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Abstract

Eutrophication represents a major threat to freshwater systems and climate change is expected to drive further increases in

freshwater primary productivity. However, long-term in-situ data is available for very few lakes and makes identifying trends and

drivers of eutrophication challenging. Using remote sensing data, we conducted a retrospective analysis of long-term trends in

trophic status across the Intermountain West, a region with understudied water quality trends and limited long-term datasets.

We found that most lakes (55%) were not exhibiting shifts in trophic status from 1984-2019. Our results also show that increases

in eutrophication were rare (3% of lakes) during this period, and that lakes exhibiting negative trends in trophic status were

more common (17% of lakes). Lakes that were not trending occupied a wide range of lake and landscape characteristics, whereas

lakes that were becoming less eutrophic tended to be in more heavily developed catchments. Our results highlight that while

there are well-established narratives that climate change can lead to more eutrophication of lakes, this is not broadly observed

in our dataset, with more lakes becoming more oligotrophic than lakes becoming eutrophic.
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Abstract 32 

Eutrophication represents a major threat to freshwater systems and climate change is expected to 33 

drive further increases in freshwater primary productivity. However, long-term in-situ data is 34 

available for very few lakes and makes identifying trends and drivers of eutrophication 35 

challenging. Using remote sensing data, we conducted a retrospective analysis of long-term 36 

trends in trophic status across the Intermountain West, a region with understudied water quality 37 

trends and limited long-term datasets. We found that most lakes (55%) were not exhibiting shifts 38 

in trophic status from 1984-2019. Our results also show that increases in eutrophication were 39 

rare (3% of lakes) during this period, and that lakes exhibiting negative trends in trophic status 40 

were more common (17% of lakes). Lakes that were not trending occupied a wide range of lake 41 

and landscape characteristics, whereas lakes that were becoming less eutrophic tended to be in 42 

more heavily developed catchments. Our results highlight that while there are well-established 43 

narratives that climate change can lead to more eutrophication of lakes, this is not broadly 44 

observed in our dataset, with more lakes becoming more oligotrophic than lakes becoming 45 

eutrophic.  46 

Plain Language Summary 47 

Lakes are often classified by their productivity. Low productive lakes generally represent deep 48 

lakes with low amounts of algae. Whereas lakes with high levels of productivity support more 49 

plant growth and have higher amounts of algae. The accumulation of nutrients in freshwater 50 

systems often results in increases in productivity and can lead to the development of algal 51 

blooms. Algal blooms are a major concern due to their threat to ecosystem health, recreation, and 52 

drinking water sources. Yet the lack of long-term field data across large scales has resulted in a 53 

limited understanding of 1) what factors are driving productivity trends and the development of 54 

algal blooms across regions, and 2) are increasing trends representative of widespread 55 
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intensification or an increase in awareness and reporting. Therefore, there is a pressing need to 56 

effectively monitor and understand these trends in order to inform management actions that 57 

address their frequency and intensity. Here, we use data obtained from satellite imagery from 58 

1984 - 2019 to document lake productivity trends in 1,169 lakes across the Intermountain West. 59 

We show that substantial increases in productivity were rare, and that the majority of lakes have 60 

not undergone widespread change.  61 

1 Introduction 62 

Widespread eutrophication is a global phenomenon that threatens water quality, 63 

recreational industries, and ecosystem function (Paerl et al., 2001; Gatz, 2020; Amorim and 64 

Moura, 2021). A common outcome of eutrophication is an increase in the biomass of 65 

phytoplankton, both algae and cyanobacteria, in freshwater, transitional, and ocean environments 66 

(Anderson et al., 2008; Hudnell, 2010; Wurtsbaugh et al, 2019). In many cases, this rapid and 67 

excessive growth can become severe and lead to the development of Harmful Algal Blooms 68 

(HABs) (Smith, 2003; Heisler et al. 2008). HABs are of particular concern due to the threats they 69 

pose to human health and drinking water sources (Fleming et al., 2002; Falconer and Humpage 70 

et al., 2005; Christensen and Khan, 2020). Thus, the wide-ranging effects that eutrophication and 71 

