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Abstract20

Spatially co-occurring floods pose a threat to the resilience and recovery of the commu-21

nities. Their timely forecasting plays a crucial role for increasing flood preparedness and22

limiting associated losses. In this study we investigated the potential of a dilated Con-23

volutional Neural Network (dCNN) model conditioned on large-scale climatic indices and24

antecedent precipitation to forecast monthly severity of widespread flooding (i.e., spa-25

tially co-occurring floods) in Germany with one month lead time. The severity was es-26

timated from 63 years of daily streamflow series as the sum of concurrent exceedances27

of at-site two-year return periods within a given month across 172 mesoscale catchments28

(median area 516 km2). The model was trained individually for the whole country and29

three diverse hydroclimatic regions to provide insights on heterogeneity of model per-30

formance and flood drivers. Our results showed a considerable potential for forecasting31

widespread flood severity using dCNN especially as the length of training series increases.32

However, event-based evaluation of model skill indicates large underestimation for rainfall-33

generated floods during dry conditions despite overall lower severity of these events com-34

pared to the rain-on-snow floods. Feature attribution and wavelet coherence analyses both35

indicated considerable difference in the major flood drivers in three regions. While the36

flooding in North-Eastern region is strongly affected by the Baltic Sea, the North-Western37

region is affected more by global patterns associated with the El-Niño activity. In the38

Southern region in addition to global patterns we detected the effect of the Mediterranean39

Sea, while antecedent precipitation plays a less important role in this region.40

Plain Language Summary41

Floods that occur simultaneously at different locations in space are associated with42

higher damages and are more difficult for communities to cope. Forecasting of such events43

still remains a challenge. Here we investigate the potential of recently developed deep44

learning networks for forecasting widespread flooding one month ahead. We test this model45

on a large dataset of long streamflow time series in Germany and its three geographi-46

cal regions using climatic indices and past precipitation as supporting variables. We show47

that the model has a considerable potential for flood forecasting, especially for rain-on-48

snow floods, but its performance is limited for rain-on-dry events. Finally, using explain-49

able machine learning we provide insights on contrasting differences in climatic flood drivers50

in different German regions.51

1 Introduction52

River floods are one of the most devastating natural hazards in the world, annu-53

ally causing considerable fatalities and socio-economical losses that are expected to in-54

crease with advancing climate change (B. Merz et al., 2021). Their spatial co-occurrence,55

i.e., when river flooding occurs simultaniously at multiple locations, is an increasingly56

recognized threat for efficient flood adaptation (Brunner et al., 2020; Zscheischler et al.,57

2020). It limits preparedness and the resilience of the communities (Kreibich et al., 2017),58

and poses a major challenge for the insurance and re-insurance industries (Zanardo et59

al., 2019). Spatial co-occurrence of floods in Europe and globally is often associated with60

the activity of large scale climatic patterns and teleconnections, such as North Atlantic61

Oscillation (Zanardo et al., 2019) and El Niño Southern Oscillation (Ward et al., 2014).62

At the same time changing spatial extent of floods (i.e., number of simultaneously af-63

fected river gauges) in Europe (Berghuijs et al., 2019; Kemter et al., 2020) is strongly64

related to changes in dominant flood generation processes.65

In Germany, as in the USA (Brunner et al., 2020), spatially co-occurring floods (i.e.,66

widespread flooding) occur in winter season (Uhlemann et al., 2010) and most frequently67

caused by the combination of intensive snowmelt and rainfall that are modulated by the68

dynamics of North Atlantic Oscillation and Scandinavian Pattern (Krug et al., 2020).69
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However, around 36% of all trans-basin floods in Germany in the second half of the 20th70

century occurred in summer (Uhlemann et al., 2010). The two recent very severe sum-71

mer widespread floods in 2002 and 2013 were associated with the north-east propagat-72

ing cyclone originating from the Mediterranean Sea (Blöschl et al., 2013). Moreover, there73

is evidence that spatial co-occurrence of flood-rich periods in Germany is mostly caused74

by elevated antecedent wetness conditions (B. Merz et al., 2018) indicating that addi-75

tional information on land surface conditions or on prior rainfall that could be related76

to the same atmospheric circulation mechanism might be useful for predicting widespread77

flooding (Nakamura et al., 2013; Nied et al., 2017).78

Timely forecasting of catastrophic widespread flooding is very important for suc-79

cessful flood adaptation in changing climate. Currently global climate models are able80

to issue medium-range and seasonal forecasts (i.e, from several weeks to several months)81

of the large-scale climatic patterns and teleconnections, such as North Atlantic Oscil-82

lation and El Niño Southern Oscillation, with relatively high fiedelity (Ludescher et al.,83

2014; Feng et al., 2021), compared to the limited forecasting skill of precipitation and84

floods (Slater et al., 2019). Therefore, large-scale climatic indices might become useful85

for improving accuracy and increasing lead time for forecasting of widespread flooding86

events using data-driven models.87

Climatic indices are based on the large scale (i.e., regional to global) geophysical88

states and atmospheric circulations that are often used to characterize and investigate89

the teleconnections between large scale circulation patterns and local scale phenomena90

