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Abstract

High computational cost is often the most limiting factor when running high-resolution hydrodynamic models to simulate

spatial-temporal flood inundation behaviour. To address this issue, a recent study introduced the hybrid Low-fidelity, Spatial

analysis, and Gaussian Process learning (LSG) model. The LSG model simulates the dynamic behaviour of flood inundation

extent by upskilling simulations from a low-resolution hydrodynamic model through Empirical Orthogonal Function (EOF)

analysis and Sparse Gaussian Process (Sparse GP) learning. However, information on flood extent alone is often not sufficient

to provide accurate flood risk assessments. In addition, the LSG model has only been tested on hydrodynamic models with

structured grids, while modern hydrodynamic models tend to use unstructured grids. This study therefore further develops the

LSG model to simulate water depth as well as flood extent and demonstrates its efficacy as a surrogate for a high-resolution

hydrodynamic model with an unstructured grid. The further developed LSG model is evaluated on the flat and complex

Chowilla floodplain of the Murray River in Australia and accurately predicts both depth and extent of the flood inundation,

while being 12 times more computationally efficient than a high-resolution hydrodynamic model. In addition, it has been found

that weighting before the EOF analysis can compensate for the varying grid cell sizes in an unstructured grid and the inundation

extent should be predicted from an extent-based LSG model rather than deriving it from water depth predictions.
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Abstract 

High computational cost is often the most limiting factor when running high-resolution 

hydrodynamic models to simulate spatial-temporal flood inundation behaviour. To address 

this issue, a recent study introduced the hybrid Low-fidelity, Spatial analysis, and Gaussian 

Process learning (LSG) model. The LSG model simulates the dynamic behaviour of flood 

inundation extent by upskilling simulations from a low-resolution hydrodynamic model 

through Empirical Orthogonal Function (EOF) analysis and Sparse Gaussian Process (Sparse 

GP) learning. However, information on flood extent alone is often not sufficient to provide 

accurate flood risk assessments. In addition, the LSG model has only been tested on 

hydrodynamic models with structured grids, while modern hydrodynamic models tend to use 

unstructured grids. This study therefore further develops the LSG model to simulate water 

depth as well as flood extent and demonstrates its efficacy as a surrogate for a high-resolution 

hydrodynamic model with an unstructured grid. The further developed LSG model is 

evaluated on the flat and complex Chowilla floodplain of the Murray River in Australia and 

accurately predicts both depth and extent of the flood inundation, while being 12 times more 

computationally efficient than a high-resolution hydrodynamic model. In addition, it has been 

found that weighting before the EOF analysis can compensate for the varying grid cell sizes 

in an unstructured grid and the inundation extent should be predicted from an extent-based 

LSG model rather than deriving it from water depth predictions. 

Plain Language Summary 

Every year, lives are lost, and infrastructure is destroyed due to floods. This highlights the 

need for fast and accurate flood predictions to inform flood forecasting and risk assessments. 

However, predicting flood inundation in high resolution is often not practically feasible due 

to the high computational cost involved in running complex computer models. Simplified 

computer models can be used to provide faster flood predictions, but they lack the accuracy 

provided by complex models. To address this issue, this study evaluates an alternative 

method based on the combination of a fast simple model together with an advanced spatial 

feature matching method. The advanced spatial feature matching method is used to convert 

the predictions obtained from the simple model to accurate predictions of flood inundation 

depth and extent. The new approach is applied to a large floodplain in Australia and different 

adaptations are explored to optimise the procedure and ensure robust performance. The new 

approach is compared to the use of a traditional complex model and a previous approach that 
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only predicted inundation extent. The new approach shows similar accuracy to the traditional 

complex model while being  12 times faster, thereby making it more practically useful for 

flood risk assessments.  

1 Introduction 

Each year, flooding causes massive destruction of infrastructure and loss of lives all 

around the world. Taking Australia as an example, the cost of the 2011 Queensland floods 

was AU$2.38 billion (Australian Institute for Disaster Resilience, 2012), and the 2022 

February-March floods in Queensland and New South Wales caused damages of AU$4.8 

billion (The Insurance Council of Australia, 2022). Another example is the 2022 floods in 

Pakistan that have killed around 1,500 people and displaced more than 33 million people 

(Goldbaum & ur-Rehman, 2022). With future climate prediction, the recurrence of such 

flooding events is only expected to increase (IPCC, 2021; Kirezci et al., 2020), highlighting 

the need for effective modelling techniques to assist risk assessment, design of new 

infrastructure and real-time forecasting.  

Flood inundation is traditionally modelled using high-resolution two-dimensional 

(2D) hydrodynamic models that simulate the physical processes of the flood event from a set 

of boundary conditions (Bates, 2022; Razavi et al., 2012; Teng et al., 2017). These models 

can simulate flood inundation accurately with a high degree of realism and hence are often 

referred to as high-fidelity models (Razavi et al., 2012). However, due to the degree of detail 

needed (high resolution) and the complex nature of flood events, the computational costs of 

high-fidelity models are often too high for these models to be used for real-time modelling 

and flood risk assessment through ensemble modelling, where hundreds or thousands of 

model realisations are needed (Teng et al., 2017; Wu et al., 2020). To improve the 

computational efficiency of high-fidelity models, researchers have explored parallel and 

high-performance computing (Neal et al., 2009; Sanders & Schubert, 2019), graphics 

processing unit (GPU) technologies (Ming et al., 2020; Morales-Hernández et al., 2021), and 

more efficient solution algorithms (Bates & De Roo, 2000; Sridharan et al., 2021). Although 

these methods have been shown to improve the computational efficiency of the simulations, 

the use of high-fidelity hydrodynamic models to simulate flood inundation of large regional-

sized domains (>100 km2; Bentivoglio et al. (2022)) with high resolution (1-100 m) continues 

to present computational challenges for practical applications involving real-time ensemble 

forecasts. To address this issue, researchers have developed surrogate models to provide 
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approximate flood inundation simulations with a lower computational burden than high-

fidelity models (Razavi et al., 2012). 

Various types of surrogate models have been developed, and they can be divided into 

three categories based on the model structure: Conceptual, Low-fidelity and Emulator 

models. Conceptual models are based on simple hydraulic concepts and are normally very 

fast, but they cannot capture dynamic behaviour (e.g. Lhomme et al. (2008); Nobre et al. 

(2016); Teng et al. (2019)). Low-fidelity models are physics-based hydrodynamic models 

which are faster but of lower accuracy compared to high-fidelity models (e.g. Altenau et al. 

(2017); Bates and De Roo (2000); Bomers et al. (2019); Liu et al. (2019)). Emulator models 

are data-driven models, which are very fast and are able to predict complex relationships 

accurately; however, they cannot capture spatial correlation and are often restricted to low-

dimensional data (e.g. Chu et al. (2020); Kabir et al. (2021); Xie et al. (2021); Zhou et al. 

(2021)). Additional information on each surrogate type can be found in the literature reviews 

by Asher et al. (2015); Bates (2022); McGrath et al. (2018); Razavi et al. (2012); Teng et al. 

(2017). 

 All three types of surrogate models have advantages and limitations. This has led to 

the concept of developing hybrid approaches that combine the benefits of multiple models 

whilst overcoming some of the limitations. One of the most recent hybrid models is the Low-

fidelity, Spatial analysis, and Gaussian Process learning (LSG) model developed by Fraehr et 

al. (2022). The LSG model accurately simulates the dynamic behaviour (e.g. the rising and 

recession components, and hysteresis) of flood inundation at a lower computational cost than 

high-fidelity models. The LSG model first uses a low-fidelity model to simulate flood 

inundation on a coarsely discretised grid. Due to the coarse resolution of the low-fidelity 

model, the simulation time is significantly faster than using a high-fidelity model, but the 

accuracy is also reduced. Thus, the primary purpose of the low-fidelity model in the LSG 

methodology is to capture the temporal and spatial dependencies of flood behaviour in a 

computationally efficient way. While the low-fidelity simulation step is fast, the accuracy of 

the simulations needs to be improved to make the predictions useful for practical purposes. 

This can be done by developing a relationship between low- and high-fidelity model 

predictions based on a training dataset, and then using this relationship to upskill the accuracy 

of the low-fidelity simulations (e.g. Yang et al. (2022) and Carreau and Guinot (2021)). In the 

LSG model, the upskilling of low-fidelity predictions is carried out by first applying 

Empirical Orthogonal Function (EOF) analysis to reduce the dimensionality of the low-
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fidelity data into a small number of independent features. The dimension reduction of the 

EOF analysis facilitates the training of a Sparse Gaussian Process (GP) model to convert the 

key low-fidelity features to high-fidelity features. GP models have been used in numerous 

studies and perform well in describing non-linear relationships (e.g. Contreras et al. (2020); 

Ma et al. (2019); Parker et al. (2019)), but they are computationally demanding to optimise 

for large datasets (Bauer et al., 2016; Burt et al., 2019). For this reason, a Sparse GP model is 

used in the LSG methodology as it provides a high level of computational efficiency by 

approximating the full GP model by a set of assumptions (Leibfried et al., 2021). After the 

conversion through the Sparse GP model, the predicted high-fidelity features can be used to 

reconstruct flood inundation surfaces with high resolution and accuracy without needing to 

run a high-fidelity model. 

