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Abstract

We show that the return-point memory of cyclic macroscopic trajectories enables the derivation of a thermodynamic framework

for quasistatically driven dissipative systems with multiple metastable states. We use this framework to sort out and quantify

the energy dissipated in quasistatic fluid-fluid displacements in disordered media. Numerical computations of imbibition–

drainage cycles in a quasi-2D medium with gap thickness modulations (imperfect Hele-Shaw cell) show that energy dissipation

in quasistatic displacements is due to abrupt changes in the fluid-fluid configuration between consecutive metastable states

(Haines jumps), and its dependence on microstructure and gravity. The relative importance of viscous dissipation is deduced

from comparison with quasistatic experiments.
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Key Points:

• Rigorous account of the microscopic physics allows to compute the energy dissipated between consecu-
tive two-phase configurations

• We link the microscopic origins of hysteresis and dissipation to the macroscopic pressure-saturation be-
havior

• Quasistatic pressure-driven experiments point to a secondary contribution of viscous dissipation during
Haines jumps

Abstract

We show that the return-point memory of cyclic macroscopic trajectories enables the derivation of a thermo-
dynamic framework for quasistatically driven dissipative systems with multiple metastable states. We use this
framework to sort out and quantify the energy dissipated in quasistatic fluid-fluid displacements in disordered
media. Numerical computations of imbibition–drainage cycles in a quasi-2D medium with gap thickness mod-
ulations (imperfect Hele-Shaw cell) show that energy dissipation in quasistatic displacements is due to abrupt
changes in the fluid-fluid configuration between consecutive metastable states (Haines jumps), and its depen-
dence on microstructure and gravity. The relative importance of viscous dissipation is deduced from compar-
ison with quasistatic experiments.

Plain Language Summary

Fluid flow into a porous material filled with another is not only an everyday process (gardening, stains in fab-
rics, or printing) but is also a key process a↵ecting the water cycle, contamination in soils and storage of energy
or hazardous waste in the subsurface. These flows are controlled by the energy of the fluids, and its dissipation
during their advancement, making the knowledge of energy dissipation crucial to our ability to predict these phe-
nomena. However, to date there is no rigorous way to evaluate this energy. This paper describes a novel method
that overcomes this challenge, explaining how the properties of the medium a↵ect dissipation and showing why
even for very slow flows the viscous energy (that is related to rapid fluid motion) still makes a di↵erence.

1 Introduction

Energy dissipation is unavoidable in fluid-fluid displacements through disordered media even in the ideal
limit of quasistatic driving, because displacements in heterogeneous media take place inherently out of equilib-
rium. Configurational changes in the passage from one metastable equilibrium state to another give rise to en-
ergy losses. As a result the macroscopic variables defining the system response exhibit hysteresis upon cyclic so-
licitations (Bertotti & Mayergoyz, 2006). This scenario is generic to other driven disordered systems such as elas-
tic lines, disordered magnets, and granular packings (Wiese, 2022).

Corresponding author: Ran Holtzman, ran.holtzman@coventry.ac.uk
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Memory is a striking property of quasistatically driven disordered systems (Keim et al., 2019; Pashine et
al., 2019; Shohat & Lahini, 2023). In the context of fluid systems in disordered media, memory shows up not
only in two-phase displacements in porous and fractured media (Albers, 2014; Cueto-Felgueroso & Juanes, 2016;
Holtzman et al., 2020) but also in capillary condensation of gases in nanoporous solids (Kierlik et al., 2001; Val-
iullin et al., 2006; Alvine et al., 2006; Hiratsuka et al., 2016). This is important for the rise of sap in plants (Holbrook
& Zwieniecki, 2008), infiltration into soils (Sahimi, 2011), e�ciency of energy conversion in fuel cells (Tranter
et al., 2018), and several other natural and engineered processes. Despite extensive work on the thermodynam-
ics of multiphase flows in heterogeneous media (Hu et al., 2018; McClure et al., 2021; Bedeaux & Kjelstrup, 2022;
Primkulov et al., 2020; Måløy et al., 2021), the link between memory and dissipation is still missing. The lat-
ter has recently become the focus of research in driven disordered systems in general (Shohat & Lahini, 2023).

Here we show that the return-point memory of quasistatic hysteresis cycles can be used to establish a rig-
orous thermodynamic (macroscopic) framework to sort out and evaluate the energy dissipated in the passage
between metastable equilibria. This framework provides a link between microscale quantities (microscopic quenched
disorder, metastable equilibrium configurations) and the upscaled macroscopic trajectories and energy dissipa-
tion. The procedure is generic; here we apply it to a model of fluid-fluid displacements in an open fracture (an
imperfect Hele-Shaw cell) where the microscopic physical mechanisms of surface tension and capillarity lead to
macroscopic pressure-saturation (PS) trajectories exhibiting the complex behavior of hysteresis and return-point
memory (RPM).

