2017) found that heat waves are spatially increasing with high intensity. Similar59

findings are reported concerning increases in temperatures and the frequencies of heat60

waves, particularly in the Sahel (Ringard et al., 2016; Russo et al., 2016; Dosio, 2017).61

Further increases are projected for the future. From results based on CMIP5 model sim-62

ulations, Ringard et al. (2016) reported significant increases in heat waves for the Sa-63

hel in all applied scenarios.64

An increase in the severity and frequency of heat wave events can lead to the loss65

of human lives and the destruction of crops. Extreme temperatures and heat waves strongly66

affect the socio-economic conditions in various sectors, such as agriculture, infrastruc-67

ture, and energy (Lobell et al., 2011; Coumou & Rahmstorf, 2012; Perkins et al., 2015).68

A weak economy, an inefficient policy, and a limited resilience increase the vulnerabil-69

ity. Hence, modeling tools capable of simulating extreme present and expected future70

climate conditions have gained increasing importance for the support of policymakers.71

The scientific aim of this study is the evaluation of the global Model for Predic-72

tion Across Scales (MPAS), driven with sea surface temperature (SST) and sea ice ex-73

tent as the only boundary condition, with regard to its ability to simulate extreme tem-74

peratures and heat waves in West Africa and the Eastern Sahel. In addition, basic pre-75

cipitation indices are investigated. With its global approach, the model prevents the er-76

rors commonly introduced in regional climate models (RCMs) in the transition zone from77

the driving GCM (General Circulation Model) to the regional model, and thus provides78

an additional tool applicable to the vital questions related to present and future climate79

–3–
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conditions. Dosio et al. (2022) points out that RCMs do not improve the simulation abil-80

ity of large-scale fields compared to GCMs.81

So far, MPAS has only been applied to this region by Heinzeller et al. (2016), who82

had a focus on the reproduction of the dynamics of the West African monsoon (WAM)83

and the associated precipitation. Unlike RCM applications, global MPAS runs are not84

confined by a driving model but, besides the boundary conditions, depend on their ini-85

tialization. Thus, an additional aim of this study is the comparison of two different ini-86

tialization procedures.87

This study considers the summer season as the most important period for the re-88

gional economy, which greatly relies on agriculture, which depends on the seasonal rain-89

fall and the behavior of the monsoon rains (Sivakumar et al., 2014) and is generally prac-90

ticed during the summer. Any changes during this crucial period often have a devas-91

tating effect on socio-economic activities and food security in the region (Dilley & Hey-92

man, 1995; Haile, 2005; Omotosho & Abiodun, 2007). Drought, excessive rains, or heat-93

waves during the growing season can potentially diminish crop yield, especially in the94

Sahel, where water is a particularly determining element for the growth of the crops (Ahmed95

et al., 2015).96

The present study is structured as follows: Section 2 describes the applied model,97

reference data, investigation areas and the evaluation indices. The results of the eval-98

uation are presented and discussed in Section 3, and conclusions are drawn in Section99

4.100

2 Material and methods101

2.1 MPAS model102

The applied meteorological model is the Model for Prediction Across Scales (MPAS),103

which is based on unstructured Voronoi meshes and C-grid discretization (Thuburn et104

al., 2009; Ringler et al., 2010). MPAS-atmosphere (Skamarock et al., 2012), used in the105

present study, is a global, fully compressible non-hydrostatic model (Klemp, 2011). The106

model is run at an approximately 60-km resolution mesh with a total of 163,842 cells,107

applying the mesoscale reference physics suite, 55 vertical levels up to a height of 30 km,108

and 4 soil levels. The land–surface physics component is the Community Noah Land Sur-109

face Model (Noah-LSM) (Chen et al., 1996).110

–4–
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Table 1 shows the associated parametrization schemes of the standard model con-111

figuration. The RRTMG (Clough et al., 2005) long-wave and short-wave radiation scheme112

uses a fixed value for carbon dioxide, reflecting the conditions of the years around 2004.113

The static input fields applied are the MODIS 20-class land cover based on global land114

cover climatology collected in 2001–2010 at 500-m resolution (Broxton et al., 2014) and115

the Global Multi-Resolution Terrain Elevation Data (GMTED2010) (Danielson & Gesch,116

2011) topography. The surface albedo and vegetation fraction are updated monthly from117

MODIS climatology.118

Table 1. Parametrization schemes used by the simulations

Parametrization Scheme

Convection New Tiedtke

Microphysics WSM6

Land surface Noah-LSM

Boundary layer YSU

Surface layer Monin–Obukhov

Radiation, LW RRTMG

Radiation, SW RRTMG

Cloud fraction for radiation Xu–Randall

Gravity wave drag by orography YSU

2.2 Performed simulations119

An MPAS simulation with SST and sea ice extent as the only boundary condition120

does not reproduce the weather of a specific year, but it creates weather patterns that121

fit these conditions. Thus, in order to reproduce the observed climatology, multiple runs122

with different initialization dates are required. The present article presents 51 MPAS sim-123

ulations. They form three experiments, denoted by MPAS A, MPAS B and MPAS. Ex-124

periment MPAS A applies the initialization data, SST and sea ice extent from the ERA-125

Interim reanalysis (Dee et al., 2011) and follows the procedure applied by Smiatek and126

Kunstmann (2023). Six years have been selected according to the SST anomaly in the127

Gulf of Guinea during the summer season (Figure 2). The Gulf of Guinea has a central128
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influence on the precipitation in West Africa (Son & Seo, 2020). The considered period129

covers 30 years around 2004, from 1990 to 2019. Specific years are 1992 and 1997, re-130

vealing a positive anomaly, 1998 and 2010 with a negative anomaly, and 2003 and 2016131

are neutral. These anomalies basically correspond to positive and negative ENSO states.132

Within each SST–year, five simulations initialized from May 15 through May 19 and run133

until September 1 have been performed.134

Experiment MPAS B is a continuous MPAS simulation initialized in December 1980,135

from which the results for the period 1990–2010 are applied in the present investigation.136

For the initialization, the SST and sea ice extent data from the Climate Forecast Sys-137

tem Reanalysis (CFSR) (Saha et al., 2014) are used. CFSR data is available until 2010.138

The chosen period covers the largest SST anomalies in the Gulf of Guinea (Figure 2).139

The MPAS experiment consists of MPAS A and MPAS B simulations lumped into140

a single ensemble. The investigated period is the summer season (JJA).141

2.3 Observational reference and investigated areas142

The present investigation uses a set of available gridded temperature and precip-143

itation reference data at monthly and daily resolution. These are interpolated station144

and gauge measurements (CPC, CRU), extended satellite measurements (CHIRTS), as145

well as state of the art reanalyses (ERA5, JRA-55, MERRA-2, NCEP-2). Table 2 pro-146

vides some details about the applied data. With the exception of the CHIRTS data, which147

is available only up to 2016, all data sets cover the investigated period, 1990–2019. CRU148

only provides monthly resolution and therefore is used only in the basic statistics.149

The results of the performed simulations are analyzed in two areas in the Sahel re-150

gion, SAH W and SAH E, and one area at the coast of Guinea, GUI C, as well as for151

the entire region. There are no standard evaluation areas available so far for West Africa152

and the Sahel. However, the areas SAH W and SAH E have been used by several stud-153

ies (Dosio et al., 2021a, 2021b; Smiatek & Kunstmann, 2023), and thus allow putting154

the results in the context of previous investigations. Figure 1 shows the MPAS 60-km155

mesh and the investigation areas.156

–6–
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Table 2. Reference data applied in the present study. G denotes the gauge, M, the monitoring

station, R, reanalysis, and S, satellite measurements

Acronym Name Reso- Type Reference

lution

ERA5 ECMWF ERA5 0.25◦ R Hersbach et al. (2020)

JRA-55 Japanese 55-year Reanalysis 1.25◦ R Kobayashi and Iwasaki (2016)

MERRA-2 Modern-Era Retrospective Analysis

for Research and Application, v. 2

0.5 x 0.625◦ R Gelaro et al. (2017)

NCEP-2 NCEP-DOE Reanalysis 2 1.875◦ R Kanamitsu et al. (2002)

CHIRTS Climate Hazard Group Infrared Tem-

perature with Station Data

0.25◦ M,S,R Funk et al. (2019)

CPC Unified Gauge-Based Analysis of

Global Daily Precipitation

0.5◦ G Xie et al. (2007)