HABs have on aquatic systems and their threat to human health have highlighted the need to 72 

understand the factors which drive them.  73 

 Generally, eutrophication and algal blooms are attributed to excessive loading of 74 

nitrogen (N) and phosphorus (P) as well as high water temperatures (Rejmankova and 75 

Komarkova, 2005; Paerl and Paul, 2012; Gobbler et al. 2016; Beaver et al. 2018). However, in 76 

shallow lakes, warmer temperatures and higher light absorption have been found to be more 77 

significant drivers of productivity (Kosten et al., 2012). In other words, the combination of 78 
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factors that drive rapid increases in lake productivity may differ between individual water bodies 79 

or geographic regions, hence smaller and more focused state and regional scale studies may be 80 

more useful in describing changes in lake productivity dynamics (Oleksy et al., 2022).  81 

Large scale studies have highlighted that water quality trends are context dependent and 82 

vary across regions (Beaver et al., 2018). However, some regions with unique landscape features 83 

remain understudied regarding lake productivity trends. For example, the Intermountain West 84 

region (including the US states Colorado, Idaho, Montana, Utah, and Wyoming) has very 85 

different hydrological dynamics and landscape features compared with other regions, yet water 86 

quality trends remain mostly undocumented. The region undergoes quick wet-dry seasonal 87 

transitions, with most of the streamflow generated by snowmelt (Bales et al., 2006). Higher 88 

gradients in temperature and precipitation with elevation make hydrologic processes significantly 89 

different compared with low-elevation regions (Bales et al., 2006). Land use in this region also 90 

differs, with substantial amounts of grassland pasture and range contributing to increased organic 91 

nutrient loading to streams and rivers (Agouridis et al., 2005).   92 

An increase in awareness and reporting of HABs in the Intermountain West suggests that 93 

lakes in the region may be becoming more eutrophic, yet our understanding of lake productivity 94 

trends is very limited. As nation-wide research and understanding of HABs has grown, so have 95 

management and sampling plans, educational materials, and overall public awareness (Hudnell et 96 

al. 2010). However, this increase in awareness and reporting has the potential to create a 97 

perception that blooms are already increasing in intensity and frequency (Hallegraeff et al., 98 

2021).  Recent work in the region highlights that lakes are experiencing roughly equal trends of 99 

changing from blue to green or changing green to blue, indicating there is not overwhelming 100 

evidence that they are getting more eutrophic, where eutrophic lakes are generally more green 101 
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(Oleksy et al., 2022). It remains unclear whether this is a result of representative increases in 102 

intensity or a result of heightened monitoring. Therefore, retrospective data analyses and long-103 

term monitoring are needed to identify consistent productivity trends (Hudnell, 2008), 104 

particularly in understudied regions like the Western US.   105 

Remote sensing and long-term satellite imagery create opportunities to address key 106 

research gaps surrounding what factors are driving freshwater productivity across regions. In-situ 107 

sampling methods are often limited by resources such as time and funding. Therefore, in-situ 108 

water quality data tends to be focused on relatively large lakes (> 20 ha) and long-term records 109 

tend to be rare (Stanley et al. 2019). Importantly, leveraging remote sensing data can address 110 

water quality dynamics over large spatial and temporal scales where in situ data is lacking (Topp 111 

et al. 2020). Remote sensing data with high spatial and temporal coverage are also useful to 112 

understand how global change is affecting productivity and bloom dynamics (Harvey et al. 2015; 113 

Ho et al., 2017; Seegers et al. 2021). These tools can be used to determine water quality 114 

parameters in freshwater systems such as chlorophyll-a (Boucher et al., 2018; Kuhn et al., 2019; 115 

Papenfus et al., 2020), suspended sediments (Pavelsky and Smith, 2009), and organic matter 116 