Although Fraehr et al. (2022) demonstrated the good performance of the LSG model, 

the methodology was only applied to the simulation of inundation extent and timing of a 

flood event and not the water depth. Information on water depth is important to correctly 

represent the degree of hazard associated with a predicted inundation extent of a flood event 

(Hunter et al., 2007), and is a key indicator in warning systems and for estimating flood 

losses (Antony et al., 2021; Chang et al., 2019; Zischg et al., 2018). For those reasons, further 

development of the LSG model to predict the temporal-spatial distribution of water depths in 

inundated areas would make the LSG model substantially more useful for risk assessment. 

However, continuous variables, like water depth, are generally harder to predict accurately 

than binary (i.e. wet/dry) indicators of inundation. This means that deriving inundation extent 

from water depth predictions instead of directly predicting inundation extent might affect the 

accuracy of the LSG model. Accordingly, there is value in extending the development of the 

LSG model to accommodate water depth predictions to determine whether there is any 

reduction in the accuracy of the simulations. 

Furthermore, in the study by Fraehr et al. (2022) the LSG model was only applied to a 

coupled 1D-2D hydrodynamic model that had a structured quadratic grid (i.e. one which 

provided predictions at regular spacing throughout the model domain without increasing grid 

resolution in areas of interest). A coupled 1D-2D model uses a 1D component to simulate the 

flow and water depth in the mainstream of the river, and a 2D component to simulate 

inundation of the floodplain. Although this type of hydrodynamic model has been shown to 

provide good performance historically, modern hydrodynamic inundation models tend to be 

fully 2D and utilise unstructured (i.e. irregular or flexible) grids to describe complex 
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geometries (Bates, 2022; Teng et al., 2017). Enabling the LSG model to accommodate 

unstructured grids will thus expand the possible applications of the model and strengthen its 

relevance to current practice.  

In unstructured grids, cell sizes vary across the model domain, and it is a common 

practice to take these differences into account to ensure good model performance. Varying 

cell sizes are commonly seen in climate science and oceanography, where latitude-longitude 

grids with converging meridians are used. EOF analysis is also used in these research areas, 

where it is normal to compensate for irregular grids by applying weights according to the size 

of the grid cells before the EOF analysis (Baldwin et al., 2009; Hannachi et al., 2007). The 

general idea behind area-weighting is to ensure that larger cells are not valued equally to 

smaller cells. However, the general principle of area-weighting might not be applicable in 

flood inundation modelling as larger cells are normally located on the floodplain and smaller 

cells in the river regions, noting that flow behaviour on floodplains is generally more 

gradually varying than flow within the main channel. Adopting a weighting scheme in the 

LSG model that is directly proportional to grid cell area could be problematic as this would 

give small cells located in regions of rapidly varying flow low weight, which may potentially 

reduce the accuracy of the model. Therefore, the effect that weighting has on the performance 

of the LSG model needs to be investigated to determine how the LSG model can be 

successfully applied to unstructured grids. 

In this study, we further develop the methodology of the LSG model to simulate water 

depth and thereby strengthen the model’s capabilities for the challenges encountered in 

practical applications. To investigate how the new developments affect the accuracy, the 

predictions of flooding extent obtained from the revised LSG model are compared to both a 

high-fidelity model as well as the original LSG model. The versatility of the LSG model is 

explored by applying the LSG model to a 2D hydrodynamic model with an unstructured grid 

to simulate flood inundation on the flat and complex Chowilla floodplain in Australia. In this 

application, we use a low-fidelity model that is considerably coarser than the model used 

previously in the study by Fraehr et al. (2022) to test the upskilling and speed-up capabilities 

of the LSG methodology even further. Accordingly, our objectives in this study are to 1) 

advance the capability of the LSG model to predict the temporal-spatial distribution of the 

water depth in inundated areas rather than just the flood extent, and 2) explore the utility of 

adopting a weighting scheme to compensate for variable grid sizes in unstructured grids.  
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The paper is organized as follows. In Section 2, the methodology of the LSG model 

and the new developments are presented. The evaluation and case study for the application is 

presented in Section 3 and Section 4, respectively, followed by the results in Section 5. 

Finally, Section 6 and Section 7 provide discussion and conclusions based on the results. 

2 Methodology of the LSG model 

The overall concept of the LSG model is to rapidly derive accurate inundation 

estimates using information previously obtained from a small number of low- and high-

fidelity model simulations, a process that avoids the computational burden of running a 

detailed hydrodynamic model for every set of new boundary conditions. This significantly 

enhances the computational efficiency without great loss of accuracy and represents a 

practical means of providing rapid estimates of complex flood behaviour. The LSG model 

predicts inundation by upskilling inundation predictions from a low-fidelity model 

simulation. The upskilling is done by using EOF analysis to reduce the dimensionality of the 

spatial-temporal inundation behaviour through EOF analysis. Essentially, EOF analysis is a 

means to identify a modest number of independent components that are representative of the 

spatial and temporal patterns of inundation behaviour. This is necessary as data-driven 

emulator models are not well suited to capturing spatial correlation and perform best when 

applied to low-dimensional data. After the EOF analysis, a Sparse GP model is used to 

convert the low-fidelity temporal components to high-fidelity temporal components. Finally, 

the high-resolution inundation prediction is obtained by reconstructing the hydrodynamic 

results through reverse EOF analysis using the predicted high-fidelity temporal components 

together with the high-fidelity spatial components. 

In the following, we describe the details of the methodology of the LSG model for 

predicting water depth, and at the end of this section, we explain how the methodology 

differs from the one previously proposed by Fraehr et al. (2022). 

2.1 Training of LSG model 

Before the LSG model can be used to predict flood inundation, it needs to be set up 

and trained. There are 6 steps involved in the LSG model training as shown in Figure 1. Steps 

1, 2 and 3 and Steps 1, 4 and 5 involve deriving key spatial-temporal components through 

EOF analysis for the high- and low-fidelity data, respectively. The key temporal components 

are thus used in Step 6 to train the Sparse GP model. The details of the individual steps are 

explained in the following sections.  
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Figure 1: Workflow of training of the LSG model. 

2.1.1 Step 1: Creation of training dataset 

A training dataset is needed to facilitate the EOF analysis and training of the Sparse 

GP model. To create a training dataset for the LSG model, high- and low-fidelity models 

have to be set up for the specific study area. First, the high-fidelity model is set up and 

calibrated. Second, the low-fidelity model is created, normally by simplifying the high-

fidelity model. Thus, the training dataset is created by first running the high-fidelity model 

for a large number of flood events, and then running the low-fidelity model for the same 

flood events. The training events must span a wide range of inundation behaviour to ensure 

the model performance is sustained for new events not included in the training. 

2.1.2 Step 2: Trim model domain for EOF analysis 

When simulating flood inundation over a computational grid, some cells never get 

flooded. These cells do not contain any valuable information and therefore only slow down 

the EOF analysis in Step 3. Thus, by trimming the spatial domain to only contain cells that 

change state (changes in water depth) during the training events, the EOF analysis can be 

performed more efficiently (noting that the training events must cover the full range of 

conditions expected in the future to ensure all potential flood-prone areas are included after 

the trimming.). The trimming is carried out by categorising the cells into two groups, namely: 

“dry” and “wet” cells. The wet cells are those whose water depth varies throughout the 

training events and are therefore the only ones included in the EOF analysis. A threshold of 3 

cm water depth is applied to differentiate dry and wet cells and reduce noise. 
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2.1.3 Step 3: Reducing dimensionality of high-fidelity data through EOF analysis 

The high dimensionality of the spatial-temporal high-fidelity dataset cannot easily be 

captured using a Sparse GP model. To address this issue, EOF analysis is used to reduce the 

dimensionality of the dataset while maintaining the spatial and temporal correlation. EOF 

analysis deconstructs spatial-temporal datasets into pairs of spatial and temporal components. 

Each pair of spatial and temporal components is referred to as a mode, where the spatial 

components are called spatial maps (EOFs) and the temporal components are called 

expansion coefficients (ECs). All modes are orthogonal to the others (i.e. they are fully 

independent of one another), and the EOF analysis aims to find a linear combination of 

modes that maximizes the variance of the dataset (Jolliffe & Cadima, 2016).  

To find the modes, we first assemble a 𝑇 × 𝑁 matrix called 𝐷𝐻𝐹  containing the 

simulated water depths from the high-fidelity model. 𝑇 is the number of timesteps in the 

training dataset and 𝑁 is the number of wet cells found through categorisation in Step 2. Each 

column in 𝐷𝐻𝐹  is detrended by subtracting the temporal mean. This ensures centring of the 

data to a mean of zero.  

