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Abstract

We show that forward simulations of global CO2 using an atmospheric transport model (ATM) at 0.5°×0.625° and 4°×5°
resolutions differ significantly in vertical and meridional distribution. Comparing two observing simulation system experiments

at 4°×5° resolution that assimilate pseudo observations sampled from the two forward simulations, we isolated the impact of

coarse-resolution ATM error on regional flux estimates that a significant amount of annual carbon uptake from the ocean and

tropics is improperly redistributed to the land and extratropics, respectively. In addition, this error leads to an underestimated

seasonal amplitude in the northern extratropical land and a reversed seasonal phase in the northern extratropical ocean. The

reversed seasonal phase has also been shown in a real data assimilation experiment and state-of-the-art inversions, suggesting

that ocean glint retrieval error may not be as significant as previously thought and reasonable ocean flux estimates depend

strongly on the accuracy of ATM.
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Key Points: 13 
l Error from the coarse-resolution atmospheric transport model can introduce systematic 14 

biases to CO2 modeling and inversed flux estimates. 15 

l The coarse-resolution transport error leads to stronger land and extratropical sink 16 
estimates and weaker ocean and tropical sink estimates. 17 

l The error also induces an underestimated seasonal amplitude and a reversed seasonal 18 
phase in the northern land and ocean, respectively.  19 



manuscript submitted to Geophysical Research Letters 

Abstract 20 
We show that forward simulations of global CO2 using an atmospheric transport model (ATM) at 21 
0.5° ×0.625° and 4° ×5° resolutions differ significantly in vertical and meridional distribution. 22 
Comparing two observing simulation system experiments at 4° ×5° resolution that assimilate 23 
pseudo observations sampled from the two forward simulations, we isolated the impact of 24 
coarse-resolution ATM error on regional flux estimates that a significant amount of annual 25 
carbon uptake from the ocean and tropics is improperly redistributed to the land and extratropics, 26 
respectively. In addition, this error leads to an underestimated seasonal amplitude in the northern 27 
extratropical land and a reversed seasonal phase in the northern extratropical ocean. The reversed 28 
seasonal phase has also been shown in a real data assimilation experiment and state-of-the-art 29 
inversions, suggesting that ocean glint retrieval error may not be as significant as previously 30 
thought and reasonable ocean flux estimates depend strongly on the accuracy of ATM. 31 

Plain Language Summary 32 
Credible regional carbon budget estimates from atmospheric CO2 measurements rely on the 33 
accuracy of atmospheric transport models (ATMs). However, the simulated atmospheric vertical 34 
motions in ATMs are usually simplified and spatiotemporally averaged, leading to systematic 35 
biases in simulating the long-lived atmospheric CO2 and estimating surface carbon fluxes. Even 36 
though the atmospheric approach is increasingly applied to account for country-level carbon 37 
budget in global synthesis activities. Our finding suggests that current coarse-resolution ATMs 38 
lead to improper attribution of annual carbon uptake from the ocean and tropics to the land and 39 
extratropics, respectively, resulting in overestimated natural carbon uptake and reduced 40 
emissions reduction duty in most advanced countries that target carbon neutrality. Furthermore, 41 
since the seasonal variation of carbon flux in the ocean is much smaller than in the land, the 42 
results indicate that a small seasonal bias from the land can overwrite and even reverse the real 43 
flux signal in the ocean.  44 

1 Introduction 45 
Quantifying the country-level CO2 budget using atmospheric CO2 inversion technique is 46 

one of the critical approaches in the upcoming Global StockTake assessment (Chevallier, 2021; 47 
Jiang et al., 2022; Weir et al., 2022; Deng et al., 2022; Byrne et al., 2023). However, several 48 
fundamental issues in CO2 inversion (e.g., transport, satellite retrieval, and a priori errors) have 49 
not been fully addressed, challenging the derivation of robust regional CO2 budget estimation 50 
(Fu et al., 2021; O’Dell et al., 2018; Philip et al., 2019; Schuh et al., 2019). Inversion systems 51 
use an offline atmosphere transport model (ATM) to relate the surface land and ocean carbon 52 
fluxes with observed CO2 concentration. An offline ATM is driven by the meteorology 53 
reanalysis data generated from a general circulation model (GCM), which significantly reduces 54 
the computational cost but simplifies and spatiotemporally averages some nonlinear atmospheric 55 
processes (J. Liu et al., 2011; Basu et al., 2018; Schuh et al., 2019). The averaging processes 56 
include remapping the GCM output from seconds to hours and irregular grid to latitude-57 
longitude grid, and spatial interpolation from native to coarse horizontal resolution, which 58 
induces underestimated transient vertical motion and reduced vertical transport (Yu et al., 2018). 59 
Recent forward modeling studies find that the simulated CO2 concentrations are significantly 60 
different in vertical and meridional distribution using different ATM configurations and ATMs 61 
(Schuh et al., 2019; Schuh & Jacobson, 2022). These biases can influence the estimates of 62 
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regional carbon budgets (Wang et al., 2020; Schuh et al., 2022) and seasonal cycles (Cui et al., 63 
2022) estimates. A large discrepancy between the inversion estimates and process 64 
understandings is the land-ocean and tropic-extratropic partitioning of carbon fluxes. The 65 
inversions usually estimate a large carbon sink in the northern extratropics and a weak carbon 66 
sink or carbon source in the tropics recently, while process models or inventories suggest more 67 
carbon uptake in the tropics (Schimel et al., 2015; Friedlingstein et al., 2022). Evidence from the 68 
vertical CO2 observation profiles indicates that inversions may overestimate the northern sink 69 
and underestimate the tropical sink (Stephens et al., 2007). 70 