CRU Climate Research Unit 0.5◦ G,M Harris et al. (2020)

Figure 1. MPAS 60 mesh and investigated areas SAH W, SAH E and GUI C. Simulated 2-m

temperature 01.07.2010:12:00 UTC)
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Figure 2. SST anomaly over the Gulf of Guinea as in ERA-Interim 1989–2018

2.4 Investigated indices157

The investigated temperature related indices were selected from the perspective of158

the socio-economic activities in the investigated region and comprise indices used by sim-159

ilar investigations (Engdaw et al., 2022), mostly defined by the Expert Team on Climate160

Change Detection, Monitoring and Indices (ETCCDI)(Karl et al., 1999) with adjusted161

thresholds. They are the daily mean (TG), minimum (TN) and maximum (TX) tem-162

perature, the number of tropical nights (TR) with TN > 24◦, the percentage of warm163

nights (TN90p) with TN > 90th percentile, the number of summer days (SU) with TX164

> 35◦, the percentage of warm days (TX90p) with TX > the 90th percentile, and the165

heat wave duration index (HWDI) with TX > TXnorm +3◦over at least three days. TXnorm166

is calculated as the mean of the maximum temperatures of a five-day window over all167

simulations and with the reference data from the entire investigated period.168

The indices related to precipitation are the daily mean precipitation (RR), the num-169

ber of wet days (RR1), and the maximal daily rainfall (RX1day). These indices allow170

a comparison with the investigation of the observed and simulated precipitation char-171

acteristics provided by Dosio et al. (2021a) and Dosio et al. (2021b).172

Table 3 shows the indices, their definitions, and their units. All indices are calcu-173

lated for land points only and were derived from instantaneous 3-hourly MPAS output.174

3 Results175

Figure 3 shows the distributions of the area mean summer (JJA) mean tempera-176

ture TG in the investigated areas SAH W, SAH E and GUI C for both the reference data177

–8–
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Table 3. List of indices analyzed in this study. The indices are calculated on a seasonal (JJA)

basis.

Index Definition Units

TG Seasonal mean of daily mean temperature ◦C

TN Seasonal mean of daily minimum temperature ◦C

TX Seasonal mean of daily maximum temperature ◦C

TXx Seasonal maximum of TX ◦C

TR Number of tropical nights with TN > 24◦ d

TN90p Percentage of days when TN > 90th percentile %

SU Number of summer days with TX > 35◦ d

TX90p Percentage of days when TX > 90th percentile %

HWDI Heat wave duration index. TX > TXnorm +3◦over at

least 3 days

d

RR Daily mean precipitation mm/d

RR1 Number of wet days when RR >= 1 mm d

RX1day Maximal daily RR mm/d

–9–
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and the MPAS simulations. It reveals that the results obtained from MPAS are well within178

range, and there are only small differences between the different simulation approaches179

of MPAS A and MPAS B.180

Concerning the ranges and the area mean value, there are substantial differences181

in the reference data (Table 4). In the SAH W area, the mean value TG in the reanal-182

yses extends from 28.4◦ C to 29.4◦ C, the range in the data based on observations is from183

29.5◦ C to 29.9◦ C. MPAS shows, with 28.7◦ C, a cold bias of −0.6◦ C in relation to the184

mean of the entirety of the reference data, of −0.4◦ C in relation to the mean value of185

the reanalysis products, and −1.1◦ C to the observational reference. The correspond-186

ing biases in the SAH W area are −0.6◦, −0.3◦, −1.2◦ C, and in the GUI C area, −0.9◦,187

−0.5◦and −1.6◦ C.188

These results are comparable to the findings from previous simulation experiments.189

For instance, Hernández-Dı́az et al. (2013) found, over West Africa, biases in the sim-190

ulations with the Canadian Regional Climate Model (CRCM5) in the range from −2◦ C191

to 2◦ C. Gbobaniyi et al. (2014) found, with the WRF model, biases of 0.8◦C over West192

Africa, of 0.8◦ C over Guinea, and 1.6◦ C over the Sahel during the JAS (July, August,193

September) period. With the RCA4 model, Nikiema et al. (2017) reported biases of 1.2◦ C194

over WA, 1◦ C over Guinea and 1.2◦ C over the Sahel. Kim et al. (2014) concluded from195

the CORDEX-Africa experiment with 10 regional climate models, seasonal (JJAS) bi-196

ases ranging from −0.5◦ C to 0.8◦ C over West Africa. Dosio et al. (2015) found in sim-197

ulations with the COSMO-CLM model cold biases up to 3◦ C in the Guinea region and198

the southern Sahel. Careto et al. (2018) reported in CORDEX-Africa experiments cold199

biases in most of Africa for all RCMs, with the largest biases over the Sahel. With the200

MPAS model, Maoyi and Abiodun (2021) found a cold bias up to 2◦ C over the Indian201

Ocean and cold biases up to 1.2◦ C within the southern African countries. They attributed202

the error primarily to the coarser resolution of 240 km applied in the simulations.203

Figures 4 to 5 depict boxplots of the mean daily maximum temperatures TX and204

TXx, for the reference data and the MPAS simulations. The corresponding area mean205

values are shown in Table 4. Compared to the mean values, the cold biases are larger.206

In the SAH W area, a cold bias of −1.4◦C compared to the mean of all the reference data207

is present for TX. It is −2.2◦C for TXx. The cold biases related to the reanalyses are208

smaller. However, it has be taken into account that NCEP-2 has a much lower resolu-209

–10–
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Figure 3. Boxplots of the area mean summer (JJA) mean temperature TG in the investigated

areas SAH W, SAH E and GUI C

tion. Related to the observations, the MPAS cold biases are larger, at −2.1◦ C and −2.5◦ C,210

respectively. The results obtained for the SAH E and GUI C areas are similar. However,211

the biases are larger when only the observational reference is considered.212

The estimated number of tropical nights is, in SAH W and SAH E, within the range213

of the reference data (Figure 6) and only in the GUI C area is TR, with 10 days larger,214

underestimated. When compared to observations only, biases ranging from −12 to −20215

days are present. This is about 10% to 80%. The same findings apply to the number of216

summer days SU (Figure 7), where this number is slightly underestimated, by five days217

(14%) in the area SAH W and by 15 days (33%) in SAH E. The number of summer days218

in the GUI C area is very small and therefore not considered here.219

Biases in the percentiles TN90p and TX90 reach values of -33% and -53% in SAH W,220

-19% and -7% in SAH E and +7% and −46% in GUI C when compared to the mean val-221

ues of the reference data. The biases are larger in SAH E and GUI C and smaller in SAH W222

when the reference are observations only. Finally, the largest biases, reaching −66% in223

SAH W and −86% in GUI C, are found for the heat wave duration index HWDI. In SAH E,224

this bias is, at 10%, rather small.225

In summary, it can be concluded that there are moderate to partly large biases in226

the summer area mean values of the investigated indices. These are in general cold bi-227

–11–
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Table 4. Mean values of temperature indices over the investigation areas for the JJA season,

both observed and simulated

Area Data TG TX TXx TR SU TN90p TX90p HWDI

[◦C] [◦C] [◦C] [d] [d] [%] [%] [d]