(Kutser et al., 2005; Slonecker et al., 2016).  117 

In this study, we address two gaps in our understanding of lake productivity dynamics in 118 

the Intermountain West. Specifically, we aimed to identify 1) the historical prevalence of 119 

eutrophic lakes and whether this is an  increasing trend of eutrophication, and 2) the drivers and 120 

spatial distribution of changes in trophic state. We use remote sensing imagery and in-situ 121 

chlorophyll-a data, covering 1984-2019, to predict chlorophyll-a and lake trophic state based 122 

solely on satellite imagery. This approach allowed us to document productivity trends in 1,169 123 

lakes over 35 years. By increasing the level of understanding of historical trends in lake 124 
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productivity and their drivers in this region, our analysis can also shed light on the intensification 125 

of algal blooms in lakes and provide important information for water quality management. 126 

2 Materials and Methods 127 

2.1 Data Sources and Processing  128 

 129 

Our analysis used various remote sensing, water quality, lake and landscape features, and 130 

climate datasets. We opted for a machine-learning approach that uses paired satellite reflectance 131 

from Landsat observations and in-situ water quality data. We acquired Landsat data and in-situ 132 

chlorophyll-a samples for model training from the AquaSat dataset (Ross et al., 2019). AquaSat 133 

joins Landsat Tier 1 surface reflectance to water quality samples from the Water Quality Portal 134 

(Read et al. 2017) and LAGOS-NE (Soranno et al. 2017) that occurred ± 1 day of a Landsat 135 

observation. We filtered AquaSat to only include observations over the Intermountain West 136 

region and with Landsat scenes with less than 50% cloud cover. The resulting dataset included 137 

1,340 observations across 249 lakes in the region. Reflectance values across the three different 138 

Landsat satellites used (5, 7, and 8) were standardized using the methodology outlined in 139 

Gardner et al. (2021). We then identified various open-source datasets that captured 140 

environmental drivers we hypothesized might be important for predicting chlorophyll-a. We 141 

merged Lake characteristics and catchment level metrics to our training dataset from the LakeCat 142 

(Hill et al., 2018) and LAGOS-US (Cheruvelil et al., 2021), and HydroLAKES (Messager at al., 143 

2016) datasets. Initially we joined lakes in the training set to corresponding lake polygons 144 

included in NHDPlusV2. LakeCat, LAGOS-US, and HydroLAKES datasets were then added 145 

through common NHD identifiers. We selected metrics that were derived from these datasets 146 

based on their potential to impact water quality (Table S1).  147 
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Daily surface water temperature and corresponding weather data (wind speed) were also 148 

included in our model development. We extracted daily water temperature from Willard et al. 149 

(2022), which includes estimated daily surface water temperature for 185,549 lakes across the 150 

US. In addition to daily surface temperature, we calculated prior 14-day mean temperatures for 151 

all 1,340 observations included in our training set. Then, we joined 14-day mean temperature and 152 

meridional wind speed to our training set using common NHD identifiers and the date of 153 

observation.  154 

Using the same methods, we built our prediction dataset using LimnoSat-US (Topp et al., 155 

2021). LimnoSat-US includes Landsat Collection 1, Tier 1 surface reflectance for lakes greater 156 

than 10 hectares in the U.S. spanning 1984 – 2020. Surface reflectance values represent the 157 

median surface reflectance of a 120-meter buffer of the “deepest point” of a lake polygon. This 158 

“deepest point” can be defined as the center of the largest circle that can fit within a lake 159 

polygon. We joined the lake characteristics, catchment level metrics, and climate data described 160 

above to our prediction dataset, resulting in 1,264,355 observations across 2,596 lakes in the 161 

Intermountain West. 162 

Lastly, we defined categories for three trophic states based on the following chlorophyll-a 163 

thresholds: oligotrophic (0 - 2.6 ug /L), mesotrophic (2.7 – 7 ug / L), and eutrophic ( > 7 ug / L). 164 

These thresholds were inspired by the criteria outlined in the National Lakes Assessment (U.S. 165 

Environmental Protection Agency, 2009). This categorical approach was taken because 166 

predicting chlorophyll-a concentrations in freshwater systems with remote sensing has been 167 

notably challenging, particularly with Landsat imagery (Salem et al., 2017; Smith et al. 2021). 168 