To reduce the main transport error, running global inversions at the native resolution is a 71 
straightforward strategy. However, native resolution inversions can be very slow due to reading 72 
and writing a large amount of data and poor parallel methods in some ATMs (e.g., classic 73 
GEOS-Chem) (The International GEOS-Chem User Community, 2021). For example, forward 74 
simulation of global CO2 at a native horizontal resolution of 0.5° ×0.625° using GEOS-Chem 75 
requires around 60 gigabytes (GB) of memory and could be paralleled using OpenMP only that a 76 
one-year simulation costs more than 1 week using 1 Central Processing Unit (CPU) with 20 77 
cores. The computation costs will increase dramatically by at least an order of magnitude when 78 
conducting ensemble or adjoint simulation, thus not possible in real inversion applications but 79 
acceptable in simple forward simulation. In this study, instead of conducting native inversion 80 
directly, we, for the first time, derived the impact of coarse resolution transport model error on 81 
large-scale flux distribution in the context of observing simulation system experiments (OSSEs) 82 
and further suggested that the estimated northern ocean fluxes in current state-of-the-art 83 
inversion systems are likely driven by the transport error instead of observation information or 84 
satellite retrieval errors. Section 2 describes the data and method; Section 3 shows the results; the 85 
conclusion and discussion are presented in the last section. 86 

2 Data and method 87 
We use the Carbon in Ocean-Land-Atmosphere (COLA) system (Z. Liu et al., 2022, 88 

2023) to understand the transport impact on flux estimation in the context of Observing 89 
Simulation System Experiments (OSSEs) and a real data assimilation experiment. COLA 90 
optimizes the land (FTA) and ocean (FOA) carbon fluxes using a local ensemble transform Kalman 91 
filter and a constrained ensemble Kalman filter, while terrestrial fire flux (FIR) and anthropogenic 92 
fossil fuel emissions (FFE) are not optimized. The atmosphere transport model used in COLA is 93 
GEOS-Chem of version 13.0.2, driven by the Modern-Era Retrospective analysis for Research 94 
and Applications Version 2 (MERRA-2) meteorology reanalysis (Gelaro et al., 2017; The 95 
International GEOS-Chem User Community, 2021). The native spatial resolution of MERRA-2 96 
is 0.5° ×0.625°. 97 

In this study, two sets of OSSEs are performed from December 2014 to the end of 2015. 98 
In the first OSSE (EXP-biased), the assimilation run is conducted at 4° ×5° resolution while the 99 
nature run is conducted at the native 0.5° ×0.625° resolution. In the second OSSE (EXP-perfect), 100 
both the assimilation run and nature run are conducted at 4° ×5° resolution. The pseudo surface 101 
and satellite observation network are almost identical to Liu et al. (2022) but with additional 102 
ocean glint observations from the Orbiting Carbon Observatory-2 (OCO-2) (O’Dell et al., 2018; 103 
Baker et al., 2022). This kind of observation network was usually called LNLGOGIS in the 104 
OCO-2 flux model intercomparison project (OCO2MIP) (Crowell et al., 2019; Peiro et al., 2022; 105 
Byrne et al., 2023). Then the pseudo observations in each OSSE are sampled from their 106 
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corresponding nature runs and randomly perturbed based on the error scales described in Liu et 107 
al. (2022). The nature runs start from the same initial CO2 concentration and are forced by 108 
identical surface carbon fluxes with the FFE from the Open-source Data Inventory of 109 
Anthropogenic CO2 emissions (ODIAC) (Oda et al., 2018), the FIR from Global Fire 110 
Assimilation System (GFAS) (Kaiser et al., 2012), the FOA from Rödenbeck et al. (2014), and the 111 
FTA generated from the terrestrial model of Simple Biosphere Model Version 4 (SiB4) (Haynes 112 
et al., 2019). To separate the impact of model resolution while with less impact from a priori 113 
fluxes, the a priori FTA and FOA used in the assimilation runs are similar as in the nature runs but 114 
from 4 years ago. 115 

