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Vision 
 

In the geosciences and across society, Artificial Intelligence and Machine Learning (AI/ML) 

are becoming ubiquitous.  AI/ML tools and methods are enabling advances in understanding the 

Earth and its systems at all scales, informing critical decisions by researchers, organizations, and 
government agencies.  Automated workflows utilizing AI/ML are, according to the National 

Academies in the US, accelerating discovery across all of the sciences. This report is designed to 
support these advances while mitigating potential risks. 

The use of AI/ML brings risks, which require the understanding and application of ethical 

principles, guidelines, and practices to mitigate harm. Moreover, AI/ML algorithms have 
independent agency, which raises profound questions about who is responsible for findings 

generated by these models and how biases in models and/or the underlying data used as inputs 
to models can be anticipated and mitigated. The use of AI/ML in science builds on and requires 

an extension of the principles associated with open science and the responsible use of 

computing technologies.  

AI/ML tools can deliver results and provide information that cannot be achieved by other 

methods. Ethical AI/ML tools are essential for high-quality geoscience and planetary science and 
for addressing and responding to broad societal challenges.  AI/ML applications are now being 

utilized to analyze seismic data, predicting the likelihood of earthquakes; to improve climate and 

weather models, predicting severe weather; analyzing hydrologic data from sensors and 
satellites, predicting flooding and water shortages; and assessing countless other types of 

geologic data.    

With the accelerated rates of change enabled by these technologies, the challenges for the 

geosciences center not just on the ethical responsibilities of researchers, but also on the ethical 

standards for AI/ML tools that are generating knowledge without full human direction.  Ethical 
standards, principles, and practices associated with AI/ML in geoscience research will be 

essential to researchers and the broader society in ensuring that the observation, modeling, and 
forecasting of geo-phenomena (broadly defined) happens in appropriately open and inclusive 

ways.  These applications must consider and mitigate potential adverse impacts on historically 

marginalized communities and society at large.  The challenge is both social and technical. 

AGU members, representing a large part of the global Earth, space, and environmental 

science community, are governed by the AGU Scientific Ethics and Integrity Policy regardless of 
their research methods, including when using or developing AI/ML tools. These ethical principles 

align with and are based on guidance for responsible research provided by National Academies 

and other organizations that include the very role of a scientist in society. The overarching goal of 
these specific AI/ML Ethics Principles and Responsibilities is to supplement this existing ethical 

framework by focusing on considerations that researchers and organizations must address in 
addition to existing requirements. This includes more robust and inclusive research methods, 
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new forms of documentation, new methods for replicability, continuing responsibility for the 

impacts of research, and proactive expectations of professional societies, funders, and other 
institutional actors.  Our vision is for accelerated discovery that anticipates and mitigates risks.  

 

 

“Every new technology has affordances and tendencies that tilt toward . . . benefit and 

harm, but how these techs play out in the public space has more to do with social 
institutions and humanistic education than with the technologies themselves.” 

– Richard Powers, novelist, professor, and winner of the 2006 National Book 
Award for The Echo Maker (quoted in the Champaign News-Gazette, January 26, 

2014, discussing his novel, “Orfeo”) 
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Introduction and Overview 

 
AI/ML are seeing accelerating applications across the Earth, environmental, and space 

sciences. This is thanks to increasingly large and diverse environmental data (both real and 
synthetic) as well as new methods being developed and used by an increasingly connected global 

community. AI/ML and related techniques are particularly powerful in probing large datasets and 

combining diverse datasets at different scales. They can be used to reveal new information, find 

signals in noisy data, and develop actionable predictions and forecasts. However, various types 

of bias and harm may be introduced from the source data, mismatches from data used in model 
design, development, and operation, and algorithms, or uncertainties that are not well 

understood or characterized. 

AI/ML research is increasingly prevalent in the geosciences, as illustrated in the chart below 

tracking AI and ML in AGU fall meeting abstracts.  This is still just 6 percent of abstracts, but the 

rate of change is unlike any other current set of tools and methods.  The progression in the past 
decade is from tens, to hundreds, to thousands of abstracts -- an exponential rate of change.  

This points to an accelerating use of AI/ML technologies and a need for the social systems 

around ethics to co-evolve at a matching rate.   
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 The use of any technology or technique such as AI/ML should be understandable and 

accompanied by documentation on data and tools that allow for the validation and replication of 

any scientific results.  This is a core principle of science and it is complicated in the case of AI/ML 
methods where the inner workings of models are opaque.  Traditionally, the entire method 

should be explained and accessible and that is possible with AI/ML but requires new ways of 

thinking about methods.  The steps in the process can be documented, but not the actual 

computation that results.  Additionally, the methods should address potential biases, risks, and 

harms, especially as related to the promotion of justice and fairness. Research questions should 
avoid unfairness (e.g., in application of models and algorithms).  This is true for any scientific 

research, but more salient with AI/ML.  

This document provides a set of principles and responsibilities for ethical AI/ML and leading 

practices for AI/ML. These principles and responsibilities were developed through community 

input and facilitated discussion in the latter part of 2022, and led by a steering committee. The 
work was guided by the American Geophysical Union (AGU), through a grant from NASA (Grant 

80NSSC22K0734). The AGU is committed to leading in the ethical use of AI/ML in geoscience 

research, implementing this guidance, providing regular updates, and informing and educating 

researchers about them. 

The AI/ML Ethics principles include a Code of Conduct and six modules, each of which is 
structured to provide responsibilities, description and considerations, and support training and 

development of needed skills for researchers and scholarly organizations. Although the focus is 

on AI/ML in the Earth, environmental, and space sciences, many of the principles apply broadly. 

The six modules include four focusing on researchers and applications (the “Principles for 

Researchers”) and two focusing on practices by scholarly organizations including professional 
societies, institutions, funders, and publishers. (“Principles for Scholarly Organizations”).  These 

six modules are: 

Principles for Researchers: 

Module 1: Transparency, Documentating, and Reporting 

Module 2: Intentionality, Interpretability, Explainability, Reproducibility, and Replicability 

Module 3: Risk, Bias, and Effects 

Module 4: Participatory Methods 

Principles for Scholarly Organizations: 

Module 5: Outreach, Training, and Leading Practices 

Module 6: Considerations for Organizations and Institutions, Publishers, Societies, and 
Funders 
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For training or education, the modules can each be used separately, or together as a partial 

(e.g., first four) or full set (with the order flexible). A principal investigator (PI) might cover a series 

of these modules as part of the agenda in research team meetings. They can also be consulted 
on a “just-in-time” basis. 

Each module is organized with the following elements: 

Module Focus 

Module Objectives 

Module Vision 

Module Key Points 

Module Principles 

Module Responsibilities and Leading Practices 

 Module Use Cases and Illustrative Examples 

Instead of a pause in the use of AI/ML, which some have advocated, we support continued 
advances that co-evolve with the principles for ethical and responsible use of the methods.  As a 

result, this is meant to be a living document, and the principles, responsibilities, and other 

elements will be regularly reviewed and updated as the technologies, applications, and 

institutions evolve. 

 

 

“[W]e all know that each generation has its own test, the contemporaneous and current 
stand by which alone it can adequately judge of its own moral achievements and that it 

may not legitimately use a previous and less vigorous test.  The advanced test must 

include that which has already been attained; but if it includes no more, we shall fail to go 
forward, thinking complacently that we have “arrived” when in reality we have not yet 

started.” 

-- Jane Addams, founder of the field of Social work, (quote from Democracy and 

Social Ethics, page 5) 
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Code of Conduct for Researchers 
 

The four modules providing Principles for Researchers articulate an overarching set of 

principles and responsibilities that form a “code of conduct” for researchers using AI/ML in the 

Earth, environmental and space sciences. Consistent with these principles, researchers should: 

1. Ensure compliance with overarching AGU ethical standards and codes of conduct. 

2. Integrate AI/ML ethics throughout the research life cycle, from planning, to modeling, to 
reporting, to anticipating the potential use of AI/ML tools and methods at scale or in 

unexpected ways. 

3. Review data collection methods for potential sources of bias, and implement mitigation 
methods in the models or in other ways as appropriate. 

4. Specify intended use, boundaries, and delimitations on use of AI/ML models 
(documenting design decisions in the model development) and ensure that these 

considerations are known when models are adopted for other uses. 

5. Assess AI/ML model design and other prediction methods for potential sources of bias, 
areas of uncertainty and limitations, failure modes, and implement mitigation methods. 

6. Ensure that the use of AI/ML tools and methods reflects inputs from communities who 
might be potentially impacted by these methods, with particular attention to vulnerable 

and historically underserved populations. 

7. Validate and verify results at every stage of the research process, using leading practices 
appropriate to the applications. 

8. Provide sufficient guidance on the algorithms and training data used so that the findings 
can be replicated or confirmed.  

9. Comply with AI/ML reporting and conduct requirements by Institutional Review Boards 

(IRBs) and other governing bodies. 

10. Comply with AI/ML reporting requirements by conference program committees, 

scholarly journals, and book publishers. 
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Code of Conduct for Scholarly Organizations 
 

The two modules providing Principles for Scholarly Organizations are designed for 

organizations that support research, which includes professional societies, institutions, funders, 

and publishers.  Scholarly organizations should: 

1. Provide guidance and guidelines for researchers, policy makers, and citizens on the 

ethical use of research that utilizes AI/ML methods.  

2. Support awareness and training in the ethical principles and responsibilities. 

3. Provide a means for governance, and review and update processes to ensure compliance 

and relevance.  

4. Support AI/ML communities of practice, multi-stakeholder consortia, public-private 

partnerships and other collective efforts that enable groups to accomplish together what 
they can’t do individually. 

5. Intervene in appropriate ways where AI/ML applications are causing harm in society. 

6. Educate societal decision makers on the value and limitations of AI/ML in research in 
order to enable responsible decisions based on AI/ML findings. 
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Trust in AI/ML? 
 

Trust is at the core of ethics with Artificial Intelligence and Machine Learning (AI/ML). 

Ironically, the challenges involve both too little trust and too much trust. The challenge of too 

little trust centers on what is sometimes termed the “black box” or “grey box” in which models 
and the underlying algorithms are fully or partly opaque, making it hard or impossible to 

determine if, or to what degree, the results can be trusted. The challenge of too much trust 
centers on the growing prevalence of AI/ML tools in everyday life where it is too easily assumed 

that the designers of the technology fully anticipated any potential problems with the 

technology. Given both challenges, we have added a question mark to the title of this section – 
signaling that trust in AI/ML is still an open issue. 

There is an extensive literature on the challenges associated with trust in AI/ML, arguing that 
building trust must be an incremental process (Ferrario, Loi & Viganò, 2020) and that calls for 

transparency are hard to put into practice (Babic, Gerke, Evgeniou & Cohen, 2021).  A contributor 

to this study defines the trustworthiness of AI as the willingness to assume risk by relying on 
and/or believing in the actions of another party (McGovern, 2022). In many ways, the motivation 

for the Code of Conduct and supporting materials is all about trust and the reliance on the work 
of others who are employing AI/ML models.  The use of AI/ML models requires a measure of 

belief in the developers and others associated with the models since the models themselves are, 

in many ways, opaque. Unlike other methods, such as test statistics with multivariate models, 
AI/ML still lacks some of the core tools and established mechanisms for assessing confidence in 

the findings. As a result, trust in AI/ML models and associated methods involves human 
judgment. The Japanese term jidoka was developed in the context of high performance work 

systems to signal the importance of building in human judgment on quality when automating 

tasks. Jidoka has been interpreted as “humans giving wisdom to machines,” which is essential if 
there is to be trust in AI/ML. 

In the social and behavioral sciences, human judgements about trust are understood as 
having multiple dimensions. Trust can be based on reliability, expertise, authenticity, and good 

will. When it comes to AI/ML in research, these elements apply in the following ways: 

• Reliability of AI/ML models is reflected in their ability to deliver consistent results when 

run multiple times. 

• Expertise is primarily vested in the developers of AI/ML models, which means that 

authorship and contributors should be documented. 

• Authenticity is primarily achieved with AI/ML models through transparency, which can 

happen with the sharing of code, the sharing of design decisions, ensuring access to the 

underlying data, training data, and test data, testing with use cases that have known 

outcomes, and even interactive features of a model so that users can do “what if” testing. 
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• Goodwill is hard to establish in the context of AI/ML, but a step in that direction can be 

achieved if potential sources of bias and other model limitations are identified, which will 

signal a measure of goodwill in anticipating potential user concerts. 

A deeper challenge from the social and behavioral sciences is that the four dimensions of 

trust listed above are analytically useful, but do not represent the initial way that human beings 

do or do not trust something. Gigerenzer and other social scientists (Gigerenzer & Gaissmaier, 
2011) have documented the use of heuristics in making rapid judgments about trust, with analytic 

categories only coming later (and having to contend with trust judgments that have already been 
made). That means that AI/ML models will likely encounter immediate judgements that are either 

trusting or distrusting and any progress in tempering misplaced trust or reversing distrust will 

have to overcome these judgements.  

A particular complication is when AI/ML models deliver results that comport with our 

expectations. We need to ask ourselves whether this is validation for our views or if the model 
and our views have biases based on limitations in the data and the scope of our experience. This 

is why trust in AI/ML requires input from multiple perspectives and critical thinking about what 

the models are (and are not) taking into account. 

In science fiction, ubiquitous forms of AI have long been depicted as having agency and, as a 

result, as inviting immediate human judgements on trust. At times these depictions can indicate 
evil intent (H.A.L. in 2001), supportive intent (J.A.R.V.I.S. in Iron Man), industrious intent (WALL-E), 

and even friendship among AI-enabled robots (C-3PO and R2-D2 in Star Wars). Today, 

judgments about these types of agency are beginning to be formed around publicly available AI 
tools for writing (ChatGPT), drawing (DALL-E 2), and various AI-enabled voice assistance (SIRI, 

ALEXA, etc.). Even though these AI tools are just an amalgam of human-created content, 
responses come together in ways that appear original, which then immediately invites human 

judgments on trust. When these types of tools are used in research and incorporated into what 

are presented as original findings, the need to understand just what the AI/ML models are doing 
becomes urgent.  

AI ethics are increasingly a focus for research and scholarly publications.  The National 
Science Foundation in the U.S. has launched a series of projects on foundational AI across 

scientific domains.  In the geosciences this includes the establishment of the AI Institute for 

Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (Mcgovern, 
2022).  As the founders of this AI Institute note, “there is often a lack of trust by environmental 

science decision-makers when it comes to relying on “black box” algorithms, especially in life-or-
death situations… Developing AI that is trustworthy and useful for environmental risk 

management requires fundamental natural, mathematical, and social sciences research on the AI 

needs and perceptions of key users” (Ibid).  Among publishers and societies, the Artificial 
Intelligence Robotics Ethics Society (AIRES) launched The AI Ethics Journal in 2019 and Springer 

launched a new journal, AI and Ethics, in February, 2021.  When AI and Ethics was launched, the 
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lead editor’s note observed, “Disruptive technologies are rarely without some negative 

consequences and risks. The development of electricity transformed almost every aspect of 
human life, but also had its casualties, both economically and culturally. The advent of the 

printing press transformed education across the globe and powered the scientific revolution of 
the 16th and 17th centuries, but was also responsible for the elimination of the livelihoods of 

many craftsmen whose artisan skills were replaced by mass production. So it has been 

throughout history—technology comes with consequences. Artificial intelligence is no exception, 
but may be exceptional in terms of the unprecedented short time frame of change and the 

extent of the potential negative consequences if we get it wrong.” (MacIntyre, Medsker, & 
Moriarty, 2021).  

Ultimately, trust in AI/ML is not something that can be prescribed or guaranteed. Still, there 

are ways to increase the likelihood that AI/ML models, systems, and developers will be perceived 
as trustworthy. Trust in AI/ML is context-dependent and can be influenced by factors across the 

entire AI/ML lifecycle: We need to consider trust from the questions we ask, the data we are 
using, and the models we develop to how the output is communicated, interpreted, and used. 

Journalists have developed Guidelines on reporting on AI that could represent useful guidance 

for developers and users of AI/ML in research and commercial applications. 

