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Abstract

Estimation of velocity profile through mud depth is a long-standing and essential problem in debris-flow dynamics. Until

now, various velocity profiles have been proposed based on the regression of experimental measurements, but these are often

limited by the observation conditions, such as the number of the configured sensors. Therefore, the resulting linear velocity

profiles exhibit limitations in reproducing the nonlinear behavior and its temporal variation during the debris-flow process.

In this study, we present a novel approach to explore debris-flow velocity profile in detail upon our previous 3D-HBP-SPH

numerical model, i.e., the three-dimensional Smoothed Particle Hydrodynamic model incorporating with the Herschel-Bulkley-

Papanastasiou rheology. Specifically, we propose a stratification statistical algorithm for interpreting the details of SPH particles,

which enables the recording of temporal velocities of debris flow at different mud depths. To regress the velocity profile, we

introduce a logarithmic-based nonlinear function with two empirical parameters, that controlling the shape of velocity profile

and concerning its temporal evolution. We verify the proposed velocity profile and explore its sensitivity using 34 sets of

velocity data from three individual flume experiments in previous literatures. Our results demonstrate that the proposed

temporal-varying and depth-nonlinear velocity profile outperforms the previous ones.
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Abstract 34 

Estimation of velocity profile through mud depth is a long-standing and essential problem in 35 
debris-flow dynamics. Until now, various velocity profiles have been proposed based on the 36 
regression of experimental measurements, but these are often limited by the observation 37 
conditions, such as the number of the configured sensors. Therefore, the resulting linear velocity 38 
profiles exhibit limitations in reproducing the nonlinear behavior and its temporal variation 39 
during the debris-flow process. In this study, we present a novel approach to explore debris-flow 40 
velocity profile in detail upon our previous 3D-HBP-SPH numerical model, i.e., the three-41 
dimensional Smoothed Particle Hydrodynamic model incorporating with the Herschel-Bulkley-42 
Papanastasiou rheology. Specifically, we propose a stratification statistical algorithm for 43 
interpreting the details of SPH particles, which enables the recording of temporal velocities of 44 
debris flow at different mud depths. To regress the velocity profile, we introduce a logarithmic-45 
based nonlinear function with two empirical parameters, that 𝑎 controlling the shape of velocity 46 
profile and 𝑏 concerning its temporal evolution. We verify the proposed velocity profile and 47 
explore its sensitivity using 34 sets of velocity data from three individual flume experiments in 48 
previous literatures. Our results demonstrate that the proposed temporal-varying and depth-49 
nonlinear velocity profile outperforms the previous ones. 50 

Plain Language Summary 51 

Studies of debris-flow dynamics involves estimating the velocity profile through mud depth. 52 
Conventional velocity profiles in previous studies were limited by observation conditions and 53 
were unable to reproduce the nonlinear behaviour and its temporal variation. Here, we propose a 54 
new approach to explore debris-flow velocity profiles through three-dimensional numerical 55 
simulation using the smoothed particle hydrodynamic (SPH) method. A stratification statistical 56 
algorithm is introduced to analyse the details of SPH particles based on the numerical results to 57 
record and output temporal velocities of debris flow at different mud depths. A logarithmic-58 
based function with two parameters is introduced to regress the nonlinear velocity profile with 59 
temporal variation. It is verified using 34 sets of velocity data from three individual flume 60 
experiments. The results show that the proposed depth-nonlinear and temporal-varying velocity 61 
profile performs better than previous ones. 62 

1 Introduction 63 

Debris flows are highly sediment-laden flows mixing with mud, stones, organic materials, and 64 
water, travelling at high velocities in steep channels. This kind of fluid–solid flows pose severe 65 
risks to residential societies at the mountainous area, and often cause serious casualties and 66 
property losses worldwide each year (Dowling & Santi, 2014; Godt & Coe, 2007; VanDine & 67 
Bovis, 2002). Their unpredictable initiation, tremendous destructive power, and long run-out 68 
distance represent a challenging task of engineering design and plan for hazard mitigation and 69 
prevention. Many catastrophic cases have been reported recent years, for example, the August 8, 70 
2010, Zhouqu debris flow event destroying approximately 5500 buildings in China (Chen et al., 71 
2019; Tang et al., 2011), as well as the 2003 debris flow events at the Faucon region damaging 72 
many existed sabo dams in the Swiss Alps (Remaître et al., 2008). 73 

The tremendous destructive power of debris flows can be explained in part by their high 74 
travelling velocities. Therefore, predicting on the debris-flow velocity has long been an essential 75 
issue on the topic of debris-flow mitigation research. In fact, as a typical two-phase phenomenon, 76 
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debris-flow velocity distribution is one of the most complex problems in the dynamic mechanism 77 
due to the flow’s opacity caused by its high concentration of solid particles (Rickenmann, 1999; 78 
Han et al., 2015a; Chen et al., 2017). Moreover, inertial collision of the solid particles, coarse 79 
grain friction, viscous shear, and interaction between solid and fluid phase during the debris-flow 80 
process arise uncertainties and difficulties when estimating its travelling velocities (Du et al., 81 
2021; Iverson, 1997). Therefore, it remains a great scientific challenge to provide an exact 82 
solution for describing the complex flowing behavior of debris flows. 83 

In this sense, a common and acceptable solution is to reduce its complexity by representing the 84 
debris-flow velocity field into the lateral distribution and the vertical profile through a cross-85 
section. As to the lateral distribution, common wisdom often holds that debris-flow velocity is 86 
greater along the thalweg and getting smaller at both sides of the channel (Han et al., 2015a). 87 
Many remarkable studies can be referred to, such as the experimental investigation by Iverson et 88 
al. (2001) and Tecca et al. (2003), as well as the theoretical solution in our previous study (Han 89 
et al., 2014). Also, many numerical models based on the depth-averaged Navier-Stokes equations 90 
(e.g., Luna et al. 2012; Ouyang et al., 2015) have been employed to investigate the velocity of 91 
debris flow. 92 

Nevertheless, the vertical velocity profile of the debris flow shows more complicated dynamics 93 
due to the high concentration and frequent collisions of solid particles. The velocity profile of 94 
debris flow relates to its internal deformation, holding essential information on hydrodynamics 95 
and flow resistance. Generally, the overall features of the debris-flow velocity profile have been 96 
discussed and substantiated in many previous studies, that the velocity at the free surface is much 97 
higher than that at the fluid bottom (Johnson et al., 2012). Nagl et al. (2020) summarized four 98 
possible types of velocity profile, i.e., constant velocity profile with full basal sliding, flow 99 
profile over rigid bed with no basal sliding, combination of basal sliding and internal 100 
deformation, and flow over an erodible bed. They mentioned that the vertical velocity profiles 101 
are strongly linked to flow characteristics such as pore-fluid pressure, grain size distribution and 102 
density variations. 103 