2.1.3.1 Applying weighting in the EOF analysis 

The next step in the EOF analysis is to decide whether to perform weighting or not. 

Weighting is included by multiplying 𝐷𝐻𝐹  with a vector containing the weights for each cell 

included in the EOF analysis.  

As described in the introduction, weighting according to cell sizes is normally used to 

compensate for varying grid cells in unstructured grids in the areas of climate science and 

oceanography (Baldwin et al., 2009; Hannachi et al., 2007). The purpose of the weighting is 

to ensure larger cells, which account for a larger proportion of the model domain, are 

weighted higher. However, in hydrodynamic modelling of flood inundation, the smaller grid 

cells are usually located in the regions of rapidly varying flow (e.g. rivers), and it is important 

to simulate flow behaviour in these areas precisely. Weighting according to cell sizes could 

therefore affect the accuracy of the LSG model as the river regions would be given a low 

weight. On the other hand, not including weighting might not represent flood behaviour in the 

larger cells on the floodplain correctly, which could thus affect the accuracy of the inundation 

predictions. To examine the importance of weighting, this study builds two versions of the 

LSG model, one weighted and one unweighted, and applies them to simulate inundation on 

an unstructured grid (See section 3). 
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2.1.3.2 Performing EOF analysis and deriving significant modes 

Finally, after deciding to apply weighting or not, the modes are found via singular 

value decomposition of 𝐷𝐻𝐹 , following equation (1). 

𝐷𝐻𝐹 = 𝑈𝐻𝐹 ∙ 𝐶𝐻𝐹 ≈ ∑ 𝑈𝐻𝐹(𝑘, : ) ∙ 𝐶𝐻𝐹(: , 𝑘)

𝐾

𝑘=1

 (1) 

where 𝑈𝐻𝐹 is a 𝑇 × 𝑁 matrix where each row is an EOF spatial map, 𝐶𝐻𝐹 is a 𝑇 × 𝑇 matrix 

where each column corresponds to an EC temporal function.  

After retrieving the modes, they are ranked according to the proportion of the 

dataset’s variance they explain. The dimension reduction of the EOF analysis thereby lies in 

selecting only a few (𝐾) significant modes that describe the majority of the variance in the 

dataset. These modes are chosen by satisfying both North’s test, where a mode is considered 

significant if its eigenvalue lies outside the error limits of the eigenvalue for the previous 

mode (North et al., 1982), and Kaiser’s Rule, where the eigenvalue should be above 1 

(Kaiser, 1960). Once the 𝐾 significant modes are found, they can be used to reconstruct 𝐷𝐻𝐹  

with little loss of information. To assist the understanding of the EOF analysis, an example is 

given in the supporting information. 

2.1.4 Step 4: Interpolate low-fidelity data to high-fidelity grid 

The low-fidelity ECs can be derived using the high-fidelity spatial modes (See Step 

5). This ensures the same basis of EOF spatial modes is used for both the high- and low-

fidelity ECs and is a more computationally efficient process compared to performing EOF 

analysis from scratch due to the time-consuming derivation of the covariance matrix and 

eigenvalue decomposition. To facilitate the low-fidelity ECs derivation, the low-fidelity 

water surface elevations (water depth + terrain elevation) are interpolated to the high-fidelity 

grid using a nearest-neighbour method. After the interpolation, the areas where the terrain 

elevation of the high-fidelity cell is higher than the interpolated low-fidelity water surface 

elevation are assumed dry. This reduces the extent of the interpolated low-fidelity results, and 

initial tests have shown that it helps minimise overestimation of the inundation extent for the 

LSG model. 

2.1.5 Step 5: Derive low-fidelity ECs 

The low-fidelity ECs are derived by inserting the interpolated low-fidelity data into a 

𝑇 × 𝑁 matrix called 𝐷𝐿𝐹. Since the low-fidelity data has been converted to the high-fidelity 
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grid in Step 4, the 𝐷𝐿𝐹 and 𝐷𝐻𝐹  matrices have the same dimensions. Detrending is performed 

by subtracting the high-fidelity temporal mean derived for 𝐷𝐻𝐹  in Step 3. The high-fidelity 

temporal mean is used to detrend the low-fidelity data to ensure comparability between 𝐷𝐿𝐹 

and 𝐷𝐻𝐹 , and as this mean is used in Step 9 for reconstruction of the high-resolution flood 

inundation. Finally, after detrending, the optional weighting is applied and the high-fidelity 

EOF spatial maps 𝑈𝐻𝐹 are used to derive the low-fidelity ECs in equation (2).  

𝐶𝐿𝐹 = 𝐷𝐿𝐹 ∙ 𝑈𝐻𝐹
′  (2) 

where 𝐶𝐿𝐹 is a 𝑇 × 𝑇 matrix containing the low-fidelity ECs, and 𝑈𝐻𝐹
′  is the transpose of 𝑈𝐻𝐹. 

This approach is applied in a similar way by Zhao et al. (2022)  to calibrate precipitation 

fields.  

2.1.6 Step 6: Training of the Sparse GP model 

Once both the low- and high-fidelity ECs have been derived for the training dataset, 

they can be used to train a Sparse GP model to predict the high-fidelity ECs from the low-

fidelity ECs. 

GP models assume the relationship between input and output follows a Gaussian 

distribution of functions, and by doing so, can predict non-linear relationships with statistical 

confidence (see Equation (3)) (Rasmussen & Williams, 2006).  

𝐺𝑃(𝑥)  ~ 𝒩(𝑚(𝑥), 𝑘(𝑥, 𝑥′)) (3) 

𝑘(𝑥, 𝑥′) = 𝜎𝑓
2 exp (−

𝑥 − 𝑥′

2𝑙
) + 𝜎𝑛

2 (4) 

where 𝐺𝑃(𝑥) is the Gaussian function, 𝑚(𝑥) is the mean function, 𝑘(𝑥, 𝑥′) is the covariance 

function (kernel) and 𝑥 is the input variable, in this case, the low-fidelity ECs in 𝐶𝐿𝐹. In the 

kernel function, 𝜎𝑓
2 is the signal variance, 𝑙 is the lengthscale, 𝜎𝑛

2 is the noise variance and 

𝑥 − 𝑥′ is the Euclidean distance between inputs. As the data has been detrended in Steps 3 

and 5, the mean function can be assumed to be zero (Rasmussen & Williams, 2006). For the 

kernel, an Exponential kernel function is used to describe the covariance (see Equation (4)), 

following Fraehr et al. (2022). 

The reason for using a Sparse GP in the LSG model instead of the standard full GP 

model is due to the high computational demand of the full GP model. A GP model is 

optimised using maximum likelihood estimation, which requires an inversion of the 
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covariance matrix. This inversion has a computational demand of 𝒪(𝑇3) and makes the full 

GP model infeasible to be used for large datasets (Bauer et al., 2016; Leibfried et al., 2021). 

To address this issue, the Sparse GP model uses a number 𝑀 of inducing variables, which 

should be significantly less than the 𝑇 number of timesteps in the training dataset. The 

inducing points are a reduced set of input variables that are optimised to approximate the full 

GP model, and thereby reduces the cost of the matrix inversion to 𝒪(𝑇𝑀2) (Snelson & 

Ghahramani, 2006; Titsias, 2009). The Sparse GP model chosen for the LSG model is based 

on variational inference, as this has been shown to improve with an increasing number of 

inducing variables (Bauer et al., 2016).  

In the LSG model, individual Sparse GP models are used to predict each significant 

mode of the high-fidelity ECs, resulting in a total of 𝐾 models (See Figure 2). Each Sparse 

GP model receives all low-fidelity ECs as input and predicts one high-fidelity EC as output. 

All inputs and outputs are standardised to zero mean and unit variance before incorporating 

them into the Sparse GP models.  

Each Sparse GP model is optimised using maximum likelihood estimation of the 

hyperparameters: 𝜎𝑓
2, 𝑙 and the inducing variables. The number of inducing variables is found 

by a trial-and-error approach. For the application in this paper, 2% of the number of input 

samples has shown to be a sufficient number of inducing variables, but for smaller datasets, a 

larger proportion is most likely necessary. The optimisation process for the hyperparameters 

is performed using the L-BFGS-B optimisation algorithm. More details of the initialisation 

and optimisation of the hyperparameters can be found in Fraehr et al. (2022). 
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Figure 2: ECs conversion using Sparse GP models. 

2.2 Prediction using the LSG model 

After finalising the training phase, the LSG model can be used to predict flood 

inundation by following the workflow in Figure 3. In the prediction workflow, Steps 1, 4 and 

5 from the training workflow are grouped together in Step 7 and involve deriving the low-

fidelity temporal components through EOF analysis. In Step 8 the Sparse GP model is used to 

convert the low-fidelity components to high-fidelity components and finally, in Step 9 the 

flood inundation is reconstructed in high-resolution. 