SAH W ERA5 29.2 34.3 40.3 51.7 41.1 14.2 20.1 10.7

JRA-55 29.1 33.2 40.5 52.5 31.1 29.9 34.3 40.9

NCEP-2 28.4 32.4 40.5 50.2 29.8 5.3 57.5 34.4

MERRA-2 29.4 34.7 41.3 49.0 41.9 15.1 20.2 18.5

CPC 29.9 34.5 41.2 58.7 40.7 15.5 15.6 18.6

CRU 29.5 35.0 - - - - - -

CHIRTS - 34.9 40.9 68.6 42.5 17.6 17.6 5.5

MPAS A 28.8 32.7 38.5 52.3 33.6 13.8 11.5 8.5

MPAS B 28.5 32.7 38.6 49.5 31.7 8.1 14.7 6.3

MPAS 28.7 32.7 38.6 50.9 32.7 11.0 13.1 7.4

SAH E ERA5 29.5 34.9 40.4 46.4 49.0 21.0 27.3 14.3

JRA-55 28.6 32.9 39.4 39.4 34.8 46.9 54.1 40.6

NCEP-2 28.4 32.7 40.7 41.3 33.9 17.2 76.4 55.1

MERRA-2 30.1 36.0 41.6 48.2 54.7 26.7 32.5 23.5

CPC 30.0 35.3 42.0 52.8 47.7 26.9 20.7 24.9

CRU 29.9 36.4 - - - - - -

CHIRTS - 37.1 42.6 78.5 61.5 28.7 28.7 8.6

MPAS A 28.8 33.2 38.7 51.8 33.6 25.2 22.1 18.1

MPAS B 28.8 32.8 38.2 56.4 29.7 19.8 21.7 10.1

MPAS 28.8 33.0 38.5 54.1 31.7 22.5 21.9 14.1

GUI C ERA5 23.3 28.5 31.9 5.8 0.2 8.4 15.0 0.4

JRA-55 25.6 28.5 32.3 14.7 1.9 13.1 18.0 9.7

NCEP-2 24.2 25.9 32.1 8.1 0.1 4.2 55.1 9.1

MERRA-2 25.4 28.7 32.3 5.0 0.8 9.2 19.7 8.3

CPC 25.9 29.0 33.4 19.2 0.2 15.6 19.3 7.7

CRU 25.5 29.2 - - - - - -

CHIRTS - 29.7 33.4 26.0 0.2 15.6 15.6 0.2

MPAS A 24.1 27.4 30.6 3.1 0.0 12.2 15.5 1.1

MPAS B 24.1 26.8 30.1 2.0 0.0 11.4 10.3 0.5

MPAS 24.1 27.1 30.4 2.6 0.0 11.8 12.9 0.8
–12–
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Figure 4. Boxplots of mean daily maximum temperature TX for the reference data and

MPAS simulation in the investigation areas SAH W, SAH E and GUI C and the summer season

(JJA)
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Figure 5. Boxplots of maximum daily maximum temperature TXx for the reference data and

MPAS simulation in the investigation areas SAH W, SAH E and GUI C and the summer season

(JJA)
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Figure 6. Boxplots of the number of tropical nights TR with daily minimum temperature

over 24◦C for the reference data and MPAS simulations in the investigation areas SAH W,

SAH E and GUI C and the summer season (JJA)
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Figure 7. Boxplots of the number of summer days SU with temperature over 35◦C for the

reference data and MPAS simulations in the investigation areas SAH W, SAH E and GUI C and

the summer season (JJA)

–14–



manuscript submitted to JGR: Atmospheres

ases and underestimations of the reference data. The biases are larger when only the ob-228

servational reference is considered. On the other hand, the ranges in the MPAS simu-229

lations and in the observations are similar. Lower biases are found in comparison to the230

reanalyses, which on the other hand reveal much higher ranges. MPAS reaches, when231

biases in percent of the reference are considered, the lowest biases in the SAH W area232

in five of the investigated indices. Limiting this comparison to the reference from obser-233

vations yields the lowest biases in four indices in MPAS E and four in MPAS W. In the234

complex coastal area GUI C, MPAS simulations reveal the highest biases. As in the CORDEX-235

experiments (Kim et al., 2014), the biases simulated for West Africa are generally smaller236

than for the eastern part of the Sahel. This might however be related to the lower den-237

sity of monitoring stations in this region (Masunaga et al., 2019). Dosio (2017) found,238

regarding the summer mean temperature (TG), large discrepancies between the individ-239

ual simulations, with the model spread ranging from 3.5◦C over the coast of Guinea, to240

7◦C, over SAH E.241

Despite the deficiencies, the general applicability of MPAS to climate simulations242

can be concluded here. Also, the results obtained from the two procedures employed for243

initializing the model, MPAS A and MPAS B, are very similar (Table 4) and demonstrate244

the equivalence of these approaches to initialization.245

Larger biases are found at regional scales. Figure 8 shows maps of the MPAS sim-246

ulated mean maximum temperature (TX) and differences between MPAS, the mean val-247

ues of the MPAS A and MPAS B experiments, and the mean of the applied reference248

data. In comparison, MPAS reveals a notable cold bias throughout the considered re-249

gion. Only in the Volta region and in the Western Sahara are there small positive bi-250

ases. In comparison with the reanalyses, the biases are generally smaller, reveal however,251

similar negative values with MERRA-2 and CHIRTS. The results with JRA-55 and NCEP-252

2 differ and show also positive biases. The smallest differences occur with the ERA5 ref-253

erence. Taking into account the biases in the observations resulting from the rather low254

station density in some areas and the coarser resolution of the other reanalysis data, it255

can be concluded that the MPAS performs reasonably well.256

The patterns of the differences in the number of summer days (SU) with daily max-257

imum temperature TX > 35◦ C (Figure 9) are similar in the Sahel, showing large un-258

derestimations, especially in the eastern part. Positive biases are found in the hot north-259
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Figure 8. Simulated MPAS mean maximum temperature TX and differences between the

MPAS and reference data. For the explanation of the acronyms of the reference data, see Ta-

ble 2.

ern part of the Sahel and Saharan zones, while in WA the biases are rather small. Dosio260

(2016) argued from the results of the CORDEX-Europe experiment that the underes-261

timation of the number of summer days SU is the consequence of the underestimation262

of the daily maximum temperature TX. The biases in the southern parts of the inves-263

tigated area are smaller. However, the number of observed SU days is small there.264

The simulated heat wave duration index (HWDI) and the differences between the265

MPAS and the reference data are shown in Figure 10. The picture here is, however, not266

clear. While a positive bias dominates in the CHIRTS data, this bias is negative for the267

CPC observations. The differences from JRA-55 and NCEP-2 are mostly negative. With268
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Figure 9. As in Figure 8 but for the number of summer days SU with daily maximum tem-

perature TX > 35◦
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Figure 10. As in Figure 8 but for the heat wave duration index HWDI

ERA5 and MERRA-2, positive biases dominate the northern part. In the southern part,269

the biases are rather negative and larger with the JRA-55 reanalysis. The largest dis-270

crepancies seem to occur around the latitude of 15◦N.271

Summarizing the regional findings, it can be concluded that a cold bias in the TX272

is evident. It dominates the results obtained for the related temperature indices. Due273

to large differences between the single reference data, those results are less clear.274

The cold biases in MPAS may contribute to dry biases in the simulated rainfall,275

as the temperature gradient is the origin of jets which in turn transport moisture and276

the development of rainfall over the Sahel (Grist & Nicholson, 2001). In addition, the277

deficiencies in precipitation may also be related to the fact that the MPAS underesti-278
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Table 5. Mean values of precipitation indices over the investigation areas for the JJA season,

both observed and simulated. S, G and R denote minimum, mean and maximum values of obser-

vational datasets for satellite (S), gauge (G) and reanalysis (R) products as presented by Dosio et

al. (2021b)

Area Data RR RR1 RX1day

mm/d

SAH W S 3.7–4.6–7.0 32.8–39.3–47.6 22.0–41.3–68.1

G 3.9–4.3–4.6 33.8–40.3–49.6 29.1–39.3–46.2

R 2.8–4.1–5.2 23.8–47.2–63.6 25.7–33.5–43.1

MPAS A 2.7 41.5 23.6

MPAS B 2.7 41.5 21.2

MPAS 2.7 41.5 22.4

SAH E S 2.1–2.9–4.7 22.1–29.5–37.5 18.2–29.8–51.5

G 2.5–2.8–3.1 25.9–31.2–38.8 23.3–31.0–40.5

R 2.4–3.1–3.7 25.9–41.5–49.1 16.7–28.1–44.1

MPAS A 2.9 40.3 21.4

MPAS B 3.2 50.9 19.7

MPAS 3.1 45.6 20.6

–19–



manuscript submitted to JGR: Atmospheres

mates the number of summer days. SU can affect the convection and regional precip-279

itation recycling (Arnault et al., 2016) over WA and the Sahel. Nicholson and Webster280

(2007) argued that the reduction in the number of mesoscale convective systems nega-281

tively influences the formation of rainfall over the Sahel.282

Table 5 shows the results for the investigated precipitation indices in the investi-283

gation areas SAH W and SAH E in comparisson with observational reference from satel-284

lite, gauge and reanalysis products as presented by Dosio et al. (2021b). It reveals an285

underestimation of the observed amount of daily precipitation RR in the SAH W area286

by 1.6 mm/d or 38%, and is outside the range of the observational datasets. In SAH E,287