Systematic measurements of velocity profiles in real-scale debris flows are not yet available 104 
(Nagl et al., 2020), therefore, flume experiments are an alternative way to investigate the 105 
complex phenomenon of debris-flow velocity profile (Wei & Hu, 2009). Many previous studies 106 
used measurement devices, such as ultrasonic sensors, radar, or seismic sensors, to obtain the 107 
debris flow velocities (e.g., Arattano & Marchi, 2005; Chen et al., 2017; Iverson & Vallance, 108 
2001; Johnson et al., 2012; Nagl et al., 2020; Prochaska et al., 2008; Tecca et al., 2003; Wei et 109 
al., 2012). These previous studies well documented the measurement data of vertical velocities 110 
and provided an insight into the velocity profile of debris flow. Based on the observed features of 111 
vertical velocity distribution, some linear or non-linear velocity profile have been assumed, such 112 
as in Hotta and Ohta (2000), Johnson et al. (2012), and Han et al. (2015a). Notably, these 113 
established velocity profiles in different studies commonly have a similar form which can be 114 
expressed as below, 115 𝑣(𝑧) = 𝑓 𝛼, 𝑧

ℎ
 (1) 

where 𝑓 denotes the velocity profile, 𝑧 is the vertical location beyond the bed, ℎ is the flow 116 
depth. 𝛼 presents an empirical parameter controlling the amount of shear within the bulk of flow. 117 𝛽 denotes an anther parameter controlling linear or nonlinear behavior considering basal slip. 118 
However, owing to that in most of the flume experiments, the amount of the velocimeter sensors 119 
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in the array is limited, difficulties arise when regressing a good-fitting nonlinear profile with 120 
such limited amount of measurement data. Also, the best-fitting values of the involved empirical 121 
parameters 𝛼 and 𝛽 are currently debated among the existing studies. In view of this, the single-122 
parameter linear velocity profiles, and have been applied in many numerical studies (e.g., 123 
Ouyang et al., 2015; Han et al., 2015b). 124 

Intense velocity data through the depth definitely benefits a better regression of debris-flow 125 
velocity profile. Recently, particle image velocimetry (PIV) has been witnessed a great potential 126 
in exploring the dynamics of two-phase flows due to its non-invasive measurement, full-field, 127 
instantaneous flow velocity maps (Gabriele et al., 2011; Liu & Lam, 2015). Owing to that direct 128 
measurements for opaque debris flows are problematic (Iverson, 2012), therefore, for better 129 
observation of tracer particles, high fluid transparency and relatively low solid concentration 130 
should be considered. Many studies, e.g., Chen et al. (2017) used mixture of machine oil and 131 
white oil to represent the debris flow fluid with a similar viscosity. Regardless of the argument 132 
that whether oil-mixture is adequate for representing debris-flow fluid, the PIV-based 133 
experimental data demonstrates a more obvious nonlinear velocity profile. Many previous 134 
studies, e.g., Chen et al. (2017), Du et al., (2021) and Han et al. (2022), recommended a usage of 135 
logarithm-based function to regress the nonlinear velocity profile, which could better fit with the 136 
experimental measurements. 137 

However, it should be noticed that velocity profile of debris flows has not yet been well 138 
recognized. One key problem is with respect to the temporal variation of the debris-flow velocity 139 
profile. In most of the previous experimental studies, capturing the instantaneous velocity at 140 
different depths is a tough task. This difficulty commonly lies in the measurement using either 141 
the image-based velocimetry of PIV or the ultrasonic sensor-based velocimetry in flume 142 
experiments. Meanwhile, uncertainties due to collision of the solid particles bring noises in the 143 
measurement data, which are difficult to recognize and denoise. Therefore, mean velocity at 144 
different depths during the debris flow process has to be used, which inherently hides the feature 145 
of temporal variation. 146 

Besides, the debris-flow event may occur as a single surge or as a sequence of multiple surges 147 
(e.g., Arai et al., 2013; Zanuttigh & Lamberti, 2007). Even in a surge, the inhomogeneous debris-148 
flow mass has been observed complex dynamics, that turbulence flow at the debris flow surge 149 
front would transit into a laminar one at the surge end when debris flow passes by Pudasaini et 150 
al. (2020). As a consequence, the velocity profile varies with the flow status. Evidence could be 151 
found in the remarkable real-scale experiment by Nagl et al. (2020), that velocity profiles at the 152 
front part, the main body show obvious different shapes. This concept and evidence inspired the 153 
subsequent research on how the observed temporal variation could be considered in the 154 
regression of debris-flow velocity profile. 155 

In this paper, based on the proposed 3D-HBP-SPH numerical model (Han et al., 2021a), we 156 
reproduce the debris-flow flume experiments by Iverson et al. (2011) where debris-flow 157 
dynamics were well-documented. We propose a particle-location based stratification statistical 158 
algorithm to analyze the temporal velocities at different depth. With the interpreted temporal 159 
velocity distribution, a double-parameter, logarithmic-based function is regressed to describe the 160 
velocity profile variation with time-elapse. The measurements of velocity data presented in other 161 
three previous flume experiment by Egashira et al. (1989), Hotta et al. (1998) and Chen et al. 162 
(2017) are used to illustrate the effect of the proposed temporal-varying and depth-nonlinear 163 
velocity profile.     164 
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2 Methodologies 165 

2.1 The proposed 3D-HBP-SPH numerical model 166 

As mentioned above, a better regression of debris-flow velocity profile depends on a greater 167 
amount of velocity data at different depth. Many flume experimental studies used ultrasonic 168 
sensors to measure debris-flow velocities. However, due to the size of the sensors, the total 169 
number of the sensors are limited, the collected measurement data are insufficient to present the 170 
observed nonlinear velocity profile in other PIV-based experiments. 171 

Therefore, in this paper, we use particle-based numerical model to explore the debris-flow 172 
velocity profile. In general, this kind of particle-based model provides a 3D description of the 173 
debris-flow dynamic process through discrete particles and approximately solves the Navier-174 
Stokes (N-S) equations in discrete form (Hungr & McDougall, 2009; McDougall & Hungr, 175 
2005), so that a large amount of debris-flow dynamic data can be recorded. Considering the 176 
complex rheology of debris-flow mass, here we use our previous three-dimensional SPH model 177 
based on Herschel-Bulkley-Papanastasiou (HBP) rheology (Han et al., 2019, 2021a), the so-178 
called 3D-HBP-SPH model, the positive effect of which has been substantiated by the following 179 
studies (Huang et al., 2022; Morikawa & Asai, 2022; Yu et al., 2020). The details of the model 180 
could be referred to Han et al. (2019) and Han et al. (2021a), while the basics of this model is 181 
introduced in detail in the supporting information Text S1 along with this paper. With the 182 
termination of the numerical simulation using 3D-HBP-SPH model, the debris-flow process is 183 
able to be reproduced because the spatial positions (𝑥, 𝑦, 𝑧) and velocity components 𝑣 , 𝑣 , 𝑣  184 
of SPH particles at different time steps are well-documented and sorted. 185 

