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Modeling urban microclimate accurately is challenging due to the high surface heterogeneity of urban land cover and the vertical

structure of street morphology. Recent years have witnessed significant efforts in numerical modeling and data collection of

the urban environment. Nonetheless, it is difficult for the physical-based models to fully utilize the high-resolution data under

the constraints of computing resources. The advancement in machine learning techniques offers the computational strength to

handle the massive volume of data. In this study, we proposed a machine learning approach to estimate point-scale street-level

air temperature from the urban-resolving mesoscale climate model and a suite of hyper-resolution urban informatics, including

three-dimensional urban morphology, parcel-level land use inventory, and a dense weather observation network. We implemented

this approach in the City of Chicago as a case study. The proposed approach vastly improves the resolution of temperature

predictions in cities, which will help the city with walkability, drivability, and heat-related behavioral studies. Moreover, we

tested the model’s reliability on out-of-sample locations to investigate the application potentials to the other areas. This study

also aims to gain insights into next-gen urban climate modeling and guide city observation efforts to build the strength for the

holistic understanding of urban microclimate dynamics.
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Abstract  10 

Modeling urban microclimate accurately is challenging due to the high surface heterogeneity of 11 

urban land cover and the vertical structure of street morphology. Recent years have witnessed 12 

significant efforts in numerical modeling and data collection of the urban environment. 13 

Nonetheless, it is difficult for the physical-based models to fully utilize the high-resolution data 14 

under the constraints of computing resources. The advancement in machine learning techniques 15 

offers the computational strength to handle the massive volume of data. In this study, we 16 

proposed a machine learning approach to estimate point-scale street-level air temperature from 17 

the urban-resolving mesoscale climate model and a suite of hyper-resolution urban informatics, 18 

including three-dimensional urban morphology, parcel-level land use inventory, and a dense 19 

weather observation network. We implemented this approach in the City of Chicago as a case 20 

study. The proposed approach vastly improves the resolution of temperature predictions in cities, 21 

which will help the city with walkability, drivability, and heat-related behavioral studies. 22 

Moreover, we tested the model’s reliability on out-of-sample locations to investigate the 23 

application potentials to the other areas. This study also aims to gain insights into next-gen urban 24 

climate modeling and guide city observation efforts to build the strength for the holistic 25 

understanding of urban microclimate dynamics. 26 
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Plain Language Summary  32 

Estimating air temperature at street-level is difficult because of the complex environment in 33 

cities and the limitations of the current urban numerical models. In recent years, with the rapid 34 

development of data collection and analysis techniques, it is possible to fully utilize the hyper-35 

local data harvested from urban areas by advanced machine learning algorithms. This study 36 

presents a modeling method to estimate point-scale street-level air temperature from a 37 

conventional urban weather model and a suite of hyper-resolution urban informatics. These 38 

datasets were collected using state-of-art techniques, such as sub-meter level Light Detection and 39 

Ranging technology and wireless weather observation network. Using the model, we estimated 40 

the street-level temperature over the City of Chicago. The modeling results have multiple real-41 

world applications, such as providing navigation suggestions to reduce the thermal discomfort of 42 

pedestrians as an example. Moreover, given the current data availability, it is possible to expand 43 

the use of our model to other areas. The results of this study can also help the development of the 44 

next-generation urban climate and weather models and guide the observation efforts in cities. 45 

These together can build the strength for the holistic understanding of urban microclimate 46 

dynamics. 47 

 48 

Key points:  49 

o The study presents a modeling framework to estimate street-level air temperature using a 50 

suite of detailed urban climate informatics. 51 

o Model results showed hyper-local urban features have significant impacts on street-level 52 

temperature but with a limited influence radius.  53 

o The investigations on model sensitivity imply the existence of the optimum scale in urban 54 

modeling and critical locations in observation. 55 

 56 

  57 



1 Introduction 58 

Cities will be homes for over two-thirds of the global population by 2050 (UN-Habitat, 59 

2019). This rapid urbanization will escalate the vulnerability of urban residents under various 60 

environmental stressors, such as urban heat, hazardous air quality, and extreme weather 61 

conditions (Revi et al., 2014). To make matters worse, global climate change tends to amplify 62 

the frequency of weather anomalies (Perkins-Kirkpatrick and Lewis, 2020) and induce additional 63 

uncertainties to urban environmental issues (Chen and Zhai, 2017; Huang et al., 2019; Kumar, 64 

2021). Mitigating the adverse consequences and increasing preparedness for the future climate 65 

have become the most urgent tasks for the development of modern cities. In response, cities are 66 

deploying cyberinfrastructures to collect real-time environmental data. This is aiding in 67 

establishing a comprehensive set of urban climate informatics, such as dense weather 68 

observation networks, high-resolution urban land use and morphological database, traffic, and 69 

energy monitoring systems, etc. Such data can subsequently fulfill the increasing demand for 70 

accurate and quick predictions of environmental flows in cities and help make communities 71 

resilient to climate change (González et al., 2021; Middel et al., 2022).  72 

Modeling the urban environment is challenging primarily due to the highly 73 

heterogeneous land use, complex urban fabric, and diverse anthropogenic activities (Oke, 1988; 74 

Oke et al., 2017). The past decades have witnessed continuous efforts to improve the 75 

representation of the complex urban environment with state-of-the-art urban models across 76 

scales. Most urban models can be classified into two categories depending on whether they are 77 

coupled with large-scale atmospheric models. The uncoupled models consider the detailed urban 78 

surface characteristics but do not dynamically interact with the atmosphere above the urban layer, 79 

such as the Town Energy Balance (TEB) model (Masson, 2000), Surface Urban Energy and 80 