In addition to the two OSSEs, a real data assimilation experiment (EXP-real) is 116 
conducted at 4° ×5° resolution that assimilates the LNLGOGIS observations. And the a priori 117 
fluxes and assimilation period are identical to the nature run of EXP-biased. An ensemble of 118 
global inversion results (Ames, Baker, CSU, CT, OU, and TM5-4DVAR) within version 10 of 119 
OCO2MIP that assimilate the LNLGOGIS observations and without very tight ocean a priori 120 
constraint is used to validate the transport bias impact further (Byrne et al., 2023). Moreover, 4 a 121 
priori of "bottom-up" ocean flux products in the OCO2MIP systems are used as references. 122 

3 Results 123 

3.1 Land-ocean and tropic-extratropic partitioning 124 
First, we analyze the surface CO2 and column CO2 (XCO2) concentration in the nature 125 

runs of EXP-bias (Figure 1a, d) and EXP-perfect (Figure 1b, e). Even though the two nature runs 126 
are driven by the same surface fluxes (Figure S1), the biased ATM at 4° ×5° resolution tends to 127 
trap the CO2 fluxes within the near-surface in the Northern Hemisphere than the ATM at native 128 
0.5° ×0.625° resolution on an annual average basis, especially in Eurasia that the biases can 129 
reach to over 2 ppm. The XCO2 bias has clear latitudinal distribution with positive bias in the 130 
Northern (30 °N~ 90 °N) and Southern (-90 °S~ -30 °S) middle and high latitudes and negative 131 
bias near the tropics (-30 °S~ 30 °N). Moreover, the annual bias is averaged from the seasonal 132 
varying biases. In Eurasia, the positive surface bias of over 5 ppm from January to March is 133 
reversed to the negative surface bias of over -3 ppm from July to September (Figure S2, S3). The 134 
seasonal variation of XCO2 bias is relatively smaller than the surface CO2. The persistent dipole 135 
tropic versus extratropic bias pattern moves southward from winter to summer. 136 

The systematic error of simulated CO2 concentration caused by the coarse-resolution 137 
ATM is expected to cause significant bias in flux estimates. The first assimilation run of EXP-138 
biased assimilates the "perfect" observations but uses the "biased" ATM, which is similar to the 139 
real-world scenario. Instead, the second assimilation run of EXP-perfect has no transport model 140 
error issue that assimilates the "perfect" observations and uses the "perfect" ATM. The 141 
difference in estimated fluxes between the two assimilation runs is expected to be the impact of 142 
transport error on flux estimation. Annually, the absolute value of regional land fluxes in EXP-143 
biased is significantly larger than EXP-perfect (Figure 2a, b). In the northern mid-latitudes land 144 
area, the carbon sink is largely overestimated in EXP-biased, especially in eastern China, eastern 145 
North America, and Europe. About half of this sink is compensated by the surrounding 146 
weakened ocean sink and carbon release in the high latitude of East Siberia (Figure 2d). Moving 147 
southward, EXP-biased shows less carbon sink in the tropical ocean, South America, Australia, 148 
and Africa and more carbon sink in the Southern Ocean. Generally, relative to EXP-perfect, the 149 
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transport error tends to enhance the land carbon sink by 1.23 GtC yr-1 and weaken the ocean 150 
carbon sink by 0.9 GtC yr-1. Moreover, more carbon sink of 0.77 GtC yr-1 is attributed to the 151 
extratropics (-90 °S~ -23 °S and 23 °N~ 90 °N), and 0.44 GtC yr-1 more carbon is released from 152 
the tropics (-23 °S~ 23 °N), resulting in a global net flux bias of -0.33 GtC yr-1. Due to the high 153 
computation and memory cost, we only conduct tests for 1 year. Further research on how ATM 154 
bias affects interannual flux estimation is worth investigating in the future. 155 

 156 
Figure 1.  The annual mean surface CO2 and column CO2 pattern of nature runs at 157 

horizontal resolutions of 0.5°×0.625° (a, d) and 4°×5° (b, e). (c, f) The difference between 158 
the two nature runs. 159 

 160 
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Figure 2.  The spatial pattern of optimized annual mean land and ocean fluxes of 161 
assimilation runs of EXP-biased (a) and EXP-perfect (b). (c) The difference between the 162 

two assimilation runs. (d) The difference in land and ocean fluxes between the two 163 
assimilation runs in latitude bands of northern extratropics (23 °N ~ 90 °N), tropics (-23 °S 164 

~ 23 °N), and southern extratropics (-90 °S ~ -23 °S). 165 

3.2 Seasonal cycle 166 
At the seasonal scale, the seasonal amplitude of the northern extratropical land flux is 167 

significantly underestimated in EXP-biased, mainly due to less carbon release during the non-168 
growing seasons (Figure 3). In the northern extratropical ocean, the seasonal phase is reversed 169 
and the seasonal strength is enhanced, which partly compensates for the weakened seasonal 170 
amplitude in the northern extratropical land. The seasonal biases are smaller in the tropics and 171 
southern extratropics. From January to May, a large amount of carbon is released from the 172 
northern ocean. And the relative impact of transport error on the ocean flux is significantly larger 173 
than the land flux, implying that the ocean flux estimation in the context of the transport error 174 
may not be better than those a priori estimations. To overcome this limitation, inverse modelers 175 
usually apply tight a priori constraints on ocean flux in the real-world scenario (Peylin et al., 176 
2013).  177 