2 Energy balance

2.1 Generic formulation for fluid-fluid displacements

Energy conservation ensures that between consecutive metastable equilibria the mechanical work invested
in driving the fluids is partially stored as internal energy of the multiphase system configuration, and partially
dissipated. Thus, for an infinitesimal change in wetting-phase saturation (corresponding to a volume change dVw),
the energy balance

d̄W = dU � d̄ (1)

applies, where we have adopted the convention that d̄W > 0 is the external mechanical work performed on the
system to drive the displacing fluid (d̄W < 0 if extracted; the sign depends on the external force and direction
of advancement), dU > 0 is the increase in internal energy of the two-fluid configuration, and d̄  0 is the
amount of energy dissipated. The terms in Eq. (1) refer to changes between two consecutive metastable equi-
libria, and d̄ denotes di↵erentials of magnitudes that are not state functions (i.e. that depend on the path in the
PS space). d̄ could be cast in terms of entropy production, but thermal fluctuations here are insu�cient to bring
the system over the large energy barriers between neighboring equilibrium configurations.

We consider first a generic scenario in which a fluid is injected at one side (inlet) of a disordered domain
and displaces a second fluid. A specific example is the system shown in Fig. 1. For a given disorder realization,
the total energy of the system (its Hamiltonian H) depends simultaneously on the interfacial configuration {⇠},
e.g. the location and shape of the fluid-fluid interface (a microscopic feature), and the applied (macroscopic) pres-
sure P on the fluid at the inlet; thus, every equilibrium state is defined by {⇠} and P . To obtain U and W , we
split the Hamiltonian through the Legendre transformation H = U�PVw, where Vw is the volume of the wet-
ting phase in the domain (saturation times domain volume). In contrast with H, the internal energy U of the
multiphase configuration depends only on the set of variables {⇠} and not on the sequence of driving pressures
P . The crucial point comes now: if the RPM property holds, the configuration {⇠} is exactly recovered in a cyclic
excursion of P . Thus, U = U({⇠}) also returns to its original value in a cyclic excursion, making it a true state
function. We note that the internal energy of the compartment models developed by Cueto-Felgueroso and Juanes
(2016) and Helland et al. (2021) is also a state function, thanks to the RPM property. In contrast, the amount
of work depends on the path in the PS space,

d̄W = P dVw. (2)

This expression relies on the incompressibility of the more wetting fluid, which guarantees that the amount of
fluid displaced at the boundary of the domain coincides with the change of its volume in the medium. In this
convention, the sign of d̄W depends on that of P (< 0 in tension and > 0 in compression) and dVw (> 0 in
imbibition and < 0 in drainage).
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Under quasistatic driving, a trajectory in the PS space is made of consecutive displacements of two types.
In isons, the system remains trapped in a local energy minimum while P evolves exceedingly slowly and causes
a smooth evolution of Vw. In rheons, an abrupt change in Vw occurs at constant P . Rheons take place when the
limit of metastability of a local energy minimum is reached, the minimum disappears, and the system jumps to
a new minimum, in what is called a Haines jump. In the idealised case of quasistatic driving, the timescales of
these two kinds of displacements are infinitely separated, such that Haines jumps are e↵ectively instantaneous
in the time scale of P . This is the prototypical framework of spatially-extended athermal systems that undergo
collective rearrangements (avalanches) under quasistatic driving (Leschhorn et al., 1997; Jensen, 1998; Pruess-
ner, 2012). The dissipation between two consecutive equilibrium configurations (t�1 and t) is obtained by in-
tegrating Eq. (1),

 t�1!t =
⇥
U

t
� U

t�1
⇤
� P

t
⇥
V

t
w � V

t�1
w

⇤
. (3)

 t�1!t is nonzero in rheons.

Also, since U is a state function,
H
dU = 0 in a closed PS cycle. Integrating Eq. (3) along the cycle demon-

strates that the total energy dissipated is the area encompassed within the cycle on the PS plane,

 cyc =

I
d = �

I
d̄W = �

I
P dVw. (4)

Furthermore, since by definition  cyc  0, there is only one sense allowed for contouring the cycle: for a given
Vw the drainage path occurs at lower P than the imbibition path–in agreement with experimental observations
(Albers, 2014).