Water balance Scheme (SUEWS, Järvi et al., 2011), and the Arizona State Single Layer Urban 81 

Model (ASLUM, Li and Wang, 2020; Wang et al., 2021). They use the “calculation unit” 82 

concept with one unit of the model representing a city with specific characteristics. Since 83 

uncoupled models are usually applied to small-scale problems (i.e., neighborhood-to-city scales), 84 

the models are often driven by in-situ measurements. The uncoupled models are developed from 85 

individual research groups, therefore, have faster iterations regarding the model functionality and 86 

have detailed parameterizations of the urban fabric, such as the inclusion of urban trees (Ryu et 87 

al., 2015), hydrological and ecological features (Yang and Wang, 2014; Meili et al., 2020), 88 



biogenic carbon exchange (Goret et al., 2019; Li and Wang, 2020), and anthropogenic emissions 89 

(Järvi et al., 2019).  90 

The coupled model, by definition, considers the two-way interactions between the 91 

atmospheric layer and the land surface, therefore, can be applied to larger spatial scales. This 92 

modeling approach requires an atmospheric model to provide the meteorological forcings and an 93 

urban land surface model to resolve the urban dynamics. The most widely adopted example of 94 

coupled modeling framework is the mesoscale Weather Research and Forecast model combined 95 

with urban physics (uWRF, Chen et al., 2011). When incorporating advanced parameterization 96 

processes such as Local Climate Zones (LCZ, Stewart and Oke, 2012) and the distributed urban 97 

canyon parameterization approach (UCP), uWRF can theoretically resolve the urban dynamics 98 

up to a few hundred meters. However, compared to the uncoupled models, the urban features 99 

used in uWRF are much less sophisticated, with some critical components such as street trees 100 

and detailed hydrological processes missing from the street canyon. It is also extremely difficult 101 

to find the finest cell size that can reflect the hyper-local urban characteristics without breaking 102 

the physical schemes in the model simulation. Even with the most advanced urban 103 

parameterization approaches (Shen et al., 2019; Chen et al., 2022), modeling microclimate at the 104 

meter level is beyond the resolving power of the current generation of uWRF.  105 

The urban computational fluid dynamics (CFD) models (e.g., Toparlar et al., 2017), on 106 

the other hand, consider the detailed urban morphology and simulate the turbulence field at an 107 

extremely high resolution (~10m) by solving the simplified Reynolds-averaged Navier-Stokes 108 

(RANS) equations or the most computational-expensive Large Eddy Simulation (LES, e.g., 109 

Maronga et al., 2020; Suter et al., 2022) and Detached Eddy Simulation (DES) models (Dadioti 110 

and Rees, 2017). Though urban CFD models can provide the most detailed flow field to street 111 

level, their applications are limited in spatiotemporal coverages due to the restrictions on 112 

computational resources. They are not designed for prediction purpose, as a city-scale CFD 113 

model usually run slower than real-time.  114 

It is notable that the granularity of urban informatics is one to two orders of magnitude 115 

finer than the resolution of the state-of-art predictive urban models. This emerging trend 116 

demands new approaches, as an addition to the conventional physical-based numerical methods, 117 

to fully utilize the existing urban informatics and effectively harvest the pioneering observation 118 

efforts (Middel et al., 2022). Recent studies have explored the prospects of estimating hyper-119 



local air temperature (Ta) via data-driven and statistical approaches. For example, Chen et al. 120 

(2019) used multi-variable linear regression to predict Ta based on temperature observation 121 

network and land cover information. While Venter et al. (2020) and Zumwald et al. (2021) 122 

adopted machine learning (ML) algorithms to hindcast Ta based on the predictors derived from 123 

high-resolution remote sensing (RS) imagery, crowd-sourced weather data, and Light Detection 124 

and Ranging (LiDAR) measurements. Similarly, Yin et al. (2020) estimated Ta from RS and 125 

LiDAR with an ML model trained on data collected from vehicle-borne sensors. Results from 126 

these data-driven studies achieved a resolution between 10m to 30m depending on the 127 

granularity of RS imageries (e.g., 30m from Landsat 8 or 10m from Sentinel-2). As RS data 128 

serves as the source of time-variant predictors, the Ta estimations can be only derived for the past 129 

when RS imageries are available, thus, are not prescient. Moreover, without being bound by the 130 

physical dynamics, the estimations based on statistical relationships may not explain the 131 

spatiotemporal variability of Ta sufficiently, leading to a systematic bias between the estimation 132 

and the measurement (Zumwald et al., 2021).  133 

In this study, we propose an innovative approach to estimating street-level Ta from the 134 

uWRF model outputs and a group of high-resolution urban informatics over the City of Chicago, 135 

including a dense observation network, high-resolution LiDAR point clouds, and a parcel-level 136 

land use inventory (Fig. 1). Specifically, we use Gaussian Process Regression (GPR) to identify 137 

the relationship between the Ta estimated by uWRF and measured by ground sensors while 138 

considering the hyper-local impacts from urban land use types and morphology. The modeling 139 

approach offers point-scale air temperature estimation at resampled street locations in Chicago, 140 

which can be further integrated into desired resolution. We believe that the approach presented in 141 

this study can contribute to the knowledge of important urban problems, such as street 142 

walkability (O’Brien et al., 2019), disproportional heat exposure (Chakraborty et al., 2019), heat-143 

related health issues (Heaviside et al., 2017), and behavioral studies (Anderson, 1989; Reeping 144 

and Hemenway, 2020). 145 

The rest of the paper is organized as follows. Section 2 describes the details of urban 146 

informatics used in this study, as well as the configuration of the uWRF simulation and GPR 147 

models. Section 3.1 summarizes the urban features extracted from the urban informatics, 148 

followed by the results of street-level temperature estimation in temporal (Section 3.2) and 149 

spatial extent (Section 3.3), respectively. In Section 4, we discuss the model uncertainty, 150 



implications, and the limitations of this study. The key concluding remarks drawn from the 151 

results and discussion are presented in Section 5. 152 

 153 
Figure 1. Concept diagrams of the three components: urban informatics, physical-based urban 154 

weather prediction model, and machine learning algorithms used in this study. 155 