Researchers often want a “litmus paper” for our models and work, e.g., an answer to the 

question: Is this good or bad AI/ML? If it’s bad, what do we need to do to make it good? In the 
case of AI/ML trust, there are no guarantees for “making it good” or making people trust your 

work. But there are leading practices for establishing the relationships and understandings that 

may facilitate trust. For example, consider the case of a model that predicts the need to evacuate 
before a hurricane in a given neighborhood. If you live in this neighborhood and get an alert on 

your phone saying you need to evacuate because an AI model says so, would you? Most of us 
would not trust that information alone. But say you get a notification from the National Weather 

Service that suggests the same thing? What about your local TV meteorologist or your 

neighbor? Each of these sources are different but could all rely on an AI model. This shows how 
contextual and relational trust in AI is, as well as how important the principles and values above 

are. 

As is indicated in these materials, building trust in AI/ML systems requires open and 

transparent research (to the extent feasible). We need to communicate and quantify uncertainty 

(again to the extent feasible), be able to explain what models do and do not do, and communicate 
successes and failures. Taking into account multiple perspectives, especially those of potential 

users, in AI/ML research, development, and deployment will increase the likelihood that the 
AI/ML systems are trusted. There are underlying issues of trust in technology and trust in science 

that impact trust-development with AI/ML systems.  

 

https://medium.com/@ben.shneiderman/guidelines-for-journalists-and-editors-about-reporting-on-robots-ai-and-computers-6a69c3b813cd
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Each of the six modules includes guiding principles, supporting information, and a listing of 

responsibilities for researchers and other stakeholders. We highlight these elements here with 
respect to trust and AI/ML both as an introduction to these types of materials and as specific 

guidance with trust and AI/ML. Here are guiding principles, for example, on trust and AI/ML: 

• Foster equity and engaging relationships across stakeholders in all phases of the AI/ML 

research life cycle. 

• Engage in open and direct communications with all stakeholders associated with the 

AI/ML research, including knowns and unknowns, strengths, and limitations. 

• Acknowledge and appreciate the context for the research, including how the context 

impacts the AI/ML research and how the research impacts the context. 

• Engage in interactive co-development to learn and adapt the AI/ML research design and 

methods. 

• Emphasize knowledge transfer among the research team, users, and affected 

communities through education, training, and co-learning. 

Note that some of these principles just involve unitary decisions and actions by the 

researcher, such as engaging in open and direct communication or appreciating the 
context.  Other principles involve interactions, such as fostering equitable relationships or 

engaging in co-development.  Here relationship building is needed, not just unitary action.  This 

additional requirement of collaborative interactions typically requires additional time, skills, and 
resources.  In some cases building and sustaining trust will involve forming communities of 

practice, multi-stakeholder consortia, public private partnerships and other collective efforts that 
can co-evolve with the AI/ML technologies in agile and adaptive ways (Stakeholder Alignment 

Collaborative, 2022). Enacting these principles requires guidance, including the following 

supportive practices for each of the principles: 

• Equitable and engaging relationships: Building trust requires building and maintaining 

equitable relationships among all involved with and with those potentially impacted by 

the research at hand. This relationship building will require a strong emphasis on 

engagement among these groups. 

• Open and direct communication: Trust will also require open and direct communication 

with all stakeholders. This involved communicating the history of the field and the state 

of current efforts. What are the knowns and unknowns? What are the strengths and 

weaknesses? This transparency is key for setting expectations and facilitating strong 
user-AI teams. 

• Acknowledgement and appreciation of context: Context comes up in many different 

ways throughout the research and operational processes. Knowing and appreciating the 
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challenges and opportunities this context will generate and being ready to work with it 

will help make more useful and trusted end products. 

• Iterative and flexible codevelopment over time: Together, the above principles demand 

an iterative and flexible codevelopment process that gives space for changes over time 

for AI to be trusted by end users. 

• Knowledge transfer among the research team, users, affected communities. 

Education, training, and learning from one another are key foundations for establishing 
trust.  

There are specific responsibilities for researchers and others in the research lifecycle when it 

comes to AI/ML. All six of the modules list researcher and other stakeholder responsibilities and 
relevant ones are listed here when it comes to trust in AI/ML: 

• Follow leading practices for AI/ML development and reporting while also being 

transparent about this process and making the technical components explainable and 

FAIR (Findable, Accessible, Interoperable, Reusable). This will involve adhering to the 
ethics code principles and making sure that you are communicating and explaining them 

effectively to all stakeholders.  

• The research team engages stakeholders throughout the entire research process: 

This will involve engaging with communities and end users when defining problems, 

collecting and using data, model design and development, communicating the results and 

uncertainties. This also involves taking an interactive approach to co-development and 
relationship building examining both the data inputs and outputs. 

• Have a multi-way conversation about the context of the problem, the model, and its 

intended applications. This will involve following the CARE principles (Collective Benefit, 

Authority to Control, Responsibility, Ethics) and making sure there is knowledge transfer 
throughout the entire research and stakeholder team. 

• Communicate often and openly within the research team, with end users and 

stakeholders, and with communities who are potentially affected by your research. 

This will require finding shared understandings and values for these conversations. Use 
relatable and approachable examples that can build on past context, history, successes 

and failures of AI. This will involve communicating uncertainties, failure modes, and risks 
associated with the research.  

Again, some of these responsibilities, such as transparency are within the direct control of a 

researcher, while others, such as multi-way conversations, involve engagement with others. Both 
are essential for building trust, but the engagement with others generally involves more time, 

effort, and resources.  The results of these interactions are often insights that can’t be achieved 
any other way. 

https://www.gida-global.org/care
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In summary, trust in AI/ML is a dynamic and interactive process, rather than a one-time event 

or judgment. As researchers and other stakeholders engage in trust-building, the goal is not just 
to seek acceptance of the findings, but to advance the science itself by taking into account all 

dimensions of trust. 
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Principles for Researchers 

Module 1: Transparency, Documentating, and Reporting 
 

Module 1 Focus  

Transparency, documenting, and reporting on uncertainties with AI/ML ethics in research are 

essential. This module describes a key ethical principle for many of the following modules, which 
rely on transparency and full documentation of the work – not just availability of data and code, 

but of who participated in the work and how issues were addressed, including uncertainty and 
bias. 

 

Module 1 Objectives 

• Explore how to proactively pursue transparency when using AI/ML in research. 

• Clarify considerations in the documentation needed with AI/ML models and data. 

 

Module 1 Vision 

Research in AI/ML should be transparent, accessible, and open as possible at every step of 
the project. This includes the documentation of research design and uncertainties, including data 

and model biases. Leading practices around open science should be followed for reporting on 

data collection, data preprocessing, model construction and training (parameter values, etc.), 
model validation, and results. How and to what extent the results and pretrained models can be 

used in downstream applications should be explained.  

In many cases, researchers in AI/ML are using data that have been sourced and archived by 

others, in addition to combining diverse data sets and types. Ensuring the quality of these data 

and following leading community principles such as FAIR, CARE, OCAP, and TRUST, is essential 
(AGU data position statement). AI/ML researchers should ensure that data sources are cited and 

available to others, and they should be transparent regarding which datasets were used and how, 
and alert readers to known biases in data. Any necessary restrictions on access should be 

documented.  

Including subject matter experts (e.g., disciplinary experts in the project science including 
data sources) can improve and build trust in all steps of an AI/ML project.  These can help with 

identifying quality data and data biases, ensuring explainable and science-informed AI/ML 
models, providing post-hoc explanation of blackbox/graybox models, and providing sensitivity 

https://www.nature.com/articles/sdata201618
https://www.gida-global.org/care
https://www.afn.ca/uploads/files/nihbforum/info_and_privacy_doc-ocap.pdf
https://www.nature.com/articles/s41597-020-0486-7
https://www.agu.org/Share-and-Advocate/Share/Policymakers/Position-Statements/Position_Data
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analysis for key design decisions. These experts should be recognized and provided credit in 

project outcomes. 

 

Module 1 Key Points 

Transparency in AI/ML modeling and analysis is both essential and hard to achieve. AI/ML 

models involve algorithms that are a product of training data and other inputs that operate in 

ways that are not entirely visible or knowable, which makes transparency hard to achieve. 
However, there are aspects of AI/ML models that can be described in documentation in ways 

that indicate intent and limitations. These can be done experimentally or qualitatively with 
capabilities that enable users to assess how these models operate with some measure of 

transparency. 

Transparency and documentation primarily bolster trust. Transparency and documentation 
are a necessary (but not always sufficient) precursor to replicability, reproducibility, and 

explainability. Transparency and documentation can also be a cause for concern or mistrust: they 
must be weighed against other factors, such as proprietary rights and privacy. Not all data can or 

should be open due to issues of privacy, proprietary and sovereign data, and related 

matters.  Model results may also disclose proprietary information or cause harm if fully available. 

Available and accessible documentation and disclosure are central to transparency in AI/ML 

work, including the data, training data, models, model validation, protocol and methods, and 
uncertainties. In addition, code attribution and other contributions made by those outside the 

circle of the project (see for example, Module 5 on outreach) are required to facilitate 

transparency and trust. Including or consulting additional experts or other stakeholders on the 
data or code can improve understanding; their roles and contributions should be disclosed.  As a 

practical matter, researchers will need to maintain a record of decisions throughout the research 
process.  They will also need to document interactions with key stakeholders.  This is part of the 

broader principle in research ethics of giving credit to those giving input. Transparency should be 

considered throughout the whole lifecycle of AI/ML applications from conceptual development 
for applications.  

 

Module 1 Principles 

Transparency 

• Indicate how leading AI/ML practices (listed below) are followed in your research or 

where departures from leading practices are needed and why.  

• Attribute and acknowledge all contributions to your research, including data and model 

sources. 
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• Clarify the protections taken in your research around privacy, vulnerable populations, 

and proprietary rights with AI/ML training data, modeling, and reporting of results 

Documentating 

• Document AI/ML decisions and use of any associated model, code or other digital 

products throughout the entire lifecycle of your research. 

• Document the life-cycle stages (e.g., use case and data understanding, feature selection, 

model selection and development (with documentation of model assumptions and 

implication for use case), quality control safeguards, deployment, adoption and 

democratization). 

• Ensure documentation of provenance including sources of and adjustments to data, as 

well as generations, versions, and sources of models and other digital objects. 

• Ensure and indicate clear access to the AI/ML model code to the extent feasible, as well 

as the data used and created. 

Reporting 

• Communicate the limitations and uncertainties in your research. 

• Disseminate the findings to achieve appropriate impacts. 

 

Additional supporting information on Module 1 principles: 

Transparency is an ethical goal; a mark of the trustworthiness of model predictions. It can be 
achieved in different ways, but ideally should follow the leading practices below, and implies 

convenient access to relevant information about a research project. 

• Tradeoffs between transparency and other values must sometimes be made, including 

but not limited to: proprietary rights and privacy. These should be documented. 

• Where there is a high risk of harm to individuals and communities requiring measures of 

security and privacy, it sometimes may not be appropriate to be fully transparent. 

• Transparency implies documenting and communicating the limitations and uncertainties 

inherent in a given research project. Where there are reasons to be opaque, they should 

be acknowledged.  

• Code attribution and acknowledging other contributions made by those outside the circle 

of the project are required to facilitate transparency.  

Aims of transparency:  

• The principal aim of transparency is the establishment of trust in the ends and means of a 

project.  
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• To establish trust, transparency should contribute to the facilitation of explainability, 

interpretability and replicability. Explainability, interpretability and replicability are integral 

aspects of transparency.  

Module 1 Responsibilities and Leading Practices 

• Researchers are responsible for providing transparency with AI/ML research design 

decisions, limitations of training data and models, and other key choices throughout the 

research life cycle, including as indicated in the other modules. 

• Verification and validation methods should be reported; evaluation metrics should be 

documented and explained and errors, and uncertainty should be quantified and 
explained to the extent possible.  

• Input parameters should be reported, including associated levels of confidence. 

• Report potential biases in training data and implications for individuals and groups who 

might be at risk due to these biases. 

• Data and code should be available following leading practice for FAIR data and software 

and cited in any publications or outputs. 

• Publishers should provide guidelines and instructions to ensure transparency following 

leading practices including additional practices for AI/ML work as outlined here. 

• Funders of AI/ML work should require transparency plans and that proposed 

methodology and data management and sharing plans comply with these leading 

practices. 

• The methodology should be explained as plainly and completely as possible, including 

model training, and other steps to inform AI/ML results. 

• Experts and stakeholders should be acknowledged and credited, and their input 

described.  

 

Module 1 Use Cases and Illustrative Examples 

• When AI/ML is utilized in modeling complex weather patterns, indicating the uncertainty 

and assumptions for the model helps experts and non-expert users make informed 
decisions. 

• When datasets follow the FAIR Guiding Principles researchers can better assess 

potential bias of the data for use in their research. 

• Data managed in a repository that supports the CARE Principles supports researchers 

ensuring proper usage of the data according to the indigenous rights owners of the data. 
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• In a literature review of provenance, explainable AI (XAI), and trustworthy AI (TAI), the co-

authors are critical of post-hoc documentation and call for rigorous tracking of 

provenance to help accomplish explainability in AI-based systems (Kale, Nguyen, Harris, 
Li, Zhang, Ma, 2023). 

• In a recent Australian study, the authors offer an example of how they explain their 

transparency: “machine learning is an important approach to synthesise the increasing 

complexity and sheer volume of Earth science data, and is now widely used in prediction 
across many scientific disciplines. In this context, we have built a machine learning 

pipeline, called Uncover-ML, for both supervised and unsupervised learning, prediction 

and classification. The Uncover-ML pipeline was developed from a partnership between 
CSIRO and Geoscience Australia, and is largely built around the Python scikit-learn 

machine learning libraries. In this paper, we briefly describe the architecture and 
components of Uncover-ML for feature extraction, data scaling, sample selection, 

predictive mapping, estimating model performance, model optimisation and estimating 

model uncertainties. Links to download the source code and information on how to 
implement the algorithms are also provided.” (Wilford et al., 2020). 

• To support reporting and documentation of AI/ML models in a standard format, 

practitioners and researchers developed model cards that make information about 

AI/ML models accessible whenever possible. The suggested model card template 
includes prompts to report model details, intended use, factors that affect model 

performance, metrics for evaluation and decision, training and evaluation data used, 
quantitative analyses, ethical considerations, caveats, and recommendations on model 

use (Mitchell et al., 2018). Model cards make the technical and other relevant information 

accessible for various stakeholders to better understand the model and make informed 
decisions. The practice has been adopted by AI/ML practitioners when sharing models 

online (e.g., Hugging Face).   
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Module 2: Intentionality, Interpretability, Explainability, 

Reproducibility, and Replicability 
 

Module 2 Focus  

Ensuring Intentionality, Interpretability, Explainability, Reproducibility, and Replicability 

(sometimes termed “illities”) when employing AI/ML in research. 

 

Module 2 Objectives 

• Understand the key concepts related to replicability and explainability. 

• Build skills based on the leading practices on how to ensure an AI/ML system is robust, 

explainable, and replicable. 

 

Module 2 Vision 

AI/ML is undergoing rapid development, with new, readily-available algorithms proliferating. 
In many cases, statistical qualities and uncertainties will not be fully known. As a result, we 

maintain a principled approach, enabling understanding and testing of algorithms, as a 

foundation for the evolution of AI/ML in the geosciences. Scientific questions will ground the 
justification of the method choice and application. We define this as an approach that provides 

clear model specification incorporating domain knowledge and keeping hypothesis-driven 
motivation at the forefront. We prioritize an open science approach to enable interpretability and 

replicability, and reproducibility where possible. We encourage the application and development 

of methodologies for model explainability of AI/ML models. 

 

Module 2 Key Points  

First, it is important to specify and justify the method chosen, and when possible, include the 

alternatives considered. Model specification and documentation are needed, along with evidence 

that the model is operating as intended, and that it is applicable to the data and scientific 
questions to which it is applied. 

For a model to be used, it should be both reproducible and replicable. In general, this implies 
that results can be obtained again both by the group who first developed the model and by 

independent researchers adopting it. Providing a verification dataset for the model alongside the 

expected output can be used to ensure the replicability of results. Documentation of the steps in 
model development and testing is also important both for replicability and explainability. 
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In some cases, pre-registration of hypotheses is helpful as an indication of explainability. 

However, many AI/ML applications involve exploratory discovery science in which pre-
registration of hypotheses is not possible. Even in these cases, some specification and 

documentation of research intent are important so that unexpected or negative findings are 
recognized and reported as such.  Then, further analysis can be conducted to determine the 

degree to which the findings are indeed robust and trustworthy. 

 

Module 2 Principles 

Intentionality 

• Indicate the intent of AI/ML applications and steps to purposefully address ethical 

concerns, even if research hypotheses are not specified in exploratory applications. 