2.2 Model system: An imperfect Hele-Shaw cell

To gain further quantitative understanding of the microscopic mechanisms for dissipation, and enable rig-
orous comparison with experiments, we derive explicit expressions of W , U and  for quasistatic two-fluid dis-
placements in an imperfect Hele-Shaw cell, in the framework of the model introduced by Holtzman et al. (2020).
The model considers the 2D projection of a heterogeneous Hele-Shaw cell, subjected to an e↵ective gravity ge

in order to prevent viscous fingering during drainage (Fig. 1). Gravity also allows investigating a wider range
of pressure-saturation values than for a horizontal cell, as in the absence of heterogeneity there is no equilibrium
position without gravity (Holtzman et al., 2020; Ayaz et al., 2020).

Disorder is provided by fluctuations in capillary pressure at the fluid-fluid interface, corresponding to lo-
calized modulations in the gap thickness, b(x, y) (“defects” forming constrictions and expansions). Fluid displace-
ments are driven by an external pressure P = ⇢gH applied at the inlet, with ⇢ being the wetting fluid density,
g the gravitational acceleration, and H the external head. The density of the second fluid is considered negli-
gible (air).

Multiphase configurations {⇠} in the projected 2D model correspond to metastable equilibrium interface
positions, {h(x)}. For a given disorder realization, they can be resolved from the pressure balance (Holtzman
et al., 2020)

�
d
2
h

dx2
� ⇢geh+ P + pc(x, h) = 0. (5)

The first term is the linear approximation (considering small interface deformations, |dh/dx| < 1) of the in-
plane contribution to the Young-Laplace pressure jump across the interface, with � the interfacial tension; the
second is the hydrostatic pressure of the wetting fluid column at position x; the third is the external forcing; and
the fourth pc(x, y) = 2� cos ✓/b(x, y) is the out-of-plane contribution to the Young-Laplace pressure jump at
the front position h(x), with ✓ the apparent contact angle. Each disorder realization is defined by the microstruc-
ture b(x, y). Considering mild local interface deformations we rule out the possibility of overhangs or complex
processes such as snapo↵.

The condition of mechanical equilibrium in Eq. (5) can also be expressed as pe[h(x)] = ��H/�h(x) =
0, with the Hamiltonian given by

H =

LZ

0

dx

2

4�

2

✓
dh

dx

◆2

+

hZ

0

dy (⇢gey � P � pc)

3

5 . (6)
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Figure 1. Schematic of the model and its experimental realization. Disorder is introduced by randomly placed “mesa

defects”—sharp variations in gap thickness, b(x, y) = b0±�b(x, y). Imbibition and drainage are driven by raising and lower-

ing the wetting fluid reservoir, H. The cell is tilted to provide an e↵ective gravity ge = g sin↵. The interface configurations

h(x) are recorded by a camera.

This is equivalent to the Hamiltonian of a continuous Random Field Ising Model (RFIM) where pc(x, y) plays
the role of the random field (Grinstein & Ma, 1983; Ganesan & Brenner, 1998). The terms in H as well as W ,
U and  in the forthcoming analysis are in units of energy per length, i.e., in our 2D model they are normal-
ized by the average gap thickness b0. Similarly, in 2D we use the area covered by the wetting fluid, Sw =

R L
0 dx

R h(x)
0 dy,

instead of its volume Vw. Its relation to the wetting phase saturation S
⇤
w is given in the Supporting Informa-

tion. We note that for very large thickness variations, the integrals computing the energies should be corrected
to take into account these variations.

Introducing Eq. (6) into H = U�PSw provides the internal energy (per unit thickness) of a given equi-
librium configuration h(x),

U =

LZ

0

dx

2

4�

2

✓
@h

@x

◆2

+

hZ

0

dy (⇢gey � pc)

3

5 . (7)

L is the width of the cell in the x direction. This expression of U accounts for the capillary energy of the in-plane
and out-of-plane front deformations (1st and 3rd terms), and the gravitational potential energy of the wetting
fluid. The work in Eq. 2 for every elementary step dSw is d̄W = P

R L
0 dx dh(x).

The internal energy U is the energy of static equilibrium configurations, when the meniscus is at rest and
the energy depends only on capillary and hydrostatic forces. According to Eq. (3), the change in internal en-
ergy between two consecutive equilibrium configurations does not equate the work provided by the external driv-
ing; the di↵erence is the energy dissipated,  t�1!t, which in this framework is a loss of interfacial energy. This
formulation does not account for viscous losses (viscosity of the fluids is not accounted for), in the expectation
that they will be comparatively small in quasistatic displacements, as shown later.