 178 
Figure 3.  The upper figures are the seasonal cycle of land (green) and ocean (blue) fluxes 179 
of EXP-biased (darker color) and EXP-perfect (lighter color) at daily timestep in latitude 180 

bands of northern extratropics (23 °N ~ 90 °N), tropics (-23 °S ~ 23 °N), and southern 181 
extratropics (-90 °S ~ -23 °S). The bottom figures are the land, ocean, and net (black) fluxes 182 

difference between EXP-biased and EXP-perfect. 183 

Global inversion systems were usually run at a coarse horizontal resolution of 2° to 5°, 184 
which is around an order of magnitude coarser than the native resolution of state-of-the-art 185 
meteorology reanalysis. Thus, the transport error is expected to significantly affect the flux 186 
estimation in the global inversions. As indicated in the OSSEs, the northern ocean is one of the 187 
regions that can be strongly affected by the transport bias. We further investigate it using real 188 
data assimilation results. A priori of process understanding and oceanic pCO2 observations in the 189 
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northern ocean provide a tight constraint on seasonal phase and amplitude of flux (Figure 4a). 190 
However, the a posteriori estimates from the 6 OCO2MIP inversion systems in the northern 191 
ocean diverge greatly during the non-growing seasons of the land biosphere, and the sink during 192 
these seasons is significantly reduced (Figure 4b). It is worth noting that the seasonal phase of 193 
the a posteriori in the CSU system and EXP-real is almost reversed from the a priori estimates. 194 
These seasonal increments from the a priori to the a posteriori are remarkably consistent in phase 195 
and magnitude with the ATM-induced flux bias in EXP-biased, indicating that the ATM bias 196 
highly influences current inversion estimates of ocean carbon fluxes. The temporal correlation 197 
between the flux bias in EXP-biased and the flux increment in EXP-real and CSU is 0.82 and 198 
0.87, respectively. The increments in some inversion systems may not be as significant as in 199 
EXP-real and CSU, which may be because of the different degrees of constraints from the a 200 
priori. 201 

 202 
Figure 4.  (a) The seasonal cycle in the northern extratropical ocean. The blue line is the a 203 

posteriori flux in EXP-biased. The orange line is the a posteriori flux in EXP-real. The 204 
dark pink line is the a posteriori flux of the ensemble mean of OCO2MIP systems. The thin 205 

pink lines with different markers are the individual a posteriori fluxes within the 206 
OCO2MIP systems. The black line is the ensemble mean of the a priori fluxes used in the 207 
different OCO2MIP systems.  The thin gray lines are the individual a priori fluxes used in 208 

the OCO2MIP systems. (b) The difference compared with the ensemble mean of the a 209 
priori fluxes. 210 

4 Discussion and conclusion 211 
Robust regional carbon fluxes estimate is urgently needed within the framework of the United 212 
Nations Framework Convention on Climate Change and is possible as more ground greenhouse 213 
gas stations and satellites are available in the future (Kuhlmann et al., 2020). However, in the 214 
context of OSSEs, this study suggests that the coarse ATM attributes significantly more carbon 215 
uptake in the land and extratropics than in the ocean and tropics. And the seasonal amplitude in 216 
the northern land area is underestimated, which is consistent with a recent finding using aircraft 217 
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observations (Cui et al., 2022). These robust pieces of evidence indicate that previous inversion 218 
studies may largely overestimate the carbon sinks in northern extratropical countries. 219 
Focusing on the northern extratropical ocean, we find that the seasonal phase of the a posteriori 220 
fluxes totally reverses from the a priori fluxes, compensating for the reduced seasonal amplitude 221 
in the northern land area. The reversed phase is also shown in a real data assimilation experiment 222 
and some state-of-the-art inversion systems within the OCO2MIP, which is impossible from a 223 
process understanding perspective. Satellite observations over the ocean have long been argued 224 
to be biased due to retrieval algorithm bias, and inversion modelers usually discard these 225 
observations and set tight a priori ocean flux constraints (Peylin et al., 2013; Crowell et al., 2019; 226 
Palmer et al., 2019; Peiro et al., 2022). Our finding indicates that the current satellite retrieval 227 
algorithm may not be as biased as previously argued, and increasing the resolution of ATM or 228 
improving the parameterization schemes of ATM should be placed at a high priority in order to 229 
derive a robust country-level carbon budget and reasonable ocean carbon cycle estimates. Recent 230 
efforts of speeding up ATMs using Graphics Processing Units (GPU) (Chevallier et al., 2023) 231 
and Message Passing Interface (MPI) (Martin et al., 2022) Parallelization are ongoing that native 232 
resolution inversion is computationally possible in the coming years. 233 
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Key Points: 13 
l Error from the coarse-resolution atmospheric transport model can introduce systematic 14 