MPAS slightly overestimates the observations, by 4%, and is well within the range of the288

reference data. Only small biases are present in the number of rainy wet days (RR1) with289

precipitation of at least 1 mm in the area SAH W. The shortcoming here is the low pre-290

cipitation intensity on wet days. Also, an underestimation on the order of 40% is present291

for the area mean maximum daily rain Rx1day. In SAH E, RR1 is overestimated by 37%292

and the maximum daily rain is underestimated by 31%. The investigations of Dosio et293

al. (2021a) based on CMIP5, CIMIP6 global models and CORDEX experiments found294

a large spread between the models. The MPAS results are within the range of those find-295

ings. However, it has to be concluded that it has a significant dry bias for West Africa.296

Various reasons have been discussed explaining the obvious deficiencies of the cli-297

mate models in reproducing observed temperature and precipitation characteristics in298

WA and the Sahel. They are related to a misplacement of the centre of the monsoon and299

the underestimation of its intensity and to the northern shift of the West African Heat300

Low (Panitz et al., 2014), errors in the simulation of the lateral terrestrial water flow and301

its contribution to land surface evaporation(Arnault et al., 2021), as well as underesti-302

mation of the surface short-wave radiation and latent heat flux, cloudiness, surface wa-303

ter and the surface albedo (Sylla et al., 2009; Diallo et al., 2017; Dieng et al., 2017). In304

applications of the WRF model together with the Noah-LSM, Glotfelty et al. (2021) iden-305

tified the satellite derived albedo climatology as a source of additional errors. Careto et306

al. (2018) linked higher temperatures to evaporative stress and strong soil moisture tem-307

perature coupling in some areas. For the Sahel, however, they stated that precipitation308

regimes are more important. Finally, as pointed out by Heinzeller et al. (2018), the choice309

of physical parametrizations can greatly influence the model’s capabilities, especially the310

accuracy of the surface temperature and precipitation.311
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In summary, it can be stated that the MPAS global static 60-km mesh approach312

does not provide higher fidelity than the regional climate models. However, the ability313

of MPAS to apply variable meshes in a regional refinement and to run in convection per-314

mitting mode opens possibilities for improvements, as shown by Heinzeller et al. (2016).315

4 Conclusions316

A large ensemble of 51 simulations with the Model for Prediction Across Scales (MPAS)317

has been used to assess its ability to reproduce the summer (JJA) extreme temperature318

and heat waves in the area of West Africa and the Eastern Sahel. With its global ap-319

proach, the model avoids transition errors influencing the performance of limited area320

climate models. Also, the simulations are not confined by a driving model. The MPAS321

simulations were driven by the SST and sea ice extent as the only boundary conditions.322

The results reveal moderate cold biases in the range from −0.6◦to −0.9◦ C for the323

daily mean temperature and increase to −1.4◦–−2.0◦ C for the area mean of the daily324

maximum temperature TX and to −2.2◦–−2.7◦ C for TXx as the maximum of TX. The325

bias in the number of tropical nights TN ranges from +3 to −10 days. An underestima-326

tion by up to 50% is also present in the number of summer days SU with TX > 35◦C.327

The percentage of days when TN > the 90th percentile TN90p as well as the percent-328

age of days when TX > the 90th percentile TX90p reveal underestimations by up to 50%,329

and the heat wave duration index HWDI is underestimated by 10%–60%. Compared to330

the reanalyses, the biases revealed by the MPAS simulations are generally smaller than331

with the measured observational reference. Because of the present and reported deficien-332

cies in the observed data for the Sahel, the shortcomings in the MPAS simulations are333

in reality most likely smaller.334

Regional biases are to a large extent negative. Regarding temperatures, the small-335

est biases occur in West Africa. The smallest biases in precipitation occur in the east-336

ern part. However, the underestimation in the first case and the overestimation in the337

second reveal that improvements of the model regarding its physics, land–surface scheme,338

and land surface input data are required for an adequate simulation of the WA and Sa-339

helian climate.340

The results obtained from the two model initialization procedures used are very341

similar and demonstrate the equivalence of the two approaches. Compared to long term342
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runs, selections of the initialization years in relation to the spread of mean SST temper-343

atures in the Gulf of Guinea extremely reduce the demand on the CPU, especially when344

only short terms, such as months or specific seasons, are considered.345

Shortcomings in the reproduction of temperatures and precipitation found in the346

present investigation indicate that the global approach per se does not provide higher347

fidelity than the regional climate models. Kim et al. (2014) showed that in CORDEX-348

Africa, multi model ensembles generally outperformed the single ensembles. In such en-349

semble approaches, MPAS simulations can be applied as an adequate member.350
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heat waves become normal in a warming Africa? Environmental Research Let-560

ters , 11 , 054016. doi: 10.1088/1748-9326/11/5/054016561

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., . . . Becker, E. (2014).562

The NCEP Climate Forecast System Version 2. Journal of Climate,, 27 , 2185–563

2208. doi: 10.1175/JCLI-D-12-00823.1564

Schulzweida, U. (2021). CDO User Guide (Version 2.0.0). doi: 10.5281/zenodo565

.5614769566

Sivakumar, M., Collins, C., Jay, A., & Hansen, J. (2014). Regional priorities for567

strenghtening climate services for farmers in Africa and South Asia (CCAFS568

Working Paper no. 71). Copenhagen, Denmark: CGIAR Research Program on569

–28–



manuscript submitted to JGR: Atmospheres

Climate Change, Agriculture and Food Security (CCAFS).570

Skamarock, W. C., Klemp, J. B., Duda, M. G., Fowler, L. D., Park, S., & Ringler,571

D. T. (2012). A Multiscale Nonhydrostatic Atmospheric Model Using Cen-572

troidal Voronoi Tesselations and C-Grid Staggering. Mon. Wea. Rev., 140 ,573

3090 — 3105.574

Smiatek, G., & Kunstmann, H. (2023). Potential impact of the pan-African Great575

Green Wall on Sahelian summer precipitation: A global modeling approach576

with MPAS. Earth Interactions (in Review).577

Son, J.-H., & Seo, K.-H. (2020). Mechanisms for the Climatological Characteristics578

and Interannual Variations of the Guinea Coast Precipitation: Early Summer579

West African Monsoon. Atmosphere, 11 (4). doi: 10.3390/atmos11040396580

Sultan, B., Roudier, P., Quirion, P., Alhassane, A., Muller, B., Dingkuhn, M., . . .581

Baron, C. (2013). Assessing climate change impacts on sorghum and millet582

yields in the Sudanian and Sahelian savannas of West Africa. Environmental583

Research Letters , 8 , 014040. doi: 10.1088/1748-9326/8/1/014040584

Sylla, M. B., Gaye, A. T., Pal, J. S., Jenkins, G. S., & Bi, X. Q. (2009). High-585

resolution simulations of West African climate using regional climate model586

(RegCM3) with different lateral boundary conditions. Theoretical and Applied587

Climatology, 98 , 293–314. doi: 10.1007/s00704-009-0110-4588

Thuburn, J., Ringler, T., Skamarock, W., & Klemp, J. (2009). Numerical represen-589

tation of geostrophic modes on arbitrarily structured C-grids. Journal of Com-590

putational Physics , 228 , 8321 – 8335. doi: 10.1016/j.jcp.2009.08.006591

Xie, P., Chen, M., Yang, S., Yatagai, A., Hayasaka, T., Fukushima, Y., & Liu, C.592

(2007). A gauge-based analysis of daily precipitation over East Asia. Journal593

of Hydrometeorology, 8 , 607—626. doi: 10.1175/JHM583.1594

Zender, C. (2022). NCO User Guide. Department of Earth System Science, Univer-595

sity of California, Irvine.596

–29–



manuscript submitted to JGR: Atmospheres

Simulation of temperature extremes over West Africa1

and the Eastern Sahel with MPAS2

Laouali Ibrahim Tanimoune1, Gerhard Smiatek 2, Harald Kunstmann2,3,3

Babatunde J. Abiodun 4
4

1Department of Meteorology and Climate Science, Federal University of Technology of Akure, Nigeria5

2Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology,6

Kreuzeckbahnstr.19, 82467 Garmisch-Partenkirchen, Germany7

3Institute of Geography, University of Augsburg, Augsburg, Germany8

4Department of Environmental and Geographical Science, University of Cape Town, Cape Town, South9