Landsat bands are relatively broad with a low signal-to-noise ratio, often resulting in predictions 169 

of chlorophyll-a with high levels of uncertainty (Matthews, 2011). Furthermore, the accurate 170 
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prediction of chlorophyll-a is affected by complex optical conditions in various waterbodies with 171 

higher levels of turbidity (Ruddick et al. 2001; Alvain et al. 2005). These challenges were 172 

addressed by focusing on broad, trophic level predictions of chlorophyll-a. 173 

2.2 Model Development 174 

 175 

We developed an Extreme Gradient Boosting (XgBoost) model to classify categories of 176 

chlorophyll-a. These models build on machine learning concepts such as decision trees and 177 

ensemble learning (Cheng and Guesterin, 2016). Decision trees represent a supervised learning 178 

approach where training features are split into internal nodes and evaluated to form 179 

homogeneous groups (terminal nodes) (Kotsiantis, 2013). Decision trees can comprise a single 180 

univariate classifier or the combination of multiple classifiers, known as an ensemble classifier. 181 

Gradient boosting is a method of ensemble learning where a series of models are built with 182 

weights assigned to misclassified observations. Misclassified observations from the previous 183 

model are used as training data for the next, and the result is an ensemble classifier that 184 

represents an aggregation of individual classifiers and minimizes overall error (Pal, 2007).  185 

We used a combination of optical and climatic variables to build a predictive model for 186 

chlorophyll-a. Specifically, we calculated multiple band ratios that have been shown to explain 187 

variation in phytoplankton blooms (Ho et al., 2017). We used a 14-day average of lake surface 188 

temperature and daily meridional wind speed as additional predictor variables. We explored the 189 

addition of static predictor variables (such as lake elevation or watershed land use) yet refrained 190 

from including these in our final model because recent studies have shown that static predictor 191 

variables can act as ‘identifiers’ and lead to overfitting and over-optimistic evaluation metrics 192 
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(Meyer et al., 2018). Thus, we selected only continuous predictor variables that we would not 193 

expect to lead to substantial overfitting (Table 1).  194 

 195 

Table 1. Predictor variables used for model training. 196 

Predictor variable Description 

Blue Surface reflectance of blue band 

Dwl Dominant wavelength 

Nir Surface reflectance of Nir band 

Swir2 Surface reflectance of Swir2 band 

Red / Blue Red / Blue 

Red / Nir  Red / Nir 

Nir / Red.  Nir / Red 

Green / Blue  Green / Blue 

Nir Sac (Nir – 1.03) * Swir1 

Nir – Red Nir - Red 

Red - Green Red - Green 

EVI 2.5*((Nir – Red)/(Nir + ((6*Red) – (7.5*Blue)) + 1)) 

GCI Nir / (Green – 1) 

Mean 14-day Temp 14- day average surface water temperature (deg. C) 

Wind Meridional wind speed (m/s) 
 197 

We partitioned our training set to reserve 20% for model testing and evaluation and 80% 198 

for model training and parameter tuning. XgBoost models include a wide range of 199 

hyperparameters and are one of the main tools used to reduce model variance. Hyperparameters 200 

were tuned by first establishing a grid of conservative values (to prevent overfitting) and then 201 

extracting the hyperparameters that resulted in the lowest validation loss. After training the final 202 
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model with these hyperparameters, model performance was evaluated through a confusion 203 

matrix which shows the relative accuracy of predictions across different categories. 204 

2.3 Data Analysis 205 

 206 

To summarize lake trends and capture long-term changes in chlorophyll-a, we analyzed 207 

the percent occurrence of trophic state observations. First, lakes included in our trend analysis 208 

had to have at least two summer observations (June – September) for each year (1984-2019). 209 

More conservative filtering criteria, such as at least 5 observations per year, was explored yet 210 

had negligible effects on overall results and resulted in fewer lakes being included in our 211 

analysis. We specifically focused our analysis on summer observations to limit the effect that 212 

snow and ice may have on our results. As a result, 1,169 lakes were included in our analysis 213 

based on these criteria. For each summer, the percent occurrence of each trophic state 214 

observation was recorded. Then, the average percent occurrence for each trophic state was 215 

recorded across two time periods: 1984 – 2004; and 2005 – 2019. Lastly, lakes were grouped 216 

into the following categories based on the shift (if any) in trophic state during these two time 217 