 

Figure 3: Workflow of prediction using the LSG model. 

2.2.1 Step 7: Run the low-fidelity model and derive the low-fidelity ECs 

In the prediction phase, only the fast low-fidelity model needs to be run to simulate 

the flood inundation. This is what makes the LSG model more computationally efficient than 

using a high-fidelity model. The low-fidelity is run for a new unseen event and the simulation 

results are converted to low-fidelity ECs, following the process described in Steps 4 and 5 

(Note: It is still the high-fidelity EOF spatial maps from the training data that are used to 

derive the low-fidelity ECs. This ensures the ECs are comparable between events.). 
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2.2.2 Step 8: Predict high-fidelity ECs using the Sparse GP model 

The low-fidelity ECs are used as input to the Sparse GP models to predict the high-

fidelity ECs, which can then be used to reconstruct the flood inundation. The Sparse GP 

model provides both a mean and variance of the predictions (Rasmussen & Williams, 2006). 

2.2.3 Step 9: Inverse EOF analysis to reconstruct flood inundation 

By assembling the predictions of high-fidelity ECs into a matrix 𝐶𝐿𝑆�̂�, a high-fidelity 

prediction of flood inundation is obtained by reversing the EOF analysis to reconstruct the 

temporal-spatial inundation data from temporal functions of ECs and EOF spatial maps using 

Equation (5). 

𝐷𝐿𝑆�̂� = ∑ 𝑈𝐻𝐹(𝑘, : ) ∙ 𝐶𝐿𝑆�̂�(: , 𝑘)

𝐾

𝑘=1

 (5) 

where 𝐷𝐻�̂� , after re-adding the high-fidelity temporal mean subtracted before the EOF 

analysis in Step 3, is the LSG model’s temporal-spatial prediction of flood inundation. 

When reconstructing the inundation, the first 𝐾 significant modes do not explain all 

the variance in the dataset. This means that there are minor deviations (noise) in the water 

depth prediction causing otherwise dry areas to appear to be inundated by insignificant 

shallow water depths. To address this issue, a threshold of 3 cm water depth is applied. This 

alleviates the problem of the LSG model predicting insignificant flooding in some cells. 

Finally, the dry cells identified in Step 2 are added to the 𝐷𝐿𝑆�̂� matrix to reconstruct the full 

prediction of flood inundation. 

2.3 The LSG model for directly predicting flood extent  

Although the extent of flood inundation is usually derived from water depth 

predictions, it can also be predicted directly, as is the case in the previously proposed LSG 

model in Fraehr et al. (2022). Predicting the flood extent directly might result in higher 

accuracy for the flood extent, as this bypasses the process of deriving the flood extent from 

water depth predictions and the potential error from this derivation. To examine how the 

accuracy of predicting the flood extent directly compares to deriving it from water depth 

predictions, we construct both types of LSG models (See section 3 for further details on the 

comparison).  
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In the following, we show the differences in the LSG model for direct extent 

prediction purposed by Fraehr et al. (2022) compared to the approach presented here to 

predict water depth. Only the steps that differ from the workflow in sections 2.1 and 2.2 are 

presented. 

2.3.1 Step 2: Convert to binary values before trimming the model domain 

The high-fidelity model results in the training dataset are converted to binary values 

(1 for flooded, 0 for dry) by applying a threshold of 3 cm water depth. This binarization 

facilitates categorising the cells into three groups: dry, always wet, and temporary wet (TW). 

Only the TW cells change state when using binary values and are therefore the only ones 

included in the EOF analysis.  

2.3.2 Step 3: Perform EOF analysis only on temporarily flooded cells 

With the new categories of cells, the EOF analysis is performed only on TW cells. 

This results in a 𝐷𝐻𝐹  matrix that is 𝑇 × 𝑁𝑇𝑊. 𝑁𝑇𝑊 is the number of TW cells identified. The 

EOF analysis is still performed using Equation (1). 

2.3.3 Step 4: Interpolation of low-fidelity binary data  

In Fraehr et al. (2022) the interpolation of the low-fidelity data to the high-fidelity 

grid is performed using binary values. Binary values cannot easily be related to terrain 

elevation, and for that reason, there was no filtering of areas where the water surface 

elevation of the low-fidelity model was below the terrain elevation of the high-fidelity cell. 

However, in the LSG model for direct extent prediction used in this study, we include 

filtering based on the water surface elevation as in Step 4 for the LSG model for water depth 

predictions (See section 2.1.4). This is an improvement over the previous methodology and 

ensures the same high-fidelity model cells are used in both the water-depth and extent-based 

versions of the LSG model. 

2.3.4 Step 9: Binary threshold to reconstruct data 

As mentioned in section 2.2.3, not all of the variance in the dataset is explained via 

the 𝐾 significant modes. When reconstructing the flood extent, this results in noise, so the 

values do not completely reconstruct to 1 (flooded) or 0 (dry). To address this issue and 

convert the predictions to fully binary values, a threshold of 0.5 is used. The full prediction of 

the flood extent is thus reconstructed by adding the always wet and dry cells identified in 

Step 2 to the 𝐷𝐻�̂�  matrix. 
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3 Evaluation of LSG model for water depth predictions  

In this study, a new LSG model for water depth predictions is proposed. However, as 

discussed in Step 3 of the methodology (See section 2.1.3.1), it needs to be examined how 

weighting according to grid cell sizes affects the accuracy of the LSG model when applied to 

an unstructured grid. Applying weights will give the larger cells normally located on the 

floodplain a higher weight than the smaller cells in the river regions. The rivers are normally 

the source of flooding and giving a smaller weight to these areas could therefore potentially 

reduce the accuracy of the LSG model. We examine this by creating two versions of the LSG 

model, one with weighting that we call LSG-WD (Weighted) and one without weighting that 

we call LSG-WD (Unweighted). Both of the models are evaluated in their ability to provide 

comparable inundation simulations to a high-fidelity model.  

Besides the two LSG models for water depth predictions, we also create a LSG model 

for direct flood extent predictions following the methodology in Fraehr et al. (2022). To 

ensure that the same high-fidelity cells are used in all the LSG models tested in this study, we 

made one slight change to the methodology and adopted the same interpolation strategy as 

used to predict water depths where water surface elevation below the terrain elevation is 

assumed dry (See 2.3.3 for further details). We name this model LSG-EXT (Weighted) and 

use this to examine if the accuracy of the flood extent predictions is influenced by the use of 

water depth predictions compared to predicting the extent directly, as in the previous version 

of the LSG model (noting that only a weighted version is used for direct extent prediction as 

this was advocated by Fraehr et al. (2022) for unstructured grids, although it was not tested). 

If the accuracy is significantly higher by directly predicting the extent, it might be worth 

considering using two LSG models, one for predicting flood extent directly and one for 

predicting water depth for those areas predicted as being flooded. 

3.1 Evaluation of water depth predictions 

The LSG models’ ability to predict water depth is evaluated using Root Mean Square 

Error (RMSE) in Equation (6): 

𝑅𝑀𝑆𝐸 = √
1

𝑇
∑(𝑦𝐿𝑆𝐺(𝑡) − 𝑦𝐻𝐹(𝑡))

2
𝑇

𝑡=1

 (6) 

where 𝑦𝐿𝑆𝐺 is the LSG prediction and 𝑦𝐻𝐹 is the high-fidelity simulation. 
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Furthermore, the results are plotted as a scatter plot to examine if the LSG model 

generally over- or under-predicts the water depth compared to the high-fidelity model. The 

low-fidelity model simulation will be used as a benchmark for comparison. 

3.2 Evaluation of inundation extent predictions 

The overall prediction of inundation extent is evaluated using the same metrics as 

used by Fraehr et al. (2022), that is Relative RMSE (relRMSE), Relative Peak Value Error 

(relPeakValErr) and Relative Peak Time Error compared to the peak period (relPeakTimeErr) 

in Equations (7), (8), and (9): 

𝑟𝑒𝑙𝑅𝑀𝑆𝐸 =
√1

𝑇
∑ (𝐴𝐿𝑆𝐺(𝑡) − 𝐴𝐻𝐹(𝑡))

2𝑇
𝑡=1

1
𝑇

∑ 𝐴𝐻𝐹(𝑡)𝑇
𝑡=1

 (7) 

𝑟𝑒𝑙𝑃𝑒𝑎𝑘𝑉𝑎𝑙𝐸𝑟𝑟 =
𝐴𝐿𝑆𝐺

𝑝𝑒𝑎𝑘,5%̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
− 𝐴𝐻𝐹

𝑝𝑒𝑎𝑘,5%̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐴𝐻𝐹
𝑝𝑒𝑎𝑘,5%̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 
(8) 

𝑟𝑒𝑙𝑃𝑒𝑎𝑘𝑇𝑖𝑚𝑒𝐸𝑟𝑟 =
𝑡𝐿𝑆𝐺

𝑝𝑒𝑎𝑘,5%̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝑡𝐻𝐹
𝑝𝑒𝑎𝑘,5%̅̅ ̅̅ ̅̅ ̅̅ ̅̅

max(𝑡𝐻𝐹
𝑝𝑒𝑎𝑘,5%

) − min (𝑡𝐻𝐹
𝑝𝑒𝑎𝑘,5%

)
 

(9) 

where 𝐴𝐿𝑆𝐺 is the inundation extent predicted using the LSG model, 𝐴𝐻𝐹 is the inundation 

extent from the high-fidelity simulation, 𝑡𝐿𝑆𝐺
𝑝𝑒𝑎𝑘,5%

 and 𝑡𝐻𝐹
𝑝𝑒𝑎𝑘,5%

 are the timesteps of the peak 

period, and “peak, 5%” indicates only the 5% peak values are used. A value close to 0 

indicates a good prediction for relRMSE, relPeakValErr, and relPeakTimeErr. 