 156 

2 Data and Method 157 

2.1 Study area 158 

The City of Chicago, located by the shore of Lake Michigan (41.88oN, -87.62oW) in 159 

Illinois, is the urban core of the third-most populous metropolitan region in the United States (US 160 

Census 2020). It has a highly developed downtown area with 125 skyscrapers over 500 ft (152 m) 161 

and a radial urban-suburban gradient extending west from the lakeshore. Many studies have 162 

investigated Chicago’s urban environment in terms of morphology (Patel et al., 2023), extreme 163 

heat (Sharma et al., 2016; Sharma et al., 2017), precipitation (Vavrus and Van Dorn, 2010), 164 

anthropogenic emissions (Conry et al., 2015), etc. The city authority also led efforts to create 165 

resilient and sustainable communities across the region by setting ambitious climate action plans 166 

since 2008. Moreover, as part of a US Department of Energy-supported project called 167 

Community Research on Climate and Urban Science (CROCUS), several Chicago-area 168 

institutions have joined forces to study urban climates and develop community-based solutions. 169 



All the previous and ongoing endeavors have made the Chicago region an ideal testbed for urban 170 

climate studies. 171 

 172 

2.2 Urban Informatics 173 

2.2.1 Street-level observation network 174 

The Array of Things (AoT) project started in 2018 and was designed to monitor the urban 175 

environment of Chicago via a dense observational network. The measurement nodes contain an 176 

array of environmental sensors that are mounted on existing urban infrastructures (such as traffic 177 

light poles, building walls, bus stations, etc.) at over 100 locations in Chicago city (Fig. 2a). The 178 

nodes measure the meteorological variables, air quality, noise level, and traffic at sub-minute 179 

intervals. These measurements are wirelessly transmitted to a data center in real-time and 180 

compiled into a complete dataset for public access. Most sensors are located 2 to 4 meters above 181 

the ground, thus reasonably representing street-level conditions.  182 

During the designed operation period (Jan 2018 to Sept 2021), the AoT network 183 

effectively collected air temperature readings from 106 nodes with 3100 measurement hours per 184 

node and an overall 11% effective rate. The most effective observations are between Jul 2018 185 

and Sep 2019 (Fig. S1). To ensure the data quality of these low-cost sensors, we compare the 186 

readings from AoT nodes to the nearby research-grade weather stations (Fig. 2b). These high-187 

quality weather recordings can be found at the National Weather Service (NWS), Chicago Data 188 

Portal, and National Centers for Environmental Information (NECI) database. The comparison 189 

throughout the operation period shows that AoT nodes have a mean bias of 1.88 oC on Ta with 190 

0.02 oC/oC slope bias due to internal sensor heating. We correct these biases and conduct 191 

thorough quality control on the AoT dataset. But due to the very limited number of research-192 

grade weather stations in Chicago (Fig. 2a), it is possible that the calibrated temperature readings 193 

from AoT nodes are still associated with uncertainties, bias, and errors. In this paper, we treat the 194 

AoT observation network as an extension of the existing weather stations to serve as the best 195 

proxy for the “ground truth” of the urban environment. The full set of AoT data can be 196 

downloaded with additional information at http://arrayofthings.github.io/. 197 

 198 

2.2.2 Chicago land use inventory 199 



The 2018 parcel-level land use inventory (LUI) for the City of Chicago (Fig. 2a) can be 200 

found at the Chicago Metropolitan Agency for Planning (CMAP) in vector format 201 

(https://www.cmap.illinois.gov/data/land-use/inventory). The LUI classifies the land use into 10 202 

major and 56 minor categories at an extremely high resolution and can be used to delineate the 203 

footprint of individual buildings, roads, streets, boundaries of premises, etc. It can also be used to 204 

calculate the fractions of impervious surfaces. Compared to the 30-m National Land Cover 205 

Database (NLCD) with four urban categories based on development intensity, the parcel-level 206 

LUI has a more detailed classification based on the primary use of the urban land. We cross-207 

check the land use from LUI to the 2019 NLCD to ensure the land cover information used in the 208 

numerical model (Section 2.3) accurately represents the built environment. The parcel-level LUI 209 

is also used to derive urban features for ML model training and prediction (Section 3.1).  210 

 211 

2.2.3 Urban morphology  212 

In addition to the above 2D land cover data, we adopt the three-dimensional (3D) urban 213 

morphological data from the Illinois Height Modernization project 214 

(https://clearinghouse.isgs.illinois.edu/data/elevation/illinois-height-modernization-ilhmp). This 215 

dataset uses Light Detection and Ranging (LiDAR) technology and provides the 3D scan of 216 

Illinois at 2-ft (0.6m) spatial resolution in a point cloud format. Using this unique dataset, we 217 

extract the vertical urban features such as the heights of buildings and vegetation, tree locations, 218 

and coverage. Combined with the parcel-level LUI data, the LiDAR dataset provides the most 219 

accurate and precise descriptions of the urban morphology at an extremely high resolution. 220 



 221 
Figure 2. (a) Locations of AoT nodes and other weather stations; (b) Land use inventory (LUI) 222 

of the City of Chicago from Chicago Metropolitan Agency for Planning; (c) Domain 223 

configuration of uWRF model; and (d) Locations of GHCN weather stations used in the 224 

validation of uWRF modeling result over the inner-most domain. CMA: Chicago Metropolitan 225 