periods:  218 

1) No trend: Change in % oligotrophic, % mesotrophic, and % eutrophic was less  219 

  than 10% across all three categories (Figure 1A) 220 

2) Increasing in % Eutrophic: Number of eutrophic observations increased by  221 

  10% or more while the number of oligotrophic observations decreased by 10% or  222 

  more (Figure 1B) 223 

3) Increasing in % Oligotrophic: Number of oligotrophic observations increased 224 

by 10% or more while the number of eutrophic observations decreased by 10% or 225 

more (Figure 1C).  226 
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 227 
Figure 1. Examples of three possible trend categories based on the trends in % occurrence of 228 
oligotrophic, mesotrophic, and eutrophic observations. Each panel included in this plot 229 
represents the trends observed across three different lakes. 230 
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Lastly, trend-specific drivers were examined by determining how lake catchment, 231 

hydrologic, and climate metrics explained differences across trends. We calculated variable 232 

importance across trend categories by applying a random forest model using the randomForest 233 

package in R (Liaw and Wiener, 2002). With this approach, we were able to classify the 234 

reduction in accuracy that occurred across all three responses when certain variables were 235 

excluded. All data processing, model development, statistical analysis, and visualizations were 236 

done in Program R (R Core Team, 2022). 237 

3 Results 238 

3.1 Model Performance 239 

 240 

Model performance was evaluated through a confusion matrix as well as various 241 

accuracy and error metrics (Table 2, Figure 2). In the range of oligotrophic values (0 - 2.6 ug/L), 242 

observations had a balanced accuracy of 78% and only 7% of these observations were 243 

misclassified as eutrophic (Table 2). Mesotrophic observations (2.7 - 7 ug/L) represented the 244 

range of values with the lowest prediction accuracy. Our model reported a balanced accuracy of 245 

69% for mesotrophic classifications (Table 2). The most common misclassification among 246 

mesotrophic predictions was with observed classes that were oligotrophic (30%) (Figure 2). 247 

Lastly, eutrophic observations (> 7 ug/L) represented the class with the highest prediction 248 

accuracy (85%) (Table 2). In addition, there was relatively low prediction error with oligotrophic 249 

classes (6%). Overall, our model reported a global accuracy of 70% with a 95% confidence 250 

interval of between 63% and 76% (Table S2). 251 

 252 
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Table 2. Model evaluation metrics for each predicted class.  253 

Statistic Oligotrophic Mesotrophic Eutrophic 

Sensitivity  0.7500 0.5397 0.8426 

Specificity 0.8167 0.8440 0.8912 

Neg Pred Value 0.8235 0.8041 0.9291 

Pos Pred Value 0.7412 0.6071 0.7460 

Prevalence 0.4118 0.3088 0.2794 

Balanced Accuracy 78.33% 69.18% 85.79% 

 254 

 255 
Figure 2. Confusion matrix illustrating the frequency and accuracy of predictions across all three 256 
trophic states. The most common misclassification was among mesotrophic predictions that had 257 
observed classes of oligotrophic (middle panel, far left). Overall, our model had a global 258 
accuracy of 70% with a 95 % confidence interval of 63% - 76%. 259 
 260 
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The integration of fine-scale, daily temperature and climate features significantly 261 

improved our ability to predict across these trophic states. In terms of feature importance 262 

measured by model gain, mean 14 – day surface water temperature and meridional wind speed 263 

were the second and fourth most important predictor variables, behind the band ratio of blue to 264 

green and dominant wavelength (Figure 3). In addition, model scenarios without climate 265 

variables reported global accuracies of around 63%, with a 95% confidence interval of between 266 

57 – 69%.  267 

Figure 3. Feature importance, measured as model gain, for the predictor variables included in 268 
model development. 269 

 270 

 271 
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3.2 Productivity Trends 272 

 273 

Most lakes included in this study did not show trends in chlorophyll-a (Figure 4). Overall, 274 

a total of 651 lakes (55%) did not meet our 10% thresholds for shifts across all three categories  275 