The LSG model’s ability to predict the spatial coverage of inundation is assessed 

using Probability of Detection (POD), Rate of False alarm (RFA), and Critical Success Index 

(CSI), following Equations (10), (11) and (12) (Schaefer, 1990): 

 
𝑃𝑂𝐷 =

𝐴𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝐴𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 + 𝐴𝑚𝑖𝑠𝑠𝑒𝑑
 

(10) 

 
𝑅𝐹𝐴 =

𝐴𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚

𝐴𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 + 𝐴𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚
 

(11) 

 
𝐶𝑆𝐼 =

1

1
𝑃𝑂𝐷 +

1
1 − 𝑅𝐹𝐴 − 1

 
(12) 

where 𝐴𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 are those areas correctly detected as being inundated or flooded, 𝐴𝑚𝑖𝑠𝑠𝑒𝑑 are 

areas simulated to be inundated using the high-fidelity model but are predicted to be dry 
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using the LSG model, and 𝐴𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 are dry in the high-fidelity model simulation but 

predicted as being inundated using the LSG model. The POD and RFA evaluate under- and 

overestimation, respectively. The CSI is a comprehensive metric that combines the POD and 

RFA metrics to provide an overall evaluation of the model’s ability to predict the inundation 

extent. A POD and CSI of 1 and RFA of 0 indicate a good model performance.  

4 Data and model application 

4.1 Study site 

The study site chosen for the evaluation of the LSG models is the complex and flat 

Chowilla floodplain (See Figure 4). The Chowilla floodplain is located in the lower part of 

the Murray-Darling basin that has a total catchment area of approximately 1 million km² 

(Murray-Darling Basin Authority, 2022). The area represented in the model domain is 740 

km². 

The Chowilla floodplain provides a challenging application for the LSG model, as it 

contains the Murray River and includes several local minor streams, billabongs, and lakes; in 

addition, flows in the Murray River are impacted by the operation of several weirs and 

culverts (Murray-Darling Basin Authority, 2021), which help regulate water for irrigation 

supply and environmental watering (South Australia - Department for Environment and 

Water, 2022). 

All of these features contribute to the complex inundation dynamics of the floodplain, 

where flood inundation events can last several months due to the large upstream catchment 

area and shallow gradient of the Murray River. 
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Figure 4: Overview of the Chowilla floodplain study site and perimeter of the HEC-

RAS model (ESRI, 2022). 

4.2 Hydrodynamic flood inundation models 

4.2.1 High-fidelity model 

The flood inundation in the Chowilla floodplain is simulated using a high-fidelity 2D 

hydrodynamic HEC-RAS model (Hydrologic Engineering Center’s River Analysis System). 

HEC-RAS is a freely available flood modelling software developed by the US Army Corps of 

Engineers and simulates flood inundation using a diffusive wave model on an unstructured 

grid (US Army Corps of Engineers, 2021b). HEC-RAS uses a subgrid treatment to account 

for the hydraulic properties of the underlying terrain (Casulli, 2009; US Army Corps of 

Engineers, 2021a). Subgrid models are also known as porosity models and have been shown 

to perform well on coarse grids (Forest, 2020; Sanders & Schubert, 2019), which is 

advantageous in the development of the coarser low-fidelity model (See section 4.2.2). To the 

authors’ knowledge, HEC-RAS is currently the only hydrodynamic modelling software that 

can apply subgrid treatment to an unstructured grid, thus making HEC-RAS particularly 

useful for exploring how the LSG model performs when simulating flood inundation using an 

unstructured grid, as described in section 3.  
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The high-fidelity HEC-RAS model has three inflow boundaries (Murray River, 

Station no. 426200; Mullaroo Creek, Station no. 414211; and Lindsay River, Station no. 

414212), and one water level outlet downstream at the Murray River Lock 5 upstream 

(Station no. A4260512). All boundaries rely on historical data retrieved from a publicly-

available water data platform (Bureau of Meteorology, 2022). The locations of the boundaries 

are shown in Figure 4. 

The high-fidelity model simulates flooding using an unstructured grid with cell sizes 

varying from 25 m along rivers and structures (weirs and control structures) up to 100 m on 

the floodplain. The total number of grid cells in the model domain is 109,914 cells, and a 

total of 796 river cross sections have been incorporated into the model bathymetry, which 

also includes 22 weirs and control structures. The Manning n’s roughness coefficient has 

been calibrated to 0.026 s/m1/3 in the river region and 0.083 s/m1/3 on the floodplain. The 

model was calibrated according to 6 water level stations located across the Chowilla 

floodplain and Landsat 7 satellite images. The high-fidelity model is run at a fixed 20 s 

timestep to ensure model stability. Further information on the setup and calibration of the 

high-fidelity model is given in the supporting information. 

4.2.2 Low-fidelity model 

The low-fidelity model used in the LSG model is obtained by simply reducing the 

resolution of the high-fidelity model. Fraehr et al. (2022) showed that using a low-fidelity 

model with over 3 times larger cell sizes in the LSG model setup can provide comparable 

results to the high-fidelity model. In this study, we test the capabilities of the LSG model 

further by adopting an even coarser level of discretisation. In the low-fidelity model, a grid 

cell size of 400 m is used along the rivers and on the floodplain, while the 25 m resolution 

around weirs and structures is preserved. This reduces the number of grid cells to 4,916, 

which is on average 1/20th of the high-fidelity model resolution. 

Note that the only difference between the low- and high-fidelity model is the 

computational grid. The boundaries and roughness coefficients are not changed. This is the 

simplest way of developing the low-fidelity model, as no calibration is undertaken to account 

for the change in spatial resolution. This approach is adopted as we want to examine if the 

LSG model can upskill results despite having a poorly developed low-fidelity model. Due to 

the larger grid cells, the low-fidelity model can be run at a steady timestep of 1 min without 

showing signs of instability.  
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4.3 Flood events for training and validation 

The high- and low-fidelity models are run for a number of flood events to create a 

training dataset, as described in Step 1 of the LSG model (See section 2.1.1). For the 

Chowilla floodplain, historic boundary data is available for the period 15/08/2010 to 

18/06/2022. In this period, 10 historic flood events have been identified. The duration of the 

events ranges from 75 to 306 days, with inundated areas ranging between 100 and 450 km². 

In the inspection and initial simulations of the historic events, it was identified that 

only 6 of the 10 historic events resulted in significant inundation of the floodplain. For 

training the LSG model, a large training dataset spanning a wide range of inundation 

behaviour is needed. It was therefore decided to create synthetic events by scaling and 

extending the duration of the minor historic events. This procedure resulted in there being a 

total of 29 events for training and validation (6 historic and 23 synthetic). Each event is 

simulated using the high- and low-fidelity models, where flood information is saved every 6 

hours. An overview of the duration and inundation extent for all the events is included in the 

supporting information. 

We use cross-validation to evaluate the performance of the LSG models. As 

mentioned, the dataset contains both historic and synthetic flood events. The temporal pattern 

of each of the synthetic events is similar to the original historic event that was used to create 

it. This means a random cross-validation procedure cannot be applied for this application as 

that could result in similar events being included for both training and validation. We have 

therefore chosen to divide the 29 flood events into 10 groups based on the historic event from 

which they originate (See Table S2 and Figure S11 in the supporting information). In the 

cross-validation, we train the LSG models on 9 groups and use the remaining group for 

validation, resulting in a 10-fold cross-validation. This ensures events originating from the 

same historic event are not used for validation when they are included in the training dataset.  

5 Results 

In this section, the water depth predictions using the developed LSG-WD (Weighted) 

and LSG-WD (Unweighted) models are compared to examine the importance of using 

weighting in the EOF analysis. Subsequently, the accuracy of the inundation extent of the 

new water depth-based LSG model is compared to the LSG-EXT (Weighted) for direct extent 

prediction, and finally, additional results of the difference in the EOF analysis and 

computational efficiency for the LSG models are presented.    
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5.1 Water depth  

The water depth predictions using the low-fidelity, LSG-WD (Weighted) and LSG-

WD (Unweighted) models are compared to the high-fidelity model using RMSE in Figure 5. 