biases to CO2 modeling and inversed flux estimates. 15 

l The coarse-resolution transport error leads to stronger land and extratropical sink 16 
estimates and weaker ocean and tropical sink estimates. 17 

l The error also induces an underestimated seasonal amplitude and a reversed seasonal 18 
phase in the northern land and ocean, respectively.  19 
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Abstract 20 
We show that forward simulations of global CO2 using an atmospheric transport model (ATM) at 21 
0.5° ×0.625° and 4° ×5° resolutions differ significantly in vertical and meridional distribution. 22 
Comparing two observing simulation system experiments at 4° ×5° resolution that assimilate 23 
pseudo observations sampled from the two forward simulations, we isolated the impact of 24 
coarse-resolution ATM error on regional flux estimates that a significant amount of annual 25 
carbon uptake from the ocean and tropics is improperly redistributed to the land and extratropics, 26 
respectively. In addition, this error leads to an underestimated seasonal amplitude in the northern 27 
extratropical land and a reversed seasonal phase in the northern extratropical ocean. The reversed 28 
seasonal phase has also been shown in a real data assimilation experiment and state-of-the-art 29 
inversions, suggesting that ocean glint retrieval error may not be as significant as previously 30 
thought and reasonable ocean flux estimates depend strongly on the accuracy of ATM. 31 

Plain Language Summary 32 
Credible regional carbon budget estimates from atmospheric CO2 measurements rely on the 33 
accuracy of atmospheric transport models (ATMs). However, the simulated atmospheric vertical 34 
motions in ATMs are usually simplified and spatiotemporally averaged, leading to systematic 35 
biases in simulating the long-lived atmospheric CO2 and estimating surface carbon fluxes. Even 36 
though the atmospheric approach is increasingly applied to account for country-level carbon 37 
budget in global synthesis activities. Our finding suggests that current coarse-resolution ATMs 38 
lead to improper attribution of annual carbon uptake from the ocean and tropics to the land and 39 
extratropics, respectively, resulting in overestimated natural carbon uptake and reduced 40 
emissions reduction duty in most advanced countries that target carbon neutrality. Furthermore, 41 
since the seasonal variation of carbon flux in the ocean is much smaller than in the land, the 42 
results indicate that a small seasonal bias from the land can overwrite and even reverse the real 43 
flux signal in the ocean.  44 

1 Introduction 45 
Quantifying the country-level CO2 budget using atmospheric CO2 inversion technique is 46 

one of the critical approaches in the upcoming Global StockTake assessment (Chevallier, 2021; 47 
Jiang et al., 2022; Weir et al., 2022; Deng et al., 2022; Byrne et al., 2023). However, several 48 
fundamental issues in CO2 inversion (e.g., transport, satellite retrieval, and a priori errors) have 49 
not been fully addressed, challenging the derivation of robust regional CO2 budget estimation 50 
(Fu et al., 2021; O’Dell et al., 2018; Philip et al., 2019; Schuh et al., 2019). Inversion systems 51 
use an offline atmosphere transport model (ATM) to relate the surface land and ocean carbon 52 
fluxes with observed CO2 concentration. An offline ATM is driven by the meteorology 53 
reanalysis data generated from a general circulation model (GCM), which significantly reduces 54 
the computational cost but simplifies and spatiotemporally averages some nonlinear atmospheric 55 
processes (J. Liu et al., 2011; Basu et al., 2018; Schuh et al., 2019). The averaging processes 56 
include remapping the GCM output from seconds to hours and irregular grid to latitude-57 
longitude grid, and spatial interpolation from native to coarse horizontal resolution, which 58 
induces underestimated transient vertical motion and reduced vertical transport (Yu et al., 2018). 59 
Recent forward modeling studies find that the simulated CO2 concentrations are significantly 60 
different in vertical and meridional distribution using different ATM configurations and ATMs 61 
(Schuh et al., 2019; Schuh & Jacobson, 2022). These biases can influence the estimates of 62 
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regional carbon budgets (Wang et al., 2020; Schuh et al., 2022) and seasonal cycles (Cui et al., 63 
2022) estimates. A large discrepancy between the inversion estimates and process 64 
understandings is the land-ocean and tropic-extratropic partitioning of carbon fluxes. The 65 
inversions usually estimate a large carbon sink in the northern extratropics and a weak carbon 66 
sink or carbon source in the tropics recently, while process models or inventories suggest more 67 
carbon uptake in the tropics (Schimel et al., 2015; Friedlingstein et al., 2022). Evidence from the 68 
vertical CO2 observation profiles indicates that inversions may overestimate the northern sink 69 
and underestimate the tropical sink (Stephens et al., 2007). 70 