Interpretability 

• Always provide the interpretation of the model and findings, including areas of 

uncertainty or limitations. 

Explainability 

• Ensure that the results can be understood by expert and non-expert users of the 

research. 

Reproducibility 

• Take necessary measures to ensure that results can be reproduced if the same data 

and approach are taken. 

Replicability 

• Provide considerations for researchers seeking to replicate the results with 

comparable data. 

 

Additional supporting information on Module 2 principles: 

Aim towards incorporating the following elements in our thinking when developing and deploying 
AI/ML models. 

• Intentionality: what is the intended research question that we want to address? Taking 

purposeful steps to address the ethical concerns of AI/ML development and applications. 

o Is this research undertaken with a testable hypothesis in mind? 

o Are the results intended to inform decision making? If so, how well can you use 

the results to inform decision making?  
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o How well have the results addressed the research question or the original 

hypothesis? 

o Have we taken the time to address aspects of explainability and interpretability at 

all stages of the ethical data science lifecycle?. 

• Interpretability: How the data connects to and influences the 

output/results/conclusions. Generated from the implementation of the model itself, not 
from post hoc exploration. 

o What are the limitations of our data? How does the type of our data (spatial, 
network based, temporal, observational, experimental …) influence our model 

choices? 

o How well does the model provide intuition into behavior, physics laws, etc.? 

o Is our model well specified? Why was this model specification chosen? 

o Do we understand how the model is regressing or classifying the data? 

o Does our training set represent a ground truth or is it biasing our results? 

o Can we quantify the uncertainty in the model? 

• Explainability: High-level, simplified understanding of the data, model, and results, able 

to be conveyed through verbal/written descriptions. 

o Have we explored the latent space of what our model has actually learned? 

o Have we clarified our methods in such a way that other scientists understand 

their application? 

o How have we made our results understandable to experts and/or non-experts? 

• Reproducibility and Replicability: The ability for an independent investigator to repeat 

methods and results. 

o If someone uses the same or similar data, will they reach the same or similar 
conclusion? Does this hold for different models? 

o Have we adhered to open science practices? Are data, metadata, and code made 
appropriately accessible? 

 

 

 

Module 2 Responsibilities and Leading Practices 
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• Researchers employing AI and ML techniques in their research strive to ensure that 

their research is explainable and reproducible. This involves both understanding, 

documenting, and communicating the nature of the data, models, and any assumptions 
or biases inherent in selecting the data and methodology.  

• Researchers, intentionally and from the start, design an explainable model. This 

includes defining the research question and/or testable hypotheses and developing a 

model that will provide insight into the nature of the relationship between the model 
input and output (i.e. not simply throw data at a problem and accept the model output as 

truth). 

• Researchers provide documentation of both low-level explanations for a scientific 

audience and high-level explanations for non-technical audiences. Low-level 
explanations define the model and its assumptions and parameters, specify how the 

model uses the data to reach its result/conclusion, and describe how changing the data 

(may) affect the model output. High-level explanations describe the data, the model, the 
results, and known assumptions and biases. 

• Researchers test their models for robustness against randomness in both parameter 

initialization and training methodology and verify that their results hold regardless of 
initial parameter values and methodology. 

• Researchers provide uncertainty quantification for their models. This includes 

exploring both the efficacy of the model and the robustness of the results according to 

the state of the art. Readers should be able to understand the meaning of the model 
confidence. 

• Researchers should adhere to open science practices, ensuring that their training data 

and code are publicly available to the highest possible extent.  Researchers should 

comply with open science requirements of journals and funders.   

• Researchers and Educators lean on expertise in other fields. Research teams are cross-

disciplinary, including expertise in computer science and statistics. Ex: Graduate level 
training in statistics and/or computer science is routinely incorporated into the 

Geology/Geophysics degree path. 

 

Module 2 Use Cases/Illustrative Examples: 

• Research on National Weather Service Forecasters' perceptions of using AI/ML for 

forecasting severe weather explored what the concepts of 'explainability' and 
'interpretability' meant to them as potential end-users (Cains et al., 2022; McGovern et al., 

2022).  This work revealed that Forecasters connected AI explainability with how 

understandable the model was for them and those they served, while AI interpretability 
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was associated with the need for good visualizations. This case study highlights the need 

to be clear with what is and is not addressed by our scientific concepts, as well as to 
engage potential users to better understand how these concepts may or may not 

translate into practice. 

• AI/ML model reproducibility is challenging particularly when the model is developed with 

large datasets. In 2018, a survey found that only ~10% of accepted papers by top AI/ML 
conferences share both code and data used to develop the model (Hutson, 2018). This 

caused concern about the irreproducible outcome. Since then, peer-reviewed journals 
and conferences have been developing checklists to guide researchers to improve the 

reproducibility of AI/ML models. More often, research communities started hackathon-

style activities to use a crowd-sourcing format to ensure AI/ML models can be 
reproduced (e.g., reproducibility challenges). These activities not only can be used to 

investigate published models/research but can also help improve leading practices to 
ensure model reproducibility (Pineau, J., P. Vincent-Lamarre, K. Sinha, V. Larivière, A. 

Beygelzimer, F. d'Alché-Buc & H. Larochelle, 2021). 

• When developing the report and documentation of an AI/ML model, it’s as important to 

explain why the model performs poorly in certain conditions as to explain the overall 
model performance. Explanation of the failed case studies can help users to calibrate 

their expectations of the model. Rao et al. (2019) used cross-validation and statistical 

analysis to demonstrate why their ML model, which was designed to fuse station 
observations and satellite products for climate monitoring, has larger uncertainty in 

certain geographical regions. The analysis demonstrates the shift between training data 
and evaluation data due to different local weather conditions. 

• Machine learning can help scientists work with large-scale data. The Cassini mission, for 

example, collected over 600 gigabytes of scientific data from 2004 to 2017. This 

represents a surge of data on the Saturn system. In comparison, the previous mission to 
Saturn, Voyager over 20 years earlier, had onboard a ~70 kB 8-track storage ability. 

Unlike many applications of machine learning, a primary use in planetary space physics 

applications is to infer behavior about the system itself. This raises three concerns: first, 
the performance of the machine learning model, second, the need for interpretable 

applications to answer scientific questions, and third, how characteristics of spacecraft 
data change these applications. In comparison to these concerns, uses of “black box” or 

un-interpretable machine learning methods tend toward evaluations of performance only 

either ignoring the underlying physical process or, less often, providing misleading 
explanations for it. The present work uses Cassini data as a case study as these data are 

similar to space physics and planetary missions at Earth and other solar system objects. 
We build off a previous effort applying a semi-supervised physics-based classification of 

plasma instabilities in Saturn's magnetic environment, or magnetosphere. We then use 

this previous effort in comparison to other machine learning classifiers with varying data 
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size access, and physical information access. We show that incorporating knowledge of 

these orbiting spacecraft data characteristics improves the performance and 
interpretability of machine learning methods, which is essential for deriving scientific 

meaning. Building on these findings, we present a framework on incorporating physics 
knowledge into machine learning problems targeting semi-supervised classification for 

space physics data in planetary environments. These findings present a path forward for 

incorporating physical knowledge into space physics and planetary mission data analyses 
for scientific discovery. (Azari, Lockhart, Liemohn, Jia, 2020) 
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Module 3: Risk, Bias, and Effects 
 

Module 3 Focus  

Identifying model and design risks, bias, and intended or unintended consequences with 

AI/ML in research. 

 

Module 3 Objectives 

• Appreciate the key sources of risk and bias in AI/ML applications. 

• Build capability in managing risk and bias in AI/ML applications while maximizing 

beneficial effects. 

 

Module 3 Vision 

AI/ML can augment and effect the ways we generate knowledge and make decisions across 
many scientific fields. This module elucidates the model and design biases and risks as they 

relate to AI/ML use by the Earth, environmental, and space science research communities.  We 

offer principles to identify and address those biases and risks. These principles also include the 
ability to communicate the capacity of AI/ML predictions to promote transformative justice, 

fairness, and the flourishing of life and the sciences. Through a better understanding of risks and 
biases, how they come about, and how to identify them, researchers, communities and 

organizations will be better able to manage and respond to adverse outcomes while maximizing 

public benefit and effect. 

 

Module 3 Key Points 

All AI/ML models and research design involve bias.  Mitigating AI/ML bias, risk, and harm 

enables researchers and organizations to promote impactful, transformative, and beneficial 

research. Multiple research teams and organizations may be responsible for anticipating 
potential disparities in the application of models and algorithms, as well as for assessing early 

and continuing results for negative impacts. The mitigation work is both proactive and 
responsive. 

The responsibility for managing bias, risk and harm lies with individuals and groups involved 

throughout the AI/ML process, such as researchers, users of the models, and funders of the 
research. This means responsibility is shared but also demands accountability from all those 

involved in the process. Harm in AI/ML applications can be deeply embedded in the data itself 
(for example, arising from training data that doesn’t reflect the diversity of society). Mechanisms 

to provide voice to vulnerable populations who might be impacted by the application of AI/ML in 
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research are especially important. These mechanisms could include advisory committees, 

community forums, and ongoing multi-stakeholder consortia or public-private partnerships 
associated with research initiatives. Funders are encouraged to build voice and management 

mechanisms into the budgets for funded AI/ML research.  

Investments in tools and methods to identify bias in geoscience data are encouraged. 

Leadership from scientific societies could be embodied in the appointment of a chief AI/ML risk 

officer serving on a broader ethics committee. This could also take the form of resources 
providing the needed consultation and advice to society members and others as appropriate. A 

consortium of relevant professional societies could also provide the needed set of shared 
resources in this domain. 

 

Module 3 Principles 

Risk 

• Identify risks of AI/ML applications for relevant stakeholders, with particular attention 

to vulnerable communities and fragile systems. 

Bias 

• Identify and document potential sources of bias in problem identification, training data, 

algorithms, outputs, and other aspects of AI/ML applications. 

Effects 

• Identify potential harms and work to advance the public good as appropriate with 

AI/ML applications. 

 

Additional supporting information on Module 3 principles: 

To minimize the risk of AI/ML systems causing harm, intentionally or unintentionally, and 
increase positive effects AI/ML developers should: 

• Acknowledge that Earth, humanity, and society are linked. As such, AI/ML researchers 

should give comprehensive and thorough evaluations of the AI/ML systems and their 
impacts. 

• Ensure that the public good is the central concern throughout the development of AI/ML 

systems. 

• Work to address historic injustices and ensure such injustices do not continue to 

propagate further because of the AI/ML models.  

• Ensure the AI/ML system lifecycle intentionally includes the involvement of people and 

communities that could benefit or be harmed.   
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• Pay particular attention to AI systems that become integrated into the infrastructure of 

society. 

• Ensure that the AI models are developed to promote sustainable development, including 

Earth and its environment. 

• Follow overarching guidelines that govern research activities as discussed within AGU’s 

general AGU Scientific Ethics Policies and Integrity Policy. 

 

Module 3 Responsibilities and Leading Practices 

• Researchers will ensure that AI/ML systems developed for Earth, space and related 

sciences avoid harm throughout the AI/ML lifecycle by: 

o Initial conception of the research acknowledges risk and bias as part of the 

design. 

o Model development involves an explicit step to consider bias and risk associated 

with the model. 

o Training data is assessed for risk and bias. 

o Taking responsibility for AI/ML systems and datasets and ensure that there is a 

valid point of contact for all deployed and shared models and datasets 

o Ensuring that models and data are transparent to relevant parties who will use, or 

otherwise be affected by, the AI/ML system, including documenting known 

biases in the data and model and expected uses of the model (e.g., datasheets, 
model cards, or other avenues of sharing information which are publicly 

accessible) 

o Ensuring that AI/ML models are regularly assessed for: 

▪ Biases stemming from computational, human, or systemic causes 

▪ Fair and transparent outputs 

▪ Non-discriminatory practices 

▪ Privacy protection of individuals 

o Ensuring that if an AI/ML model or dataset is found to be actively causing harm 

after deployment, adjusting or removing (retracting) the result and publicly 

notifying users that the system is deprecated.  

• Earth, environmental, and space scientists responsible for developing AI/ML systems will 

ensure that these systems avoid harm by ensuring that: 



 

 AI/ML Ethics in the Geosciences 

32 

o The development team is diverse, including but not limited to members of the 

communities where the model will be deployed or otherwise impact. 

o Training data, testing data, and all other data critical to the development or 

assessment of the model is thoroughly documented and vetted for potential 
biases including computational, human, and systemic biases. 

o Potential risks and benefits of AI/ML are identified, and a plan is developed to 

address the risks. 

o Relevant parties are clearly identified, and the risks and mitigation plan are 

shared publicly.  

 

Module 3 Use Cases/Illustrative Examples: 

• In a recent study AI/Ml was used for lithology quantification from rock chips analysis with 

illustrative descriptions of the detection algorithm (Wang, et. al., 2022). 

• Given the large volumes of geoscience data that might be utilized with AI/ML algorithms, 

“containers” represent a way to make code portable across environments (Caraballo-
Vega, et al., 2022). 

• The bias in AI/ML models can be caused by unintentional factors like low-quality or 

unrepresentative training data. McGovern, et al. (2022) demonstrated some Earth and 

environmental science case studies. One example is the lack of geo-diversity of the 
existing sensor networks that are often used as training data for AI/ML model 

development and evaluation. Due to the requirement of physical accessibility, existing 
sensor networks such as the U.S. national radar network has coverage gaps in frontline 

communities. The demographic coverage gap should be addressed by strategically 

placing additional sensors to increase the geo-diversity of data used for training and 
evaluation datasets. 

• Potential risk can also be caused by adversarial attacks by ill-intended actors by adding 

noise to data used by operational AI/ML models or sending faulty information. This can 
be addressed by assessing and enhancing model robustness. A recent case study of the 

robustness of a deep learning model that is designed to predict the category of tropical 

cyclones using satellite images revealed that noise added to satellite images can cause 
notable underestimation of the cyclone strength. This issue can be addressed by 

modifying the model training and development strategy to improve the model's 
robustness. 

https://www.star.nesdis.noaa.gov/star/documents/seminardocs/2018/20181217_Wendoloski.pdf
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Module 4: Participatory Methods  
 

Module 4 Focus  

Inclusive research design and conduct with AI/ML – ensuring a voice for diverse 

communities, domain expertise, and context in cases where AI/ML research impacts or is 
relevant to specific communities (or might reasonably be expected to be).   

 

Module 4 Objectives 

• Appreciate the value and impact of participatory methods in AI/ML research. 

• Identify ways to ensure domain expertise and integration across relevant fields and 

disciplines. 

 

Module 4 Vision 

Ensuring participatory design as the leading practice of AI/ML research and applications to 

ensure the development is inclusive of users and affected groups from the beginning. (“Nothing 

about us without us”).  Even where there are not directly impacted communities, such as a study 
of seismic signals on the moon, there may be interested parties whose voices should be included, 

such as others conducting research on the moon. 

 

Module 4 Key Points 

A key guiding principle comes from the disability movement: “Nothing about us without us.” 
No research should be conducted that impacts individuals and groups in society without their 

consent. Research that does so, or might be expected to do so, requires the formation of 
advisory groups, the utilization of stakeholder and rightsholder mapping surveys or focus groups, 

the democratic selection of community representatives, and other mechanisms for input. 

A key underlying assumption is that diverse stakeholders have both common and competing 
interests.  As a result, participatory approaches must simultaneously identify and advance 

common interests, as well as identifying and addressing competing interests.  This will involve 
both aspirational dialogue and hard conversations.  For the hard conversations it may be helpful 

to remind all to be “hard on the issues, not each other.” 

One challenge is that awareness of possible impacts may not always be clear at the 
beginning of a project. In this case, these principles should be applied as soon as possible after 

such awareness and may affect release of results or context around them, or even further 
research. In turn, AI/ML research projects should be continually evaluated for possible impacts. 
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Another challenge is determining how much involvement is sufficient.  Just doing 

stakeholder engagement in the form of communications or meetings with an agenda determined 
by the researchers is not sufficient.  Forms of stakeholder alignment are needed where there is 

sufficient dialogue so that parties feel heard and, where appropriate, adjustments have been 
made (or the reasons for not making adjustments are at least understood). 

A key practice to ensure impacted community perspectives are included is the co-production 

of knowledge. This is valuable with stakeholders and essential with what are termed 
“rightsholders” such as First Nations (indigenous peoples), and others with land claims such as 

the Inuit and Métis peoples. This input is important in the planning and conduct of research, as 
well as on a continuing basis after the research is complete to address ongoing implications of 

the research.  The recognition of rightsholders as well as stakeholders helps to counteract the 

negative connotations of the term “stakeholder,” which has literal roots in placing a stake in the 
ground to claim land that was already occupied. 