It is seen that the low-fidelity model on average has significantly higher RMSEs than the two 

LSG models over all the 29 simulated events. This is expected as the low-fidelity model is 

based on a considerably coarser grid resolution and is not calibrated. However, this also 

shows the power of the LSG methodology to significantly reduce errors compared to the low-

fidelity model.  

Comparing the LSG-WD (Weighted) and LSG-WD (Unweighted) model results does 

not show any significant differences. For both models, the overall mean RMSE is 4 cm, and 

the standard deviation is 5 cm. The highest errors are located close to the inflow boundaries 

in the eastern areas and locally near the model boundaries in the western and north-western 

parts of the Chowilla floodplain. 

 

Figure 5: Average RMSE for water depth predictions for all 29 simulated events using 

the low-fidelity, LSG-WD (Weighted) and LSG-WD (Unweighted) models compared to 

the high-fidelity model simulation. 

The improvement in accuracy of using the LSG models compared to the low-fidelity 

model is also evident from the boxplots showing the spread of RMSEs for each event in 
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Figure 6. Considering Figure 6b the LSG-WD (Weighted) show a lower median RMSE for 

events 5b, 7b-c,7f, 8d, 9a, 9c-f, and 10b. The LSG-WD (Unweighted) show a lower median 

RMSE for the remaining events, although the difference between the two models is minimal. 

This shows that neither of the water depth-based LSG models outperforms the other in 

predicting water depth and suggests that weighting according to the grid sizes is of little 

importance when using the proposed LSG methodology to predict water depth on an 

unstructured grid. The reason for differences between the models for individual events is 

most likely due to numerical errors originating from the EOF analysis and Sparse GP model 

prediction. 

 

Figure 6: Boxplots of RMSE between the low-fidelity, LSG-WD (Weighted) and LSG-

WD (Unweighted) models and the simulated water depth using the high-fidelity model. 

a) shows the full range of RMSE, b) highlights the differences using weighting and no 

weighting in the EOF analysis. Outliers are not shown. An overview of the events is 

provided in the supporting information. 

The peak water depth is often of high concern in emergency response and flood risk 

assessments, and a flood inundation model should therefore be able to predict this accurately. 

The ability of the low-fidelity and LSG models to predict the peak water depth is evaluated 

by comparing the simulated peak water depth from these models to those using the high-

fidelity model as shown in Figure 7. The figure shows the results of the peak water depth in 
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all 109,914 cells for all 29 simulated events (as a density map). A total of 3,187,506 data 

points are compared for each model. 

The low-fidelity model consistently overpredicts the water depth, both for shallow 

and deeper depths, with a large spread in the predicted values. On the other hand, the LSG 

models show good agreement with the high-fidelity model, illustrated by a coefficient of 

determination approximately equal to 1. The prediction errors are heteroscedastic, generally 

showing a narrower spread for large water depths and wider for shallower water depths. This 

outcome is due to the flat topology of the Chowilla floodplain, which results in shallow 

inundation depths that vary over a narrow range over most of the areas. There are no 

distinctive differences between the LSG-WD (Weighted) and LSG-WD (Unweighted) 

models, as both models show a good ability to predict the peak water depth. 

 

Figure 7: Peak water depth in each grid cell in the model domain predicted using the 

low-fidelity, LSG-WD (Weighted) and LSG-WD (Unweighted) models compared to the 

high-fidelity model simulation for all 29 simulated events. The density map shows light 

and dark blue colours to indicate low and high data point density, respectively. 

5.2 Inundation extent 

The inundation extents simulated using the high-fidelity model and the LSG models 

are shown in Figure 8 for three representative events. Figures showing the inundation extent 

for the remaining events are provided in the supporting information. The inundation extent is 

found for the LSG-WD (Weighted) and LSG-WD (Unweighted) models by adopting a 

threshold of 3 cm water depth to differentiate the cells into flooded and dry. This follows the 

binary procedure adopted for mapping the flood extent in the LSG-EXT (Weighted) model 

(See Step 2 in section 2.3.1). HEC-RAS has the ability to simulate partially flooded cells. 

However, in this study, it was decided to simply use binary values to identify wet and dry 
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cells, to represent the results that would be obtained by other common hydrodynamic 

modelling software, such as MIKE21 (DHI, 2022) and TUFLOW (BMT, 2020) that do not 

have the capability for representing partially flooded cells. 

The LSG models improve predictions significantly compared to using a low-fidelity 

model. The low-fidelity model overpredicts the inundation extent compared to the high-

fidelity model, which is consistent with the degree of overprediction of water depths shown 

in Figure 7. This was expected of the low-fidelity model, as coarser grids tend to exhibit 

larger dispersion of the flood inundation extents (Chatterjee et al., 2008; Yu & Lane, 2006). 

For inundation extents below approximately 300 km², the predicted inundation extent 

spuriously fluctuates for both the LSG-WD (Weighted) and LSG-WD (Unweighted) models, 

resulting in uncertain predictions. This is due to the threshold applied for converting the data 

to binary values. At low water depths, the entire cell can quickly change between flooded and 

dry, and this means that large areas can suddenly transition from a dry to a flooded state and 

vice versa. The predictions of the LSG-EXT (Weighted) model are less variable as the 

distinction between flooded and dry areas is already incorporated in the setup and training of 

the model.  
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Figure 8: Inundation extent using the high-fidelity, low-fidelity, LSG-WD (Weighted), 

LSG-WD (Unweighted) and LSG-EXT (Weighted) models for three representative 

events 1, 3, and 6. The predicted inundation extents for the remaining events are 

included in the supporting information. 

The relRMSE, relPeakValErr and relPeakTimeErr evaluation metrics are displayed in 

Table 1. With reference to the relRMSE metric, the LSG-EXT (Weighted) model performs 

the best and has errors consistent with the values reported in Fraehr et al. (2022). Of the LSG-

WD (Weighted) and (Unweighted) models, the performance is similar. 

With reference to the relPeakValErr metric, the LSG-EXT (Weighted) model still 

outperforms the water depth-based models. Another interesting observation is that the LSG-

WD (Weighted) and (Unweighted) models generally overpredict the peaks, whereas the LSG-

EXT model underpredicts the peaks.  

For the timing of the peaks, all the models provide predictions that are generally late 

compared to the high-fidelity model. The low-fidelity model shows the lowest mean timing 

error, although the LSG-EXT (Weighted) perform almost equally well to the low-fidelity 

model and has a lower standard deviation. All the models show a relatively high standard 

deviation for the relPeakTimeErr compared to the other metrics, thus indicating a large 
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uncertainty. This is due to the flat topography of the Chowilla floodplain and the low gradient 

of the Murray River, resulting in flood events with long-lasting flat attenuated peaks, where 

minor uncertainties in the predictions can have a large influence on the exact timing of the 

peak. This is also evident in Figure 8, where the temporal evolution of the inundation extents 

of all the LSG models follows the high-fidelity model well in the vicinity of the peak. In 

addition, it might be expected that using an increasingly coarser low-fidelity model will result 

in the LSG models predicting consistently early peak timings due to the larger dispersion of 

the flood extent. However, this is not evident from the results, even though this study uses a 

low-fidelity model that is much coarser than that used in Fraehr et al. (2022). 

The POD, RFA, and CSI metrics measure the LSG models’ ability to predict the 

spatial coverage of the maximum inundation extent. In Table 1, the LSG-EXT (Weighted) 

model has a lower POD and RFA than the LSG-WD (Weighted) and (Unweighted) models. 

This is due to the LSG-EXT model’s general underprediction of the flood extent. The LSG-

WD (Weighted) and (Unweighted) models show similar performance and generally 

overpredict the inundation extent. This means they have a high probability of detecting a 

flooded area, but also a higher rate of false alarms.  

Table 1: Flood extent evaluation metrics for all 29 simulated events. Results are shown 

as mean values over all events with standard deviations shown in parentheses. 

relRMSE, relPeakValErr and relPeakTimeErr are based on the temporal evolution of 

the inundation extent as seen in Figure 8. POD, RFA and CSI are spatial metrics based 

on the maximum inundation extent shown in Figure S6-S10. The model with the best 

performance for each metric is shown in bold. 

Metric Low-fidelity 

model 

LSG-WD 

(Weighted) 

LSG-WD 

(Unweighted) 

LSG-EXT 

(Weighted) 

relRMSE 0.69 (0.14) 0.19 (0.19) 0.18 (0.14) 0.05 (0.02) 

relPeakValErr 0.48 (0.25) 0.10 (0.19) 0.10 (0.16) -0.02 (0.03) 

relPeakTimeErr 0.88 (2.79) 1.02 (3.25) 0.90 (3.56) 0.91 (1.75) 

POD 0.99 (0.00) 0.99 (0.01) 0.99 (0.01) 0.98 (0.01) 

RFA 0.17 (0.06) 0.06 (0.06) 0.06 (0.06) 0.01 (0.00) 

CSI 0.82 (0.06) 0.94 (0.06) 0.93 (0.06) 0.97 (0.01) 
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The maximum inundation extent for the LSG models is shown in Figure 9 for three 

representative events. The results for the low-fidelity model are not shown due to the large 

overprediction of the low-fidelity model. The LSG-WD (Weighted) and (Unweighted) 

models both over- and underpredict the inundation extent, as indicated by the misses and 

false alarms. The largest difference between the models is evident for the (smaller) event 3, 

where the LSG-WD (Unweighted) model significantly overpredicts the inundation and the 

LSG-EXT (Weighted) model performs well with only minor areas of misses and false alarms. 