Africa10

Key Points:11

• Multiple MPAS runs with SST and sea ice extent as the only boundary condition12

are used to investigate extremes of temperature and heat waves.13

• MPAS reveals moderate cold biases for all investigated temperature indices.14

• Long term runs as well as short term runs with selected SST years yield similar15

results.16

Corresponding author: Gerhard Smiatek, gerhard.smiatek@kit.edu

–1–



manuscript submitted to JGR: Atmospheres

Abstract17

A large ensemble of 51 simulations with the Model for Prediction Across Scales (MPAS)18

has been applied to assess its ability to reproduce extreme temperatures and heat waves19

in the area of West Africa and the Eastern Sahel. With its global approach the model20

avoids transition errors influencing the performance of limited area climate models. The21

MPAS simulations were driven with sea surface temperature (SST) and sea ice extent22

as the only boundary condition. The results reveal moderate cold biases in the range from23

−0.6◦to −0.9◦ C for the daily mean temperature and −1.4◦to −2.0◦ C for the area mean24

of the daily maximum temperature. The bias in the number of tropical nights ranges from25

+3 to −10 days. An underestimation by up to 50% is also present regarding the num-26

ber of summer days. The heat wave duration index is underestimated regionally by 10%27

to 60%. Compared to the reanalyses, the biases revealed by the MPAS simulations are28

generally smaller than with measured observational reference. The results from long term29

runs and from short term runs with selected SST years are similar. Shortcomings in the30

reproduction of the temperature and precipitation indices found in the present investi-31

gation indicate that the global MPAS approach does provide a fidelity similar to that32

of the regional climate models.33

Plain Language Summary34

Large number of simulations with the global weather and climate model MPAS has35

been applied to investigate extreme temperatures and related heat waves. The consid-36

ered area is West Africa and the Eastern Sahel. In the simulations sea surface temper-37

ature and sea ice extent were the only boundary condition. The results reveal moder-38

ate underestimation in the range from −0.6◦to −0.9◦ C for the daily mean temperature.39

The error the area mean of the daily maximum temperature was −1.4◦to −2.0◦ C. An40

underestimation by up to 50% is also present in the number of summer days. The heat41

wave duration index is underestimated regionally by 10% to 60%. Obtained results in42

the reproduction of the observed temperatures and precipitation show that the global43

MPAS model provides results similar to that of the regional climate models.44

1 Introduction45

West Africa (WA) and the Eastern Sahel are characterized by high temperatures46

and large variability in rainfall (Nicholson & Webster, 2007; Sultan et al., 2013; Poan47
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et al., 2016) and have been historically affected by extreme weather anomalies. A long-48

standing example are the droughts of 1974–1975 over the Sahel. They caused severe in-49

creases in mortality in the population and and livestock, and despite the recent occur-50

rence of a regreening, the Sahel region is still suffering from these droughts (Janicot et51

al., 1996; Cook, 2008).52

Several studies have provided evidence for a considerable warming in West Africa53

and the Sahel in the recent past. New et al. (2006) showed that most stations in West54

Africa reveal positive trends in the minimum and maximum temperature over the pe-55

riod 1961–2000. That study also found increases in both the number of hot days and of56

cold days. Evaluating reanalyses and CORDEX models, Adeniyi and Oyekola (2017) found57

that the magnitude of the frequencies of heat waves in West Africa has increased. Oueslati58

et al. (2017) found that heat waves are spatially increasing with high intensity. Similar59

findings are reported concerning increases in temperatures and the frequencies of heat60

waves, particularly in the Sahel (Ringard et al., 2016; Russo et al., 2016; Dosio, 2017).61

Further increases are projected for the future. From results based on CMIP5 model sim-62

ulations, Ringard et al. (2016) reported significant increases in heat waves for the Sa-63

hel in all applied scenarios.64

An increase in the severity and frequency of heat wave events can lead to the loss65

of human lives and the destruction of crops. Extreme temperatures and heat waves strongly66

affect the socio-economic conditions in various sectors, such as agriculture, infrastruc-67

ture, and energy (Lobell et al., 2011; Coumou & Rahmstorf, 2012; Perkins et al., 2015).68

A weak economy, an inefficient policy, and a limited resilience increase the vulnerabil-69

ity. Hence, modeling tools capable of simulating extreme present and expected future70

climate conditions have gained increasing importance for the support of policymakers.71

The scientific aim of this study is the evaluation of the global Model for Predic-72

tion Across Scales (MPAS), driven with sea surface temperature (SST) and sea ice ex-73

tent as the only boundary condition, with regard to its ability to simulate extreme tem-74

peratures and heat waves in West Africa and the Eastern Sahel. In addition, basic pre-75

cipitation indices are investigated. With its global approach, the model prevents the er-76

rors commonly introduced in regional climate models (RCMs) in the transition zone from77

the driving GCM (General Circulation Model) to the regional model, and thus provides78

an additional tool applicable to the vital questions related to present and future climate79
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conditions. Dosio et al. (2022) points out that RCMs do not improve the simulation abil-80

ity of large-scale fields compared to GCMs.81

So far, MPAS has only been applied to this region by Heinzeller et al. (2016), who82

had a focus on the reproduction of the dynamics of the West African monsoon (WAM)83

and the associated precipitation. Unlike RCM applications, global MPAS runs are not84

confined by a driving model but, besides the boundary conditions, depend on their ini-85

tialization. Thus, an additional aim of this study is the comparison of two different ini-86

tialization procedures.87

This study considers the summer season as the most important period for the re-88

gional economy, which greatly relies on agriculture, which depends on the seasonal rain-89

fall and the behavior of the monsoon rains (Sivakumar et al., 2014) and is generally prac-90

ticed during the summer. Any changes during this crucial period often have a devas-91

tating effect on socio-economic activities and food security in the region (Dilley & Hey-92

man, 1995; Haile, 2005; Omotosho & Abiodun, 2007). Drought, excessive rains, or heat-93

waves during the growing season can potentially diminish crop yield, especially in the94

Sahel, where water is a particularly determining element for the growth of the crops (Ahmed95

et al., 2015).96

The present study is structured as follows: Section 2 describes the applied model,97

reference data, investigation areas and the evaluation indices. The results of the eval-98

uation are presented and discussed in Section 3, and conclusions are drawn in Section99

4.100

2 Material and methods101

2.1 MPAS model102

The applied meteorological model is the Model for Prediction Across Scales (MPAS),103

which is based on unstructured Voronoi meshes and C-grid discretization (Thuburn et104

al., 2009; Ringler et al., 2010). MPAS-atmosphere (Skamarock et al., 2012), used in the105

present study, is a global, fully compressible non-hydrostatic model (Klemp, 2011). The106

model is run at an approximately 60-km resolution mesh with a total of 163,842 cells,107

applying the mesoscale reference physics suite, 55 vertical levels up to a height of 30 km,108

and 4 soil levels. The land–surface physics component is the Community Noah Land Sur-109

face Model (Noah-LSM) (Chen et al., 1996).110
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Table 1 shows the associated parametrization schemes of the standard model con-111

figuration. The RRTMG (Clough et al., 2005) long-wave and short-wave radiation scheme112

uses a fixed value for carbon dioxide, reflecting the conditions of the years around 2004.113

The static input fields applied are the MODIS 20-class land cover based on global land114

cover climatology collected in 2001–2010 at 500-m resolution (Broxton et al., 2014) and115

the Global Multi-Resolution Terrain Elevation Data (GMTED2010) (Danielson & Gesch,116

2011) topography. The surface albedo and vegetation fraction are updated monthly from117

MODIS climatology.118

Table 1. Parametrization schemes used by the simulations

Parametrization Scheme

Convection New Tiedtke

Microphysics WSM6

Land surface Noah-LSM

Boundary layer YSU

Surface layer Monin–Obukhov

Radiation, LW RRTMG

Radiation, SW RRTMG

Cloud fraction for radiation Xu–Randall

Gravity wave drag by orography YSU

2.2 Performed simulations119

An MPAS simulation with SST and sea ice extent as the only boundary condition120

does not reproduce the weather of a specific year, but it creates weather patterns that121

fit these conditions. Thus, in order to reproduce the observed climatology, multiple runs122

with different initialization dates are required. The present article presents 51 MPAS sim-123

ulations. They form three experiments, denoted by MPAS A, MPAS B and MPAS. Ex-124

periment MPAS A applies the initialization data, SST and sea ice extent from the ERA-125