To reduce the main transport error, running global inversions at the native resolution is a 71 
straightforward strategy. However, native resolution inversions can be very slow due to reading 72 
and writing a large amount of data and poor parallel methods in some ATMs (e.g., classic 73 
GEOS-Chem) (The International GEOS-Chem User Community, 2021). For example, forward 74 
simulation of global CO2 at a native horizontal resolution of 0.5° ×0.625° using GEOS-Chem 75 
requires around 60 gigabytes (GB) of memory and could be paralleled using OpenMP only that a 76 
one-year simulation costs more than 1 week using 1 Central Processing Unit (CPU) with 20 77 
cores. The computation costs will increase dramatically by at least an order of magnitude when 78 
conducting ensemble or adjoint simulation, thus not possible in real inversion applications but 79 
acceptable in simple forward simulation. In this study, instead of conducting native inversion 80 
directly, we, for the first time, derived the impact of coarse resolution transport model error on 81 
large-scale flux distribution in the context of observing simulation system experiments (OSSEs) 82 
and further suggested that the estimated northern ocean fluxes in current state-of-the-art 83 
inversion systems are likely driven by the transport error instead of observation information or 84 
satellite retrieval errors. Section 2 describes the data and method; Section 3 shows the results; the 85 
conclusion and discussion are presented in the last section. 86 

2 Data and method 87 
We use the Carbon in Ocean-Land-Atmosphere (COLA) system (Z. Liu et al., 2022, 88 

2023) to understand the transport impact on flux estimation in the context of Observing 89 
Simulation System Experiments (OSSEs) and a real data assimilation experiment. COLA 90 
optimizes the land (FTA) and ocean (FOA) carbon fluxes using a local ensemble transform Kalman 91 
filter and a constrained ensemble Kalman filter, while terrestrial fire flux (FIR) and anthropogenic 92 
fossil fuel emissions (FFE) are not optimized. The atmosphere transport model used in COLA is 93 
GEOS-Chem of version 13.0.2, driven by the Modern-Era Retrospective analysis for Research 94 
and Applications Version 2 (MERRA-2) meteorology reanalysis (Gelaro et al., 2017; The 95 
International GEOS-Chem User Community, 2021). The native spatial resolution of MERRA-2 96 
is 0.5° ×0.625°. 97 

In this study, two sets of OSSEs are performed from December 2014 to the end of 2015. 98 
In the first OSSE (EXP-biased), the assimilation run is conducted at 4° ×5° resolution while the 99 
nature run is conducted at the native 0.5° ×0.625° resolution. In the second OSSE (EXP-perfect), 100 
both the assimilation run and nature run are conducted at 4° ×5° resolution. The pseudo surface 101 
and satellite observation network are almost identical to Liu et al. (2022) but with additional 102 
ocean glint observations from the Orbiting Carbon Observatory-2 (OCO-2) (O’Dell et al., 2018; 103 
Baker et al., 2022). This kind of observation network was usually called LNLGOGIS in the 104 
OCO-2 flux model intercomparison project (OCO2MIP) (Crowell et al., 2019; Peiro et al., 2022; 105 
Byrne et al., 2023). Then the pseudo observations in each OSSE are sampled from their 106 



manuscript submitted to Geophysical Research Letters 

corresponding nature runs and randomly perturbed based on the error scales described in Liu et 107 
al. (2022). The nature runs start from the same initial CO2 concentration and are forced by 108 
identical surface carbon fluxes with the FFE from the Open-source Data Inventory of 109 
Anthropogenic CO2 emissions (ODIAC) (Oda et al., 2018), the FIR from Global Fire 110 
Assimilation System (GFAS) (Kaiser et al., 2012), the FOA from Rödenbeck et al. (2014), and the 111 
FTA generated from the terrestrial model of Simple Biosphere Model Version 4 (SiB4) (Haynes 112 
et al., 2019). To separate the impact of model resolution while with less impact from a priori 113 
fluxes, the a priori FTA and FOA used in the assimilation runs are similar as in the nature runs but 114 
from 4 years ago. 115 

In addition to the two OSSEs, a real data assimilation experiment (EXP-real) is 116 
conducted at 4° ×5° resolution that assimilates the LNLGOGIS observations. And the a priori 117 
fluxes and assimilation period are identical to the nature run of EXP-biased. An ensemble of 118 
global inversion results (Ames, Baker, CSU, CT, OU, and TM5-4DVAR) within version 10 of 119 
OCO2MIP that assimilate the LNLGOGIS observations and without very tight ocean a priori 120 
constraint is used to validate the transport bias impact further (Byrne et al., 2023). Moreover, 4 a 121 
priori of "bottom-up" ocean flux products in the OCO2MIP systems are used as references. 122 