2.2 Particle stratification statistical algorithm 186 

It should be noted that a total of approximately 105 to 106 SPH particles are commonly used to 187 
represent debris-flow mass in a three-dimensional simulation, each of these particles shows 188 
different spatial positions and velocity vectors. It is inadequate to simply choose some among all 189 
the particles for regressing the velocity profile, because the chosen particles could not be able to 190 
describe the overall behavior of debris flow. In this sense, all the particles must be 191 
comprehensively considered. 192 

These recorded dynamic data in particle form should be processed before they can be further 193 
used to demonstrate the debris-flow velocity profile. In this paper, a major contribution is with 194 
respect to the particle stratification statistical algorithm, which is specifically designed to analyze 195 
the temporal average velocity of the SPH particles at different flow depths. The proposed 196 
algorithm is introduced as following. 197 

2.2.1 Coordinate system transformation 198 

The numerical simulation result of the 3D-HBP-SPH model is a time-series dataset, with a time 199 
interval ∆𝑡. In a certain time step 𝑡, the spatial positions (𝑥, 𝑦, 𝑧) and velocity components 200 (𝑣 , 𝑣 , 𝑣 ) of each particle along 𝑋, 𝑌, 𝑍 directions are included. However, the physical 201 
variables of the particles in the SPH scheme are described in absolute coordinates. To better 202 
understand the velocity profile, the velocity component (𝑣 , 𝑣 , 𝑣 ) of each particle in absolute 203 
coordinates should be transformed into the flume bed-linked local coordinate system (𝑋’, 𝑌’, 𝑍’) 204 
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(as shown in Figure 1b), so that the velocities along the bed can be conventionally represented by 205 𝑣 ’. The method for coordinate system transformation is expressed by 206 𝑥 ′𝑦′𝑧 ′ = 𝑅(𝜃 )𝑅(𝜃 )𝑅(𝜃 ) 𝑥𝑦𝑧 − 𝑥𝑦𝑧  (2a) 

𝑣 ′𝑣 ′𝑣 ′ = 𝑅(𝜃 )𝑅(𝜃 )𝑅(𝜃 ) 𝑣𝑣𝑣  (2b) 

where 𝑥 , 𝑦 , and 𝑧  denotes the origin of the absolute coordinate in the numerical 207 
result. 𝑅(𝜃 ), 𝑅(𝜃 ), 𝑅(𝜃 ) are the rotation matrixes depending on the inclined angles of the bed 208 
along the 𝑋, 𝑌, and 𝑍 directions, respectively. 209 𝑅(𝜃 ) = 𝑐𝑜𝑠( 𝜃 ) 0 − 𝑠𝑖𝑛( 𝜃 )0 1 0𝑠𝑖𝑛( 𝜃 ) 0 𝑐𝑜𝑠( 𝜃 )  

 

(3a) 

𝑅(𝜃 ) = 1 0 00 𝑐𝑜𝑠( 𝜃 ) 𝑠𝑖𝑛( 𝜃 )0 − 𝑠𝑖𝑛( 𝜃 ) 𝑐𝑜𝑠( 𝜃 )  (3b) 

  𝑅(𝜃 ) = 1 0 00 1 00 0 1  (3c) 

where 𝜃  and 𝜃  are the inclined angles of the bed along 𝑋 and 𝑌 directions. Normally, for the 210 
single-section flume, we assume the flume along the 𝑋 direction. In this case, 𝜃  equates 0 and 211 𝑅(𝜃 ) =  1 0 00 1 00 0 1 . 212 

2.2.2 Particle recognition in the domain of the cross-section 213 

Velocity profile represents vertical velocity distribution of a selected cross-section. In the 214 
numerical simulation results of 3D-HBP-SPH, once a cross-section at 𝑥 = 𝑥  is selected, the 215 
particles those passing through this cross-section should be recognized and filtered. However, 216 
even though a large number of particles are used in the numerical simulation, the particles those 217 
coincidentally passing through the cross-section may be rare. To get a sufficient velocity data for 218 
regressing the velocity profile, here as shown in Figure 1c, we expanse the selected cross-section 219 
backward and forward for a small distance which we named as the domain length 𝐿 . Thus, 220 
the particles with the instantaneous spatial position (𝑥 , 𝑦 , 𝑧 ) that satisfying the criterion 221 𝑥 ∈ [𝑥 − 𝐿 , 𝑥 + 𝐿 ] are supposed within the domain of the selected cross-section, 222 
and should be considered in the regression of the velocity profile in this cross-section. 223 
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2.2.3 Particles stratification according to their position 224 

Suppose that there are totally 𝑛 particles in the cross-section domain, with various vertical 225 
position 𝑧  along the 𝑍’ direction. The maximum vertical position is 𝑧 = 𝑚𝑎𝑥(𝑧 , 𝑧 , ⋯ 𝑧 ) 226 
and the minimum one is 𝑧 = 𝑚𝑖𝑛(𝑧 , 𝑧 , ⋯ 𝑧 ). Assume a small height ∆ℎ pseudo layer, the 227 
cross-section domain could be stratified into 𝑚 layers, that 228 𝑚 = 𝑧 − 𝑧∆ℎ  (4) 

and the vertical location of each layer is 229 𝐻 = 𝑧 + ∆ℎ(𝑗 − 1), (𝑗 = 1,2, ⋯ , 𝑚). (5) 

Thus, the particles with the vertical position 𝑧  that satisfying the criterion 𝑧 ∈ 𝐻 , 𝐻  are 230 
supposed belonging to the layer 𝑗, and a total number 𝑘  of the particle in each layer 𝑗 can be 231 
counted. 232 

2.2.4 Velocity evaluation of each stratified layer 233 

The above-mentioned algorithm has recognized 𝑘  particles belonging to the layer 𝑗. Each 234 
particle has velocity components (𝑣 , 𝑣 , 𝑣 )  which have been transformed from (𝑣 , 𝑣 , 𝑣 ) in 235 
the absolute coordinate. Among three velocity components, 𝑣  denotes the velocity across the 236 
section, 𝑣  is the particle velocity through flow depth, while 𝑣  describes the velocity along the 237 
flume. Therefore, as illustrated in Figure 1d, we use the mean value of the velocity component 238 𝑣  of each recognized particle to determine the representative velocity of the layer 𝑗, which is 239 
expressed as 240 𝑉 = 1𝑘 𝑣 (𝑖). (6) 

where 𝑉  is the output velocity of debris flow at the vertical position of 𝑧 = 𝐻 . 241 