3 Dissipation in avalanches and the role of system properties

Dissipation depends on the interactions between the interface and the disordered medium. Surface ten-
sion introduces correlations along the interface, and the medium spatial heterogeneities turn these correlations
into complex collective behavior (Holtzman et al., 2020). Spatial interactions among multiple defects of vari-
able properties lead to a wide range of avalanche sizes (jumps in saturation) and dissipated energies.

To exemplify these properties of energy dissipation we compare the probability density function (PDF) of
the energy dissipated within individual jumps (between adjacent equilibrium configurations t � 1 and t) nor-
malized by the work input. We generate the disordered medium by randomly placing defects (Fig. 1) of vari-
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Figure 2. (a) The probability density function (PDF) of the energy dissipated in individual jumps,  
t�1!t

, normal-

ized by the work, W
t�1!t

, for systems with di↵erent widths of the defect strength distribution, �pc . Panels (b) and (c)

show the energy dissipation (in J/m) against the corresponding avalanche sizes (in terms of dimensionless saturation,

|S⇤,t
w � S

⇤,t�1
w |), for narrow and wide distributions, �pc/p

0
c of 0.026 and 0.510, respectively. The insets emphasize the larger

spread of smaller values as well as their deviation from a linear relationship (dashed line); the solid black line is the condi-

tional average.

ous strengths pc, drawn from di↵erent distributions (here, Gaussian with standard deviation �pc and dichotomic;
see Supporting Information. To establish the role of the disorder strength, we compare media of variable width
of the defect strength distribution, �pc (keeping the spatial distribution identical; see Supporting Information).
Increasing �pc , which sets the magnitude of strongest defects, increases the magnitude of the dissipation events,
stretching the PDF towards larger values (see Fig. 2a). Figure 2 also demonstrates that the energy dissipated
in a single jump could greatly exceed the work invested in driving the system. This is because the energy re-
leased in an avalanche could have been stored as internal energy during many previous elementary steps. Most
of the dissipation during a complete imbibition-drainage cycle therefore occurs in a handful of large events (Videos
1–2 in Supporting Information). This behavior is akin to the sudden release of energy in earthquakes (Sornette
& Sornette, 1989) or granular avalanches (Denisov et al., 2016).

Another nonintuitive result is that the avalanche size (change in saturation) is not necessarily proportional
to the amount of energy dissipated (Fig. 2b–c). This non-proportionality is a general property of quasistatically-
driven disordered systems (Ort́ın & Goicoechea, 1998). Increasing the distribution width �pc/p

0
c by a factor of

20 (from 0.026 to 0.510) increases the slope of | t�1!t
| vs. |S⇤,t

w � S
⇤,t�1
w | by ⇠ 50. Here, pc = p

0
c+�pc, where

p
0
c = 2� cos ✓/b0 and �pc = p

0
c(�b/b0)/(1 � �b/b0). The slope was found by fitting a straight line (in dashed

gray) to the conditional average of the data (solid black line in insets of Fig. 2b–c). The larger slope reflects the
increased dissipation per avalanche size, due to the depinning from the stronger defects. We note the larger spread
as well as deviation from a linear fit of smaller values, emphasized in log-log plots (Fig. 2b–c insets).

Next, we examine how the system properties a↵ect the total dissipation along a closed drainage-imbibition
cycle,  cyc. We find that  cyc scales with the disorder strength �pc ; for the Gaussian distributions studied here,
 cyc ⇠ (�pc)

n with n ⇡ 1.4 (Fig. 3a). This nonlinear relationship is a result of interactions among the het-
erogeneities due to the lateral correlation caused by interfacial tension (Holtzman et al., 2020). Dissipation is
also controlled by the e↵ective gravity ge which sets the Bond number, namely the ratio of gravitational to cap-
illary forces. Increasing ge reduces the capillary rise (Jurin’s height), restricting the size of the avalanches |S⇤,t

w � S
⇤,t�1
w |

and hence the dissipated energy, cf. Fig. 3b and Videos 3–4 in Supporting Information.