Interim reanalysis (Dee et al., 2011) and follows the procedure applied by Smiatek and126

Kunstmann (2023). Six years have been selected according to the SST anomaly in the127

Gulf of Guinea during the summer season (Figure 2). The Gulf of Guinea has a central128
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influence on the precipitation in West Africa (Son & Seo, 2020). The considered period129

covers 30 years around 2004, from 1990 to 2019. Specific years are 1992 and 1997, re-130

vealing a positive anomaly, 1998 and 2010 with a negative anomaly, and 2003 and 2016131

are neutral. These anomalies basically correspond to positive and negative ENSO states.132

Within each SST–year, five simulations initialized from May 15 through May 19 and run133

until September 1 have been performed.134

Experiment MPAS B is a continuous MPAS simulation initialized in December 1980,135

from which the results for the period 1990–2010 are applied in the present investigation.136

For the initialization, the SST and sea ice extent data from the Climate Forecast Sys-137

tem Reanalysis (CFSR) (Saha et al., 2014) are used. CFSR data is available until 2010.138

The chosen period covers the largest SST anomalies in the Gulf of Guinea (Figure 2).139

The MPAS experiment consists of MPAS A and MPAS B simulations lumped into140

a single ensemble. The investigated period is the summer season (JJA).141

2.3 Observational reference and investigated areas142

The present investigation uses a set of available gridded temperature and precip-143

itation reference data at monthly and daily resolution. These are interpolated station144

and gauge measurements (CPC, CRU), extended satellite measurements (CHIRTS), as145

well as state of the art reanalyses (ERA5, JRA-55, MERRA-2, NCEP-2). Table 2 pro-146

vides some details about the applied data. With the exception of the CHIRTS data, which147

is available only up to 2016, all data sets cover the investigated period, 1990–2019. CRU148

only provides monthly resolution and therefore is used only in the basic statistics.149

The results of the performed simulations are analyzed in two areas in the Sahel re-150

gion, SAH W and SAH E, and one area at the coast of Guinea, GUI C, as well as for151

the entire region. There are no standard evaluation areas available so far for West Africa152

and the Sahel. However, the areas SAH W and SAH E have been used by several stud-153

ies (Dosio et al., 2021a, 2021b; Smiatek & Kunstmann, 2023), and thus allow putting154

the results in the context of previous investigations. Figure 1 shows the MPAS 60-km155

mesh and the investigation areas.156
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Table 2. Reference data applied in the present study. G denotes the gauge, M, the monitoring

station, R, reanalysis, and S, satellite measurements

Acronym Name Reso- Type Reference

lution

ERA5 ECMWF ERA5 0.25◦ R Hersbach et al. (2020)

JRA-55 Japanese 55-year Reanalysis 1.25◦ R Kobayashi and Iwasaki (2016)

MERRA-2 Modern-Era Retrospective Analysis

for Research and Application, v. 2

0.5 x 0.625◦ R Gelaro et al. (2017)

NCEP-2 NCEP-DOE Reanalysis 2 1.875◦ R Kanamitsu et al. (2002)

CHIRTS Climate Hazard Group Infrared Tem-

perature with Station Data

0.25◦ M,S,R Funk et al. (2019)

CPC Unified Gauge-Based Analysis of

Global Daily Precipitation

0.5◦ G Xie et al. (2007)

CRU Climate Research Unit 0.5◦ G,M Harris et al. (2020)

Figure 1. MPAS 60 mesh and investigated areas SAH W, SAH E and GUI C. Simulated 2-m

temperature 01.07.2010:12:00 UTC)
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Figure 2. SST anomaly over the Gulf of Guinea as in ERA-Interim 1989–2018

2.4 Investigated indices157

The investigated temperature related indices were selected from the perspective of158

the socio-economic activities in the investigated region and comprise indices used by sim-159

ilar investigations (Engdaw et al., 2022), mostly defined by the Expert Team on Climate160

Change Detection, Monitoring and Indices (ETCCDI)(Karl et al., 1999) with adjusted161

thresholds. They are the daily mean (TG), minimum (TN) and maximum (TX) tem-162

perature, the number of tropical nights (TR) with TN > 24◦, the percentage of warm163

nights (TN90p) with TN > 90th percentile, the number of summer days (SU) with TX164

> 35◦, the percentage of warm days (TX90p) with TX > the 90th percentile, and the165

heat wave duration index (HWDI) with TX > TXnorm +3◦over at least three days. TXnorm166

is calculated as the mean of the maximum temperatures of a five-day window over all167

simulations and with the reference data from the entire investigated period.168

The indices related to precipitation are the daily mean precipitation (RR), the num-169

ber of wet days (RR1), and the maximal daily rainfall (RX1day). These indices allow170

a comparison with the investigation of the observed and simulated precipitation char-171

acteristics provided by Dosio et al. (2021a) and Dosio et al. (2021b).172

Table 3 shows the indices, their definitions, and their units. All indices are calcu-173

lated for land points only and were derived from instantaneous 3-hourly MPAS output.174

3 Results175

Figure 3 shows the distributions of the area mean summer (JJA) mean tempera-176

ture TG in the investigated areas SAH W, SAH E and GUI C for both the reference data177
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Table 3. List of indices analyzed in this study. The indices are calculated on a seasonal (JJA)

basis.

Index Definition Units

TG Seasonal mean of daily mean temperature ◦C

TN Seasonal mean of daily minimum temperature ◦C

TX Seasonal mean of daily maximum temperature ◦C

TXx Seasonal maximum of TX ◦C

TR Number of tropical nights with TN > 24◦ d

TN90p Percentage of days when TN > 90th percentile %

SU Number of summer days with TX > 35◦ d

TX90p Percentage of days when TX > 90th percentile %

HWDI Heat wave duration index. TX > TXnorm +3◦over at

least 3 days

d

RR Daily mean precipitation mm/d

RR1 Number of wet days when RR >= 1 mm d

RX1day Maximal daily RR mm/d
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and the MPAS simulations. It reveals that the results obtained from MPAS are well within178

range, and there are only small differences between the different simulation approaches179

of MPAS A and MPAS B.180

Concerning the ranges and the area mean value, there are substantial differences181

in the reference data (Table 4). In the SAH W area, the mean value TG in the reanal-182

yses extends from 28.4◦ C to 29.4◦ C, the range in the data based on observations is from183

29.5◦ C to 29.9◦ C. MPAS shows, with 28.7◦ C, a cold bias of −0.6◦ C in relation to the184

mean of the entirety of the reference data, of −0.4◦ C in relation to the mean value of185

the reanalysis products, and −1.1◦ C to the observational reference. The correspond-186

ing biases in the SAH W area are −0.6◦, −0.3◦, −1.2◦ C, and in the GUI C area, −0.9◦,187

−0.5◦and −1.6◦ C.188

These results are comparable to the findings from previous simulation experiments.189

For instance, Hernández-Dı́az et al. (2013) found, over West Africa, biases in the sim-190

ulations with the Canadian Regional Climate Model (CRCM5) in the range from −2◦ C191

to 2◦ C. Gbobaniyi et al. (2014) found, with the WRF model, biases of 0.8◦C over West192

Africa, of 0.8◦ C over Guinea, and 1.6◦ C over the Sahel during the JAS (July, August,193

September) period. With the RCA4 model, Nikiema et al. (2017) reported biases of 1.2◦ C194

over WA, 1◦ C over Guinea and 1.2◦ C over the Sahel. Kim et al. (2014) concluded from195

the CORDEX-Africa experiment with 10 regional climate models, seasonal (JJAS) bi-196

ases ranging from −0.5◦ C to 0.8◦ C over West Africa. Dosio et al. (2015) found in sim-197

ulations with the COSMO-CLM model cold biases up to 3◦ C in the Guinea region and198

the southern Sahel. Careto et al. (2018) reported in CORDEX-Africa experiments cold199

biases in most of Africa for all RCMs, with the largest biases over the Sahel. With the200

MPAS model, Maoyi and Abiodun (2021) found a cold bias up to 2◦ C over the Indian201

Ocean and cold biases up to 1.2◦ C within the southern African countries. They attributed202

the error primarily to the coarser resolution of 240 km applied in the simulations.203