The schematic illustration of the proposed particle stratification statistical algorithm is illustrated 242 
in Figure 1. In this way, a series of mean velocities 𝑉 , 𝑉 , ⋯ , 𝑉  at different vertical positions 243 
can be obtained and further used for the regression of the velocity profile. 244 
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 245 

Figure 1. Schematic illustration of the particle hierarchical statistical algorithm. (a) Illustration 246 
of the particle-based debris flow process. (b) Coordinate system transformation. (c) Particle 247 
recognition in the domain of the cross-section. (d) Particles stratification and velocity evaluation 248 
of each stratified layer. 249 

3 Numerical reproduction of the flume experiment 250 

3.1 Numerical simulation of USGS flume test 251 

As we have mentioned above, systematic measurements of velocity profiles in real-scale debris 252 
flows are not yet available (Nagl et al., 2020). Therefore, flume experiments with well-253 
documented measurement data become an alternative way, in particular that the flattened flume 254 
avoids the influence of complex topography to the debris-flow dynamics in real-scale event. In 255 
this paper, we select the USGS flume experiment reported in detail in Iverson et al. (2011) for 256 
numerical reproduction. The large-scale flume experiment was designed to explore the positive 257 
feedback and momentum growth during debris flow entrainment process and achieved 258 
remarkable findings those inspired the following studies. The large-scale flume has a straight 259 
concrete channel that 95m in length and 2m in width, inclined at an angle of 31°. As arrays of 260 
electronic sensors had been installed in the flume, the dynamics of the experimental debris-flow 261 
process, e.g., temporal variation of flow depth, were well-documented and recorded, which could 262 
be essential to calibrate the numerical simulation for reproducing this experiment. 263 

This flume experiment has been simulated in our previous study (Han et al., 2022), where a total 264 
of 43,258 fluid particles were used to represent the discretized debris-flow mass in the 265 
experiment. Nevertheless, in order to better explore the velocity details, more fluid particles are 266 
necessary to minimize the uncertainties of particle distribution. In this study, a total of 87,951 267 
fluid particles are generated to discretize the debris-flow mass, which is almost two times more 268 
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than our previous studies. While 486,694 fixed boundary particles are used to represent the flume 269 
structure. As we choose a very small time increment ∆𝑡 = 0.0001𝑠 in the numerical simulation, 270 
the computational consumption might be high. Therefore, a high-performance computational 271 
server, capable of 24 core Intel Xeon Scalable CPU, 2 pieces of NVIDIA Titan V GPU, and 272 
128GB RAM, is employed to execute the numerical computing. Other configurations and values 273 
of key parameters are kept the same as we summarized and listed in the previous study (Han et 274 
al., 2022). 275 

The debris-flow process that 25s in duration takes almost 48 hours to complete the numerical 276 
reproduction. With two-times more particles adopted, the simulation results in Figure 2b show 277 
more details for the subsequent exploring of debris flow velocities. To verify the simulation 278 
results, the observed positions of debris-flow front in the experiment at different times are used 279 
as benchmarks and are compared with the numerical results (as shown in Figure 2c). It is 280 
demonstrated that the simulation results are in a good accordance with the observation in the 281 
experiment. 282 

 283 

Figure 2. (a) The USGS flume experiment by Iverson et al. (2011). Reproduced from ref. 26 284 
with permission from the Journal of Geophysical Research Earth Surface, copyright 2012. (b) 285 
The simulation results of flow velocity. (c) Flow front position at different times. 286 

3.2 Vertical velocity distribution 287 

A cross-section of the flume at the position of 𝑥 = 6.0𝑚 is chosen. We select the cross-section at 288 
this position because behind which a 12cm thick tabular layer of sediment had been covered on 289 
the bottom of the flume in their experiment, within the range of 𝑥 = 6.0𝑚 and 𝑥 = 53.0𝑚. 290 
Combination of basal sliding and internal deformation may arise certainties for exploring 291 
velocity profile. 292 

To get a sufficient velocity data, a cross-section domain is generated using 𝐿 = 0.2𝑚, 293 
which is 5 times the initial particle distance 𝑑𝑝 = 0.04𝑚. As shown in Figure 2c, a single surge 294 
of debris flow is observed in the numerical simulation result, coincident with the experiment 295 
measurement. Due to that the majority of the debris-flow mass passed through this cross-section 296 
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during around 1.0s to 5.0s, we choose four different moments, i.e., 𝑡 = 1.4𝑠, 𝑡 = 1.6𝑠, 297 𝑡 = 2.4𝑠, and 𝑡 = 3.2𝑠, to explore the temporal variation of the vertical velocity distribution, 298 
as shown in Figure 3. In Figure 3a, the total number of the particles and flow depth belonging to 299 
the selected cross-section is plotted as a function of the simulation time. It is shown that at the 300 
four moments, the total number of the particles are all beyond 2000, providing sufficient data to 301 
investigate the velocity distributions. Normally, we sperate the cross-section into 11 parallel 302 
layers through depth, each of which has around 200 particles with varying velocities 𝑣 . 303 
Subsequently, the mean velocities 𝑉  at different vertical position can be calculated and output 304 
(as shown in Figure 3b-3e). 305 

 306 

Figure 3. The result of velocity profile in four time-steps. (a) The total number of the particles 307 
and flow depth over time. (b) The velocity profile at 𝑡 = 1.4𝑠. (c) The velocity profile at 308 𝑡 = 1.6𝑠. (d) The velocity profile at 𝑡 = 2.4𝑠. (e) The velocity profile at 𝑡 = 3.2𝑠. 309 

It is shown that at all the four moments, the flow velocity presents a nonlinear distribution 310 
through depth. The maximum velocity usually appears at the free surface of the debris flow and 311 
gradually reduces through depth. This phenomenon well matches the possible type of velocity 312 
profile as mentioned in Nagl et al. (2020) . As to the temporal variation of debris flow velocity, 313 
the maximum velocity appears at 𝑡  and 𝑡  moments, when the front of debris-flow surge arrives 314 
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and an approximately 6.0m/s velocity is recorded. The velocity is observed gradually decreasing 315 
to around 4.0m/s at the 𝑡  moment as the majority of debris flow passed, while the division 316 
between the top and bottom velocity seems reduced. It may indicate that debris flow transits into 317 
approximately a constant one after this moment, the phenomenon of which has also been 318 
mentioned in Pudasaini et al. (2020). It should be noticed that at 𝑡 = 1.6𝑠, the velocity at the 319 
free surface (𝑧 = 0.35𝑚~0.40𝑚) of the main body is slightly smaller, showing a concave-up 320 
profile form developed in the main body as observed in the real-scale experiment in Nagl et al. 321 
(2020). The observed temporal variation of the vertical distribution of the debris-flow velocity 322 
also highlights the necessities to incorporate a time-dependent parameter when regressing the 323 
debris-flow velocity profile. 324 