3 Results 123 

3.1 Land-ocean and tropic-extratropic partitioning 124 
First, we analyze the surface CO2 and column CO2 (XCO2) concentration in the nature 125 

runs of EXP-bias (Figure 1a, d) and EXP-perfect (Figure 1b, e). Even though the two nature runs 126 
are driven by the same surface fluxes (Figure S1), the biased ATM at 4° ×5° resolution tends to 127 
trap the CO2 fluxes within the near-surface in the Northern Hemisphere than the ATM at native 128 
0.5° ×0.625° resolution on an annual average basis, especially in Eurasia that the biases can 129 
reach to over 2 ppm. The XCO2 bias has clear latitudinal distribution with positive bias in the 130 
Northern (30 °N~ 90 °N) and Southern (-90 °S~ -30 °S) middle and high latitudes and negative 131 
bias near the tropics (-30 °S~ 30 °N). Moreover, the annual bias is averaged from the seasonal 132 
varying biases. In Eurasia, the positive surface bias of over 5 ppm from January to March is 133 
reversed to the negative surface bias of over -3 ppm from July to September (Figure S2, S3). The 134 
seasonal variation of XCO2 bias is relatively smaller than the surface CO2. The persistent dipole 135 
tropic versus extratropic bias pattern moves southward from winter to summer. 136 

The systematic error of simulated CO2 concentration caused by the coarse-resolution 137 
ATM is expected to cause significant bias in flux estimates. The first assimilation run of EXP-138 
biased assimilates the "perfect" observations but uses the "biased" ATM, which is similar to the 139 
real-world scenario. Instead, the second assimilation run of EXP-perfect has no transport model 140 
error issue that assimilates the "perfect" observations and uses the "perfect" ATM. The 141 
difference in estimated fluxes between the two assimilation runs is expected to be the impact of 142 
transport error on flux estimation. Annually, the absolute value of regional land fluxes in EXP-143 
biased is significantly larger than EXP-perfect (Figure 2a, b). In the northern mid-latitudes land 144 
area, the carbon sink is largely overestimated in EXP-biased, especially in eastern China, eastern 145 
North America, and Europe. About half of this sink is compensated by the surrounding 146 
weakened ocean sink and carbon release in the high latitude of East Siberia (Figure 2d). Moving 147 
southward, EXP-biased shows less carbon sink in the tropical ocean, South America, Australia, 148 
and Africa and more carbon sink in the Southern Ocean. Generally, relative to EXP-perfect, the 149 
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transport error tends to enhance the land carbon sink by 1.23 GtC yr-1 and weaken the ocean 150 
carbon sink by 0.9 GtC yr-1. Moreover, more carbon sink of 0.77 GtC yr-1 is attributed to the 151 
extratropics (-90 °S~ -23 °S and 23 °N~ 90 °N), and 0.44 GtC yr-1 more carbon is released from 152 
the tropics (-23 °S~ 23 °N), resulting in a global net flux bias of -0.33 GtC yr-1. Due to the high 153 
computation and memory cost, we only conduct tests for 1 year. Further research on how ATM 154 
bias affects interannual flux estimation is worth investigating in the future. 155 

 156 
Figure 1.  The annual mean surface CO2 and column CO2 pattern of nature runs at 157 

horizontal resolutions of 0.5°×0.625° (a, d) and 4°×5° (b, e). (c, f) The difference between 158 
the two nature runs. 159 

 160 
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Figure 2.  The spatial pattern of optimized annual mean land and ocean fluxes of 161 
assimilation runs of EXP-biased (a) and EXP-perfect (b). (c) The difference between the 162 

two assimilation runs. (d) The difference in land and ocean fluxes between the two 163 
assimilation runs in latitude bands of northern extratropics (23 °N ~ 90 °N), tropics (-23 °S 164 

~ 23 °N), and southern extratropics (-90 °S ~ -23 °S). 165 

3.2 Seasonal cycle 166 
At the seasonal scale, the seasonal amplitude of the northern extratropical land flux is 167 

significantly underestimated in EXP-biased, mainly due to less carbon release during the non-168 
growing seasons (Figure 3). In the northern extratropical ocean, the seasonal phase is reversed 169 
and the seasonal strength is enhanced, which partly compensates for the weakened seasonal 170 
amplitude in the northern extratropical land. The seasonal biases are smaller in the tropics and 171 
southern extratropics. From January to May, a large amount of carbon is released from the 172 
northern ocean. And the relative impact of transport error on the ocean flux is significantly larger 173 
than the land flux, implying that the ocean flux estimation in the context of the transport error 174 
may not be better than those a priori estimations. To overcome this limitation, inverse modelers 175 
usually apply tight a priori constraints on ocean flux in the real-world scenario (Peylin et al., 176 
2013).  177 