4 Experiments exposing viscous dissipation and the limitation of the quasi-static concept

The simulations above provide a quantitative analysis of the energy losses associated with the dissipation
of interfacial energy (stored in the deformed interface configurations (Morrow, 1970)) in ideally quasistatic con-
ditions. The simulated PS trajectories show good agreement with an experiment in a disordered Hele-Shaw cell
with similar material and geometrical properties, as shown in Fig. 4. The experimental setup, procedure and
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(a)

1.4

1

(b)

Figure 3. Impact of system properties on the energy dissipated in closed PS cycles,  cyc: (a) Nonlinear scaling with

the defect strength distribution �pc/p
0
c (dashed line); (b) Dissipation decreases with e↵ective gravity ge. To compensate

for di↵erences in the required driving force,  cyc is normalized by the width in pressure of the hysteresis cycle, �P . Each

point is an average over 5 disorder realizations (15 for ge = 0.2 m/s
2
); error bars show the standard deviation.

analysis are detailed in the Supporting Information. For the specific set of parameters in Fig. 4 (dichotomic gap
spacing b0 = 0.46(1) mm and �b = 0.06(1) µm, disorder units of size 0.40(1) ⇥ 0.40(1) mm2 covering 35%
of the total area, and ge = 0.86(1) m/s2, see Supporting Information), the dissipated energy computed from
the area enclosed within the PS cycle in the experiments is larger only by ⇠18% than in the simulations. This
implies that capillary losses account for most of the energy dissipated in quasistatic fluid displacements. More-
over, the primary imbibition curve and the early stages of subsequent drainage agree well, but the experimen-
tal data depart from the simulated drainage curve as the external pressure is lowered further. This also produces
a small shift in the internal cycle. The lower external pressure required to drain a given wet area in the exper-
iments, corresponding to a larger external work, is responsible for the larger dissipation measured experimen-
tally. We note that since our external forcing P (or H) is in the wetting fluid, it is of opposite sign to the cap-
illary pressure; thus, in our representation drainage occurs at lower P than imbibition, in contrast with the con-
ventional capillary pressure curve.

Another interesting feature in Fig. 4 is the behavior of the inner cycle. While the numerical simulations
display perfect return-point memory (as proved in Holtzman et al. (2020)), the experimental inner cycle does
not rejoin the primary drainage curve at the same point exactly. This is due to the larger steps of driving pres-
sure (P or H) in the experiments (Fig. S1 in Supporting Information), deviating from the infinitesimal pertur-
bations required in the quasistatic case, that could be realized numerically but not experimentally; this was con-
firmed by simulating coarser H increments.

5 Discussion

Our results indicate that the interfacial energy dissipated in Haines jumps accounts for most of the energy
dissipated in slowly driven systems (e.g. as acoustic emissions (Moebius & Or, 2012)), in agreement with ob-
servations from experiments driven at constant rate (Berg et al., 2013; Hu et al., 2018; Måløy et al., 2021). For
the experiment presented in this paper, our quasistatic approach accounts for ⇠80% of the energy dissipated dur-
ing fluid displacements (Fig. 4). We argue that the remaining ⇠20% discrepancy originates from viscous dis-
sipation caused by a finite velocity of the wetting fluid in experiments vs. the zero velocity considered in the model.
A nonzero velocity is an inherent feature of Haines jumps (rheons), regardless of how slow the interface is driven
(Berg et al., 2013). Moreover, the corresponding viscous pressure drop depends on the sign of the front veloc-
ity, and thus plays opposite roles in drainage and imbibition. A small asymmetry between imbibition and drainage
was already observed in experiments of slow displacements through a localized constriction (single defect) (Planet
et al., 2020); this asymmetry accumulates and intensifies in a disordered medium composed of multiple defects
where deformations take place cooperatively as Haines jumps. The role of viscous dissipation in imbibition-drainage
cycles at finite flow rate, and its impact on the property of return point memory is the subject of ongoing re-
search.
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Figure 4. Simulated and experimental PS cycles in terms of external head H and wet area Sw in the imperfect Hele-

Shaw cell shown in Fig. 1, using the same defect statistics. The numerical curve is the result of averaging 52 independent

realizations (in gray). The uncertainty of the experimental data (single experiment) is smaller than the symbol size.

Another source of disparity between our model and quasistatically-driven experiments is the long relax-
ation timescale required for the interface to attain mechanical equilibrium at a new Jurin’s height after each small
pressure step (Clotet et al., 2012; Schlüter et al., 2017). In fact, the interface may continue to experience fluc-
tuations even after reaching the Jurin’s height (Lago & Araujo, 2001; Shikhmurzaev & Sprittles, 2012). Hence,
the seemingly reversible, non-dissipative displacements (isons) also contribute to viscous dissipation, though to
a lesser extent than Haines jumps (rheons). Additional mechanisms that can cause hysteresis and dissipation
such as dynamic wetting, snap-o↵, and fluid trapping (Bonn et al., 2009; Moebius & Or, 2012; Moebius et al.,
2012; Giacomello et al., 2016) are not considered in our model, which is characterized by a single continuous,
univalued interface.