4 Regression of instantaneous velocity profile 325 

4.1 Conventional linear velocity profile 326 

As a comparison, we employ the conventional linear law in the previous studies to regress the 327 
velocity profile before we further consider its temporal variation and non-linear features. The 328 
function of linear velocity profile is modified from the original one in Johnson et al. (2012) and 329 
Iverson (2012) and has been used in our previous studies (Han et al., 2018, 2019). The 330 
mathematical expression is 331 𝑉(𝑧) = 𝑉 1 − 𝛼 + 2𝛼 𝑧ℎ  (7) 

where 𝑉(𝑧) denotes the velocity profile as velocity at different vertical positions are known. 𝛼 is 332 
a fitting parameter controlling the amount of shear within the bulk of flow as we mentioned 333 
above. It ranges from 𝛼 = 0 if there is no simple shear to 𝛼 = 1 if there is no basal slip. In 334 
Johnson et al. (2012), a good fit to experimental measurement was suggested with 𝛼 = 0.5. 𝑉 is 335 
the mean velocity of the cross-section at a moment and can be mathematically computed by 336 𝑉 = 1𝑛 𝑣′ (𝑖) (8) 

where 𝑛 is the total number of the particles belonging to the cross-section domain at a moment. 337 

Given this linear velocity profile, the vertical distribution of the velocities in the numerical 338 
results those shown in Figure 3 is regressed. Notice that at each moment, the total number of the 339 
particles and their velocities are varying, resulting in different shapes of velocity profile. 340 
Therefore, we regress the linear velocity profile every 0.08s and obtain different values of the 341 
best fitting parameter 𝛼, as shown in Figure 4a. It is obvious that the best fitting values of 342 
parameter 𝛼 varies from 0.2 to approximately 0.8 during the process, with a mean value of 0.45 343 
which is quite approaching the suggested value by Johnson et al. (2012). Notably, the parameter 344 𝛼 reduces from 𝛼 = 0.8 at the front of debris-flow surge to 𝛼 = 0.2 at the end of surge, 345 
indicating that the main body of the debris flow with internal deformation and shear may evolve 346 
into an approximately constant one with no simple shear. 347 

4.2 Nonlinear velocity profile 348 

The vertical velocity profiles as exhibited in Figure 3 indicate an obvious non-linear velocity 349 
profile, which has been substantiated in the PIV measurements of a flume experiment by Chen et 350 
al. (2017). The nonlinear feature of the velocity profile cannot be well reproduced using the 351 
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above linear velocity profile. In this sense, a nonlinear velocity profile is necessary to illustrate 352 
the complex features of vertical velocity distribution. 353 

In this sub-section, regardless of its temporal variation, we choose a logarithmic-based function 354 
to describe the nonlinear velocity profile. To minimize the deviation of debris flow velocity at 355 
different moments, we use dimensionless and normalized terms for the regression, which is 356 𝑉(𝑧)𝑉 = 1 + 𝑎 ∙ ln(𝑧ℎ) (9) 

where 𝑉(𝑧)/𝑉  is the normalized velocity term ranging in [0,1], denoting the ratios of 357 
velocities at different vertical positions and the maximum velocity 𝑉  in the cross-section. 𝑧/ℎ 358 
is the normalized vertical position, ranging from 𝑧/ℎ = 0.0 at the flume bottom to 𝑧/ℎ = 1.0 at 359 
the free surface of the debris flow. 𝑎 is an empirical-based fitting parameter controlling the 360 
complex shape of velocity profile. 361 

Although sometimes a concave-up profile in the main body has been witnessed, it is still 362 
problematic to obtain a mathematical expression. Therefore, the regressed nonlinear velocity 363 
profile in Eq. (9) ignores concave-up feature and assumes that the maximum velocity appears at 364 
the free surface. To demonstrate the effect, two typical moments at 𝑡 = 1.4𝑠 and 𝑡 = 1.6𝑠 is 365 
used to illustrate the regression, as shown in Figure 4b and 4c. It is shown that two best fitting 366 
values 𝑎 = 0.1828 and 𝑎 = 0.1699 close to each other are obtained, with the satisfactory R-367 
squared values of 𝑅 = 0.939 and 𝑅 = 0.965. We also explored the influence of parameter 𝑎 368 
on the velocity profile, as shown in Figure 4d. It is demonstrated that with an increasing 369 
parameter 𝑎, an approximate plug flow (𝑎 < 0.05) with constant velocity profile evolves into 370 
simple shear flow (𝑎 > 0.25) with internal deformation. 371 
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 372 

Figure 4. (a) Temporal variation of the best fitting parameter 𝛼 of the linear velocity profile. (b) 373 
Velocity profile fitting regression analysis with 𝑡 = 1.4𝑠. (c) Velocity profile fitting regression 374 
analysis with 𝑡 = 1.6𝑠. (d) Analysis of the parameter 𝑎  of the fitting function. 375 

5 Velocity profile considering temporal variation 376 

5.1 Mathematical expression 377 

As shown in Figure 3, the velocity profiles at four different moments have been witnessed 378 
obvious differences in their shape, indicating that the temporal variation of the debris-flow 379 
velocity profile should be considered. The abovementioned nonlinear profile only considers its 380 
instantaneous shape, therefore, should be improved by incorporating its temporal variation. 381 
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For this purpose, we introduce a time-linked parameter 𝑏 in the logarithmic-based velocity 382 
profile in Eq. (10) to describe its temporal variation. The basic form of this temporal-varying, 383 
depth-nonlinear velocity profile is express mathematically as below, 384 𝑉(𝑧)𝑉 = 𝑐 + 𝑎 ∙ ln(𝑧ℎ + 𝑏) (10) 

Note that a constraint parameter 𝑐 is temporally introduced in the above equation, because the 385 
velocity profile should satisfy a basic assumption that maximum velocity 𝑉  should appear at 386 

the free surface 𝑧 = ℎ, where the left term of Eq. (10) equates ( ) = 1.0. Thus, the constraint 387 

parameter 𝑐 could be reduced to 𝑐 = 1 − 𝑎 ∙ ln (1 + 𝑏). In this way, we obtain a dual-parameter 388 
velocity profile that describes its temporal-varying, depth-nonlinear features, 389 𝑉(𝑧)𝑉 = 1 + 𝑎 ∙ ln 𝑧ℎ + 𝑏 − ln(1 + 𝑏)  (11) 

where 𝑎 is the fitting parameter controlling the complex shape of velocity profile. 𝑏 is the time-390 
linked parameter controlling the temporal variation of the velocity-profile shape. 391 