Area.  226 

 227 

2.3 Physical-based urban climate model 228 

In this study, we use the urbanized Weather Research and Forecast model (version 4.3, 229 

Skamarock et al., 2019) to provide coarse estimations of hourly 2-m air temperature (T2) at 1-km 230 

resolution. Specifically, we set up three two-way nested domains with the outermost boundary 231 

covering the east-north central region of the Midwest US and the innermost domain covering the 232 

City of Chicago and its surrounding metropolis (Fig. 2c). The spatial resolutions of the three 233 

domains are 9 km, 3 km, and 1 km, respectively. The lateral boundary conditions are from North 234 

American Regional Reanalysis (NARR) from the National Center for Environmental Prediction 235 

(NCEP, https://rda.ucar.edu/datasets/ds608.0/). Physical schemes of microphysics, convection, 236 

radiation, and boundary layer are configured using a well-tested combination for the Chicago 237 

region, as described in Sharma et al. (2017). We use the single-layer urban canopy model for 238 

impervious urban surface (Chen et al., 2011) and Noah-land surface model (Noah-LSM, Chen 239 

and Dudhia, 2001) for natural land and the pervious portion of the urban grids.  240 



In this study, we select the 2019 summer (May 1, 2019 to Aug 31 2019; 123 days) as the 241 

simulation period. This period matches the data coverage from the urban informatics described in 242 

Section 2.2. In this implementation, the latest NLCD 2019 data (Dewitz and USGS, 2021) is 243 

used to derive the land use index and fractions in the uWRF simulation. We use the default three-244 

category single-layer urban canyon parameterizations without any special treatment to keep the 245 

simplicity of the model configuration. The modeling results are validated using the air 246 

temperature recording from ground weather stations in the Global Historical Climatology 247 

Network (GHCN) at 63 locations (Fig. 2d) within the boundary of the inner-most domain. We 248 

evaluate the model performance using the root mean squared error (RMSE), mean absolute error 249 

(MAE), and mean bias error (MBE), calculated as, 250 

( )2
sim obsRMSE = 

X X
n
−

,                                                                  Eq. (1)  251 

sim obsMAE = 
X X

n
− ,                                                                     Eq. (2)  252 

and 253 

( )sim obsMBE = 
X X

n
− ,                                                                     Eq. (3)  254 

respectively, where Xsim is the model simulation; Xobs is the observation from ground weather 255 

stations at daily or hourly intervals; n is the number of observations. The model daily average 256 

RMSE is 2.15 oC (Fig. 3a), while MAE and MBE are 1.68 oC and 0.21 oC, respectively. We also 257 

calculate the RMSE for the daily mean temperature from AoT observations in the city (Fig. 3b). 258 

Though the RMSE is slightly higher in the urban core (2.52 oC from AoT) than that in the rest of 259 

the study domain (2.15oC from GHCN), the performance of uWRF is acceptable even with the 260 

default urban parameterization and can be used as a reliable source of weather prediction over 261 

the Chicago Metropolitan Area. 262 



 263 
Figure 3. Temperature estimation accuracy in terms of the daily mean air temperature between 264 

(a) uWRF vs GHCN; (b) uWRF vs AoT; (c) GPR vs AoT. (d) The diurnal variation of air 265 

temperature estimated from uWRF (blue line), GPR (red dashed line), and measured by AoT 266 

(black line). Hourly temperature estimation accuracy between (e) uWRF vs AoT; and (f) GPR vs 267 

AoT. 268 

 269 

2.4 Machine learning model 270 

We adopt Gaussian Process Regression (GPR) to link the 1-km estimation of simulated 271 

T2 to the air temperature (Ta) measured by AoT nodes. GPR is a Bayesian non-parametric model 272 

that uses a Gaussian Process (GP) to describe the distribution of the quantity of interest and 273 

Bayes' theorem to infer the posterior distribution. Since it is a non-parametric and stochastic 274 

model, GPR does not make strong assumptions about the functional form of the relationship 275 

between inputs and outputs. Instead, it learns the relationship from the mean and covariance of 276 

the dataset and makes predictions using Bayesian inference (Rasmussen and Williams, 2006). 277 

GPR has demonstrated exceptional accuracy and robustness in simulating predicted temperatures 278 

(Zhang et al., 2021), solar radiation (Lubbe et al., 2020), evaporation (Shabani et al., 2020), and 279 

urban environments (Li et al., 2022).  280 

Specific to this study, we train the GPR model with simulated T2 from WRF and 281 

measured Ta from AoT. The model will learn their covariance under the inference from the input 282 



urban features. The inputs of the model are selected via a trial-and-error process. Given that the 283 

model bias is primarily from the underrepresentation of the complex urban terrain, we formulate 284 

the inputs as a group of variables describing the urban morphology (see Section 3.1), such as the 285 

building height, impervious surface fraction, canopy height, vegetation coverage, development 286 

intensity, etc. After benchmarking the initial model, we test groups of GPR models with different 287 

combinations of the variables and pick the model with the best performance. This nominated 288 

model is further tuned via the hyperparameter optimization process. The model training and 289 

testing are conducted using MATLAB® R2022a. GPR package and library are also available 290 

under free software licenses and can be implemented on open-source programming platforms 291 

like Python. 292 

 293 

3 Results 294 

3.1 Urban features  295 

During the study period, 30 AoT stations have reliable recordings (green dots in Fig. 2a) 296 

and can be used in model training and testing. At each available AoT node, 19 features are 297 

derived from urban informatics to represent the hyper-local environment (Table 1). It is critical 298 

to select a proper spatial range to average and extract the urban features around the nodes. Since 299 

most of the AoT sensors are mounted on traffic light poles at intersections, if the averaging scale 300 

is too small, the land below will be primarily impervious pavement. At the same time, if the scale 301 

is too large, all locations will be similar. The GPR model needs hyper-local characteristics that 302 

can interpret the cause of the difference between uWRF prediction and AoT observation at 303 

different locations. We test various combinations of urban features as input variables and select 304 

the variable list with the best performance (Table 1). For the hyper-local urban features derived 305 

from LiDAR data, the optimum averaging radius is 15 m (~50ft), which covers the intersection 306 

of neighborhood streets in the US (~11m or 35ft) and the land at the street corner (Fig. S2a). 307 