More than half of the lakes that weren’t changing from 1985-2019 were oligotrophic lakes with 276 

most observations classified as oligotrophic. In contrast, 24% of lakes within this category were 277 

eutrophic lakes. The remaining lakes (16%) in this trend category likely represent a more 278 

complex, mesotrophic lake status. 279 

The second most common trend we observed were lakes that had substantial shifts in 280 

trophic status by becoming more oligotrophic. We found that 17% of lakes switched from 281 

predominantly being classified as eutrophic to being classified primarily as oligotrophic. Most of 282 

these lakes tended to be dominated by eutrophic observations, suggesting that they are eutrophic 283 

lakes that are improving in water quality. Few lakes showed evidence of extreme (>30%) shifts 284 

in oligotrophic observations. In other words, shifts in oligotrophic observations within this lake 285 

trend was relatively moderate (10 - 30%, Figure S1).  286 

Lastly, a minority (3%) of all lakes were shifting towards becoming more eutrophic. 287 

Interestingly, these trends were equally distributed across lakes with high levels of eutrophic 288 

observations and those with high levels of oligotrophic observations. In other words, lakes that 289 

were predominately oligotrophic and were becoming more eutrophic were equally as common as 290 

lakes that were eutrophic and were intensifying in this way. The magnitude of change was 291 

similar to that of lakes that trended oligotrophic, with little evidence of extreme shifts in 292 

eutrophic observations (Figure S1). 293 

 294 
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 295 

Figure 4. Spatial distribution of trophic state trends across the five states included in this 296 
analysis. 297 
 298 
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The remaining lakes that were included in this analysis and did not fit into these rigid 299 

categories reflect various levels of trophic state change. For example, 7% of lakes could be 300 

described as becoming more oligotrophic and less mesotrophic by the same thresholds outlined 301 

in Figure 1. In contrast, few lakes (1%) were found to be becoming more mesotrophic during this 302 

time. The 12% of lakes that did not fit into these categories displayed slight trends in certain 303 

categories (such as becoming more oligotrophic), but did not satisfy thresholds for trends in 304 

other categories such that we would be confident of defining clear trends in productivity. 305 

3.3 Drivers of Trends 306 

 307 

Our random forest model was able to identify partially important variables for explaining 308 

trends in productivity. Lake catchment data such as 30 year normal mean temperature, base flow 309 

index, and mean runoff were more important in explaining overall lake trends (Figure 5). 310 

Specifically, lakes becoming more oligotrophic tended to have longer residence times and were 311 

located in catchments that were generally less forested and more developed (Figure 6). Whereas, 312 

lakes that were becoming more eutrophic also tended to be less forested but were located in 313 

smaller catchments and were shallower on average (4.13 m) compared with lakes that were not 314 

trending (9.12 m). Lastly, a number of climate and landscape metrics displayed a high level of 315 

variation across trophic state trends, however some of these metrics had significant cross 316 

correlation with other variables (Figure S2). 317 

 318 

 319 

 320 

 321 
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 325 

Figure 6. Mean decrease in accuracy of the top five variables used to explain each trend 326 
category in the random forest model. The mean decrease in accuracy describes variable 327 
importance by quantifying how much accuracy is lost by excluding that particular variable.  328 



manuscript submitted to Water Resources Research 

 

4 Discussion 329 

Eutrophication and the development of algal blooms are global phenomena that threaten 330 

aquatic systems. Given the effects of global change and the expected increasing intensity of these 331 

disturbances, there has been a substantial level of interest in investigating recent productivity 332 

trends in lakes and reservoirs. Our analysis found that most lakes in the Intermountain West 333 

region have remained relatively static in terms of their productivity over the last 35 years. In 334 

addition, we found that a greater percentage of lakes were improving with regards to 335 

productivity, as opposed to becoming more eutrophic.  336 

4.1 Productivity Trends 337 

 338 

The majority of lakes included in this analysis showed no evidence of substantial changes 339 

in trophic state and supplement other regional-scale analyses of in-situ chlorophyll-a data. This is 340 

consistent with previous analyses demonstrating that magnitude, severity, and duration of algal 341 

blooms are not intensifying in US lakes (Wilkinson et al. 2022). Similarly, long-term trends of 342 