Mathematically, the parameter 𝑏 poses significant influence to the described velocity profile by 392 
Eq. (11). To explore its influence in detail, a sensitivity analysis on the parameter 𝑏 is used, we 393 
keep parameter 𝑎 constant (𝑎 = 0.25 for simple shear flow is used for instance) but different 394 
values of the parameter 𝑏 ranging from 0.1 to 0.8 are chosen for sensitivity analysis. The 395 
resulting velocity profiles are shown in the Figure 5a. It demonstrates that the velocity profile 396 
changes gradually from a nonlinear form to a linear one with the increasing value of the 397 
parameter 𝑏. It should be noticed that the basal velocity of the debris flow increases from 398 0.4𝑉  to 0.8𝑉  when the parameter 𝑏 increase from 0.1 to 0.8. It indicates that a greater 399 
value of the parameter 𝑏 is more adequate for describing the velocity profile of plug flow. 400 

5.2 Time-linked parameter 𝒃 controlling the temporal variation 401 

As we mentioned above, the parameter 𝑏 is the time-linked parameter controlling the temporal 402 
variation of the velocity profile shape, therefore, its values should be highly dependent on the 403 
duration of debris-flow process. In this section, we attempt to explore the link between the value 404 
of the parameter 𝑏 and the time 𝑡, which is supposed as a mathematical function of 𝑏 = 𝑓(𝑡). 405 

In Section 3, we estimated and documented the velocities at different vertical locations and at 406 
different moments in the USGS flume experiment using the proposed 3D-HBP-SPH model. 407 
These time-series data provide supports for investigation the details of 𝑏 = 𝑓(𝑡). Because the 408 
majority of debris-flow mass passed through the chosen cross-section at 𝑥 = 6.0𝑚 within 5 409 
seconds since debris flow released, we separate the duration between 1~5 second into 50 410 
timesteps, with a time increment of 0.1s. A constant value 𝑎 = 0.25 is used in each timestep, 411 
while the best fitting value of the parameter 𝑏 is obtained. Subsequently, the best fitting values of 412 
the parameter 𝑏 in time-series are plotted as a function of time 𝑡, as shown in Figure 5b. It is 413 
obvious that the parameter 𝑏 gradually increases from 𝑏 = 0.05 to 𝑏 = 0.30 with the debris-flow 414 
duration. We use a linear function to regress the relation between 𝑏 and 𝑡. The obtained linear 415 
function shows a satisfactory R-squared value (>0.90), demonstrating a strong linear relation 416 
between 𝑏 and 𝑡. 417 
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However, it should be mentioned that the direct usage of the regressed linear function between 𝑏 418 
and 𝑡 is limited, because debris-flow duration 𝑡 significantly varies case by case, even multiple 419 
surges are often observed in a single debris-flow event. In this sense, debris-flow duration 𝑡 is 420 
not adequate for directly evaluating the parameter 𝑏. Here, we introduce a concept of the 421 
normalized time 𝑡  in an individual surge to address this issue. For the multi-surge debris flow, 422 
each individual surge is separated and then is assumed to follow the triangular hydrograph 423 
(Takaoka et al., 2006) as shown in Figure 5c. The single-surge hydrograph has a rising limb, 424 
falling limb, and tail limb, wherein three major moments are required to reproduce this 425 
hydrograph; 𝑡  represents the moment when debris-flow front arrives the cross-section, 𝑡  426 
represents the debris-flow peak, and 𝑡  represents the moment when debris-flow surge ends. 427 
Using this hydrograph, the proposed normalized time 𝑡  in an individual surge is expressed as 428 𝑡 = 𝑡 − 𝑡𝑡 − 𝑡 , 𝑡 ∈ 𝑡 , 𝑡  (12) 

In Eq. (12), the term of 𝑡 − 𝑡  denotes the duration of the individual debris-flow surge. 429 

 430 

Figure 5. (a) Velocity profile corresponding to different parameter 𝑏. (b) The relationship 431 
between parameter 𝑏 and time. (c) The relationship between parameter 𝑏 and relative time 𝑡’. 432 
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In this way, the time-series data of the best fitting values for the parameter 𝑏 can be represented 433 
as a function of the normalized time 𝑡 , as shown in Figure 5c. In accordance with the triangular 434 
hydrograph we assumed, the variation of the parameter 𝑏 shows two obvious stages divided by 435 
the peak moment (𝑡 = 0.21), as marked in red and blue line in Figure 5c. The red line denotes 436 
the time-to-peak stage (𝑡 ∈ [0, 0.21]), when the best fitting value of the parameter 𝑏 decreases 437 
with 𝑡 . While the blue line demonstrates the time-after-peak stage (𝑡 ∈ [0.21, 1.00]), in 438 
contrast, the best fitting value of the parameter 𝑏 gradually increases with 𝑡 . As indicated in 439 
Figure 5c, linear relation between 𝑏 and 𝑡  at both stages are observed, which are regressed as 440 𝑏 = −0.11𝑡 + 0.086, 𝑡′ < 𝑡0.38𝑡 − 0.013, 𝑡′ ≥ 𝑡  (13)

6 Discussion 441 

As demonstrated in Section 4.2, the proposed velocity profile contains two crucial parameters 𝑎 442 
and 𝑏, which are used to describe the nonlinear characteristics and temporal evolution 443 
characteristics of the vertical velocity distribution of debris flow, respectively. In order to better 444 
understand the proposed model, we discuss the model sensitivities and verify the model in this 445 
section. 446 

6.1 Sensitivity analysis of the parameter 𝒂 and 𝒃 447 

A one-at-a-time sensitivity analysis is performed to assess the impact of input parameters’ 448 
variation on the improved nonlinear model. All the initial parameters are kept constant except the 449 
one chosen for sensitivity analysis. Figure 6 shows the velocity of debris flow as a function of 450 
the chosen parameters 𝑎 and 𝑏 . As shown in Figure 6, the velocity through the depth decreases 451 
with the increase of parameter 𝑎 but increases as a function of the parameter 𝑏. It is indicated 452 
that the parameter 𝑎 shows a more obvious impact compared to 𝑎 because velocities approaching 453 
the bottom ( = 0.1) vary approximately ±80% when the value of 𝑎 varies ±100%, it is almost 454 

3.5 times greater compared to the impact of the parameter 𝑏. Figure 6 also demonstrates that both 455 
two parameters pose more significant influence on the velocities approaching the bottom than the 456 
free surface. 457 
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 458 

Figure 6. Variation of the resulting in velocities at different vertical location as a function of the 459 
parameter 𝑎 and 𝑏. (a) Sensitivity analysis of the parameter 𝑎. (b) Sensitivity analysis of the 460 
parameter 𝑏. 461 