These features provide the impactful factors embedded in the vertical structure of the built 308 

environment, such as shading from the building and street trees. While the planar land use 309 

information from LUI and NLCD represents the general characteristics of the street blocks 310 

centered around the node. Since a typical city block in Chicago is around 100 m by 200 m, we 311 

select 200 m as the averaging radius for LUI and NLCD data to cover 3 to 4 street blocks (Fig. 312 

S2b). While the model performance will not change significantly with the change of the 313 



averaging range on a reasonable scale, we observe an optimum value at approximately 200 314 

meters. If the feature is too small, the model may be less likely to capture its impact on the 315 

environment; for instance, parks need to be large enough to cause a cooling effect. On the other 316 

hand, the optimum averaging range may imply a minimum scale that needs to be considered to 317 

reflect the heterogeneity in urban models. Nevertheless, our analysis indicates that the model 318 

performance is more sensitive to vertical urban features from LiDAR to horizontal urban features 319 

from LUI/NLCD, indicating a notable influence of vertical urban morphology on the thermal 320 

environment.  321 

Our analysis assumes that urban features do not change during the summer months but 322 

should be distinct at each location to provide wide coverage of the variable space for model 323 

training. Nonetheless, it is impossible to fully represent the diverse land use of Chicago by a 324 

limited number of nodes at discrete locations. Figure S3 shows the histograms of the extracted 325 

urban features. Most of the AoT nodes in training are in residential areas with a medium to high 326 

development intensity. This causes some of the features, like mean tree height (Var. 07) and 327 

building fraction (Var. 08), not to have a continuous distribution (Fig. S3), which may affect out-328 

of-sample performance (Section 3.3) and lead to model uncertainties (Section 4.1). 329 

 330 

3.2 GPR prediction on time-series 331 

The input variables for the GPR model contain the time of day, the basic meteorological 332 

conditions from uWRF, and the urban features extracted at 30 AoT locations. Due to the 333 

measurement inconsistencies at some locations, the total usable data volume is 36741 334 

measurement hours after quality control. We normalize the variables to the prescribed ranges, 335 

respectively (Table 1), and randomly select 30% (N = 11022) of the normalized data as the 336 

training dataset. The rest 70% (N = 25719) are used as the validation dataset to test the model 337 

performance. There is no overlapped data in model training and validation. Once trained, the 338 

GPR model estimates the street-level temperature at the AoT locations. We then compare the 339 

temperature from GPR (TGPR) and the previous uWRF prediction (TWRF) to the “ground truth” 340 

measurement from AoT nodes (TAoT). Figure. 3c&f show the scatter plots of the temperature 341 

estimations at daily and hourly intervals, respectively. The GPR model improves the estimation 342 

accuracy (calculated as RMSE) from 2.52 oC to 1.04 oC on the daily mean (Fig. 3b c.f. 3b) and 343 

3.31 oC to 1.66 oC at hourly intervals (Fig. 3e c.f. 3f). We also find that the GPR model replicates 344 



the mean of the diurnal cycle over the 30 stations with high accuracy (Fig. S4) and improve the 345 

model RMSE from 1.64 oC to 0.50oC (Fig. 3d). From the diurnal cycle, it is notable that uWRF 346 

constantly underestimates nighttime (daily minimum) temperature while overestimates daytime 347 

(daily maximum) temperature at given urban locations (Fig. 3d). This phenomenon indicates that 348 

the parameterizations and physics in uWRF underestimate the thermal inertia of urban land, 349 

which resists the change of temperature and largely contribute to urban heat island effect at night 350 

(Varquez and Kanda, 2018).  351 

Additionally, we test the model performance when varying the training sample size. We 352 

retrain the models with 1% (N = 367) to 70% (N = 18371) of total usable measurement hours 353 

and track the change in model RMSE. Since the maximum training ratio is 70%, we reduce the 354 

validation dataset to 30% (N = 11022) for all models. Both training and validation data are 355 

randomly selected and do not overlap. For different training sample sizes, we train 40 models 356 

separately and show the mean RMSE at each sample size in Figure 4a. The model accuracy 357 

increases with increasing sample size. For example, even with a minimal training dataset (1%), 358 

the model can improve simulated hourly temperature RMSE from around 3.28 oC (uWRF) to 359 