In conclusion, we have derived a thermodynamic framework that allows the quantification of energy dis-
sipated via Haines jumps in capillary pressure-saturation trajectories at continuum scale from the microscopic
mechanisms of surface tension and capillarity. The analysis presented here applies in fact to all modeling ap-
proaches displaying return-point memory for which the internal energy of multiphase configurations is a true
state function. Relevant examples include the compartmental models introduced in Refs. (Cueto-Felgueroso &
Juanes, 2016) and (Helland et al., 2021). Return-point memory appears therefore as a very useful property to
extend classical equilibrium thermodynamic principles to nonequilibrium systems driven through metastable equi-
libria. The present approach provides in this way a means of upscaling fluid-fluid displacements in disordered
media, and a generic method of potential interest in quasistatically-driven disordered systems.
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I. NUMERICAL IMPLEMENTATION OF THE
QUASI-STATIC MODEL

We use a finite di↵erences discretization of the interface
in the x direction into equally-spaced cells of size �x,
to obtain the force balance at a given equilibrium
configuration t, Eq. (5)

pe(xi) =
� (hi+1 + hi�1 � 2hi)

�x2
� ⇢gehi + P + pc(xi, hi),

(S1)

where hi = h(xi). This provides the corresponding
expressions for the work (Eq. (2))

W
(t�1)!t = P

t�x

NX
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and the internal energy (Eq. (7))
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For the first term in Eq. (7), we use the periodic
boundary conditions, h0 = hN and hN+1 = h1, to
evaluate the derivatives at the domain edges. The
second and third terms arise from integrating from 0

to h(x). Unlike other terms, �
ht
i

0 cannot be computed
analytically, because of the nonlinear, non-monotonic
dependence of pc on both x and y, such that during
an avalanche between two consecutive configurations the
interface can change from being on a defect to leaving it

and vice versa. Thus, �
ht
i

0 is evaluated numerically using
a fine discretization in y, breaking each single avalanche
(between t and t� 1) into many smaller “substeps” which
correspond to non-equilibrium configurations that our
model does not resolve. Using pc = p

0
c + �pc, we express

this term as a sum of integrals: �
ht
i

0 =

Z ht
i

0
dy p

0
c +
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Z ht
i

0
dy �pc(xi, y). With p

0
c being a constant, the first

is simply equal to p
0
ch

t
i. The second is evaluated by

summation over all substeps from j = 1 (when the
interface is at the cell inlet y = 0, i.e. t = 0) to J =

int(ht
i/�y) (current configuration t):

Z ht
i

0
dy �pc(xi, y) =

�y

JX

j=1

(�pc)i,j . Here j is the discretization in y, and

(�pc)i,j is zero unless the interface at y = j�y is on a
defect.

We note that the discretization of Eq. (5) as well as
the finite accuracy with which we resolve the interface
configuration h(x) (denoted ✏ in [1]) are a source of
di↵erence between the computed work W

t�1!t and
internal energy U

t � U
t�1, manifested as numerical

dissipation. We correct this by filtering out all the values
of  t�1!t which fall below a threshold  num computed
analytically from the di↵erence between U

t � U
t�1 and

W
t�1!t during advancement of an undeformed (flat)

interface.

The simulations presented in the paper are using the
following parameters (see [1] for complete description of
parameters): (a) material properties of surface tension
� = 20.7 mN/m; gravitational acceleration g = 9.81
m/s2, and oil density ⇢ = 998 kg/m3 (considering oil
and air as wetting and non-wetting fluids) with vanishing
static contact angle (considering perfect wettability of
the oil); (b) setup using b0 = 0.46 mm; ↵ = 2o210

(ge = 0.4018 m/s2; incremental changes of external
forcing �H = 0.05 mm. and (c) numerical resolution of
�x = 0.1 mm; J = 1000 substeps. For simulations with
disorder (Figs. 2–4) we used defects of size 4⇥4 units,
randomly populated in space with occupancy  = 0.35
(defects covering 35% of the cell area).