Florida lakes have indicated that a majority (73%) have not shown evidence of changes in 343 

chlorophyll-a and trophic state (Canfield et al., 2018). While there is a growing concern of 344 

eutrophication and HABs becoming pervasive in the Intermountain West, our results build on 345 

recent studies that suggest no indication of widespread intensification in algal blooms. Rather, 346 

the large percentage of lakes not trending combined with the presence of algal blooms across the 347 

region suggest a historical baseline of eutrophication and that blooms could have predated the 348 

1980s. 349 

Our analysis revealed that, in fact, the smallest percentage (3%) of lakes were trending 350 

eutrophic. Global analyses of long-term phytoplankton blooms have shown a substantial (68 %) 351 

number of lakes to be increasing in bloom intensity (Ho et al., 2019). However, only 5% of U.S. 352 
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lakes have been shown to be increasing in the same metric over the past 40 years (Wilkinson et 353 

al., 2022). In addition, a minority of lakes (13%) in the Rocky Mountain region have shown to be 354 

shifting from blue to greener wavelengths during this time (Oleksy et al., 2022). With our 355 

analysis, we show that concerns regarding the widespread intensification of algal blooms are not 356 

captured in our analysis of chlorophyll-a and trophic state.  357 

Our analysis of lakes that were trending eutrophic revealed several important hydrologic 358 

and climate factors associated with eutrophication. Specifically, 30-year normal mean 359 

temperatures tended to be higher among lakes trending eutrophic and an important variable for 360 

explaining overall trends. In addition, hydrologic variables such as lake depth and lake area 361 

revealed that lakes trending eutrophic tended to be smaller and shallower than other lakes. Small, 362 

shallow lakes are often more productive than deeper lakes because of the effects that lake 363 

morphology can have on ecosystem structure (Richardson et al., 2022; Henderson et al., 2021). 364 

Shallow lakes have also been shown to be more sensitive to climate conditions (Mooij et al., 365 

2007) and could explain the interaction between climate and depth driving these trends.  366 

In contrast, 19 % of study lakes were found to be improving by simultaneously becoming 367 

less eutrophic and more oligotrophic. Lake-specific characteristics reveal that lakes improving in 368 

water quality were in more developed and less forested catchments, as well as at lower 369 

elevations. These results are consistent with studies on water clarity (Topp et al., 2021), lake 370 

color (Oleksy et al., 2022), and chlorophyll-a (Wilkinson et al., 2022), that highlight 371 

improvements in water quality metrics over the same time period. These trends have been 372 

hypothesized to be the result of management actions or restoration projects (Wilkinson et al., 373 

2022), although we lacked the information to make conclusions about the mechanisms of these 374 

trends. However, concentrations of nutrients across urban watersheds have significantly 375 
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decreased over the past 20 years and have been directly attributed to the Clean Water Act (Stets 376 

et al., 2020). Given the greater variable importance of developed land use across lakes becoming 377 

more oligotrophic (3.9 compared to 1.6 among no trend lakes), it is possible that water quality 378 

implementation projects have had a positive effect on mitigating eutrophication in the region.   379 

Despite the 35-year study period and wide range of lakes involved, the remote sensing 380 

data used in this study may not capture various spatial and temporal characteristics of 381 

eutrophication or algal blooms. Algal blooms tend to have high temporal and spatial variance in 382 

the short term, as wind dynamics drive the spatial distribution of phytoplankton blooms (Bosse et 383 

al., 2019). Therefore, the 16-day return period for Landsat observations may not capture short-384 

term peaks in chlorophyll-a. Furthermore, some images can be unusable due to extensive cloud 385 

cover and may extend the period between observations up to months at a time. However, given 386 

that our analysis includes 35 years of data across 1,169 lakes, we would expect to capture 387 

widespread eutrophication and the spatial clustering of eutrophication trends if it were present.   388 

Additionally, Landsat’s long-term record restricted us to coarse analyses of chlorophyll-a 389 

and trophic state. Our analysis does not capture cyanobacteria dynamics or those of cyanotoxins 390 

directly. Satellites with spectral resolution to capture cyanobacteria abundance, such as MERIS 391 

and Sentinel-3, have lacked the data availability for long-term, retrospective analyses (Coffer et 392 

al., 2020). However, future studies that are able to capture trends in cyanobacteria blooms 393 

specifically will help provide further context regarding the concerns of bloom intensification. 394 