2.50oC (GPR). The likely rationale for this improvement is that the GPR model captures the 360 

general trend and corrects uWRF by counteracting the underestimation in thermal inertia, which 361 

is responsible for most bias in uWRF. When increasing the training sample size to 20%, the 362 

model RMSE reduces below 2 oC (Fig. 4a). Model performance continuously increases, but the 363 

improvement becomes incremental when the training sample size is greater than 20%. Using 364 

more data from diverse land uses, the model can identify other factors contributing to uWRF bias, 365 

such as the inaccurate building height and the lack of trees in street canyons. Although, as noted 366 

in Section 3.1, the 30 locations in training do not represent all possible combinations of land use 367 

mix in Chicago; therefore, additional testing is needed to ensure the accuracy of spatial patterns 368 

of air temperature estimations. 369 

  370 



Table 1. List of input variables for GPR models.  371 

No. Variable Description Unit Source Min. Max.
Var.01 T2 2-meter air temperature oC uWRF 0 40
Var.02 Q2 2-meter air humidity kg kg-1 uWRF 0 0.02
Var.03 SW Shortwave radiation W m-2 uWRF 0 1200
Var.04 U Wind speed m s-1 uWRF 0 20
Var.05 Hb Mean building height ft LiDAR, ILHMP 0 80
Var.06 Hb,max Maximum building height ft LiDAR, ILHMP 0 100
Var.07 Ht Mean tree height ft LiDAR, ILHMP 0 60
Var.08 Fb Building fraction - LiDAR, ILHMP 0 0.6
Var.09 Fv Vegetation fraction - LiDAR, ILHMP 0 0.6
Var.10 F1 Fraction of residential land - LUI, CMAP 0 0.8
Var.11 F2 Fraction of commercial land - LUI, CMAP 0 0.2
Var.12 F3 Fraction of institutional land - LUI, CMAP 0 0.6
Var.13 F4 Fraction of industrial land - LUI, CMAP 0 0.4
Var.14 F5 Fraction of transportation land - LUI, CMAP 0 0.2
Var.15 F6 Fraction of agricultural land - LUI, CMAP 0 0.4
Var.16 F7 Fraction of urban parks - LUI, CMAP 0 0.2
Var.17 F8 Fraction of undeveloped land - LUI, CMAP 0 0.2
Var.18 F9 Fraction of road/street - LUI, CMAP 0 0.4
Var.19 Flow Fraction of low-density urban land - NLCD 0 0.8
Var.20 Fmid Fraction of mid-density urban land - NLCD 0 0.8
Var.21 Fhigh Fraction of high-density urban land - NLCD 0 1
Var.22 Fimp Fraction of impervious surface - NLCD 40 100
Var.23 Fcan Fraction of tree canopy - NLCD/LiDAR 0 60
Var.24 t Time of day - - 0 24

 372 
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 374 
Figure 4. (a) Model performance variation with different training data volume; (b) locations and 375 

numbering of the AoT nodes used in GPR model training and testing; (c) spatial variation of the 376 

model performance and the comparison between “leave-one-station-out” models (LOSO) and the 377 

complete GPR models with different training data volume (see Section 3.3).  378 

 379 

3.3 GPR prediction on spatial patterns 380 

We apply a “leave-one-out” cross-validation (Hastie et al., 2009) to further investigate 381 

the model capabilities. Specifically, we train a series of models using data from 29 stations and 382 

leaving out one station at a time (Fig. 4b). All measurements from the leave-out station are used 383 

for model validation. In this case, we use these “leave-one-station-out” models (LOSO models 384 

hereafter) to test the models’ capability in interpreting the impact of land use mix on temperature 385 

estimation. Figure 4c shows the improvement of model RMSE, given as the station-wise change 386 

of RMSE, calculated by 387 

GPR WRFdRMSE = RMSE RMSE− ,                                                          Eq. (4)  388 

where the subscript “GPR” indicates the model trained on data from 30 locations, while “LOSO” 389 

indicates the models trained by the LOSO approach. When dRMSE < 0, the LOSO model is 390 



better than uWRF, verse visa. We find LOSO models are generally reliable over the 30 locations 391 

but with a few exceptions. For example, the LOSO model without data from Station 23 performs 392 

poorly at the leave-out location with a much higher RMSE than uWRF (Fig. 4c). Similar 393 

situations apply to a few other stations. However, when comparing LOSO models with GPR 394 

models trained by data from all locations, the latter performs better even with a very small 395 

training sample size. More specifically, the GPR model with 1% training data is significantly 396 

more accurate than the LOSO model at Station 23 (Fig. 4c). The drastic difference between 397 

LOSO models and the previous GPR models indicates the importance of including more 398 

locations in the model training for better performance and less uncertainty when applying the 399 

mode to new locations. Stations with positive dRMSE in Fig. 4c are essential for the integration 400 

of the model. Nevertheless, LOSO models generally estimate the hourly temperature with 401 

reasonable accuracy. They are sometimes comparable to GPR models with 10% training data, 402 

such as Station 3, 6, 17, 21, 22, 26, 27, and 29 (Fig. 4c). The result indicates that the model 403 

trained on 30 locations can interpret most of the spatial variations influenced by the land use mix. 404 

Therefore, we can use the trained model to generate street-level temperature based on uWRF 405 

simulation and urban informatics.  406 

Figure 5 shows a map of the temperature deviations in a selected area to its areal mean. 407 

This street district is in south Chicago (yellow patch in Fig. 2a) and has a diverse land use with 408 

various development intensities, including residential, commercial, highways, and parks. There 409 

are 9 active AoT stations used in model training. We randomly sampled 17500 spots, shown as 410 

temperature dots in Fig. 5a, and estimated the temperatures using the GPR model trained on 30 411 

AoT stations. Figure 5b shows landmarks that have recognizable temperature deviations from the 412 

areal mean. For example, the temperature near urban parks (P1-P3) is noticeably lower, but the 413 

cooling is limited to the street block adjacent to the park. Similarly, streets along the green belt 414 

(R1) are cooler than the surroundings due to high vegetation fraction and canopy coverage. 415 

These localized cool zones can connect and form a cool corridor if they are close to each other, 416 

such as the area between R1 and P1. In contrast, areas with fewer trees, more impervious areas, 417 

and tall buildings have hotter temperatures. For instance, the freeway (R2), commercial corner 418 