6.2 Verification using velocity measurement data in previous experiments 462 

In order to verify the proposed velocity profile, we use 34 sets of the measured velocity data 463 
from three individual flume experiments as reported by Egashira et al. (1989), Hotta et al. 464 
(1998), and Chen et al. (2017). The velocity profiles of these experiments are regressed using the 465 
proposed model and compared with the existing linear model. 466 

Owing to that the velocity measurement data in three experiments were the mean velocities at the 467 
stage approaching to peak, and the details of their temporal variation are not available. 468 
Therefore, in this section, a constant mean value of the time-link parameter 𝑏 = 0.10 is pre-469 
defined, owing to that the parameter 𝑏 ranges from 0.05 to 0.15 at the stage approaching to peak 470 
as shown in Figure 5c. In order to evaluate the fitting performance of the proposed model, the 471 
residual sum of squares (𝑅𝑆𝑆) is used, which is 472 𝑅𝑆𝑆 = (𝑙 − 𝑣 ) (14) 

where 𝑙  represents the measured velocity value,𝑣  represents the velocity estimated by the 473 
proposed non-linear profile, and 𝑛 denotes the number of measured data points in each set of the 474 
flume experiment. A smaller value of 𝑅𝑆𝑆 indicate a better fitting effect. 475 

Results are listed in detail in Table 1, in which Data 1-8 use the flume experiment data by 476 
Egashira et al. (1989), Data 9-10 by Hotta et al. (1998), while the remaining by Chen et al. 477 
(2017). As a comparison, the previous linear velocity profile as introduced in Eq. (7) is used for 478 
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comparison, with the suggested values of the fitting parameter 𝛼, i.e., 𝛼 = 0.25, 𝛼 = 0.50, and 479 𝛼 = 0.75, are used respectively (Iverson, 2012; Johnson et al., 2012). It is obvious that the 480 
proposed non-linear velocity profile attains better fitting results for 32 sets among all the 34 sets 481 
of experiments (The summary of fitting results for 34 sets of experimental data is included in the 482 
supporting information Figures S1 to S34, among which 4 groups of data are shown in Figure 7). 483 
Results indicate that the proposed velocity profile is more consistent with the experimental data 484 
when describing the debris flow velocity. 485 

Table 1. Fitting results of experimental data from Egashira et al. (1989), Hotta et al. (1998) and 486 
Chen et al. (2017). 487 

Data id 
The proposed non-linear 

velocity profile The previous linear velocity profile 𝑎  𝑅𝑆𝑆 (𝑎)  α 𝑅𝑆𝑆 (α) 𝑅𝑆𝑆 (α = 0.25) 𝑅𝑆𝑆 (α = 0.50) 𝑅𝑆𝑆 (α = 0.75) 

1 0.3897  0.0713  0.4767  0.2838  0.0216  0.0079  0.0248  

2 0.4651  0.2368  0.5270  0.2530  0.0479  0.0102  0.0103  

3 0.4745  0.0863  0.6375  0.3295  0.0433  0.0073  0.0096  

4 0.5148  0.3158  0.6315  0.5065  0.0566  0.0100  0.0056  

5 0.2787  0.1097  0.3046  0.2335  0.0079  0.0184  0.0516  

6 0.4529  0.6525  0.3844  0.5122  0.0506  0.0174  0.0193  

7 0.3869  0.2844  0.3498  0.2299  0.0210  0.0064  0.0208  

8 0.4102  0.1055  0.5022  0.3186  0.0215  0.0070  0.0226  

9 0.4378  0.0134  0.8500  0.3052  0.0870  0.0257  0.0166  

10 0.4639  0.0350  0.7144  0.2753  0.0762  0.0214  0.0114  

11 0.3402  0.0750  0.4902  0.7263  0.0329  0.0170  0.0472  

12 0.4452  0.0534  0.8574  3.4257  0.1412  0.0391  0.0132  

13 0.3624  0.1053  0.5792  1.0299  0.0547  0.0231  0.0423  

14 0.4041  0.3445  0.5418  2.2549  0.0826  0.0356  0.0444  

15 0.5288  0.2206  1.1107  2.1595  0.1821  0.0583  0.0132  

16 0.3332  0.0590  0.5198  0.7172  0.0391  0.0160  0.0423  

17 0.2902  0.0631  0.3680  0.4148  0.0148  0.0174  0.0620  

18 0.3730  0.1994  0.7136  2.3323  0.0977  0.0299  0.0301  

19 0.4209  0.0373  0.6878  0.8234  0.0681  0.0139  0.0157  

20 0.3096  0.0424  0.4275  0.4702  0.0216  0.0103  0.0462  

21 0.3437  0.4079  0.4859  2.5437  0.0793  0.0239  0.0358  

22 0.3599  0.4702  0.6016  3.9330  0.1131  0.0393  0.0382  

23 0.2697  0.0850  0.3281  0.7398  0.0225  0.0268  0.0831  

24 0.3445  0.2249  0.5693  2.7017  0.0823  0.0283  0.0428  

25 0.3285  0.1180  0.5183  1.0082  0.0461  0.0259  0.0547  

26 0.2990  0.1988  0.3739  1.3356  0.0449  0.0296  0.0707  

27 0.3872  0.0514  0.6067  3.4303  0.1571  0.0436  0.0082  

28 0.3315  0.1120  0.5828  2.3820  0.0708  0.0238  0.0433  

29 0.2667  0.0805  0.3140  0.7858  0.0211  0.0256  0.0827  
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30 0.3649  0.1024  0.5753  0.7953  0.0623  0.0373  0.0554  

31 0.2849  0.1200  0.4387  1.2753  0.0439  0.0297  0.0742  

32 0.3282  0.2810  0.4569  1.7309  0.0576  0.0334  0.0623  

33 0.4143  0.0632  0.8013  4.6371  0.1523  0.0429  0.0177  

34 0.3039  0.0451  0.4820  0.6970  0.0354  0.0103  0.0394  

 488 

Figure 7. Comparison of the improved nonlinear distribution model and the linear model. (a) 489 
Experiment data 3. (b) Experiment data 9. (c) Experiment data 19. (d) Experiment data 34. 490 

 491 
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6.3 Suggestion for the rational value of the parameters 492 

Sensitivities of the key parameters in proposed profile has been discussed in section 6.1, while in 493 
this section, the suggested value and the rational range of the key parameters are discussed, 494 
which will be beneficial for practical work. Ideally, a great value range of the parameter may 495 
somewhat arise difficulties for practical work if no criteria is provided. This issue has long been 496 
highlighted, such as the viscosity coefficient in debris-flow rheology, the rational value of which 497 
may vary from a few tens to hundreds of times from measurement (Takahashi, 2009; Han et al., 498 
2017). As to the time-linked parameter 𝑏, the expected value could be calculated by Eq. (13) 499 
under the assumption of triangular hydrograph. For the cases those excluding the consideration 500 
of temporal variation, a rational range of 𝑏 ∈ [0.05, 0.15] as shown in Figure 5c could be 501 
referred to, with a suggested value of 𝑏 = 0.10 for estimating the mean velocity around the peak. 502 