 178 
Figure 3.  The upper figures are the seasonal cycle of land (green) and ocean (blue) fluxes 179 
of EXP-biased (darker color) and EXP-perfect (lighter color) at daily timestep in latitude 180 

bands of northern extratropics (23 °N ~ 90 °N), tropics (-23 °S ~ 23 °N), and southern 181 
extratropics (-90 °S ~ -23 °S). The bottom figures are the land, ocean, and net (black) fluxes 182 

difference between EXP-biased and EXP-perfect. 183 

Global inversion systems were usually run at a coarse horizontal resolution of 2° to 5°, 184 
which is around an order of magnitude coarser than the native resolution of state-of-the-art 185 
meteorology reanalysis. Thus, the transport error is expected to significantly affect the flux 186 
estimation in the global inversions. As indicated in the OSSEs, the northern ocean is one of the 187 
regions that can be strongly affected by the transport bias. We further investigate it using real 188 
data assimilation results. A priori of process understanding and oceanic pCO2 observations in the 189 
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northern ocean provide a tight constraint on seasonal phase and amplitude of flux (Figure 4a). 190 
However, the a posteriori estimates from the 6 OCO2MIP inversion systems in the northern 191 
ocean diverge greatly during the non-growing seasons of the land biosphere, and the sink during 192 
these seasons is significantly reduced (Figure 4b). It is worth noting that the seasonal phase of 193 
the a posteriori in the CSU system and EXP-real is almost reversed from the a priori estimates. 194 
These seasonal increments from the a priori to the a posteriori are remarkably consistent in phase 195 
and magnitude with the ATM-induced flux bias in EXP-biased, indicating that the ATM bias 196 
highly influences current inversion estimates of ocean carbon fluxes. The temporal correlation 197 
between the flux bias in EXP-biased and the flux increment in EXP-real and CSU is 0.82 and 198 
0.87, respectively. The increments in some inversion systems may not be as significant as in 199 
EXP-real and CSU, which may be because of the different degrees of constraints from the a 200 
priori. 201 

 202 
Figure 4.  (a) The seasonal cycle in the northern extratropical ocean. The blue line is the a 203 

posteriori flux in EXP-biased. The orange line is the a posteriori flux in EXP-real. The 204 
dark pink line is the a posteriori flux of the ensemble mean of OCO2MIP systems. The thin 205 

pink lines with different markers are the individual a posteriori fluxes within the 206 
OCO2MIP systems. The black line is the ensemble mean of the a priori fluxes used in the 207 
different OCO2MIP systems.  The thin gray lines are the individual a priori fluxes used in 208 

the OCO2MIP systems. (b) The difference compared with the ensemble mean of the a 209 
priori fluxes. 210 

4 Discussion and conclusion 211 
Robust regional carbon fluxes estimate is urgently needed within the framework of the United 212 
Nations Framework Convention on Climate Change and is possible as more ground greenhouse 213 
gas stations and satellites are available in the future (Kuhlmann et al., 2020). However, in the 214 
context of OSSEs, this study suggests that the coarse ATM attributes significantly more carbon 215 
uptake in the land and extratropics than in the ocean and tropics. And the seasonal amplitude in 216 
the northern land area is underestimated, which is consistent with a recent finding using aircraft 217 
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observations (Cui et al., 2022). These robust pieces of evidence indicate that previous inversion 218 
studies may largely overestimate the carbon sinks in northern extratropical countries. 219 
Focusing on the northern extratropical ocean, we find that the seasonal phase of the a posteriori 220 
fluxes totally reverses from the a priori fluxes, compensating for the reduced seasonal amplitude 221 
in the northern land area. The reversed phase is also shown in a real data assimilation experiment 222 
and some state-of-the-art inversion systems within the OCO2MIP, which is impossible from a 223 
process understanding perspective. Satellite observations over the ocean have long been argued 224 
to be biased due to retrieval algorithm bias, and inversion modelers usually discard these 225 
observations and set tight a priori ocean flux constraints (Peylin et al., 2013; Crowell et al., 2019; 226 
Palmer et al., 2019; Peiro et al., 2022). Our finding indicates that the current satellite retrieval 227 
algorithm may not be as biased as previously argued, and increasing the resolution of ATM or 228 
improving the parameterization schemes of ATM should be placed at a high priority in order to 229 
derive a robust country-level carbon budget and reasonable ocean carbon cycle estimates. Recent 230 
efforts of speeding up ATMs using Graphics Processing Units (GPU) (Chevallier et al., 2023) 231 
and Message Passing Interface (MPI) (Martin et al., 2022) Parallelization are ongoing that native 232 
resolution inversion is computationally possible in the coming years. 233 
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 43 
Figure S1.  The annual mean true surface land and ocean fluxes in nature runs of (a) EXP-44 

biased at 0.5°×0.625° resolution and (b) EXP-perfect at 4°×5° resolution. 45 

 46 
Figure S2.  The mean surface CO2 and column CO2 pattern of nature runs at horizontal 47 

resolutions of 0.5°×0.625° (a, d) and 4°×5° (b, e) from January to March. (c, f) The 48 
difference between the two nature runs. 49 
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 50 
Figure S3.  The mean surface CO2 and column CO2 pattern of nature runs at horizontal 51 

resolutions of 0.5°×0.625° (a, d) and 4°×5° (b, e) from July to September. (c, f) The 52 
difference between the two nature runs. 53 
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