(C1), and hospital (C2) are hotter than their surroundings. Interestingly, the cooling is not 419 

significant in the university campus (U1) near the hospital (C2) despite the campus having a very 420 

dense canopy. Comparing area U1 to a similar area, U2, the result shows that cooling at U2 is 421 



more noticeable. The heights of vegetation and buildings in area U2 are both low. Dense trees 422 

and tall buildings may trap the heat released from the buildings. But we find the campus (U1) 423 

cooler than the university hospital (C2), which has taller buildings and fewer trees.  424 

Areas H1 and H2 have the same land use classification but different development 425 

intensities. Most homes in area H1 are 2-story single-family houses. Street trees there are nearly 426 

twice as high as the homes. While area H2 has more apartments and multi-family homes with 3 427 

and more stories. Street trees are at the same level as the buildings. The mean temperature 428 

difference of H2 is around 1oC to 1.5 oC larger than H1, mostly due to dense land use, proximity 429 

to the highway (R2) and non-vegetated railway yard south of it.  430 

The above examples illustrate how land cover and urban morphology affect air 431 

temperature at a hyper-local scale. The results are consistent with the current knowledge of urban 432 

microclimate dynamics. More importantly, the temperature in our illustrative zone can vary by 433 

up to 2 oC between two locations only a few street blocks apart. These spatial variations are 434 

difficult to capture in models with coarser resolutions. The GPR model successfully identifies the 435 

cool and hot spots within the zone and explains the spatial variation in temperature based on 436 

urban characteristics.  437 

 438 



 439 
Figure 5. (a) Air temperature estimations from the GPR model on the streets over a selected 440 

Chicago neighborhood. The color map shows the temperature deviations from the mean air 441 

temperature of this region. (b) The representative street blocks and landmarks in this region as 442 

examples of distinctive air temperature deviations at hyper-local scales. The location of this 443 

neighborhood is shown in the yellow box in Fig. 2a. 444 

 445 

4. Discussions 446 

4.1 Model uncertainties 447 

The study aims to develop a modeling framework based on advanced urban informatics, 448 

the state-of-art physical-based numerical model, and a machine learning algorithm. As a result, 449 

the uncertainties associated with individual components contribute to the overall uncertainty of 450 

the modeling framework. The quality and quantity of AoT data can be the primary sources of 451 

uncertainty. The data processing phase reveals that most AoT sensors operate intermittently 452 

throughout the operating period, resulting in discontinuous measurements. Thus, a small 453 



percentage of the data is deemed credible for scientific use after rigorous quality control and 454 

calibration. Our results also show that the volume of training data significantly impacts model 455 

performance for timeseries predictions (Section 3.2). The LOSO test in Section 3.3 also 456 

illustrates that the station coverage (i.e., the number of available stations) is critical for 457 

interpreting the spatial patterns and completing the modeling framework. As these in-situ 458 

measurements serve as the modeling target and provide the basis for model validation, better 459 

data quality and quantity will help users gain confidence when interpreting the results from the 460 

ML models.  461 

The uncertainty of uWRF also contributes to the overall variability of model performance 462 

and credibility. uWRF provides the basic weather conditions at a larger spatial scale, leaving the 463 

subsequent ML model to explain the impacts of environmental factors from the hyper-local 464 

features. Therefore, the uWRF is critical in providing the initial estimate based on regional 465 

geological features and mesoscale atmospheric dynamics. Uncertainty in uWRF mainly arises 466 

from the parameterization of urban surfaces, including the underrepresentation of land cover 467 

heterogeneity, the lack of critical land surface processes, and the inaccurate descriptions of urban 468 

morphology.  As resolving urban hydroclimate dynamics is essential for climate models across 469 

the scales (Sharma et al., 2021),  we intentionally did not modify uWRF specifically for the 470 

Chicago region to showcase the capability of the ML models better. Nevertheless, uWRF can be 471 

more accurate and bias-free with a more detailed urban canyon parameterization dataset (Ching 472 

et al., 2018), but will run at a slower speed. As a result, ML models are better candidates to 473 

explain the discrepancies between uWRF results and the observations.  474 

The uncertainties from both measurements (AoT) and model outputs (uWRF) accumulate 475 

when the datasets are used as model inputs. The GPR model is aimed at learning these 476 

uncertainties by quantifying the relationship between the hyper-local urban features and uWRF 477 

bias. An inherent uncertainty associated with GPR models and most ML algorithms in 478 

supervised learning is their ability to predict beyond the training dataset. This issue can be 479 

mitigated by including more data, as illustrated in the LOSO test, or by extending the training 480 

period (e.g., using three summers instead of one). Alternatively, one may inform the ML model 481 

with the results from finer-scale uncoupled urban canopy models, as they typically represent 482 

local urban features better and are considered more accurate at a neighborhood scale. As a result 483 

of this adaptive learning approach, ML models can better understand the physical dynamics at 484 



the street-level and may effectively turn the extrapolation problem (i.e., predicting at new 485 

locations without constraints) into an interpolation problem (i.e., constrained by physical laws). 486 

Both approaches for uncertainty mitigation require additional field and modeling efforts in the 487 

future but are worth pursuing, as these efforts can serve as a springboard for the development of 488 

the next generation of urban climate and weather models.   489 

 490 

4.2 Implications from GPR models  491 

The urban informatics used in this study is at a sub-meter level and requires spatial 492 

averaging to reflect environmental characteristics while retaining spatial variation information. 493 

The temperature deviation map (Fig. 5) from GPR illustrates how land cover and urban 494 

morphology affect air temperature at a hyper-local scale. The results are consistent with the 495 

current knowledge of urban microclimate dynamics. More importantly, the temperature in our 496 

illustrative zone can vary by up to 2 oC between two locations only a few street blocks apart. 497 