4.2 Modeling Approach 395 

 396 

Our research focused on leveraging long-term remote sensing and environmental datasets 397 

that would supplement the ongoing debate regarding recent trends in phytoplankton blooms. 398 
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While the application of remote sensing for inland water quality monitoring has grown over the 399 

past decade (Topp et al., 2020), the retrieval of certain optical properties such as chlorophyll-a 400 

has remained a challenge (Matthews, 2011). However, by incorporating daily surface 401 

temperature and meridional wind speed from datasets leveraging modern deep learning 402 

techniques we were able to show substantial improvements in model accuracy. The incorporation 403 

of fine-scale lake climate data over the 35-year time span of this study was instrumental to our 404 

ability to document trophic state changes and add evidence to the ongoing debate regarding the 405 

recent trends in increasing eutrophication and HABs.  406 

Most notably, surface water temperature was the second most important predictor 407 

variable of our trophic state model and could be important for a wide range of remote sensing 408 

based water quality models. Water temperature has proven to be an important predictor of 409 

chlorophyll-a across inland lakes (Liu et al. 2019; Karcher et al. 2020) as well as oceans 410 

(Dunstan et al. 2018). However, applied remote sensing models that predict chlorophyll-a are 411 

often limited to strictly optical predictors such as band-ratio (blue-green) models. These models 412 

work well in waterbodies where other parameters such as colored dissolved organic matter co-413 

vary with chlorophyll-a (O’Reilly et al., 1998). However, in optically complex waterbodies with 414 

higher levels of turbidity and dissolved organic matter band-ratio models struggle to accurately 415 

retrieve chlorophyll-a concentrations (Tzortziou et al., 2007; Zheng and DiGiacomo, 2007; 416 

Witter et al., 2009). Thus, relying on surface reflectance for predictive models has resulted in a 417 

lack of generalizability across a wide range of waterbodies. However, the incorporation of 418 

surface water temperature seems to have supplemented existing band-ratio features to better 419 

predict across a wide range of lake types.  420 
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Wind speed was another climate predictor variable that was substantially important in 421 

predicting trophic state. Correlations between wind speed and chlorophyll have been shown 422 

using remote sensing at global scales (Kahru et al., 2010). In addition, wind speed has been 423 

documented as an important driver of cyanobacterial bloom development with blooms favoring 424 

warm, calm weather (Kanoshina et al. 2003). Overall, the integration of daily, fine-scale weather 425 

data greatly improved our ability to predict trophic state and is likely to have a positive impact 426 

on similar approaches that leverage remote sensing data.  427 

5 Conclusions 428 

 With increases in global lake temperatures (Maberly et al., 2020), lakes globally are 429 

expected to become more eutrophic as a response to climate change (Yang et al., 2020). Yet, 430 

there have been conflicting results thus far regarding intensifying eutrophication and algal 431 

blooms in U.S. and global lakes (Ho et al., 2019, Wilkinson et al., 2022, Topp et al., 2021). 432 

While increasing eutrophication is a major threat to freshwaters, our analysis found that lakes in 433 

the Intermountain West region have not undergone widespread change. Rather, we found that 434 

most lakes were not changing, and a substantial number of lakes were becoming less eutrophic 435 

and more oligotrophic over this time period. In addition, the number of eutrophic lakes that have 436 

not undergone substantial change over this time period suggests algal blooms have been present 437 

in the region since at least the early 1980s. These results highlight the complex nature of 438 

observing changes in freshwater lakes across large scales. However, our results suggest that 439 

despite the processes that drive eutrophication (warmer temperatures, nutrient accumulation, 440 

etc.) which have increased over the past several decades, we haven’t yet observed a concurrent 441 

increase in eutrophication from a large, unbiased sample of 1,169 lakes in the Intermountain 442 



manuscript submitted to Water Resources Research 

 

West. This suggested suggesting controls on eutrophication in this region are complex and need 443 

further additional study.  444 
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