Open science principles are key, even if not all data can or should be open (e.g., asking 
researchers to publish data, NASA Information Policy NASA SPD-41a). The FAIR and CARE 

principles (data that is Findable, Accessible, Interoperable, and Reusable or FAIR and, with 

respect to indigenous and other vulnerable populations, approaches that advance Collective 
benefit, Authority to control, Responsibility, and Ethics, or CARE) are relevant. Note, however, 

that not all aspects of CARE or FAIR principles can be fully applied in all AI/ML research.  

Extra resources are needed for participatory practices. Institutional Review Boards (IRBs) 

need to be informed about participatory methods, which may involve a balancing of benefits and 

risks associated with the use of AI/ML (not just the elimination of risk). Note that participatory 
methods vary with scale, from AI/ML applications that are local, regional, national, and 

international. 

 

Module 4 Principles 

Participatory Methods:  

• Ensure voluntary and continuing consent from individuals or communities who may be 

impacted by AI/ML research. 

• Respect the autonomy of associated stakeholders and ensure representation in 

decision-making. 

• Research teams should be designed with inclusion and diversity in mind at all stages, 

from conceptual design, data collection, method development, analysis, publication, and 

deployment. 

• Research teams should intentionally search for gaps in representation to ensure all 

end-users and impacted groups are represented.  

https://science.nasa.gov/science-red/s3fs-public/atoms/files/SMD-information-policy-SPD-41a.pdf
https://www.nature.com/articles/sdata201618
https://www.gida-global.org/care
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• Diversity is part of domain expertise, reflected in the team design, community 

participation, project design, and data collection and analysis. 

 

Additional supporting information on Module 4 principles: 

• “No” research impacting a group without their continuous consent maintaining their 

autonomy and representation at decision-making level. 

• Research teams should be designed with inclusion and diversity in mind at all stages, 

from conceptual design, data collection, method development, analysis, publication, and 

deployment. 

o Diversity is part of the team design, community participation, project design, and 

data collection and analysis. 

o Who gets a seat at the table and who is included in the conversations about 

compute, education, research/development/deployment participation points to 

the importance of public engagement in research design. 

• Research teams should intentionally search for gaps in community representation to 

ensure all end-users and impacted groups are represented.  

 

Module 4 Responsibilities and Leading Practices 

Leading Practices: 

• Knowledge co-production: engage stakeholders including affected groups in all research 

stages from designing questions to validation and deployment. Relevant stakeholder 
community groups who can lead and engage stakeholders should be identified which can 

continue to engage the stakeholder groups after the research team may have broken up. 

• Enact an actionable framework that enables users and affected groups to provide 

feedback regarding potential risks and harms of the research input at all stages. 

• During the research design phase, implementing a similar process like Institutional 

Review Board (IRB) process to ensure the design is inclusive and potential harms are 
mitigated against. 

• Regarding data collection and usage, the research team should follow the leading 

practice in data sovereignty and governance (i.e., CARE principles) 

• Maintain a transparent development and reporting framework to allow stakeholders 

including potentially affected groups to monitor the process and provide real time 
feedback. 
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• Data ownership and usage rights: during data reuse research teams should also engage 

the data owner and affected communities. 

• During the development process, choose the most appropriate AI methods for the 

applications. If the general AI model does not fit the purpose, the research team should 

actively work with domain experts and end users to develop new AI models (e.g., Physics-
aware AI, Geo-statistics-aware AI). 

Responsibilities: 

• Throughout the lifecycle, various actors/participants have inclusivity responsibilities. 

o Developer/researcher:  

▪ Be alert to and protect against bias and exclusion.  

▪ Actively question which groups are not included and should be. 

o Data owners and stewards: to ensure regular permission and consent from 

impacted groups and maintain a record of interactions. 

o Professional societies: providing and implementing guidelines that promote 
participatory design in the research and society journals.  

o Auditor/credentialing organization (objective third party): review and audit 
research framework to minimize and mitigate potential risk of the research. 

o Users: engage in the research development process to provide real time 

feedback to the research team. 

o Procurer/funder: require inclusive development and regular reporting during the 

research process. 

 

Module 4 Use Cases/Illustrative Examples 

• The AI/ML Stakeholder “Pulse” Survey data presented in Appendix B is an example of 

broader outreach in developing this report.  The process involved first identifying the 
relevant stakeholder categories associated with AI/ML in the geosciences (Researcher 

who uses AI/ML in research, Researcher who does not use AI/ML in research, but is 
knowledgeable about the technologies, Researcher who does not use AI/ML in research 

& is not knowledgeable about the technologies, Research Computing and Data 

Professional, Student (graduate or undergraduate), Administrator/leader in university, 
Administrator/leader in government, Administrator/leader in government contractor, 

Administrator/leader in commercial organization, Administrator/leader in not-for-profit 
organization, and clothes.  Then, the process involved identifying the interests that were 

“at stake” such as establishing ethical standards for AI/ML, educating researchers on 
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these standards, ensuring compliance with the standards, and about a dozen others.  A 

representative sample of thought leaders on AI/ML in the geosciences were then 
surveyed on the importance and difficulty of advancing the various interests, along with 

demographic questions and open-ended qualitative questions.  The results from the 
survey were shared with participants in the workshops that contributed to the 

development of this report, which both brought more voices into the process and 

informed the results.   

• Crowd the Tap is a citizen science project, the first U.S. Environmental Protection Agency 

(EPA)-funded project that promotes access to safe drinking water by empowering 

individuals and groups to investigate the piping infrastructure that delivers drinking 

water to their homes. (https://ethos.academicdatascience.org/case-studies/) 

• It’s critical to engage with users of AI/ML model-based applications across the whole 

lifecycle of model development. A recent initiative that uses AI/ML model to map the 

urban heat island effect in select cities in U.S. involved citizen scientists to collect training 

and evaluation data using mobile sensors. The data collection campaigns are led by local 
organizations and directly involve a large group of local volunteers to collect data for 

geographical areas that are decided through close consultation with local organizations. 
The citizen science approach also involves volunteer training and public outreach on how 

the data will be used and what the final output of the model will be. 

 
  

https://ethos.academicdatascience.org/case-studies/
https://www.capastrategies.com/heat-watch
https://www.capastrategies.com/heat-watch
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Principles for Scholarly Organizations  
 

Module 5: Outreach, Training, and Leading Practices 
 

Module 5 Focus  

Ensure scholarly organizations enable researchers, practitioners, funders, and the broader 
AI/ML community to have awareness, understanding, and access to training for ethical use of 

AI/ML. 

 

Module 5 Objectives 

• Ensuring that early career, mid-career and senior researchers employing AI/ML methods 

have the knowledge, skills and expertise to mitigate bias, risk, and harm. 

• Building awareness and capability to include in the research process representatives 

from vulnerable populations and others at risk from the use of AI/ML methods. 

 

Module 5 Vision 

The implementation of ethical use of AI/ML in the Earth, environmental, and space sciences 

requires an awareness of the concepts, an understanding of the practices, and access to training 

resources. AI/ML work requires the full participation of the broader community of practice, 
including ethicists and humanists as well as the public, to ensure contributions are diverse, 

inclusive and comprehensive. To realize this vision, practitioners require the skills and knowledge 
to implement ethical AI/ML and evaluate their efforts from an ethical AI/ML standpoint.  

 

Module 5 Key Points 

Ethical AI/ML practices are essential for high-quality science and positive public impact. 

Increasing awareness of ethical AI/ML and advocating for the inclusion of ethical practices 
inclusion in all AI/ML work must be a central tenet of any work by the data science community.  

Adoption of ethical AI/ML practices requires a deliberate action on behalf of the researchers 

and others relevant to the research. Training and access to resources enables the development 
of these essential skills. Professional societies and others must commit to providing access to 

resources and training and advocating for researchers’ time to learn these practices and develop 
curricula to train the next generation. 
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Resources are not “one size fits all;” a broad, inclusive community with a wide variety of 

activities requires a commensurate breadth of training and educational materials. A modular 
approach to training materials is recommended so that materials can be combined in multiple 

ways. The training needs vary across early-career, mid-career and more senior researchers, with 
the time to participate in training and development being a key factor. A “leader as teacher” 

model is recommended, where Principal Investigators (PIs) and mentors can bring modular 

material to research teams on a timely basis. Pre-planning and post-assessment “pre-mortems” 
and post-mortems are recommended to anticipate what might go wrong in the planning of 

research involving AI/ML and subsequently to learn from outcomes. 

 

Module 5 Principles 

Training 

• Provide training, resources, and support for AI/ML ethics to all researchers, institutional 

leaders and other key stakeholders. 

• Include the principles, importance, and benefits to both science and humanity in all 

training and resources for AI/ML ethics.  

Outreach 

• Make available the resources and expertise to support training and resources for 

AI/ML ethics to all researchers and stakeholders through scientific societies, institutions, 
and other organizations. 

• Educate societal decision makers on the value and limitations of AI/ML in research in 

order to enable responsible decisions based on AI/ML findings. 

Leading Practices 

• Manage and update training and resources for AI/ML ethics to ensure the current state 

of practice. 

• Support AI/ML communities of practice, multi-stakeholder consortia, public-private 

partnerships and other collective efforts that enable groups to accomplish together 

what they can’t do individually with respect to AI/ML. 

• Be prepared to intervene in appropriate ways where AI/ML applications are causing 

harm in society. 

 

Additional supporting information on Module 5 principles: 

• Ethical AI/ML is a fundamental part of AI/ML research and not optional. 
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• Practitioners of AI/ML should be aware of: 1) the principles of Ethical AI/ML, 2) why they 

are important, 3) how Ethical AI/ML benefits both science and humanity 

• Training and access to resources to understand and apply ethical AI/ML are necessary to 

achieve this.  

• There are a broad range of constituencies, and resources and training materials should 

be responsive to the needs of the different constituencies. 

• Ethical AI/ML is not a goal or an end result; it provides a set of principles to guide 

research. As such, training and outreach resources must reflect the evolving state of 

Ethical AI/ML. 

 

Module 5 Responsibilities/Leading Practices 

• Mitigate the potential for AI/ML used in research to have negative impacts on people and 

on the quality of the science. 

• Communicate the principles and practices of ethical AI/ML to all constituents (outreach) 

• Train practitioners to perform ethical AI/ML research and report results consistent with 

these principles and make training resources widely available. 

• Include communities and community perspectives in training resources.  

• Identify resources and tools that facilitate the adoption and inclusion of ethical AI/ML for 

all constituencies. 

• Promote the inclusion of ethical AI/ML in all aspects of AI/ML training, outreach, 

discussions and publications.  

• Develop and provide considerations on how to use a framework for self-evaluation of 

AI/ML against the intent of the principles and responsibilities.  

 

Module 5 Use Cases/Illustrative Examples 

• A researcher using a publicly available dataset uses a model they obtained from an open-

source repository. The model produces a result that is somewhat controversial. The 

authors want to ensure that the result is valid before publication. By learning the Ethical 

AI/ML practices of interpretability and explainability, the authors can perform additional 
analysis of the model’s performance and results to ensure robustness and validity.  

• A reviewer receives a paper from an editor and is asked to provide an anonymous review. 

The reviewer is concerned about the provenance and the appropriateness of the data 

used, and is furthermore concerned that the result may have a negative impact if 
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interpreted incorrectly. What practices can the reviewer recommend to the author to 

mitigate potential impacts?  

• The founders of FastAI are focused on making AI understandable by anyone.  They 

provide blogs, training recommendations, and links to Ted talks for all levels of learner. 

fast.ai · Making neural nets uncool again In 2018 they published a blog AI Ethics 

Resources with the intention of providing a practical guide and reference.  

• ADSA’s Data Science Ethos is a tool to help data scientists structure and operationalize 

their work in a way that accounts for the social and ethical responsibilities of the data 

science research process, including AI/ML. 

• As AI/ML gains popularity as a toolset, organizations can provide proper training for the 

workforce and engage with stakeholders directly to ensure the responsible use of these 
evolving tools. U.S. government agencies have developed an active community of 

practices convened by the General Service Administration to provide a vibrant discussion 

on promising use cases and potential impacts and risks of various AI/ML technologies. 
Some organizations are offering tailored training for different groups (e.g., practitioners, 

downstream users, managers) or developing training materials aiming to improve 
proficiency in responsible AI/ML. In a recent training for managers of an agency office, 

the conversation on ethics and risk management received very positive feedback from 

participants and initiated conversations about further investment in the development of 
training materials that can directly engage with the general public.  

  

https://www.fast.ai/
https://www.fast.ai/posts/2018-09-24-ai-ethics-resources.html
https://www.fast.ai/posts/2018-09-24-ai-ethics-resources.html
https://ethos.academicdatascience.org/
https://coe.gsa.gov/communities/ai.html
https://coe.gsa.gov/communities/ai.html
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Module 6: Considerations for Organizations, Institutions, Publishers, 

Societies, and Funders  
 

Module 6 Focus  

All scholarly organizations have a responsibility to lead in establishing and administering 

AI/ML ethics policies, including codes of conduct, principles, reporting methods, resolution 
processes, training, and other categories. Organizations should articulate values and design 

governance at levels above the individual, including fostering a culture around ethical AI/ML. In 

addition, enforcement of these responsibilities is needed to ensure ethical practices, and this lies 
across organizations and institutions.  

 

Module 6 Objectives 

• Identify opportunities and responsibilities within organizations, societies, and 

communities to advance AI/ML ethics. 

• Explore how best to influence the relevant fields and disciplines utilizing AI/ML in 

research. 

• Ensure that there is sufficient oversight and enforcement of these principles along the 

lines of all unacceptable scientific practices or behavior.  

 

Module 6 Vision 

Organizations, institutions, publishers, societies, and funders work collaboratively to foster a 
culture around ethical AI/ML principles and responsibilities in research that builds trust and 

understanding, fosters community engagement, leads to positive outcomes, mitigates risks, and 
provides means to resolution or reconciliation when needed.  

 

Module 6 Key Points 

Professional societies, universities, federal labs, industry labs, publishers, funders, and other 

organizations and institutional actors have a leadership role when it comes to AI/ML ethics and in 
helping implement the guidance above. AI and ML technologies are developing at rapid rates, 

calling for flexible and adaptive approaches by these organizations and institutions.   

Community-driven principles require sponsorship and hosting of forums, town halls, and 
other engagement mechanisms by leading organizations and societies. This is key to surfacing 

and considering current practices and making necessary updates as practices evolve. There will 
be tensions that surface, such as the tensions between transparency and privacy, with 
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institutional leaders playing key roles in naming these tensions and fostering constructive 

dialogue about the tensions.  

Professional societies and other publishers have a particular responsibility to promulgate 

policies and practices relevant to the publication of research involving AI/ML models and 
algorithms. Federal agencies in the United States, European Union, and other settings operate 

under directives to ensure the ethical use of AI/ML, which can be a model for others. While 

industry typically treats aspects of AI/ML as proprietary, there are community liability issues that 
point to the carving out of “pre-competitive” spaces in which AI/ML practices, applications, and 

risks are shared and evaluated. 

 

Module 6 Principles 

Organizations and Institutions 

• Align new and existing programs objectives and approaches across the AI/ML Ethics 

Principles and Responsibilities. 

• Partner with other organizations to help broaden awareness, education, adoption, and 

other engagement. 

• Include ethical AI/ML principles and responsibilities in courses and other ethical 

training. 

• Include ethical AI/ML principles and responsibilities into grant processes. 

• Establish mechanisms to intervene in appropriate ways where AI/ML applications are 

causing harm in society. 

• Educate societal decision makers on the value and limitations of AI/ML in research in 

order to enable responsible decisions based on AI/ML findings. 

Societies and Communities  

• Provide workshops and education for society members on the AI/ML Ethics Principles 

and Responsibilities. 

• Collectively provide governance of these AI/ML Ethics principles and responsibilities; 

Support development and updates to leading practices related to the AI/ML Ethics 
Principles and Responsibilities. 

• Measure the effectiveness of the efforts specific to implementing the AI/ML Ethics 

Principles and Responsibilities. 

• Adopt the AI/ML Ethical Principles and Responsibilities into the organization’s ethical 

guidance. 
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• Promote the importance and adoption of the AI/ML Ethics Principles and 

Responsibilities in relevant communities. 