The LSG-WD (Weighted) model achieves a performance that lies between the two other 

models for event 3. 

 

Figure 9: Detected, Misses, and False alarms for the LSG-WD (Weighted), LSG-WD 

(Unweighted) and LSG-EXT (Weighted) models for three representative events 1, 3, 

and 6. The detection results for the remaining events are included in the supporting 

information. 
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5.3 Additional results 

5.3.1 Comparison of EOF analysis for each LSG model 

A different number of significant modes have been found in the EOF analyses 

undertaken for each of the three LSG models (LSG-WD (Weighted), LSG-WD (Unweighted) 

and LSG-EXT (Weighted)), as shown in Table 2. Individual EOF analyses have been 

performed for the training data used in each fold of the cross-validation (See section 4.3), 

resulting in a total of ten EOF analyses for each LSG model. The number of significant 

modes in each EOF analysis is found through North’s test and Kaiser's rule, as described in 

section 2.1.3. 

The LSG-WD (Unweighted) tends to have the least number of significant modes. This 

is noteworthy as a model with fewer modes implies a lower degree of dimensionality to 

explain the majority of variance in the dataset, and this has the benefit of requiring fewer 

features to be predicted using the Sparse GP model. Furthermore, the proportion of variance 

explained when performing EOF analysis on binary values in the LSG-EXT (Weighted) 

model is lower than the water-based LSG models, even though a similar number of 

significant modes are found. The reason for this is found in the methodology of the EOF 

analysis. The EOF analysis seeks to find a linear combination of ECs and EOFs to maximize 

the variance. Linear combinations of continuous values reconstruct poorly when predicting 

binary data, and therefore more modes are needed to explain the variance. Another way to 

think about this is in terms of variance between the cells. In the binary dataset, one cell might 

be dry and another flooded, and therefore the values switch between 0 and 1. However, in the 

water depth-based datasets, the same two cells might have a water depth of 0.00 m and 0.05 

m, respectively, and thus the numerical difference is smaller when using water depths. This 

also explains why the LSG-WD (Weighted) model needs more modes than the LSG-WD 

(Unweighted) model, as some of the cells might have a higher weight, and the water depth 

thereby is multiplied by a large value, creating a big difference in values between the cells.  

 19447973, ja, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
033836 by T

he U
niversity O

f M
elbourne, W

iley O
nline L

ibrary on [31/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

Table 2: Significant modes and explained variance from the EOF analyses for each LSG 

model. Results are shown as means with the standard variation shown in parentheses of 

the EOF analyses performed for the 10-fold cross-validation. 

LSG model Number of significant modes Variance explained 

LSG-WD (Weighted) 42 (18) 99.7 (0.2) % 

LSG-WD (Unweighted) 32 (9) 99.7 (0.3) % 

LSG-EXT (Weighted) 37 (12) 90.6 (1.8) % 

 

5.3.2 Computational efficiency 

The simulations using the low- and high-fidelity models, as well as the EOF analyses 

and the model training and prediction steps with the Sparse GP models, have all been 

undertaken on a high-performance computer with a 3.70 GHz processor with Intel® Xeon® 

E-2288G CPU, 64 GB ram, 64 cores and a NVIDIA Quadro RTX 5000 graphic card. The 

simulations in HEC-RAS were undertaken using the “All available cores” option, which was 

found to be the most computationally efficient setting in the initial testing. 

The computational times using the different models have been summarised in Table 3 

for event 3. The tendency is similar for the other events. The advantage of using the LSG 

methodology over the high-fidelity model is clear, as the computational time is 

approximately 12 times faster. The time for training and prediction using the three versions of 

the LSG model varies. This is due to a different number of Sparse GP models being trained, 

because of a different number of significant modes found in the EOF analysis (See section 

5.3). When using event 3 for validation, a total of 75, 37 and 23 significant modes were found 

in the EOF analysis for the LSG-WD (Weighted), LSG-WD (Unweighted), and LSG-EXT 

(Weighted) models, respectively. If the LSG models all had an equal number of significant 

modes and thereby Sparse GP models, the training and prediction times would be similar. 

The difference in prediction time between the low-fidelity model and the LSG models is the 

prediction time of the Sparse GP models and the subsequent reconstruction of the inundation 

dataset. This time is minimal compared to the low-fidelity simulation time. As the low-

fidelity model needs to be run every time a prediction is required using the LSG 

methodology, it is worth further exploring the possibilities of further enhancing the efficiency 

of the low-fidelity model. 
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Another aspect when considering using the LSG model is the time used for the 

creation of the training dataset in Step 1 of the model setup (see section 2.1.1). In the training 

dataset development, numerous simulations of both the low- and high-fidelity models are 

needed. In this study, a total of 29 events were simulated. This required approximately 24 

computational days for the high-fidelity model and represents a large computational burden 

that needs to be overcome before the LSG model can be implemented. However, the training 

dataset generation only needs to be undertaken once before being used to provide predictions, 

whereafter the full speed of the LSG model can be utilised.  

Table 3: Computational time for flood inundation prediction of event 3. 

 EOF analysis and 

Sparse GP training 

Prediction 

High-fidelity - 10 hr 43 min 34 s 

Low-fidelity - 54 min 49 s 

LSG-WD (Weighted) 17 min 29 s 54 min 54 s 

LSG-WD (Unweighted) 9 min 0 s 54 min 52 s 

LSG-EXT (Weighted) 5 min 45 s 54 min 51 s 

 

6 Discussion 

This study demonstrates that the LSG model is a powerful tool to upskill low-fidelity 

model simulations to emulate the results of a fully 2D hydrodynamic high-fidelity model on 

an unstructured grid. In this section, we discuss several points, including the importance of 

weighting according to grid cell size, the best method for predicting flood extent, and the 

future directions for the LSG model. 

6.1 Importance of weighting in EOF analysis 

Two water depth-based versions of the LSG model are explored in this study, one 

with weighting according to cell size before the EOF analysis (i.e. the LSG-WD (Weighted) 

model) and one without weighting (i.e. the LSG-WD (Unweighted) model). The purpose of 

the development of these models was to examine the value of using weights to compensate 

for the varying grid cell sizes in an unstructured grid. It was found that the water depth 
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predictions for the two models are similar, and this suggests that weighting is of minor 

importance when applying the LSG model to simulate flood inundation on an unstructured 

grid. The predicted inundation extent using the two models is also similar. For the evolution 

of the total inundation extent the LSG-WD (Unweighted) model shows slightly better 

performance than LSG-WD (Weighted) as seen by the relRMSE, relPeakValErr and 

relPeakTimeErr being closer to 0. However, the relRMSE, relPeakValErr and 

relPeakTimeErr consider the summarised area and not the spatial location of the inundation. 

Correctly capturing flooded areas is of high importance for flood risk assessments. The LSG-

WD (Weighted) model has a marginally higher CSI, and this suggests that the weighting 

helps the LSG model to capture the spatial extent of the inundation more accurately. 

However, the overall difference between the LSG-WD (Weighted) and (Unweighted) models 

is negligible.  

The above outcome is not consistent with expectations as the EOF analysis is a 

measure of variability and treats all cells equally, regardless of their spacing and size. The 

weighting scheme provides a means to counteract the uniform influence of the individual grid 

cells and creates what is known as “intrinsic EOFs” (Baldwin et al., 2009; North et al., 1982), 

which are continuous spatial fields that are independent of the grid. The lack of improvement 

obtained by creating these more generalised EOF spatial fields is most likely due to the 

ability of the Sparse GP models to compensate for the differences in the EOF analyses and 

ensure a good conversion of the low-fidelity ECs to high-fidelity ECs, regardless of the 

weighting scheme. It is possible that using a simpler model to convert the low-fidelity ECs to 

high-fidelity ECs might have yielded a greater difference in the results. 

Both water depth-based LSG models show spurious fluctuations in the predicted 

inundation extent for areas below 300 km². The inundation extent for the LSG-WD 

(Weighted) and LSG-WD (Unweighted) adopts a 3 cm water depth threshold to convert the 

results to binary values. This threshold was chosen to make the method and results 

comparable to the previous study by Fraehr et al. (2022) where a MIKE21 model was used. 