Figures 4 to 5 depict boxplots of the mean daily maximum temperatures TX and204

TXx, for the reference data and the MPAS simulations. The corresponding area mean205

values are shown in Table 4. Compared to the mean values, the cold biases are larger.206

In the SAH W area, a cold bias of −1.4◦C compared to the mean of all the reference data207

is present for TX. It is −2.2◦C for TXx. The cold biases related to the reanalyses are208

smaller. However, it has be taken into account that NCEP-2 has a much lower resolu-209
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Figure 3. Boxplots of the area mean summer (JJA) mean temperature TG in the investigated

areas SAH W, SAH E and GUI C

tion. Related to the observations, the MPAS cold biases are larger, at −2.1◦ C and −2.5◦ C,210

respectively. The results obtained for the SAH E and GUI C areas are similar. However,211

the biases are larger when only the observational reference is considered.212

The estimated number of tropical nights is, in SAH W and SAH E, within the range213

of the reference data (Figure 6) and only in the GUI C area is TR, with 10 days larger,214

underestimated. When compared to observations only, biases ranging from −12 to −20215

days are present. This is about 10% to 80%. The same findings apply to the number of216

summer days SU (Figure 7), where this number is slightly underestimated, by five days217

(14%) in the area SAH W and by 15 days (33%) in SAH E. The number of summer days218

in the GUI C area is very small and therefore not considered here.219

Biases in the percentiles TN90p and TX90 reach values of -33% and -53% in SAH W,220

-19% and -7% in SAH E and +7% and −46% in GUI C when compared to the mean val-221

ues of the reference data. The biases are larger in SAH E and GUI C and smaller in SAH W222

when the reference are observations only. Finally, the largest biases, reaching −66% in223

SAH W and −86% in GUI C, are found for the heat wave duration index HWDI. In SAH E,224

this bias is, at 10%, rather small.225

In summary, it can be concluded that there are moderate to partly large biases in226

the summer area mean values of the investigated indices. These are in general cold bi-227
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Table 4. Mean values of temperature indices over the investigation areas for the JJA season,

both observed and simulated

Area Data TG TX TXx TR SU TN90p TX90p HWDI

[◦C] [◦C] [◦C] [d] [d] [%] [%] [d]

SAH W ERA5 29.2 34.3 40.3 51.7 41.1 14.2 20.1 10.7

JRA-55 29.1 33.2 40.5 52.5 31.1 29.9 34.3 40.9

NCEP-2 28.4 32.4 40.5 50.2 29.8 5.3 57.5 34.4

MERRA-2 29.4 34.7 41.3 49.0 41.9 15.1 20.2 18.5

CPC 29.9 34.5 41.2 58.7 40.7 15.5 15.6 18.6

CRU 29.5 35.0 - - - - - -

CHIRTS - 34.9 40.9 68.6 42.5 17.6 17.6 5.5

MPAS A 28.8 32.7 38.5 52.3 33.6 13.8 11.5 8.5

MPAS B 28.5 32.7 38.6 49.5 31.7 8.1 14.7 6.3

MPAS 28.7 32.7 38.6 50.9 32.7 11.0 13.1 7.4

SAH E ERA5 29.5 34.9 40.4 46.4 49.0 21.0 27.3 14.3

JRA-55 28.6 32.9 39.4 39.4 34.8 46.9 54.1 40.6

NCEP-2 28.4 32.7 40.7 41.3 33.9 17.2 76.4 55.1

MERRA-2 30.1 36.0 41.6 48.2 54.7 26.7 32.5 23.5

CPC 30.0 35.3 42.0 52.8 47.7 26.9 20.7 24.9

CRU 29.9 36.4 - - - - - -

CHIRTS - 37.1 42.6 78.5 61.5 28.7 28.7 8.6

MPAS A 28.8 33.2 38.7 51.8 33.6 25.2 22.1 18.1

MPAS B 28.8 32.8 38.2 56.4 29.7 19.8 21.7 10.1

MPAS 28.8 33.0 38.5 54.1 31.7 22.5 21.9 14.1

GUI C ERA5 23.3 28.5 31.9 5.8 0.2 8.4 15.0 0.4

JRA-55 25.6 28.5 32.3 14.7 1.9 13.1 18.0 9.7

NCEP-2 24.2 25.9 32.1 8.1 0.1 4.2 55.1 9.1

MERRA-2 25.4 28.7 32.3 5.0 0.8 9.2 19.7 8.3

CPC 25.9 29.0 33.4 19.2 0.2 15.6 19.3 7.7

CRU 25.5 29.2 - - - - - -

CHIRTS - 29.7 33.4 26.0 0.2 15.6 15.6 0.2

MPAS A 24.1 27.4 30.6 3.1 0.0 12.2 15.5 1.1

MPAS B 24.1 26.8 30.1 2.0 0.0 11.4 10.3 0.5

MPAS 24.1 27.1 30.4 2.6 0.0 11.8 12.9 0.8
–12–
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Figure 4. Boxplots of mean daily maximum temperature TX for the reference data and

MPAS simulation in the investigation areas SAH W, SAH E and GUI C and the summer season

(JJA)
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Figure 5. Boxplots of maximum daily maximum temperature TXx for the reference data and

MPAS simulation in the investigation areas SAH W, SAH E and GUI C and the summer season

(JJA)
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Figure 6. Boxplots of the number of tropical nights TR with daily minimum temperature

over 24◦C for the reference data and MPAS simulations in the investigation areas SAH W,

SAH E and GUI C and the summer season (JJA)

E
R

A
5

JR
A
−

55

N
C

E
P
−

2

M
E

R
R

A
−

2

C
P

C

C
H

IR
T

S

M
PA

S
_A

M
PA

S
_B

0

20

40

60

80

SAH_W

S
um

m
er

 d
ay

s 
[d

]

E
R

A
5

JR
A
−

55

N
C

E
P
−

2

M
E

R
R

A
−

2

C
P

C

C
H

IR
T

S

M
PA

S
_A

M
PA

S
_B

0

20

40

60

80

SAH_E

S
um

m
er

 d
ay

s 
[d

]

Figure 7. Boxplots of the number of summer days SU with temperature over 35◦C for the

reference data and MPAS simulations in the investigation areas SAH W, SAH E and GUI C and

the summer season (JJA)
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ases and underestimations of the reference data. The biases are larger when only the ob-228

servational reference is considered. On the other hand, the ranges in the MPAS simu-229

lations and in the observations are similar. Lower biases are found in comparison to the230

reanalyses, which on the other hand reveal much higher ranges. MPAS reaches, when231

biases in percent of the reference are considered, the lowest biases in the SAH W area232

in five of the investigated indices. Limiting this comparison to the reference from obser-233

vations yields the lowest biases in four indices in MPAS E and four in MPAS W. In the234

complex coastal area GUI C, MPAS simulations reveal the highest biases. As in the CORDEX-235

experiments (Kim et al., 2014), the biases simulated for West Africa are generally smaller236

than for the eastern part of the Sahel. This might however be related to the lower den-237

sity of monitoring stations in this region (Masunaga et al., 2019). Dosio (2017) found,238

regarding the summer mean temperature (TG), large discrepancies between the individ-239

ual simulations, with the model spread ranging from 3.5◦C over the coast of Guinea, to240

7◦C, over SAH E.241

Despite the deficiencies, the general applicability of MPAS to climate simulations242

can be concluded here. Also, the results obtained from the two procedures employed for243

initializing the model, MPAS A and MPAS B, are very similar (Table 4) and demonstrate244

the equivalence of these approaches to initialization.245

Larger biases are found at regional scales. Figure 8 shows maps of the MPAS sim-246

ulated mean maximum temperature (TX) and differences between MPAS, the mean val-247

ues of the MPAS A and MPAS B experiments, and the mean of the applied reference248

data. In comparison, MPAS reveals a notable cold bias throughout the considered re-249

gion. Only in the Volta region and in the Western Sahara are there small positive bi-250

ases. In comparison with the reanalyses, the biases are generally smaller, reveal however,251

similar negative values with MERRA-2 and CHIRTS. The results with JRA-55 and NCEP-252

2 differ and show also positive biases. The smallest differences occur with the ERA5 ref-253

erence. Taking into account the biases in the observations resulting from the rather low254

station density in some areas and the coarser resolution of the other reanalysis data, it255

can be concluded that the MPAS performs reasonably well.256

The patterns of the differences in the number of summer days (SU) with daily max-257

imum temperature TX > 35◦ C (Figure 9) are similar in the Sahel, showing large un-258

derestimations, especially in the eastern part. Positive biases are found in the hot north-259
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Figure 8. Simulated MPAS mean maximum temperature TX and differences between the