Case-specific settings include: (i) Fig. 2 and Fig. 3a:
sample size of 800⇥800 units (Lx = Ly = 80 mm), with
�pc for each unit being a random variable statistically
independent of the others and drawn from a Gaussian
distribution centered around zero; numerical accuracy
of �h = 5 ⇥ 10�6 mm and ✏ = 0.01 Pa. (ii) Fig. 3b:
Lx = 400 and Ly = 600 units, �b = 0.06 mm averaging
over 15 realizations for ge = 0.2 m/s2 and 5 realizations
for the other ge values (due to the increased sensitivity
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FIG. S1. (a) The experimental protocol is a sequence of 35 equilibrium configurations reached by setting the external head, H
(see Fig. 1). The initial state is reached by performing an imbibition displacement from the cell inlet. From there on, several
major and minor imbibition–drainage cycles are carried out between preselected values of the driving pressure. To approach
the condition of quasistatic driving, the steps in pressure head were as small as of |�H| = 0.25(1) mm (0.10(1) mm in the inner
cycle), separated by time intervals of 5 min (2 min in the inner cycle). (b) The corresponding pressure-saturation trajectories
(also plotted in Fig. 4 in the main text; here saturation is presented in dimensionless form, i.e. wetted area per total cell
area, S⇤

w). The inner cycle performed in the middle of the second drainage displacement shows that return-point memory is
not perfectly achieved in this experiment. However, the red point of lower H (H ' 5.0 mm) is nearly the same in the two
drainage curves (with and without inner cycles), demonstrating that the memory of previous displacements is erased when
internal cycles are completed (the so-called “wiping out” property). (c) The corresponding interface configurations for each of
the 3 highlighted values of external head H, using matching colors, demonstrate multivaluedness—that di↵erent configurations
can be reached at the same applied external forcing depending on the previous displacement history. Notice also the striking
similarity of the two-phase configurations at lowest H (5.0 mm), resulting from wiping out the memory of the internal cycle.
Here, y is measured from the cell inlet.

to details of individual realizations at lower ge); �h =
2.5 ⇥ 10�6 mm; ✏ = 0.005 Pa. (iii) Fig. 4: averaging
over 52 realizations, cell size of Lx = 600 and Ly =
250 units, dichotomic distribution of defect strength,
↵ = 5�30 such that ge = 0.9 m/s2. �H = 4.4 ⇥ 10�4

mm; �h = 8.8 ⇥ 10�7 mm; ✏ = 0.0018 Pa. Using
Lx = 60 mm (600 units) was found su�cient to provide
statistically representative average, closely matching a
more computationally intensive simulation with Lx =
190 mm (the experimental system size) while providing a
smoother pressure-saturation (PS) trajectory (averaging
over the details of specific realization).

II. EXPERIMENTAL PS CYCLE IN A
DISORDERED MEDIUM

The disordered medium in the experiments reported in
Fig. 4 in the main text is a Hele-Shaw cell made of two
parallel glass plates of size 190⇥500 mm2 separated by a
narrow gap. The gap spacing b is randomly distributed in
space from a dichotomic distribution (b0 = 0.46(1) mm,
with �b being 0 or 0.06(1) mm), using 0.40(1) ⇥ 0.40(1)
mm non-overlapping square copper patches deposited on
a fiberglass board, covering 35% of the total area. The
cell is tilted by an angle ↵ = 5�30(20) providing an
e↵ective gravity of ge = 0.86(1) m/s2, to prevent the
formation of viscous fingers during slow drainage (Fig.
1).

Note that thickness variations in the experimental cell
are small compared to the average gap thickness, and

thus have a negligible impact on integral quantities.
The volume of the wetting phase in the cell is well
approximated by Vw = b0Sw, and the (dimensionless)
wetting-phase saturation is simply S

⇤
w = Sw/(Lx ⇥ Ly).

Before the experiment we wet the cell with a thin layer
of oil to minimize the influence of previous displacements
and wetting heterogeneities. Pre-wetting ensures also
that the fluid wets perfectly (with vanishing contact
angle) all the surfaces. The cell, initially filled with air,
is invaded by silicone oil (Rhodorsil 47 V) of kinematic
viscosity ⌫ = 50 mm/s2, density ⇢ = 998 kg/m3,
and oil-air surface tension � = 20.7 mN/m at room
temperature. The oil invades the Hele-Shaw cell with
a constant pressure at the inlet set by an oil container
with controllable level H.
The experimental procedure is the following (for

further details see Fig. S1): (i) we set H = 5.00(1)
mm and let oil invade the cell; (ii) once the interface
is stabilized, we increment (in imbibition; decrement in
drainage) the external pressure with steps of �H =
0.25(1) mm (0.10(1) mm for the inner cycle), waiting
for 5 minutes (2 minutes for the inner cycle) between
consecutive steps to reach a quasi-stationary state. The
evolution of the oil-air interface is monitored using a
digital camera with a resolution of 0.24 mm/pixel. We
note however that the timescale for nearly complete
arrest of the interface following a finite step in H

is expected to be much larger than minutes [2–5],
technically challenging the experimental realization of
quasi-static driving.
Experimentally, mapping the position of the interface
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to the specific location in the sample is also challenging.
Such mapping is needed to obtain a direct comparison
between simulations and experiments for identical
microstructure. Instead, in Fig. 4 in the main text
we compare the experimental data with an ensemble
average of 52 simulations using statistically similar
microstructure (dichotomic distribution). Averaging
over realizations reduces the sensitivity to the specific
details of a single realization (i.e. spatial location of
defects), smoothing the PS curve.