However, as mentioned in section 5.2, HEC-RAS can accommodate partially flooded cells 

due to a subgrid treatment that accounts for the terrain variations within a cell. This capability 

has been tested to convert the water depths to a partially flooded cell area (see supporting 

information). The use of this option improves predictions significantly and remediates the 

spurious fluctuations evident in Figure 8 for the predicted inundation extents below 300 km² 

for both the LSG-WD (Weighted) and LSG-WD (Unweighted) models. However, using 
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partially flooded cells is only possible when using hydrodynamic models that have subgrid 

solvers, such as HEC-RAS, and for that reason, it is not used for comparisons in this study. 

Weighting according to grid cell size is simple, easy to implement and commonly 

used (Baldwin et al., 2009; Hannachi et al., 2007), though the results of this study show that 

applying this weighting scheme has minimal effect on the accuracy of the LSG model. Due to 

the simplistic nature of the weighting scheme applied, it is worth considering if a more 

sophisticated weighting scheme could increase the accuracy of the LSG model. However, as 

the accuracy of the LSG model is already high, it is likely that only minor improvements 

could be achieved; given the expected low return on effort (at least with this model 

configuration), it was decided to forego investing effort in developing a more sophisticated 

weighting scheme. 

6.2 Flood extent derived from water depth predictions compared to a direct extent prediction 

The LSG-EXT (Weighted) model for direct extent prediction proposed by Fraehr et 

al. (2022) is significantly better for predicting the inundation extent than the water depth-

based LSG model, as shown by the evaluation metrics in Table 1. As discussed in the 

previous section, the water depth-based LSG models adopt a 3 cm threshold to differentiate 

between flooded and dry areas and minor numerical differences may determine whether a cell 

is flooded or not. If the water depth in a cell is 4 cm, the water depth-based LSG models are 

only allowed a numerical error of 0.01 before the cell is predicted as dry. On the other hand, 

the LSG-EXT (Weighted) model predicts values between 0 and 1, with a threshold of 0.5 for 

flooding and drying. Thus, the LSG-EXT (Weighted) model accommodates larger numerical 

errors without it affecting the predicted inundation extent. 

However, information on water depth is highly beneficial for risk assessments and can 

greatly assist in the identification of flood hazards. Flood inundation predictions should 

therefore be carried out using both an extent- and water depth-based LSG model. The extent-

based LSG model should be used to predict the inundation extent, and the water depth-based 

LSG model should then be used to predict the water depth for those areas predicted as being 

flooded. The accuracy of the inundation extent estimates would be similar to the performance 

of the LSG-EXT (Weighted) model, and the water depth predictions would be similar to the 

LSG-WD (Weighted) model. Accordingly, these results are not shown here, but this approach 

is recommended for future implementations of the LSG model.  
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6.3 Future directions for the LSG model 

The low-fidelity model used in this study is approximately 12 times faster than 

running a high-fidelity model. This is a substantial improvement in computational efficiency. 

However, in ensemble modelling used for risk assessment hundreds or thousands of model 

runs are needed (Nayak et al., 2018; Nester et al., 2012; Wu et al., 2020). Ensemble 

modelling would help uncover if the errors in the LSG model predictions are lower than the 

uncertainty associated with the input boundaries. This would improve the confidence in using 

the LSG model as the LSG model would not be the biggest source of uncertainty in the 

inundation predictions. 

Ensemble modelling imposes a high computational demand on the low-fidelity model, 

and therefore, further research into optimising the efficiency of the low-fidelity model is 

needed. Options for improving the computational efficiency include simplifying the geometry 

by using still coarser grid cells, increasing the timestep, reducing model complexity by 

adopting simplifying assumptions, or using a more computationally efficient model or 

software (Razavi et al., 2012). HEC-RAS is currently the only hydrodynamic modelling 

software that utilises subgrid treatment on an unstructured grid and for that reason was 

chosen in this study. As an example of other models to use, the LISFLOOD-FP model 

proposed by Bates and De Roo (2000) has been shown to be 20 times faster than HEC-RAS 

when running both models on the same grid and timestep (Shustikova et al., 2019). This 

suggests that LISFLOOD-FP may provide fast low-fidelity flood inundation estimates, 

although LISFLOOD-FP predicts flood inundation on a quadratic grid and does not have the 

same subgrid treatment as included in HEC-RAS, which might reduce its accuracy. Future 

studies should explore using other modelling software to examine the accuracy and 

computational efficiency of the LSG model across a variety of hydrodynamic modelling 

platforms.  

Besides the computational efficiency of the LSG model, the low-fidelity model also 

affects the accuracy. Minimal attention has been given to the accuracy of the low-fidelity 

model in the development of the LSG model in both this study and the previous study by 

Fraehr et al. (2022),. Considering the RMSE of the LSG models in Figure 5, the highest 

errors are located in a few local areas. This suggests that performance in these areas might be 

improved by locally improving the low-fidelity model. Another consideration is to calibrate 

the low-fidelity model using observations and/or the results of the high-fidelity model as this 

to some degree can counteract the dispersion of the flood inundation due to the coarser grid 
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(Yu & Lane, 2006). In locations with available and regularly updated observations, it may be 

expected that the use of data assimilation could improve the accuracy of the LSG model 

(Abbaszadeh et al., 2022; Jafarzadegan et al., 2021). Only a few studies have explored the use 

of data assimilation in combination with hydrodynamic models. For example, Xu et al. 

(2017) used data assimilation together with a 1D river model, and both Jafarzadegan et al. 

(2021) and Muñoz et al. (2022) used data assimilation together with a 2D flood inundation 

model. Accordingly, incorporating data assimilation in the LSG model could provide 

accurate predictions in high resolution for future real-time forecasting applications. Future 

studies should therefore focus on improving the precision of the LSG model, as well as on 

increasing computational efficiency. 

Data-driven models like the Sparse GP model are particularly good at describing 

complex non-linear relationships, such as those between the low- and high-fidelity ECs. In 

the initial tests, other data-driven models like the Multilayer Perceptron have been tested and 

shown to have similar performance to the Sparse GP model, although the Multilayer 

Perceptron did not provide an uncertainty estimate. Similarly, Carreau and Guinot (2021) 

used a simple Artificial Neural Network (ANN) structure in their study to describe the 

relationship between ECs. The LSG model is therefore not limited to using the Sparse GP 

model, and other data-driven could be implemented. 

The LSG model needs to be tested on other types of flooding behaviour to ensure that 

the prediction accuracy of the LSG model is robust. This could include consideration of 

storm surge flooding in an estuary, urban flooding, and compound floods resulting from 

exogenous influences. Future applications will further examine the capabilities of the LSG 

model and help ensure it is a robust surrogate model for flood inundation. 

7 Conclusion 

Traditionally flood inundation is predicted using high-fidelity models that are 

accurate, but computationally expensive to apply. In a previous study, the hybrid LSG model 

has been proposed to predict the dynamic behaviour of the flood inundation extent in a more 

computationally efficient way than the traditional high-fidelity models. This study shows how 

the LSG model can be further developed to predict the depths, as well as the spatial extent, of 

flood inundation. 

The LSG model is evaluated by simulating flood inundation of the Chowilla 

floodplain using a HEC-RAS model with an unstructured grid. To compare the LSG model 
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for water depth prediction to the previous LSG model developed for direct flood extent 

predictions, both models were used to simulate the flood inundation of the Chowilla 

floodplain. The extent-based model exhibits significantly better separation of dry and flooded 

areas. However, including water depth in the inundation predictions has considerable 

potential to improve flood risk assessments. For that reason, it is recommended to use both 

extent- and water depth-based LSG models. This would ensure a high accuracy of both 

inundation extent and the water depth, thus making the LSG model a valuable tool to predict 

key flood hazard indicators and inform flood risk assessments.  

When applying the LSG model as a surrogate for a high-fidelity model with an 

unstructured grid, the influence of different grid cell sizes can be accommodated by the 

adoption of a weighting scheme based on the cell area in the EOF analysis. To explore the 

importance of this weighting, two LSG models with and without weighting were developed. 

The results indicate that the weighting has minimal influence on both the water depth and 

flood extent predictions. This result highlights the robustness of the LSG model as it is able 

to compensate for variations in the model setup and provide accurate flood inundation 

predictions on an unstructured grid. 

The LSG model is approximately 12 times faster than using a high-fidelity model and 

provides accurate predictions of the flood inundation depth and extent. In comparison to the 

high-fidelity model, the LSG model has a RMSE with a mean of 4 cm and a standard 

deviation of 5 cm for the water depth predictions. The larger errors are concentrated in local 

areas and could potentially be resolved by locally improving and/or calibrating the low-

fidelity model. 

Future studies of the LSG model should focus on the low-fidelity model development. 

The low-fidelity model is the most computationally demanding part of the LSG structure, and 

it has a great influence on prediction accuracy. Optimising the low-fidelity model can 

therefore significantly influence the performance of the LSG model. In addition, it would be 

of interest to test the LSG model on a wide range of flood problems to evaluate the benefits 

of the approach in more detail.   
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