MPAS and reference data. For the explanation of the acronyms of the reference data, see Ta-

ble 2.

ern part of the Sahel and Saharan zones, while in WA the biases are rather small. Dosio260

(2016) argued from the results of the CORDEX-Europe experiment that the underes-261

timation of the number of summer days SU is the consequence of the underestimation262

of the daily maximum temperature TX. The biases in the southern parts of the inves-263

tigated area are smaller. However, the number of observed SU days is small there.264

The simulated heat wave duration index (HWDI) and the differences between the265

MPAS and the reference data are shown in Figure 10. The picture here is, however, not266

clear. While a positive bias dominates in the CHIRTS data, this bias is negative for the267

CPC observations. The differences from JRA-55 and NCEP-2 are mostly negative. With268
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Figure 9. As in Figure 8 but for the number of summer days SU with daily maximum tem-

perature TX > 35◦
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Figure 10. As in Figure 8 but for the heat wave duration index HWDI

ERA5 and MERRA-2, positive biases dominate the northern part. In the southern part,269

the biases are rather negative and larger with the JRA-55 reanalysis. The largest dis-270

crepancies seem to occur around the latitude of 15◦N.271

Summarizing the regional findings, it can be concluded that a cold bias in the TX272

is evident. It dominates the results obtained for the related temperature indices. Due273

to large differences between the single reference data, those results are less clear.274

The cold biases in MPAS may contribute to dry biases in the simulated rainfall,275

as the temperature gradient is the origin of jets which in turn transport moisture and276

the development of rainfall over the Sahel (Grist & Nicholson, 2001). In addition, the277

deficiencies in precipitation may also be related to the fact that the MPAS underesti-278
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Table 5. Mean values of precipitation indices over the investigation areas for the JJA season,

both observed and simulated. S, G and R denote minimum, mean and maximum values of obser-

vational datasets for satellite (S), gauge (G) and reanalysis (R) products as presented by Dosio et

al. (2021b)

Area Data RR RR1 RX1day

mm/d

SAH W S 3.7–4.6–7.0 32.8–39.3–47.6 22.0–41.3–68.1

G 3.9–4.3–4.6 33.8–40.3–49.6 29.1–39.3–46.2

R 2.8–4.1–5.2 23.8–47.2–63.6 25.7–33.5–43.1

MPAS A 2.7 41.5 23.6

MPAS B 2.7 41.5 21.2

MPAS 2.7 41.5 22.4

SAH E S 2.1–2.9–4.7 22.1–29.5–37.5 18.2–29.8–51.5

G 2.5–2.8–3.1 25.9–31.2–38.8 23.3–31.0–40.5

R 2.4–3.1–3.7 25.9–41.5–49.1 16.7–28.1–44.1

MPAS A 2.9 40.3 21.4

MPAS B 3.2 50.9 19.7

MPAS 3.1 45.6 20.6
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mates the number of summer days. SU can affect the convection and regional precip-279

itation recycling (Arnault et al., 2016) over WA and the Sahel. Nicholson and Webster280

(2007) argued that the reduction in the number of mesoscale convective systems nega-281

tively influences the formation of rainfall over the Sahel.282

Table 5 shows the results for the investigated precipitation indices in the investi-283

gation areas SAH W and SAH E in comparisson with observational reference from satel-284

lite, gauge and reanalysis products as presented by Dosio et al. (2021b). It reveals an285

underestimation of the observed amount of daily precipitation RR in the SAH W area286

by 1.6 mm/d or 38%, and is outside the range of the observational datasets. In SAH E,287

MPAS slightly overestimates the observations, by 4%, and is well within the range of the288

reference data. Only small biases are present in the number of rainy wet days (RR1) with289

precipitation of at least 1 mm in the area SAH W. The shortcoming here is the low pre-290

cipitation intensity on wet days. Also, an underestimation on the order of 40% is present291

for the area mean maximum daily rain Rx1day. In SAH E, RR1 is overestimated by 37%292

and the maximum daily rain is underestimated by 31%. The investigations of Dosio et293

al. (2021a) based on CMIP5, CIMIP6 global models and CORDEX experiments found294

a large spread between the models. The MPAS results are within the range of those find-295

ings. However, it has to be concluded that it has a significant dry bias for West Africa.296

Various reasons have been discussed explaining the obvious deficiencies of the cli-297

mate models in reproducing observed temperature and precipitation characteristics in298

WA and the Sahel. They are related to a misplacement of the centre of the monsoon and299

the underestimation of its intensity and to the northern shift of the West African Heat300

Low (Panitz et al., 2014), errors in the simulation of the lateral terrestrial water flow and301

its contribution to land surface evaporation(Arnault et al., 2021), as well as underesti-302

mation of the surface short-wave radiation and latent heat flux, cloudiness, surface wa-303

ter and the surface albedo (Sylla et al., 2009; Diallo et al., 2017; Dieng et al., 2017). In304

applications of the WRF model together with the Noah-LSM, Glotfelty et al. (2021) iden-305

tified the satellite derived albedo climatology as a source of additional errors. Careto et306

al. (2018) linked higher temperatures to evaporative stress and strong soil moisture tem-307

perature coupling in some areas. For the Sahel, however, they stated that precipitation308

regimes are more important. Finally, as pointed out by Heinzeller et al. (2018), the choice309

of physical parametrizations can greatly influence the model’s capabilities, especially the310

accuracy of the surface temperature and precipitation.311
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In summary, it can be stated that the MPAS global static 60-km mesh approach312

does not provide higher fidelity than the regional climate models. However, the ability313

of MPAS to apply variable meshes in a regional refinement and to run in convection per-314

mitting mode opens possibilities for improvements, as shown by Heinzeller et al. (2016).315

4 Conclusions316

A large ensemble of 51 simulations with the Model for Prediction Across Scales (MPAS)317

has been used to assess its ability to reproduce the summer (JJA) extreme temperature318

and heat waves in the area of West Africa and the Eastern Sahel. With its global ap-319

proach, the model avoids transition errors influencing the performance of limited area320

climate models. Also, the simulations are not confined by a driving model. The MPAS321

simulations were driven by the SST and sea ice extent as the only boundary conditions.322

The results reveal moderate cold biases in the range from −0.6◦to −0.9◦ C for the323

daily mean temperature and increase to −1.4◦–−2.0◦ C for the area mean of the daily324

maximum temperature TX and to −2.2◦–−2.7◦ C for TXx as the maximum of TX. The325

bias in the number of tropical nights TN ranges from +3 to −10 days. An underestima-326

tion by up to 50% is also present in the number of summer days SU with TX > 35◦C.327

The percentage of days when TN > the 90th percentile TN90p as well as the percent-328

age of days when TX > the 90th percentile TX90p reveal underestimations by up to 50%,329

and the heat wave duration index HWDI is underestimated by 10%–60%. Compared to330

the reanalyses, the biases revealed by the MPAS simulations are generally smaller than331

with the measured observational reference. Because of the present and reported deficien-332

cies in the observed data for the Sahel, the shortcomings in the MPAS simulations are333

in reality most likely smaller.334

Regional biases are to a large extent negative. Regarding temperatures, the small-335

est biases occur in West Africa. The smallest biases in precipitation occur in the east-336

ern part. However, the underestimation in the first case and the overestimation in the337

second reveal that improvements of the model regarding its physics, land–surface scheme,338

and land surface input data are required for an adequate simulation of the WA and Sa-339

helian climate.340

The results obtained from the two model initialization procedures used are very341

similar and demonstrate the equivalence of the two approaches. Compared to long term342
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runs, selections of the initialization years in relation to the spread of mean SST temper-343

atures in the Gulf of Guinea extremely reduce the demand on the CPU, especially when344

only short terms, such as months or specific seasons, are considered.345

Shortcomings in the reproduction of temperatures and precipitation found in the346

present investigation indicate that the global approach per se does not provide higher347

fidelity than the regional climate models. Kim et al. (2014) showed that in CORDEX-348

Africa, multi model ensembles generally outperformed the single ensembles. In such en-349

semble approaches, MPAS simulations can be applied as an adequate member.350
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