• Ensure all affected communities are part of the development and updates to the AI/ML 

Ethics Principles and Responsibilities. 

• Establish mechanisms to intervene in appropriate ways where AI/ML applications are 

causing harm in society. 

• Support AI/ML communities of practice, multi-stakeholder consortia, public-private 

partnerships and other collective efforts that enable groups to accomplish together 

what they can’t do individually with respect to AI/ML. 

Funders 

• Include the AI/ML Ethics Principles and Responsibilities in reviewer guidelines and 

expectations and guidance for grants, including in data management and sharing plans. 

Encourage broader outreach plans to address ethical AI/ML as appropriate. 

• Include experts in AI/ML ethics as reviewers and panelists for AI/ML grants. Provide 

training for program and technical officers around ethical AI/ML principles. 

• Support governance of AI/ML Ethics Principles and Responsibilities. 

• Provide expectations and supplementary funding for required time and travel for 

training, assessment, stakeholder alignment, and professional development.  

• Fund mechanisms to intervene in appropriate ways where AI/ML applications are 

causing harm in society. 

• Fund verification and validation studies which are designed to replicate or reinforce 

AI/ML fundings, both to increase confidence in the original findings and to advance 

understanding on how to validate AI/ML findings. 

• Support AI/ML communities of practice, multi-stakeholder consortia, public-private 

partnerships and other collective efforts that enable groups to accomplish together 
what they can’t do individually with respect to AI/ML. 

Publishers 

• Develop reviewer and editor guidance for handling AI/ML papers, including on inclusion 

of appropriate reviewers; inform editors and staff of expectations. 

• Develop author guidelines consistent with the AI/ML Ethics Principles and 

Responsibilities, including around FAIR and CARE principles for data and software, 

recognizing contributions, reporting uncertainties, and in methods sections. 

• Follow leading practices regarding data and software citations, including guidance for 

authors. 
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• Publish negative or unexpected findings. Well-defined, hypothesis driven work is 

valuable regardless of the outcome. AI/ML research that doesn’t match expectations is 

as important as expected findings.  These results can add clarity and understanding of 
AI/ML methods and reduce repeated, unfruitful efforts. 

 

Additional supporting information on Module 6 principles: 

• Establish a process that encourages and facilitates discussion, better understanding and 

trust building.  

• Plan for an iterative process that starts with “timely good enough” vs. “late & perfect” or 

“rapid & wrong”. 

• Provide multiple ways for participants to give feedback and be prompt in responding to 

the feedback. 

• Have methods in place to track individual contributions in order to provide accurate 

attribution and credit. 

• Assess progress, make adjustments aligned with governance processes, and review 

assessment criteria periodically. 

• Actively seek out new and diverse voices. Monitor and accommodate in changing 

situations. 

• Appreciate and make explicit value systems within situational contexts: for example, 

choices/actions taken in “emergency” vs “Business as Usual”; prototype (beta) vs deploy 

(scale). 

• Balance philosophical exploration with practicalities. 

• Establish governance before it is needed. Ensure governance structure, processes, 

decision making, feedback, and improvements support inclusiveness, understanding, and 
trust building.  
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Module 6 Responsibilities and Leading Practices 

• Connect with policy makers to embed AI/ML ethics as part of their processes and 

conversations. 

• Encourage publishers to promote a review of scholarly submissions for alignment with 

these principles. 

• Encourage wide diversity in scholarly society ethics leadership, alignment, and guidance. 

• Encourage AI ethics conversations across the broad stakeholder community to elicit 

principles, etc. 

• Introduce new concepts such as mindfulness, agency and ‘otherness’ (this concept 

includes people and environment). 

• Acknowledge and value that some principles may involve judgment, intangibles, and a 

variety of choices while others may be clear and concrete. 

• Be prepared to intervene in appropriate ways where AI/ML applications are causing harm 

in society. 

 

Module 6 Use Cases/Illustrative Examples 

• Scientific societies and other organizations that have science integrity guidance and/or 

scientific code of conduct policies would benefit from considering a future update using 
the AI/ML Ethics Principles and Responsibilities (this document) to help support their 

researchers.  

• Funders considering AI/ML related grants could value proposals that include using an 

AI/ML ethical framework for designing and managing their project.  

• Publishers with journals receiving AI/ML related research could provide review guidance 

to value the use of a relevant AI/ML ethical framework in the research approach. 

• The Blueprint for an AI Bill of Rights issued by the Office of Science, Technology and 

Policy in the U.S. White House is an example of policy leadership in this issue.  

• The SiteRite project is a machine learning model that provides a predictive model of 

alternative energy development potential (probability) of wind and solar in India. The idea 

is to provide a resource that developers, planners, natural resource and land managers, 
conservationists, etc. can use, when going through the scoping process of alternative 

energy projects. This tool provides a means of understanding potential impacts and 
conflicts around ecological resources. An NGO, Center for Science, Technology, and 

Policy (CSTEP), assisted in leveraging numerous socioeconomic indicators to develop 

metrics indicating impacts to communities.  The web site provides quite a bit of 

https://www.whitehouse.gov/ostp/ai-bill-of-rights/
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background information and was the product of working with many international 

stakeholders and foundations (with major portions of the funding coming from the 
MacArthur Foundation). (https://www.tncindia.in/what-we-do/siteright/) 

• Organizations can consider creating roles, offices, or groups to support and coordinate 

the responsible use of AI/ML. Recently, NIST launched the Trustworthy and Responsible 

AI Resource Center, which will facilitate the implementation of, and international 
alignment with the recently published AI Risk Management Framework. The center 

provides a set of materials and training events that can be used to facilitate the 
responsible development of AI/ML models across the organization and adopted by other 

institutions. (see also:  https://www.nist.gov/trustworthy-and-responsible-ai) 

 

https://www.tncindia.in/what-we-do/siteright/
https://airc.nist.gov/
https://airc.nist.gov/
https://www.nist.gov/trustworthy-and-responsible-ai
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Implementation Considerations  
 

This is an initial list of implementation questions to be used by researchers and scholarly 

organizations to determine how they will implement the principles described for each module. 

These are not intended to be exhaustive, but instead to begin conversations that lead to change 
in processes and policies.  

Note that implementation will likely involve a combination of change initiatives led by 
researchers, funders, professional societies, policy makers, community groups, industry leaders, 

data repositories, and others.  Conversations and actions prompted by these questions could 

involve any of these AI/ML stakeholders.  

  

Module 1:  Transparency, Documentating, and Reporting 

• How do we convey quality information about the model?  

• What is our standard practice to report the evaluation of the model following a defined 

evaluation metric or framework? 

• How do we quantify/ensure/verify trustworthiness of ML model predictions, especially 

when the model will be used to inform decisions of particular consequence? 

• How much information needs to be provided in order to qualify as being transparent? 

• How will negative or un-expected results be reported? 

 

Module 2:  Intentionality, Interpretability, Explainability, Reproducibility, and Replicability 

• How do we ensure that we understand how the model is reaching its conclusions? 

• How do we ensure that other scientists are able to recreate our work? (low-level 

knowledge required for reproduction) 

• How do we ensure that other people can understand what we have done? (high-level 

understanding) 

 

Module 3:  Risk, Bias, and Effects 

• What does the chief AI ethics officer do?  

o Note:  It is important to provide strategic guidance across professional 
organizations; interface with funding agencies; and facilitate and develop leading 

practices for responsible conduct of AI/ML research. 
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• What do we do if we identify that our model is causing harm or a dataset we have 

released has bias?  

o Note:  It is important to amend any published papers; add disclaimer to data, 
products, and software; notify the chief ethics officer if the work is published in 

AGU, notify the funding agency as appropriate, plus your home institution as 

appropriate; and take steps to address the root cause of the problem. 

• What happens if we ran out funding but an issue has been identified?  

o Note:  It is still important to minimize possible harm and notify the funding agency 

and users about the issue.  

• What can funding agencies do to help mitigate harm from AI?  

o Note:  We recommend funding agencies facilitate addressing any issues of AI risk 
and harm throughout the AI system lifecycle.  We also recommend funding 

agencies set aside a pool of money set to redress any issues, thus issues can be 

addressed even if funding has finished. 

 

Module 4:  Participatory Methods 

• How can we ensure the research team is diverse and inclusive? What research 

infrastructure is needed? 

• What are the implications of ethics (such as data ownership, sovereignty, or privacy) for 

open science (e.g., asking researchers to publish data, NASA Information Policy NASA 

SPD-41a )? 

• How is individual data protected? 

o Note:  Researchers are responsible for anonymizing the data so that individuals or 
sensitive data cannot be identified. This includes personally identifiable data, as 

well as data that identifies structures or locations that the community wants to 
be anonymous (such as burial sites). Researchers should ask the community 

during engagement what they consider sensitive and document those responses. 

• How may one (ethically) reuse data from another researcher? What restrictions are 

implied by ethics? 

• How do we adhere to the norms and sensitivities identified by the researcher in their 

community engagement?  If the intended use is different from the original use, then how 
should the community be re-engaged? 

 

 

https://science.nasa.gov/science-red/s3fs-public/atoms/files/SMD-information-policy-SPD-41a.pdf
https://science.nasa.gov/science-red/s3fs-public/atoms/files/SMD-information-policy-SPD-41a.pdf
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Module 5:  Outreach, Training, and Leading Practices 

• How do we ensure that all Earth, environmental, and space science meeting sessions, 

topical meetings, town halls etc. on AI follow the principles of Ethical AI/ML?  

• How do we ensure that all relevant constituencies using AI/ML are aware of Ethical AI/ML 

practices? 

• How do we offer access to Ethical AI/ML? Who does the training? At what level?  

• What is ethical AI/ML versus How to apply and practice ethical AI/ML? 

• What are the indicators (antennas) for signs of success (evaluation of the community’s 

progress)? 

 

Module 6:  Considerations for Organizations and Institutions, Publishers, Societies, and 
Funders 

• How do we form timely, iterative mechanisms and approaches to guide organizations and 

societies regarding AI ethics to foster positive outcomes and mitigate systemic risks? 

(see Responsibilities/Leading Practices) 

• How do we help communities understand how to have AI ethics conversations using 

listen first? Community centric, ethnographic approaches. 

• How can we best become aware of harm to society in order to assess and potentially 

take action? 

• When harm to society is detected, what are responsible steps to take to mitigate or end 

the harm? 
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Glossary 
 

AI Modeling: Using complex algorithms or layers of algorithms that interpret data and make 

decisions based on the data. A successful AI model can act as a surrogate for human expertise in 

any given use case, (intel.com) 

AI Model Training:  Model training involves processing large amounts of data through the AI 

model in iterative test loops, checking the results to ensure accuracy, and that the model is 
behaving as expected and desired. Engineers are on hand during this process to modify and 

improve the AI model as it learns. (intel.com) 

AI Inferences: Deployment of the AI model into its real-world use case, where the AI model 
routinely infers logical conclusions based on available data. (intel.com) 

CARE Principles: A set of governing principles guiding the use of Indigenous data (Carroll, 
2020).  

Consortia:  A formal or informal assembly of individuals, groups, organizations, and other 

stakeholders operating laterally to accomplish together what they can’t do separately. (The 
Consortia Century, 2023, forthcoming)  

Documentating:  All scientific research involves documentation of methods sufficient to support 
explainability and reproducibility.  In the context of AI/ML the documentation centers on 

recording steps in the development and implementation of algorithms, the assembly and 

utilization of training data, the forms of validation utilized with the findings, and other relevant 
records of the research. 

Equity and Equality:  Equality involves treating everyone the same; Equity involves taking into 
account relevant differences.  In some cultures and cases, equal treatment is seen as fair, while in 

other cultures and cases, equitable treatment is seen as fair.  Both are relevant in the context of 

AI/ML since the mitigation of bias in the data typically calls for some form of equitable or equal 
treatment -- both are important and they are not the same. 

Explainability: As suggested in the National Institute of Standards and Technology, explainability 
refers to the ability of a system to supply accompanying evidence or reason(s) for outputs 

produced from an AI/ML system (Phillips, 2021). 

 

https://www.intel.com/content/www/us/en/analytics/data-modeling.html
https://www.intel.com/content/www/us/en/analytics/data-modeling.html
https://www.intel.com/content/www/us/en/analytics/data-modeling.html
https://static1.squarespace.com/static/5d3799de845604000199cd24/t/6397b1aff7a6fb54defdf687/1670885815820/dsj-1158_carroll.pdf
https://static1.squarespace.com/static/5d3799de845604000199cd24/t/6397b1aff7a6fb54defdf687/1670885815820/dsj-1158_carroll.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8312.pdf
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FAIR Guiding Principles:  Four foundational principles—Findability, Accessibility, Interoperability, 

and Reusability—that serve to guide data producers and publishers to align with overall Open 
Science objectives (Wilkinson, 2016). 

Inclusive: Valuing the contributions of diverse individuals, groups, organizations, and other 
parties to a project, organization, or community.  An inclusive approach respects the individual 

identities of participants engaged in the work (AGU Diversity and Inclusion Strategic Plan, 2018). 

Intentionality:  Intentionality involves turning beliefs, knowledge, hopes, dreams, desires, and 
other “intentions” into action.  Developing an AI/ML model involves intentional choices that must 

be documented in order to know what outcomes are intended and what are unintended. 

Interpretability: Interpretability of an AI/ML model encompasses various components, but can 

be expressed as the extent to which a human can understand the cause of a decision the model 

makes (Miller, 2017). 

Research Lifecycle:  The research lifecycle refers to the entire research process from 

conception to completion, which can involve initial planning and design, execution of the design, 
identification and publication of results, data curation and sharing, as well as ongoing 

responsibility for the findings.  In the context of AI/ML there are key steps in the process where 

the work is done by a machine without direction by the researcher, which has implications for the 
ongoing responsibilities associated with the research.   

Machine Learning: Machine Learning is a subfield of artificial intelligence.  ML is broadly defined 
as the capability of a machine to learn from data without being explicitly programmed. (MIT/Sloan 

Management Review) 

Mindfulness: A choice and an unfolding approach that includes personal agency on the part of 
researchers and others to shape the organizations, societies, and other communities of which 

they are members. 

Open Science: Open science, as defined by UNESCO, is an inclusive construct that combines 

various movements and practices aiming to make multilingual scientific knowledge openly 

available, accessible, and reusable for everyone, to increase scientific collaborations and sharing 
of information for the benefits of science and society, and to open the processes of scientific 

knowledge creation, evaluation, and communication to societal actors beyond the traditional 
scientific community (UNESCO, 2021). 

Participatory: Engaging people who will be affected by the use of AI/ML in research, ideally from 

the very beginning of the work and through all phases.  Forms of participation can range from 
informal consultation, to focus groups or surveys, to formal meetings, to ongoing forums. 

https://www.nature.com/articles/sdata201618
https://www.agu.org/-/media/Files/Learn-About-AGU/AGU-Diversity-and-Inclusion-Strategic-Plan-2019.pdf
https://arxiv.org/abs/1706.07269
https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained
https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained
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Replicability: Following the definition of National Academies of Sciences, when a new study is 

conducted and new data are collected replicability involves achieving the same or a similar 
results to earlier studies on the same scientific question (NASEM, 2019).  Replicability is a map to 

lead other people to where you are now. (Contrast with explainability, which helps lead other 
people to understand why the model performs in a certain way). 

Reproducibility: Following the definition of National Academies of Sciences, reproducibility 

refers to computational reproducibility— obtaining consistent computational results using the 
same input data, computational steps, methods, code, and conditions of analysis (NASEM, 2019).  

Responsible innovation: When research is designed and delivered for the benefit of all. A 
process of anticipating, reflecting, engaging, and acting that promotes socially desirable 

creativity and opportunity (UKRI Framework for Responsible Innovation).  From Data 61/CSIRO - 

Responsible Innovation Platform:  ”Responsible innovation is where researchers consciously and 
critically assess the potential risks, benefits and uncertainties of the future science and 

technology they are developing. In doing so, this aims to deliver as a way of addressing those 
challenges with a view to ensuring socially and ethically responsible science and technology”. 

Stakeholders:  Individuals, groups, organizations, and other actors with an interest or stake in the 

conduct and impact of AI/ML research.  Note that the term “stakeholder” is used in the 
commercial context as a contrast with shareholders.  The term has been criticized for 

connotations to individuals putting a stake in the ground to claim land that was previously held by 
first nations and others.  In some contexts, the status of original holders of the land are 

recognised as “rights holders” having a greater claim then stakeholders, who, in turn, have more 

of a claim than “interested parties.” 