III. CAPTIONS FOR MOVIES S1 TO S4

Movie S1: Dissipation in a medium with weak
disorder.

Numerical simulations of an imbibition-drainage
cycle in a disordered medium with a narrow defect
strength distribution (�pc/p

0
c = 0.026), i.e. relatively

homogeneous. Panels show the evolution of the
interface configuration, pressure-saturation (PS), and the
energy dissipated at each step as well as cumulative
(since simulations started). Since the strength of
the defects is relatively small, the hysteresis cycle is
narrow, the interface experiences small deformations
(small avalanches), and the energy dissipated during
these jumps is relatively small (compare with the wide
defect strength distribution of �pc/p

0
c = 0.510 in Movie

S2). Note the wide range of magnitudes of dissipation
events, where most of the dissipation during the cycle
occurs in a handful of large events. Data is from the
same simulation presented in Fig. 2b in the main paper.
Movie S2: Dissipation in a medium with strong
disorder.

Numerical simulations of an imbibition-drainage
cycle in a disordered medium with a wide defect
strength distribution (�pc/p

0
c = 0.510), namely highly

heterogeneous. Panels show the evolution of the
interface configuration, pressure-saturation, and the
energy dissipated at each step as well as cumulative (since
simulations started). Due to the wide distribution, the
strength of some of the defects is very high, leading to a
wide hysteresis cycle, large interface deformations (large
avalanches), and substantial energy dissipation during
these jumps (compare with the narrow defect strength
distribution of �pc/p

0
c = 0.026 in Movie S1). Note the

wide range of magnitudes of dissipation events, where
most of the dissipation during the cycle occurs in a
handful of large events. Data is from the same simulation
presented in Fig. 2c in the main paper.
Movie S3: Dissipation in a disordered medium
under small gravity.

Numerical simulations of an imbibition-drainage cycle
in a disordered medium at small gravity (ge = 0.2 m/s2,
i.e. a nearly-flat cell tilted at an angle ↵ = 1.2�).
Panels show the evolution of the interface configuration,
pressure-saturation, and the energy dissipated at each

step as well as cumulative (since simulations started).
Since in the settings considered in this study gravity
acts to stabilize the interface, low gravity corresponds
to a large characteristic Jurin’s height which allows for
large avalanches in terms of both saturation changes
and dissipation. Consequently, the PS cycle exhibits
substantial hysteresis (wide cycle), where the jagged
trajectory is composed of a few very large jumps in
which most of the dissipation occurs. The magnitude
of these events as well as of the overall amount of energy
dissipated in the cycle is orders of magnitude larger than
the case of high gravity (Movie S4). Data is from one
of the simulations used to generate the ensemble average
for ge = 0.2 m/s2 in Fig. 3b in the main paper.
Movie S4: Dissipation in a disordered medium
under large gravity.
Numerical simulations of an imbibition-drainage cycle

in a disordered medium at large gravity ge = 9.81
m/s2, i.e. a vertical cell tilted at an angle ↵ = 90�.
Panels show the evolution of the interface configuration,
pressure-saturation, and the energy dissipated at each
step as well as cumulative (since simulations started).
Since in the settings considered in this study gravity acts
to stabilize the interface, large gravity corresponds to a
small characteristic Jurin’s height which inhibits the size
of the avalanches in terms of both saturation changes
and dissipation. Consequently, the PS cycle exhibits
slight hysteresis (narrow cycle), where the relatively
smooth trajectory is composed of multiple small jumps
which dissipate small amount of energy. The magnitude
of these events as well as of the overall amount of energy
dissipated in the cycle is orders of magnitude smaller
than the case of low gravity (Movie S3). Data is from
one of the simulations used to generate the ensemble
average for ge = 9.81 m/s2 in Fig. 3b in the main paper.

Notes (all Movies): (1) settings and parameter values
are listed in Section I above; and (2) saturation plotted
is in dimensionless form, S⇤

w.
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