In contrast, it is more complex to discuss the rational range of the parameter 𝑎 because this 503 
parameter is empirical based. In this section, we provide the suggestion for the rational value of 504 
the parameter 𝑎 based on the above-mentioned verification using 34 sets of experiments. As 505 
shown in Figure 8, the median of the best fitting value of the parameter 𝑎 for all 34 sets of the 506 
experiments is 0.3637, while the maximum and the minimum value are 0.5288 and 0.2667, 507 
respectively. Figure 8 also demonstrates that half of the best fitting values of the parameter 𝑎 fall 508 
within the range of [0.3282, 0.4209], which is smaller and better comparing to the parameter 509 𝛼 ∈ [0.4387, 0.6315] in conventional linear velocity profile. As such, a rational range of 510 𝑎 ∈ [0.32, 0.42] could be referred to, with a suggested value of 𝑎 = 0.36 for a benchmark for 511 
calibration. 512 

 513 

Figure 8. Suggestion and comparison for the rational range of the empirical parameter 𝑎 and 𝛼 514 
in the proposed and previous velocity profiles, respectively. 515 

7 Discussion 516 

In this paper, we propose a new approach to explore the temporal-varying and depth-nonlinear 517 
velocity profile of debris flows. The debris-flow process is simulated by our previous 3D-HBP-518 
SPH numerical model and recorded in time-series data in particle form. To interpret and analyse 519 
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the details of debris-flow dynamics, a stratification statistical algorithm that suitable for SPH 520 
particles is proposed, upon which the temporal velocities of debris flow at different mud depths 521 
during the process could be obtained. 522 

The flume experiments by USGS in the previous study is simulated in order to explore the 523 
debris-flow velocity profile. A logarithmic-based nonlinear function is proposed for reproducing 524 
the debris-flow velocity profile in detail. The proposed function contains two key parameters, the 525 
empirical parameter 𝑎 controlling the shape of velocity profile, and the time-linked parameter 𝑏 526 
concerning its temporal evolution. A function connecting the parameter 𝑏 to the normalized time 527 𝑡  is regressed in particular for the debris flows with the assumed triangular hydrograph. 528 

We verify the proposed velocity profile and explore its sensitivity using 34 sets of velocity data 529 
from the three individual flume experiments in previous literatures. Results indicate the rational 530 
range of the values for both parameters, wherein 𝑎 ∈ [0.32, 0.42] and 𝑏 ∈ [0.05, 0.15] are 531 
suggested. The conventional linear velocity profiles summarized in previous studies are used for 532 
comparison. It is shown that the proposed depth-nonlinear and temporal-varying velocity profile 533 
performs better than previous ones. 534 
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Text S1. The 3D-HBP-SPH numerical model of debris flow  

To supplement the 3D-HBP-SPH numerical model of debris flow described in the main text, 
we briefly review the basics of this model here. 

The 3D-HBP-SPH model refers to a numerical model used to describe the dynamic 
process of debris flow. The main feature of this model is that under the Lagrange form, the 
three-dimensional smooth particle hydrodynamics (3D-SPH) calculation framework is 
integrated with the Herschel-Bulkley-Papanastasiou (HBP) rheological model of debris flow. It 
is well known that in the 3D-SPH method, debris flow and other fluids are regarded as 
continuous incompressible fluids, characterized by a group of discrete particles, whose 
behavior can be described by solving the Navier-Stokes equation, which can provide a 
solution to obtain velocity fields in three dimensions. In addition, the HBP rheological model 
can more comprehensively reflect the possible nonlinear rheological characteristics of debris 
flow slurry under large deformation. Moreover, the HBP rheological model has better 
convergence than the Bingham model.  

Therefore, the 3D-HBP-SPH model combining the above two advantages can effectively 
describe the dynamic process of debris flow under various complex conditions, our previous 
study (Han et al., 2019) has shown that the 3D-HBP-SPH model has good applicability in the 
analysis of the dynamic process of debris flow. 

The HBP rheological model is expressed as follows: 

𝝉𝝉𝜶𝜶𝜶𝜶 = 2𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒𝜺𝜺𝜶𝜶𝜶𝜶 (1) 

𝜺𝜺𝜶𝜶𝜶𝜶 =
𝟏𝟏
𝟐𝟐

(
𝝏𝝏𝒗𝒗𝜶𝜶

𝝏𝝏𝒙𝒙𝜶𝜶
+
𝝏𝝏𝒗𝒗𝜶𝜶

𝝏𝝏𝒙𝒙𝜶𝜶
) (2) 

𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒 = 2𝑛𝑛−1𝜇𝜇𝐵𝐵�̇�𝛾𝑛𝑛−1 +
𝜏𝜏𝑦𝑦
2�̇�𝛾

(1 − 𝑒𝑒−𝑚𝑚�̇�𝛾) (3) 

𝜏𝜏𝑦𝑦 = 𝑐𝑐𝑐𝑐ℎ + 𝑃𝑃 tan𝜑𝜑 (4) 

Where, 𝝉𝝉𝜶𝜶𝜶𝜶 is the shear stress tensor, 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒 is the equivalent viscosity coefficient, 𝜺𝜺𝜶𝜶𝜶𝜶 is the 
local strain rate tensor, 𝜇𝜇𝐵𝐵 is the Bingham viscosity coefficient, 𝑚𝑚 and 𝑛𝑛 are the constant and 
power law index controlling the stress growth under different shear rates respectively, 𝜏𝜏𝑦𝑦 is 
the yield stress under the Mohr-Coulomb yield criterion, 𝑐𝑐𝑐𝑐ℎ is the cohesive force of soil, 𝜑𝜑 is 
the Angle of internal friction, 𝑃𝑃 represents normal stress, �̇�𝛾 represents shear strain rate, which 
is defined as: 

�̇�𝛾 =
√2
2
𝜺𝜺𝜶𝜶𝜶𝜶          (5) 

In the Lagrange form, the Navier-Stokes equation composed of momentum 
conservation equation can be expressed as follows: 
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+ 𝒈𝒈𝜶𝜶 

(6) 

Where, 𝑊𝑊𝑖𝑖𝑗𝑗  represents the kernel function; 𝒗𝒗𝒊𝒊𝜶𝜶 and 𝒈𝒈𝜶𝜶 represent particle velocity and 
gravity, respectively.  

Please refer to our previous study (Han et al., 2019) for more details. 

Figures S1 to S34. Summary of fitting results for 34 sets of experimental data 
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Figure S1 to S34. Summary of fitting results for 34 sets of experimental data.   