Stakeholder Alignment:  The dynamic process by which individuals, groups, organizations, and 

other actors discuss common and competing interests to achieve sufficient understanding for 
collective action.  This contrasts with stakeholder management and stakeholder engagement, 

both of which are from the point of view of one party either managing or engaging other 

stakeholders.  In the contact of AI/ML there is a responsibility for researchers to engage in an 
ongoing process of alignment with relevant parties, not just trying to engage or manage them. 

(The Consortia Century, 2023, forthcoming) 

Transparency: State of making information available for others to see what has been done 

(National Academies Press, 2019).  Transparency includes documenting and reporting as a part 

of research methods.  It is important to provide donvenient access to relevant information about 
a research project for those having a legitimate interest in that project. 

https://nap.nationalacademies.org/catalog/25303/reproducibility-and-replicability-in-science
https://nap.nationalacademies.org/catalog/25303/reproducibility-and-replicability-in-science
https://www.ukri.org/about-us/epsrc/our-policies-and-standards/framework-for-responsible-innovation/)
https://www.nap.edu/catalog/25303/reproducibility-and-replicability-in-science
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TRUST Principles: Transparency, Responsibility, User focus, Sustainability, and Technology are 

the five TRUST Principles. Together they provide a common framework to facilitate discussion 
around implementing best practice in this critical area of digital preservation. (Lin, 2020).  

  

https://doi.org/10.1038/s41597-020-0486-7
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Appendix A: Background on Materials Development 
 

A set of two workshops in 2022, over two days each, brought together approximately 90 

geoscience researchers utilizing AI/ML, along with ethics and social science professionals. The 

agenda included: 

• An overview of current AGU research ethics policies 

• A review of the current state of AI/ML ethics in research 

• A review selected case examples of AI/ML research with ethical implications 

• Establishing AI/ML ethics working groups  

• Conducting a “pre-mortem” to anticipate what could possibly go wrong with AI/ML 

ethics  

• Reviewing and discussing recommendations by Working Groups 

• Ensuring language is interoperable and extensible 

• Considering future trajectories of AI/ML and ethical implications 

• Presenting the results to AGU, NASA, and other key leaders 

 

Some of the highlights from these group discussions included:  

• Ethics should be integrated across the AI/ML research life cycle. 

• A “one size fits all” approach should be avoided with AI/ML ethics.  

• The AI/ML ethics effort should be community driven. A top-down approach, especially if 

authoritarian, seldom works.  

• Advances are needed so that human subjects review can play appropriate roles with 

respect to AI/ML research (e.g., Institutional Review Boards that govern human subjects 
research in universities and other settings)  

• Appreciation that AI/ML ethics can be controversial and that ethical standards will 

evolve, particularly as the technology evolves. 

• The need for a leadership individual or group that can provide consultation and advice for 

researchers utilizing AI/ML, with the AGU Ethics Committee as a further resource.  
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A third workshop in February 2023 was held to invite stakeholder feedback on the draft 

prepared out of the first two workshops and writing groups. During this workshop, stakeholders 
edited and finalized the draft principles and responsibilities. 

In addition to workshops, a stakeholder “pulse” survey of a cross section of geoscientists 
(n=118) was used to inform the working group sessions. The survey confirmed that there is wide 

support for 1) having clear ethical standards and guidelines for the use of AI/ML in research 

(95%), as well as for 2) ensuring explainability/interpretability (93%) and for 3) ensuring 
replicability when AI/ML is used in research (90%). These are 3 of the 16 indicator issues that 

were included in this survey, covering many aspects of AI/ML ethics. Most of these indicator 
issues are major “pain points” – rated both as very important and also as very difficult to do by 

more than half of the respondents. Importantly, a large majority (82%) opposed researchers 

using AI/ML in any way they chose – without attention to ethical standards or guidelines.  

A principle contained in the phrase from the disability movement, “nothing about us without 

us,” was embraced for this work and suggests a pluralistic effort backed up by core principles.  

 

Workshop 1 and 2 Participants 

• Abby Azari, Space Sciences Lab, UC Berkeley, 0000-0002-8665-5459 

• Abhinav Sharma, Cofounder Insight Browser, 

• Abhishek Gupta, Montreal AI Ethics Institute 

• Alejandro Coca-Castro, The Alan Turing Institute, 0000-0002-9264-1539 

• Alexa J. Halford, NASA Goddard Space Flight Center, 0000-0002-5383-4602 

• Amanda Hoffman-Hall, Eckerd College, 0000-0002-8153-7664 

• Amy McGovern, University of Oklahoma, 0000-0001-6675-7119 

• Ann McCartney, NHGRI, 0000-0003-3191-3200 

• Anna-Louise Ellis, Met Office, UK 

• Ayris Narock, NASA Goddard Space Flight Center, ADNET Systems, Inc., 0000-0001-

6746-7455 

• Barbara J. Thompson, NASA Goddard Space Flight Center, 0000-0001-6952-7343 

• Billy Williams, American Geophysical Union 

• Brant Robertson, UC Santa Cruz, 0000-0002-4271-0364 

• Brooks Hanson, American Geophysical Union, 0000-0001-6230-7145 

• Caroline Coward, NASA Jet Propulsion Laboratory, 0000-0001-9848-5912 
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• Charlton David Lewis, II, DARPA Defense Sciences Office, 0000-0003-2112-5921 

• Chris Bard, NASA Goddard Space Flight Center, 0000-0002-5926-0566 

• Chris Erdmann, Michael J. Fox Foundation, 0000-0003-2554-180X 

• Chris Slocum, NOAA, 0000-0001-6293-7323 

• Christian Reyes, NASA Headquarters 

• Christine Custis, Partnership on AI, 0000-0003-4985-4376 

• Christine Kirkpatrick, San Diego Supercomputer Center, UC San Diego, 0000-0002-

4451-8042 

• Christopher Luwanga, NTU Singapore, 0000-0002-6723-5563 

• Christopher Wirz, NCAR, 0000-0002-8990-5505 

• Daisuke Nagai, Yale University, 0000-0002-6766-5942 

• Daniel Crichton, Jet Propulsion Laboratory, Caltech, 0000-0002-5487-7719 

• Daniel Duffy, NASA Goddard Space Flight Center, 0000-0003-0155-5019 

• David John Gagne, NCAR, 0000-0002-0469-2740 

• Delia Pembrey MacNamara, University of Hull, 0000-0003-3680-2323 

• Edward L. McLarney, NASA Headquarters 

• Emily Hirsh, 0000-0001-6340-3040 

• Enrico Camporeale, University of Colorado, 0000-0002-7862-6383 

• Erin Ryan, Booz Allen Hamilton, 0000-0001-5981-9537 

• Frank Soboczenski, King's College London, 0000-0003-2023-9601 

• Ge Peng, University of Alabama Huntsville, 0000-0002-1986-9115 

• Geeta Chauhan, Indian Veterinary Research Institute, 0000-0001-6517-6187 

• Guido Cervone, Pennsylvania State University, 0000-0002-6509-0735 

• Jeanne Holm, City of Los Angeles 

• Jeffrey S. Evans, The Nature Conservancy and University of Wyoming, 0000-0002-

5533-7044 

• Joel Cutcher-Gershenfeld, Brandeis University, 0000-0001-7659-7024 

• John Leslie King, University of Michigan 

• John Moisan, NASA, 0000-0002-8078-8939 



 

 AI/ML Ethics in the Geosciences 

63 

• Joses Omojola, Louisiana State University, 0000-0001-5807-2953 

• K. Adem Ali, College of Charleston, 0000-0002-4677-3995 

• Kathleen Creel, Northeastern University, 0000-0001-7371-2680 

• Kevin Coakley, CellLink Corporation 

• Lance A. Waller, Emory University, 0000-0001-5002-8886 

• Laura Carriere, NASA Goddard Space Flight Center, 0000-0001-9639-9594 

• Laura Lyon, American Geophysical Union, 0000-0003-0585-9853 

• Lauren M. Sanders, Blue Marble Space Institute for Science/Space Biosciences Division, 

NASA Ames Research Center, 0000-0001-9393-0861 

• Lekha Patel, Sandia National Laboratories, 0000-0003-3508-0672 

• Louis Barbier, NASA, 0000-0003-0378-6830 

• Luis Vega, Meta 

• Lyara Villanova, The University of Tokyo 

• Madhulika Guhathakurta, NASA, 0000-0001-5357-4452 

• Malvika Sharan (she/her), The Alan Turing Institute, 0000-0001-6619-7369 

• Manil Maskey, NASA, 0000-0002-5087-6903 

• Maria J. Molina, University of Maryland, 0000-0001-8539-8916 

• Matthew Argall, University of New Hampshire 

• Melanie Sharif, University of Colorado Boulder 

• Micaela S. Parker, Academic Data Science Alliance (ADSA), 0000-0003-1007-4612 

• Michael M. Little, NASA 

• Mike Little, WordPress 

• Rajesh Sampath, Brandeis University, 0000-0003-0782-7687 

• Richard Tran Mills, Argonne National Laboratory, 0000-0003-0683-6899 

• Robert Morris, Koko 

• Ryan McGranaghan, NASA Jet Propulsion Laboratory/Caltech, 0000-0002-9605-0007 

• Ryan T. Scott, KBR/Space Biosciences Division, NASA Ames Research Center, 0000-

0003-0654-5661 

• Sandra Gesing, University of Illinois Chicago, 0000-0002-6051-0673 
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• Sarah Paik, Optum 

• Shashi Shekhar, University of Minnesota, 0000-0002-9294-4855 

• Shelley Stall, American Geophysical Union, 0000-0003-2926-8353 

• Siddha Ganju, NVIDIA, 0000-0002-9462-4898 

• Srija Chakraborty, USRA, 0000-0002-5701-760X 

• Steven Crawford, NASA  

• Susan J Winter, University of Maryland, 0000-0002-4524-0927 

• Sylvain V. Costes, Space Biosciences Division, NASA Ames Research Center, 0000-

0002-8542-2389 

• Tae Wan Kim, Carnegie Mellon University 

• Thomas Donaldson, The Wharton School, University of Pennsylvania 

• Victoria Da Poian, NASA, 0000-0003-1175-3078 

• Yuhan (Douglas) Rao, North Carolina State University / North Carolina Institute for 

Climate Studies, 0000-0001-6850-3403 

 

Workshop 3 Participants 

• Abby Azari, Space Sciences Lab, UC Berkeley, 0000-0002-8665-5459 

• Adolfo Inza, Research in Volcano Seismology – Instituto Geofisico del Peru, 0000-0001-

5381-9042 

• Ayris Narock, NASA Goddard Space Flight Center, ADNET Systems, Inc., 0000-0001-

6746-7455 

• Barbara Thompson, NASA Goddard Space Flight Center, 0000-0001-6952-7343 

• Bill Howe 

• Brooks Hanson, American Geophysical Union, 0000-0001-6230-7145 

• Caroline Coward, NASA Jet Propulsion Laboratory, 0000-0001-9848-5912 

• Christopher Wirz, NCAR, 0000-0002-8990-5505 

• Daniel Berrios, NASA Ames Research Center, 0000-0003-4312-9552 

• Daniel Duffy, NASA Goddard Space Flight Center, 0000-0003-0155-5019 

• De Canberra 
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• Yuhan (Douglas) Rao, North Carolina State University / North Carolina Institute for 

Climate Studies, 0000-0001-6850-3403 

• Ekaterina Verner, NASA, 0009-0006-3196-5552 

• Ge Peng, University of Alabama Huntsville, 0000-0002-1986-9115 

• Jeffrey S. Evans, The Nature Conservancy and University of Wyoming, 0000-0002-

5533-7044 

• Joel Cutcher-Gershenfeld, Brandeis University, 0000-0001-7659-7024 

• Kristina Vrouwenvelder, American Geophysical Union 

• Lance A. Waller, Emory University, 0000-0001-5002-8886 

• Laura Lyon, American Geophysical Union 

• Lauren M. Sanders, Blue Marble Space Institute for Science/Space Biosciences Division, 

NASA Ames Research Center, 0000-0001-9393-0861 

• Manil Maskey, NASA, 0000-0002-5087-6903 

• Matthew Argall, University of New Hampshire 

• Micaela S. Parker, Academic Data Science Alliance (ADSA), 0000-0003-1007-4612 

• Mike Little, WordPress 

• Noah Conley 

• Ryan McGranaghan, NASA Jet Propulsion Laboratory/Caltech, 0000-0002-9605-0007 

• Ryan T. Scott, KBR/Space Biosciences Division, NASA Ames Research Center, 0000-

0003-0654-5661 

• Shelley Stall, American Geophysical Union, 0000-0003-2926-8353 

• Sylvain V. Costes, Space Biosciences Division, NASA Ames Research Center, 0000-

0002-8542-2389 

• Thomas Donaldson, The Wharton School, University of Pennsylvania 

• Tony Boese 
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Appendix B: AI/ML Ethics “Pulse” Stakeholder Survey 
 

In preparing the AI/ML Ethics Modules, a diverse set of researchers, policy makers, 

students, industry representatives, and others were surveyed to more fully understand the 

broader context. The results from this survey are summarized here. 

 

 

 

Introduction 

Across scientific domains, Artificial Intelligence (AI) and Machine Learning (ML) are playing 

increasingly important roles in research. Existing standards for reproducibility and ethics in 
research can be challenged by AI and ML. There are concerns in society about bias and other 

adverse impacts of AI and ML. In this context, considerations for AI/ML ethics in research are 

needed. 

This report is based on a “stakeholder pulse survey” of researchers, administrators, and 

others in order to provide situational awareness that can inform the development of AI/ML 
ethics. This report is designed to indicate where stakeholders are aligned, where views are 

particularly intense, and where there is variance in their views. Both qualitative and quantitative 

data are provided, each of which informs dialogue in different ways. 
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This is part of a 2022 project convened by the American Geophysical Union (AGU), funded by 

the National Aeronautic and Space Administration (NASA), and this portion has been conducted 
by WayMark Analytics. 

 

Overview  

There is wide support for 1) having clear ethical standards and guidelines for the use of AI/ML 

in research, as well as for ensuring 2) explainability/interpretability and 3) replicability when 
AI/ML is used in research. These are three of the sixteen indicator issues that were selected by 

leading experts, covering many aspects of AI/ML ethics. At the same time, most of the indicator 
issues are major “pain points” – rated as very important and also as very difficult to do by more 

than half of the respondents. Importantly, there is very little support for researchers using AI/ML 

in any way they choose – without attention to ethical standards or guidelines. There are minority 
views on many of the indicator issues, indicating a need for engagement and dialogue. 

A set of qualitative ”must haves” involve well-conducted research, conscious of bias, yet 
there are considerable barriers in the quality of the training data, the lack of knowledge and skills 

in addressing bias, the lack of governing bodies, and other factors.  Qualitative success visions 

and “anything else?” comments are extensive, poignant, and compelling. 

Although the report is comprehensive, these should still be treated as preliminary findings 

designed to generate dialogue, point to needed additional confirmation, and then action. 

 

Meet the Respondents (n=118) 

What is your primary role when it comes to the use of Artificial Intelligence (AI) and Machine 
Learning (ML) in research? Please answer all questions from this perspective.  