These spatial variations are difficult to capture in models with coarser resolutions. However, due 498 

to the limitations of computational resources and model stability, it is challenging to incorporate 499 

exhaustive urban informatics into physical-based models. The recent implementations of urban 500 

canopy parameterization and LCZ in uWRF have demonstrated the growing demand for high-501 

resolution urban simulations (Chen et al., 2022). In our study, we find that the averaging range 502 

affects model performance in a non-monotonic manner, suggesting an optimum scale for certain 503 

urban features when simulating built environments (Section 3.1). Thus, there is a need for further 504 

research on this scaling problem to establish expectations for the next generation of urban 505 

weather and climate models. This may be accomplished by running parameter optimization on 506 

fast surrogate models or adopting the explainable artificial intelligence (XAI) approach. Our 507 

study, although in its infancy, explains the scale problem, illustrates the capabilities of analyzing 508 

this issue from an ML perspective, and sheds light on future endeavors in this field. 509 

When examining the internal logic of GPR models, we notice the spatial variability of the 510 

model performance (Section 3.3), which means that the data at certain locations are critical and 511 

cannot be replaced or compensated by data from other locations. This implies that the monitoring 512 

locations need to be carefully designed if only a limited number of sensors are available. In 513 

recent years, these hyper-local, dense, and real-time sensors have become the most common 514 

method to collect data in cities (Alvarez et al., 2019; Ma et al., 2019; Enlund et al., 2022). Many 515 



cities around the world have urban observation networks that are used to study urban climate, 516 

such as Baltimore (Shi et al., 2021), Twin Cities (Smoliak et al., 2015), Shanghai (Tan et al., 517 

2015), Tainan (Chen et al., 2019), to name a few. In Chicago, a new generation of urban sensors 518 

are being deployed under the SAGE project as a successor of AoT weather nodes. There are also 519 

air quality sensors available from Microsoft Research that cover a wide range of demographics 520 

(Esie et al., 2022). In the future deployment of such monitoring networks or other cyber-521 

infrastructures for urban informatics, the proposed GPR framework can provide the key locations 522 

that need to be monitored for the best efficiency. 523 

In addition to the accuracy and informativeness of GPR models, fast computation speed 524 

is another merit for the potential end users of this modeling framework. For example, hyper-local 525 

weather conditions can significantly affect the walkability and drivability of streets. Real-time 526 

weather information at high resolution can assist pedestrians and autonomous vehicles in better-527 

informed decisions when traversing the city. Given the initial success of air temperature 528 

estimation, adopting this proposed framework to the other meteorological conditions is 529 

applicable once the other types of high-resolution in-situ data are available.  530 

 531 

4.3 Limitations 532 

In this case study, we recognize the importance of the unique datasets and the pioneering 533 

efforts of the City of Chicago. Though urban informatics at sub-meter resolution and dense 534 

observation networks are gaining attention and being deployed in cities around the globe, they 535 

are not widely available. A few alternative sources of urban informatics can extend the 536 

application range to global cities. For example, height information can be derived from the high-537 

resolution Global Ecosystem Dynamics Investigation (GEDI) LiDAR dataset. As originally 538 

designed to retrieve canopy height, it can extract building height information via the waveform 539 

profile with a horizontal resolution of 25m. Alternatively, a deep learning model may also be 540 

used to retrieve height when combined with point cloud LiDAR data (Kamath et al., 2022), 541 

synthetic aperture radar (Sun et al., 2022), or street-view imagery (Al-Habashna, 2020). Canopy 542 

height, however, needs to be investigated at a finer resolution due to the small footprint of 543 

individual trees and their hyper-local impact on the environment. Most current approaches to 544 

quantify canopy height reply on LiDAR data at smaller scales (Lee et al., 2016; Matasci et al., 545 

2018; Heo et al., 2019; Xuan et al., 2023).  546 



A GPR model trained on the Chicago dataset may not be applicable to other regions 547 

without additional manipulation. However, the credibility is dependent on the similarity of the 548 

target city and the Chicago region in terms of climate, geography, land use, etc. As proposed in a 549 

few pioneering studies (Wang et al., 2018; Zhao et al., 2021; Chen et al., 2022), transfer learning 550 

can also migrate knowledge between cities. The future development of the model should include 551 

deeper investigations of the spatial variability of the model to reduce uncertainties when 552 

implementing the model at new locations. 553 

 554 

5. Concluding remarks 555 

High-resolution urban informatics provides new opportunities for the advancement of 556 

urban weather and climate modeling techniques. In conjunction with the conventional numerical 557 

model uWRF and the AoT observation network, we demonstrated the capability of the GPR 558 

models to predict temperature timeseries and spatial patterns. The model framework proposed in 559 

this study successfully estimated the hyper-local street air temperature in the City of Chicago and 560 

with a high degree of accuracy. In the context of data-driven and high-resolution urban models, 561 

we investigated the model uncertainties and highlighted the critical importance of data quality 562 

and data quantity. The implications derived from the model performance and sensitivity analysis 563 

can guide future design and deployment of cyberinfrastructures for cost-efficient urban 564 

environment observations. Based on the findings, we also identified the prospects for future 565 

iterations of the model based on data availability, modeling capability, and the user community's 566 

needs.  567 

While the study is novel, several caveats may prevent it from being a universal approach 568 

for a larger collection of cities. As urban informatics advances, this study will be one of the first 569 

to invest and harvest the joint efforts of urban research communities in an interdisciplinary 570 

manner as a significant contribution to improving the resilience, efficiency, and livability of 571 

modern cities. 572 

 573 
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