• Researcher who uses AI/ML in research -- 39.8% (n=47) 

• Researcher who does not use AI/ML in research, but is knowledgeable about the 

technologies -- 26.3% (n=31) 

• Researcher who does not use AI/ML in research & is not knowledgeable about the 

technologies -- 9.3% (n=11) 

• Research Computing and Data Professional -- 22.9% (n=27) 

• Student (graduate or undergraduate) -- 10.2% (n=12) 

• Administrator/leader in university -- 6.8% (n=8) 

• Administrator/leader in government -- 7.6% (n=9) 
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• Administrator/leader in government contractor -- 5.1% (n=6) 

• Administrator/leader in commercial organization -- 2.5% (n=3) 

• Administrator/leader in not-for-profit organization -- 1.7% (n=2) 

• Other - Write In -- 14.4% (n=17) 

What is your general level of knowledge of and experience with Artificial Intelligence (AI) and 
Machine Learning (ML) 

• Limited or no knowledge -- 1.7% (n=2) 

• Awareness of how AI and ML works, but no direct experience -- 28.0% (n=33) 

• Some direct experience using AI and ML in research or other applications -- 39.8% (n=47) 

• Extensive direct experience using AI and ML in research or other applications -- 19.5% 

(n=23) 

• Expert able to lead theory development and innovation with AI and ML in research and 

other applications -- 9.3% (n=11) 

What is your general level of knowledge of and experience with ethics in research  

• Limited or no knowledge 3.4% (n=4) 

• Awareness of the role of ethics in research, but no direct experience 36.2% (n=42) 

• Some direct experience applying ethical standards to decisions and actions in research 

projects 39.7% (n=46) 

• Extensive direct experience applying ethical standards to decisions and actions in 

research projects 15.5% (n=18) 

• Expert able to lead theory development and innovation applying ethical standards to 

decisions and actions in research projects 5.2% (n=6) 

Which of the professional societies participating in this research are you a member of? select 

all that apply  

• Association for Computing Machinery (ACM) -- 11.9% (n=14) 

• American Geophysical Union (AGU) -- 55.1% (n=65) 

• American Meteorological Society (AMS) -- 26.3% (n=31) 

• American Astronomical Society (AAS) -- 11.0% (n=13) 
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• Geological Society of America (GSA) -- 3.4% (n=4) 

• American Association for the Advancement of Science (AAAS) -- 11.0% (n=13) 

• Institute of Electrical and Electronics Engineers (IEEE) -- 14.4% (n=17)  

• None of the above -- 17.8% (n=21) 

Please indicate your years of experience 

• 1 year or less    1.7% (n=2) 

• 2-4 years    4.2% (n=5) 

• 5-10 years   16.1% (n=19) 

• 11-20 years   21.2% (n=25) 

• 21-30 years   25.4% (n=30) 

• Over 30 years   29.7% (n=35) 

• It’s complicated    1.7% (n=2) 

What is your gender identity? 

• Woman      25.4% (n=30) 

• Man       66.1% (n=78) 

• Non-binary, two-spirit, gender queer, or agender  4.2% (n=5) 

• Prefer not to answer      4.2% (n=5) 
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Pulse Results for “Indicator” Issues 
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Appendix C: Existing AI and Data Principles and 

Frameworks 
 

OECD AI Principles  

1. Inclusive growth, sustainable development and well-being: Stakeholders should 
proactively engage in responsible stewardship of trustworthy AI in pursuit of beneficial 

outcomes for people and the planet, such as augmenting human capabilities and 

enhancing creativity, advancing inclusion of underrepresented populations, reducing 
economic, social, gender and other inequalities, and protecting natural environments, 

thus invigorating inclusive growth, sustainable development and well-being. 

2. Human-centered values and fairness: 

a. AI actors should respect the rule of law, human rights and democratic values, 

throughout the AI system lifecycle. These include freedom, dignity and autonomy, 
privacy and data protection, non-discrimination and equality, diversity, fairness, social 

justice, and internationally recognised labour rights. 

b. To this end, AI actors should implement mechanisms and safeguards, such as 

capacity for human determination, that are appropriate to the context and consistent 

with the state of art. 

3. Transparency and explainability: AI Actors should commit to transparency and 

responsible disclosure regarding AI systems. To this end, they should provide meaningful 
information, appropriate to the context, and consistent with the state of art: 

a. to foster a general understanding of AI systems, 

b. to make stakeholders aware of their interactions with AI systems, including in the 
workplace, 

c. to enable those affected by an AI system to understand the outcome, and, 

d. to enable those adversely affected by an AI system to challenge its outcome based 

on plain and easy-to-understand information on the factors, and the logic that served 

as the basis for the prediction, recommendation or decision. 

4. Robustness, security and safety: 

a. AI systems should be robust, secure and safe throughout their entire lifecycle so that, 
in conditions of normal use, foreseeable use or misuse, or other adverse conditions, 

they function appropriately and do not pose unreasonable safety risk. 

b. To this end, AI actors should ensure traceability, including in relation to datasets, 
processes and decisions made during the AI system lifecycle, to enable analysis of 

https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0449
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the AI system’s outcomes and responses to inquiry, appropriate to the context and 

consistent with the state of art. 

c. AI actors should, based on their roles, the context, and their ability to act, apply a 

systematic risk management approach to each phase of the AI system lifecycle on a 
continuous basis to address risks related to AI systems, including privacy, digital 

security, safety and bias. 

5. Accountability: AI actors should be accountable for the proper functioning of AI systems 
and for the respect of the above principles, based on their roles, the context, and 

consistent with the state of art. 

 

Principles of Trustworthy AI in Government (Executive Order 13960) 

1. Lawful and respectful of our Nation’s values. Agencies shall design, develop, acquire, 
and use AI in a manner that exhibits due respect for our Nation’s values and is consistent 

with the Constitution and all other applicable laws and policies, including those 
addressing privacy, civil rights, and civil liberties. 

2. Purposeful and performance-driven. Agencies shall seek opportunities for designing, 

developing, acquiring, and using AI, where the benefits of doing so significantly outweigh 
the risks, and the risks can be assessed and managed. 

3. Accurate, reliable, and effective. Agencies shall ensure that their application of AI is 
consistent with the use cases for which that AI was trained, and such use is accurate, 

reliable, and effective. 

4. Safe, secure, and resilient. Agencies shall ensure the safety, security, and resiliency of 
their AI applications, including resilience when confronted with systematic vulnerabilities, 

adversarial manipulation, and other malicious exploitation. 

5. Understandable. Agencies shall ensure that the operations and outcomes of their AI 

applications are sufficiently understandable by subject matter experts, users, and others, 

as appropriate. 

6. Responsible and traceable. Agencies shall ensure that human roles and responsibilities 

are clearly defined, understood, and appropriately assigned for the design, development, 
acquisition, and use of AI. Agencies shall ensure that AI is used in a manner consistent 

with these Principles and the purposes for which each use of AI is intended. The design, 

development, acquisition, and use of AI, as well as relevant inputs and outputs of 
particular AI applications, should be well documented and traceable, as appropriate and 

to the extent practicable. 

7. Regularly monitored. Agencies shall ensure that their AI applications are regularly tested 

against these Principles. Mechanisms should be maintained to supersede, disengage, or 

https://trumpwhitehouse.archives.gov/presidential-actions/executive-order-promoting-use-trustworthy-artificial-intelligence-federal-government/
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deactivate existing applications of AI that demonstrate performance or outcomes that 

are inconsistent with their intended use or this order. 

8. Transparent. Agencies shall be transparent in disclosing relevant information regarding 

their use of AI to appropriate stakeholders, including the Congress and the public, to the 
extent practicable and in accordance with applicable laws and policies, including with 

respect to the protection of privacy and of sensitive law enforcement, national security, 

and other protected information. 

9. Accountable. Agencies shall be accountable for implementing and enforcing appropriate 

safeguards for the proper use and functioning of their applications of AI, and shall 
monitor, audit, and document compliance with those safeguards. Agencies shall provide 

appropriate training to all agency personnel responsible for the design, development, 

acquisition, and use of AI. 

 

Department of Defense Ethical Principles for AI 

1. Responsible. DoD personnel will exercise appropriate levels of judgment and care, while 

remaining responsible for the development, deployment, and use of AI capabilities. 

2. Equitable. The Department will take deliberate steps to minimize unintended bias in AI 
capabilities. 

3. Traceable. The Department’s AI capabilities will be developed and deployed such that 
relevant personnel possess an appropriate understanding of the technology, 

development processes, and operational methods applicable to AI capabilities, including 

with transparent and auditable methodologies, data sources, and design procedure and 
documentation. 

4. Reliable. The Department’s AI capabilities will have explicit, well-defined uses, and the 
safety, security, and effectiveness of such capabilities will be subject to testing and 

assurance within those defined uses across their entire life-cycles. 

5. Governable. The Department will design and engineer AI capabilities to fulfill their 
intended functions while possessing the ability to detect and avoid unintended 

consequences, and the ability to disengage or deactivate deployed systems that 
demonstrate unintended behavior. 

 

 

 

The Five Safes Framework  

1. Safe data: data is treated to protect any confidentiality concerns. 

https://www.defense.gov/News/Releases/Release/Article/2091996/dod-adopts-ethical-principles-for-artificial-intelligence/
https://ukdataservice.ac.uk/help/secure-lab/what-is-the-five-safes-framework/
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2. Safe projects: research projects are approved by data owners for the public good. 

3. Safe people: researchers are trained and authorized to use data safely. 

4. Safe settings: a SecureLab environment prevents unauthorized use. 

5. Safe outputs: screened and approved outputs that are non-disclosive 

 

FAIR Principles  

1. Findable: Metadata and data should be easy to find for both humans and computers.  

2. Accessible: Once the user finds the required data, she/he/they need to know how they 

can be accessed, possibly including authentication and authorisation. 

3. Interoperable: The data usually need to be integrated with other data. In addition, the 

data need to interoperate with applications or workflows for analysis, storage, and 

processing. 

4. Reusable: The ultimate goal of FAIR is to optimise the reuse of data. To achieve this, 

metadata and data should be well-described so that they can be replicated and/or 
combined in different settings. 

 

CARE Principles  

1. Collective benefit: Data ecosystems shall be designed and function in ways that enable 

Indigenous Peoples to derive benefit from the data.  

2. Authority to Control: Indigenous Peoples’ rights and interests in Indigenous data must 

be recognised and their authority to control such data be empowered. Indigenous data 

governance enables Indigenous Peoples and governing bodies to determine how 
Indigenous Peoples, as well as Indigenous lands, territories, resources, knowledges and 

geographical indicators, are represented and identified within data. 

3. Responsibility: Those working with Indigenous data have a responsibility to share how 

those data are used to support Indigenous Peoples’ self determination and collective 

benefit. Accountability requires meaningful and openly available evidence of these 
efforts and the benefits accruing to Indigenous Peoples. 

4. Ethics: Indigenous Peoples’ rights and wellbeing should be the primary concern at all 
stages of the data life cycle and across the data ecosystem. 

 

NSF AI Institute on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES) 
has a code of ethics that covers AI as part of the code: 

https://www.nature.com/articles/sdata201618
https://static1.squarespace.com/static/5d3799de845604000199cd24/t/5da9f4479ecab221ce848fb2/1571419335217/CARE+Principles_One+Pagers+FINAL_Oct_17_2019.pdf
https://www.ai2es.org/about/code-of-ethics/
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1. When creating AI systems, members will: 

o Ensure that the public good is the central concern during all professional 
computing work 

o Give comprehensive and thorough evaluations of AI2ES AI algorithms and their 
impacts, including analysis of possible risks. 

o Recognize and take special care of AI systems that become integrated into the 

infrastructure of society. 

2. Members will create AI systems that will: 

o Avoid harm 

o Protect the Earth and its environment including human and animal welfare. 

o Contribute to society and to human well-being, acknowledging that all people are 

stakeholders in computing. 

o Be fair and take action not to discriminate. 

o Respect privacy. 

o Honor confidentiality. 

o Avoid creating or reinforcing bias. 

o Uphold high standards of scientific excellence. 

 

NIST AI Risk Management Framework 1.0  

1. Govern is a cross-cutting function that is infused throughout AI risk management and 

enables the other functions of the process.  

a. Policies, processes, procedures, and practices across the organization related to the 
mapping, measuring, and managing of AI risks are in place, transparent, and 

implemented effectively. 

b. Accountability structures are in place so that the appropriate teams and individuals 

are empowered, responsible, and trained for mapping, measuring, and managing AI 

risks. 

c. Workforce diversity, equity, inclusion, and accessibility processes are prioritized in 

the mapping, measuring, and managing of AI risks throughout the lifecycle. 

d. Organizational teams are committed to a culture that considers and communicates 

AI risk. 

e. Processes are in place for robust engagement with relevant AI actors. 

https://www.nist.gov/publications/artificial-intelligence-risk-management-framework-ai-rmf-10
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f. Policies and procedures are in place to address AI risks and benefits arising from 

third-party software and data and other supply chain issues. 

2. The Map function establishes the context to frame risks related to an AI system. 

a. Context is established and understood. 

b. Categorization of the AI system is performed. 

c. AI capabilities, targeted usage, goals, and expected benefits and costs compared 

with appropriate benchmarks are understood. 

d. Risks and benefits are mapped for all components of the AI system including third-

party software and data. 

e. Impacts to individuals, groups, communities, organizations, and society are 

characterized. 

3. The Measure function employs quantitative, qualitative, or mixed-method tools, 
techniques, and methodologies to analyze, assess, benchmark, and monitor AI risk and 

related impacts.  

a. Appropriate methods and metrics are identified and applied. 

b. AI systems are evaluated for trustworthy characteristics. 

c. Mechanisms for tracking identified AI risks over time are in place. 

d. Feedback about efficacy of measurement is gathered and assessed. 

4. The Manage function entails allocating risk resources to mapped and measured risks on 
a regular basis and as defined by the GOVERN function.  

a. AI risks based on assessments and other analytical output from the MAP and 

MEASURE functions are prioritized, responded to, and managed. 

b. Strategies to maximize AI benefits and minimize negative impacts are planned, 

prepared, implemented, documented, and informed by input from relevant AI actors. 

c. AI risks and benefits from third-party entities are managed. 

d. Risk treatments, including response and recovery, and communication plans for the 

identified and measured AI risks are documented and monitored regularly. 

 

GAO AI Accountability Framework 

 

An Accountability Framework for Federal Agencies and Other Entities 

Fast Facts 

https://www.gao.gov/products/gao-21-519sp
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As a nation, we have yet to grasp the full benefits or unwanted effects of artificial intelligence. AI 

is widely used, but how do we know it's working appropriately? 

This report identifies key accountability practices—centered around the principles of 

governance, data, performance, and monitoring—to help federal agencies and others use AI 
responsibly. For example, the governance principle calls for users to set clear goals and engage 

with diverse stakeholders. 

To develop these practices, we held a forum on AI oversight with experts from government, 
industry, and nonprofits. We also interviewed federal inspector general officials and AI experts. 

 

What GAO Found 

To help managers ensure accountability and responsible use of artificial intelligence (AI) in 

government programs and processes, GAO developed an AI accountability framework. This 
framework is organized around four complementary principles, which address governance, data, 

performance, and monitoring. For each principle, the framework describes key practices for 
federal agencies and other entities that are considering, selecting, and implementing AI systems. 

Each practice includes a set of questions for entities, auditors, and third-party assessors to 

consider, as well as procedures for auditors and third- party assessors. 

 

Why GAO Developed This Framework 

AI is a transformative technology with applications in medicine, agriculture, manufacturing, 

transportation, defense, and many other areas. It also holds substantial promise for improving 

government operations. Federal guidance has focused on ensuring AI is responsible, equitable, 
traceable, reliable, and governable. Third-party assessments and audits are important to 

achieving these goals. However, AI systems pose unique challenges to such oversight because 
their inputs and operations are not always visible. 

GAO's objective was to identify key practices to help ensure accountability and responsible AI 

use by federal agencies and other entities involved in the design, development, deployment, and 
continuous monitoring of AI systems. To develop this framework, GAO convened a Comptroller 

General Forum with AI experts from across the federal government, industry, and nonprofit 
sectors. It also conducted an extensive literature review and obtained independent validation of 

key practices from program officials and subject matter experts. In addition, GAO interviewed AI 

subject matter experts representing industry, state audit associations, nonprofit entities, and 
other organizations, as well as officials from federal agencies and Offices of Inspector General. 

 

Artificial Intelligence (AI) Accountability Framework 
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Existing Data Protection Regulations  

Listed below are GDPR and CCPA principles. Though these were created primarily to address 
data about individuals, and the rights that individuals have with their data, several of the 

principles could also be interpreted and applied in the context of open data. Needless to say, if 
the data does have PII and other information about individuals, then it must conform to GDPR 

and/or CCPA, wherever those may apply. 

 

The 7 Principles of EU General Data Protection Regulation (GDPR) 

(https://www.privado.ai/post/what-are-the-7-principles-of-gdpr)  

1. Lawfulness, Fairness & Transparency 

a. Lawfulness 

i.Consent- if the client provides consent, you can collect their data 

ii.Contract- if you are drawing up an agreement with the client and the contract 

requires you to have their data, (e.g. you need staff data for payroll purposes) 

iii.Legal obligation- to process a legal obligation 

iv.Protection of vital interest- if the data processing is essential for the survival of 

the subjects or another individual, for instance, if you need staff data for an 
emergency medical condition 

v.Public task-if the data processing is necessary for a task relating to the public 
interest 

vi.Legitimate interest- if the processing is necessary to carry out a legitimate 

interest 

b. Fairness: Adhering to the promise you made with the subject while collecting the 

data. 

1. Transparency: Notifying the subject about what you will do with the data and who 

can potentially access the data.  

2. Purpose Limitation: data should be used only for the purpose for which it was collected. 
Else, requires additional consent from the data provider. 

3. Data Minimization: collect only the minimal amount of data needed for a purpose. 

4. Accuracy: data stored should be accurate and up to date.  

5. Storage Limitation: every data item has an expiration date, after which you lose the right 

to store the data. 

https://www.privado.ai/post/what-are-the-7-principles-of-gdpr
https://www.privado.ai/post/what-are-the-7-principles-of-gdpr#2
https://www.privado.ai/post/what-are-the-7-principles-of-gdpr#3
https://www.privado.ai/post/what-are-the-7-principles-of-gdpr#4
https://www.privado.ai/post/what-are-the-7-principles-of-gdpr#5
https://www.privado.ai/post/what-are-the-7-principles-of-gdpr#6
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6. Integrity & Confidentiality: data user is responsible for ensuring integrity and 

confidentiality of the data. 

7. Accountability: data user is accountable for its use. Should document and justify each 

step. 

 

California Consumer Privacy Act (CCPA) 

1. Right to Access: consumers have a right to access their data 

2. Right to Notice: data cannot be collected without notification. 

3. Consent: consumer must consent. 

4. Right to Opt-out: consumers can say, “no”. 

5. Equality: service providers must promise not to discriminate against customers, i.e. 

provide lower quality service if they decided to not provide their data for non-essential 
purposes, such as marketing needs or similar. In other words, service provides shouldn’t 

make it difficult for consumers to exercise their right to protect their data.  

6. Right to Deletion: have the right to be “forgotten”. 

 

Ethics Principles for Access to and Use of Veteran Data 
(https://www.oit.va.gov/about/ethical-data-use/index.cfm?)  

1. The primary goal for use of Veteran data is for the good of Veterans. 

2. Veteran data should be used in a manner that ensures equity to Veterans. 

3. The sharing of Veteran data should be based on the Veteran’s meaningful choice. 

4. Access to and exchange of Veteran data should be transparent and consistent 

5. De-identified Veteran data should not be reidentified without authorization. 

6. There is an obligation of reciprocity for gains made using Veteran data.  

7. All parties are obligated to ensure data security, quality and integrity of Veteran data. 

8. Veterans should be able to access their own information.  

9. Veterans have the right to request amendments to their own information.  

 

 

 

https://www.privado.ai/post/what-are-the-7-principles-of-gdpr#7
https://www.privado.ai/post/what-are-the-7-principles-of-gdpr#8
https://oag.ca.gov/privacy/ccpa
https://www.oit.va.gov/about/ethical-data-use/index.cfm
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Blueprint for an AI Bill of Rights 

MAKING AUTOMATED SYSTEMS WORK FOR THE AMERICAN PEOPLE 

Among the great challenges posed to democracy today is the use of technology, data, and 

automated systems in ways that threaten the rights of the American public. Too often, these 
tools are used to limit our opportunities and prevent our access to critical resources or services. 

These problems are well documented. In America and around the world, systems supposed to 

help with patient care have proven unsafe, ineffective, or biased. Algorithms used in hiring and 
credit decisions have been found to reflect and reproduce existing unwanted inequities or 

embed new harmful bias and discrimination. Unchecked social media data collection has been 
used to threaten people’s opportunities, undermine their privacy, or pervasively track their 

activity—often without their knowledge or consent. 

These outcomes are deeply harmful—but they are not inevitable. Automated systems have 
brought about extraordinary benefits, from technology that helps farmers grow food more 

efficiently and computers that predict storm paths, to algorithms that can identify diseases in 
patients. These tools now drive important decisions across sectors, while data is helping to 

revolutionize global industries. Fueled by the power of American innovation, these tools hold the 

potential to redefine every part of our society and make life better for everyone. 

This important progress must not come at the price of civil rights or democratic values, 

foundational American principles that President Biden has affirmed as a cornerstone of his 
Administration. On his first day in office, the President ordered the full Federal government to 

work to root out inequity, embed fairness in decision-making processes, and affirmatively 

advance civil rights, equal opportunity, and racial justice in America.[i] The President has spoken 
forcefully about the urgent challenges posed to democracy today and has regularly called on 

people of conscience to act to preserve civil rights—including the right to privacy, which he has 
called “the basis for so many more rights that we have come to take for granted that are 

ingrained in the fabric of this country.”[ii] 

To advance President Biden’s vision, the White House Office of Science and Technology Policy 
has identified five principles that should guide the design, use, and deployment of automated 

systems to protect the American public in the age of artificial intelligence. The Blueprint for an AI 
Bill of Rights is a guide for a society that protects all people from these threats—and uses 

technologies in ways that reinforce our highest values. Responding to the experiences of the 

American public, and informed by insights from researchers, technologists, advocates, 
journalists, and policymakers, this framework is accompanied by From Principles to Practice—a 

handbook for anyone seeking to incorporate these protections into policy and practice, including 
detailed steps toward actualizing these principles in the technological design process. These 

principles help provide guidance whenever automated systems can meaningfully impact the 

public’s rights, opportunities, or access to critical needs. 

From Principles to Practice 



 

 AI/ML Ethics in the Geosciences 

83 

Safe and Effective Systems 

You should be protected from unsafe or ineffective systems. Automated systems should be 
developed with consultation from diverse communities, stakeholders, and domain experts to 

identify concerns, risks, and potential impacts of the system. Systems should undergo pre-
deployment testing, risk identification and mitigation, and ongoing monitoring that demonstrate 

they are safe and effective based on their intended use, mitigation of unsafe outcomes including 

those beyond the intended use, and adherence to domain-specific standards. Outcomes of these 
protective measures should include the possibility of not deploying the system or removing a 

system from use. Automated systems should not be designed with an intent or reasonably 
foreseeable possibility of endangering your safety or the safety of your community. They should 

be designed to proactively protect you from harms stemming from unintended, yet foreseeable, 

uses or impacts of automated systems. You should be protected from inappropriate or irrelevant 
data use in the design, development, and deployment of automated systems, and from the 

compounded harm of its reuse. Independent evaluation and reporting that confirms that the 
system is safe and effective, including reporting of steps taken to mitigate potential harms, 

should be performed and the results made public whenever possible. 

Algorithmic Discrimination Protections 

You should not face discrimination by algorithms and systems should be used and designed in an 

equitable way. Algorithmic discrimination occurs when automated systems contribute to 
unjustified different treatment or impacts disfavoring people based on their race, color, ethnicity, 

sex (including pregnancy, childbirth, and related medical conditions, gender identity, intersex 

status, and sexual orientation), religion, age, national origin, disability, veteran status, genetic 
information, or any other classification protected by law. Depending on the specific 

circumstances, such algorithmic discrimination may violate legal protections. Designers, 
developers, and deployers of automated systems should take proactive and continuous 

measures to protect individuals and communities from algorithmic discrimination and to use and 

design systems in an equitable way. This protection should include proactive equity assessments 
as part of the system design, use of representative data and protection against proxies for 

demographic features, ensuring accessibility for people with disabilities in design and 
development, pre-deployment and ongoing disparity testing and mitigation, and clear 

organizational oversight. Independent evaluation and plain language reporting in the form of an 

algorithmic impact assessment, including disparity testing results and mitigation information, 
should be performed and made public whenever possible to confirm these protections. 

Data Privacy 

You should be protected from abusive data practices via built-in protections and you should have 

agency over how data about you is used. You should be protected from violations of privacy 

through design choices that ensure such protections are included by default, including ensuring 
that data collection conforms to reasonable expectations and that only data strictly necessary 
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for the specific context is collected. Designers, developers, and deployers of automated systems 

should seek your permission and respect your decisions regarding collection, use, access, 
transfer, and deletion of your data in appropriate ways and to the greatest extent possible; where 

not possible, alternative privacy by design safeguards should be used. Systems should not 
employ user experience and design decisions that obfuscate user choice or burden users with 

defaults that are privacy invasive. Consent should only be used to justify collection of data in 

cases where it can be appropriately and meaningfully given. Any consent requests should be 
brief, be understandable in plain language, and give you agency over data collection and the 

specific context of use; current hard-to-understand notice-and-choice practices for broad uses 
of data should be changed. Enhanced protections and restrictions for data and inferences related 

to sensitive domains, including health, work, education, criminal justice, and finance, and for data 

pertaining to youth should put you first. In sensitive domains, your data and related inferences 
should only be used for necessary functions, and you should be protected by ethical review and 

use prohibitions. You and your communities should be free from unchecked surveillance; 
surveillance technologies should be subject to heightened oversight that includes at least pre-

deployment assessment of their potential harms and scope limits to protect privacy and civil 

liberties. Continuous surveillance and monitoring should not be used in education, work, housing, 
or in other contexts where the use of such surveillance technologies is likely to limit rights, 

opportunities, or access. Whenever possible, you should have access to reporting that confirms 
your data decisions have been respected and provides an assessment of the potential impact of 

surveillance technologies on your rights, opportunities, or access. 

Notice and Explanation 

You should know that an automated system is being used and understand how and why it 

contributes to outcomes that impact you. Designers, developers, and deployers of automated 
systems should provide generally accessible plain language documentation including clear 

descriptions of the overall system functioning and the role automation plays, notice that such 

systems are in use, the individual or organization responsible for the system, and explanations of 
outcomes that are clear, timely, and accessible. Such notice should be kept up-to-date and 

people impacted by the system should be notified of significant use case or key functionality 
changes. You should know how and why an outcome impacting you was determined by an 

automated system, including when the automated system is not the sole input determining the 

outcome. Automated systems should provide explanations that are technically valid, meaningful 
and useful to you and to any operators or others who need to understand the system, and 

calibrated to the level of risk based on the context. Reporting that includes summary information 
about these automated systems in plain language and assessments of the clarity and quality of 

the notice and explanations should be made public whenever possible. 
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Human Alternatives, Consideration, and Fallback 

You should be able to opt out, where appropriate, and have access to a person who can quickly 
consider and remedy problems you encounter. You should be able to opt out from automated 

systems in favor of a human alternative, where appropriate. Appropriateness should be 
determined based on reasonable expectations in a given context and with a focus on ensuring 

broad accessibility and protecting the public from especially harmful impacts. In some cases, a 

human or other alternative may be required by law. You should have access to timely human 
consideration and remedy by a fallback and escalation process if an automated system fails, it 

produces an error, or you would like to appeal or contest its impacts on you. Human 
consideration and fallback should be accessible, equitable, effective, maintained, accompanied 

by appropriate operator training, and should not impose an unreasonable burden on the public. 

Automated systems with an intended use within sensitive domains, including, but not limited to, 
criminal justice, employment, education, and health, should additionally be tailored to the 

purpose, provide meaningful access for oversight, include training for any people interacting with 
the system, and incorporate human consideration for adverse or high-risk decisions. Reporting 

that includes a description of these human governance processes and assessment of their 

timeliness, accessibility, outcomes, and effectiveness should be made public whenever possible. 

Applying the Blueprint for an AI Bill of Rights 

While many of the concerns addressed in this framework derive from the use of AI, the technical 
capabilities and specific definitions of such systems change with the speed of innovation, and the 

potential harms of their use occur even with less technologically sophisticated tools. 

Thus, this framework uses a two-part test to determine what systems are in scope. This 
framework applies to (1) automated systems that (2) have the potential to meaningfully impact 

the American public’s rights, opportunities, or access to critical resources or services. These 
Rights, opportunities, and access to critical resources of services should be enjoyed equally and 

be fully protected, regardless of the changing role that automated systems may play in our lives. 

This framework describes protections that should be applied with respect to all automated 
systems that have the potential to meaningfully impact individuals’ or communities’ exercise of: 

Rights, Opportunities, or Access 

Civil rights, civil liberties, and privacy, including freedom of speech, voting, and protections from 

discrimination, excessive punishment, unlawful surveillance, and violations of privacy and other 

freedoms in both public and private sector contexts; 

Equal opportunities, including equitable access to education, housing, credit, employment, and 

other programs; or, 

Access to critical resources or services, such as healthcare, financial services, safety, social 

services, non-deceptive information about goods and services, and government benefits. 
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A list of examples of automated systems for which these principles should be considered is 

provided in the Appendix. The Technical Companion, which follows, offers supportive guidance 
for any person or entity that creates, deploys, or oversees automated systems. 

Considered together, the five principles and associated practices of the Blueprint for an AI Bill of 
Rights form an overlapping set of backstops against potential harms. This purposefully 

overlapping framework, when taken as a whole, forms a blueprint to help protect the public from 

harm. The measures taken to realize the vision set forward in this framework should be 
proportionate with the extent and nature of the harm, or risk of harm, to people’s rights, 

opportunities, and access. 

[i] The Executive Order On Advancing Racial Equity and Support for Underserved Communities 

Through the Federal Government. https://www.whitehouse.gov/briefing-room/presidential-

actions/2021/01/20/executive-order-advancing-racial-equity-and-support-for-underserved-
communities-through-the-federal-government/ 

[ii] The White House. Remarks by President Biden on the Supreme Court Decision to Overturn 
Roe v. Wade. Jun. 24, 2022. https://www.whitehouse.gov/briefing-room/speeches-

remarks/2022/06/24/remarks-by-president-biden-on-the-supreme-court-decision-to-overturn-

roe-v-wade/ 
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Appendix D: AI/ML Guidance from ChatGPT 
 

There are a number of publicly available AI/ML tools that are drawing considerable 

attention.  There is still a great deal of work needed to guide the public use of the tools, 

addressing issues of privacy, intellectual property, originality, citations for use, and other 
matters.  Thus, it was with some caution that we asked one of the tools, ChatGPT (Chat 

Generative Pre-trained Transformer) the following question: “Please provide guidance on the 
ethical use of AI/ML in the geosciences (with citations).”  When asked the same question a 

second time (a few days later from the same computer) the response was similar, but not 

identical, and the references were different.     

We note three things about the response.  First, the five themes highlighted correspond 

nicely to the themes in this report, which we take as a form of validation both for the report and 
for ChatGPT.  Second, the addition of citations reveals an interesting mix of sources -- 

conference presentations, leading journals, less well-known journals, etc. -- with most coming 

from outside of the geosciences and some that could not be found on Google Scholar.  Third, the 
focus is primarily from the perspective of researchers, with less of a focus on the implications for 

professional societies, government agencies, and other organizations or consortia.  This is, of 
course, reflective of the data on which ChatGPT draws.  In this way, the use of AI/ML in this case 

reveals gaps in the literature as well as common themes.  Here is what was generated: 

The field of geosciences has increasingly turned towards artificial intelligence and machine 
learning to aid in understanding complex earth systems, but with this shift comes the need 

for ethical considerations in the use of AI/ML. Here are some guidelines and considerations 
for the ethical use of AI/ML in geosciences, supported by relevant literature: 

1. Fairness and Bias: AI/ML models must be designed and trained to ensure fairness 

and minimize bias, particularly when used in decision-making processes. Fairness 
refers to the absence of systematic disparities in the outcomes of a model, while bias 

refers to the presence of unfair treatment towards certain groups or individuals. 
Careful consideration must be given to the data used to train models, and it is 

important to actively monitor and address potential biases that may arise. (Gebru et 

al., 2018; Buolamwini & Gebru, 2018; Crawford et al., 2020) 

2. Transparency and Interpretability: AI/ML models should be transparent and 

interpretable, meaning that the reasoning behind the model's decisions should be 
clear and understandable. This is particularly important in the geosciences, where 

decisions based on AI/ML models can have significant consequences. (Lipton, 2018; 

Mittelstadt et al., 2019) 

3. Privacy and Security: AI/ML models must be designed and implemented with 

appropriate safeguards to protect individual privacy and data security. This includes 
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careful consideration of data storage and sharing, as well as measures to prevent 

unauthorized access or misuse of data. (Bertino et al., 2020) 

4. Accountability and Governance: AI/ML models must be accountable to ensure that 

they are used ethically and effectively. This includes establishing appropriate 
governance structures and oversight mechanisms to ensure that the models are 

used responsibly and in compliance with relevant laws and regulations. (Floridi et al., 

2018; Jobin et al., 2019) 

5. Community Engagement: AI/ML researchers and practitioners should engage with 

impacted communities to ensure that their needs and concerns are addressed. This 
includes involving local stakeholders in the design and implementation of AI/ML 

projects, and being transparent about the potential impacts of these projects. 

(Scheuermann et al., 2019) 

References: 
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