(e.g., precipitation, floods). In this study we investigate the value of ten standard cli-91

matic indices for forecasting the severity of widespread flooding in Germany. Since there92

are clear indications that the emergence of floods (R. Merz et al., 2020) and particularly93

the occurrence of spatially coherent floods (Nied et al., 2017; B. Merz et al., 2018) are94

related to antecedent wetness conditions we also investigate the role of antecedent pre-95

cipitation as a proxy of wetness in the forecasting of severity of widespread flooding.96

In recent years deep learning neural networks have emerged as a promising tool for97

time series forecasting, especially for medium range climate and weather forecast (Rasp98

& Thuerey, 2020; Schultz et al., 2021). Currently, Recurrent Neural Networks (RNN),99

particularly the Long Short-Term Memory (LSTM) models are recognized as effective100

neural networks for time series forecasting (Hsu, 2017). Their recurrent connections that101

allow the network to use the entire history of time series and to capture recurrent pat-102

terns or dynamic structures at different time scales (Hochreiter & Schmidhuber, 1997).103

Recent work shows that a more parsimonious and interpretable representations of such104

dynamics can be obtained by using multiple dilated convolutional layers (Yu & Lin, 2015).105

Comparison of the dilated Convolutional Networks (dCNN) to the stat-of-the-art RNNs106

(particularly to LSTM) using synthetic and real world examples showed comparable and107

even superior performance of dCNN models for conditional time series forecasting in cases108

when availability of long series is limited (Borovykh et al., 2017; Y. Chen et al., 2019;109

Benhaddi & Ouarzazi, 2021). Moreover, dCNN models are much easier to train, faster110

to converge and require less memory compared to the state-of-the-art RNN models (Benhaddi111

& Ouarzazi, 2021) since the convolutional structure of the network reduces the number112

of trainable parameters (Borovykh et al., 2017).113

In this study, we apply the convolutional model Wavenet (van den Oord et al., 2016)114

originally developed for audio forecasting and adapted by Borovykh et al. (2017) for con-115

ditional forecasting of the severity of widespread flooding. The model is based on the116

dilated convolutions applied to both the input time series (i.e., index of widespread flood117

severity) and to the covariates (e.g., large-scale climatic indices, antecedent wetness) al-118

lowing the model not only learn the inherent patterns from the input time series, but119

also to learn its dependence on the covariates at different time scales. Previously the Wavenet120

model was successfully applied for conditional forecasting of financial time series (Borovykh121

et al., 2017), online retail time series (Y. Chen et al., 2019) and air quality time series122
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(Benhaddi & Ouarzazi, 2021). However, to the best of our knowledge adapted Wavenet123

was not previously used for the conditional forecasting of any hydrological time series.124

Moreover, the utility of large-scale climatic patterns and antecedent wetness for forecast-125

ing of widespread flooding in Germany, as well as the relative predictability of floods in126

different hydroclimatic regions and of floods generated by different processes (e.g., rain-127

on-snow vs rainfall) is still unclear. Given this background, this study has the follow-128

ing objectives:129

1. test adapted Wavenet for forecasting of widespread floods in Germany130

2. examine variability of its performance across hydroclimatologically distinct regions131

in Germany132

3. examine variability of its performance for forecasting floods of different genera-133

tion processes134

4. compare the importance of climatic indices and antecedent wetness conditions ob-135

tained using a model-based feature attribution method (explainable machine learn-136

ing techniques) with the results of the model-independent wavelet coherence anal-137

ysis138

2 Data139

2.1 Severity index of widespread flooding and flood generation processes140

To quantify the severity of widespread flooding across multiple gauges in Germany,141

we construct a severity index (Figure 1a) in line with the index used by Nied et al. (2014).142

First, we identify all streamflow events regardless of their peak magnitude from contin-143

uous daily time series of streamflow recorded at each gauge station using the method of144

Tarasova et al. (2018). From these, we select events whose peak magnitude exceeds the145

threshold of a local (i.e., at-site) 2-year return period (often associated with the full river146

bank) defined using annual maxima observed for the period from 1951 to 2013 (the records147

have minimum length 37 years, median length 61 years, maximum length 63 years). Fi-148

nally, we sum up the identified exceedences (i.e., ratio of peak magnitude and the mag-149

nitude of 2-year return period) for all catchments for a given month and normalize it by150

the number of available gauges to account for a variable length of the observation time151

series (Figure 1b). Therefore, the derived index comprises the information about two fea-152

tures, (a) the number of gauges that in a given month report an exceedence of the 2-year153

return period (i.e., flooding), and (b) the magnitude of the exceedence of the at-site 2-154

year return period flow. In case none of the gauges report an exceedence above at-site155

2-year return period the resulting severity index corresponds to 0 (Figure S1).156

We compute the index of widespread flood severity for the whole country by com-157

bining the observations in all 172 streamflow stations across the country and we derive158

regional indices for each of the three hydroclimatic regions in Germany: North Western159

(NW, 76 catchments), North Eastern (NE, 28 catchments) and Southern (South, 68 catch-160

ments) regions (Figure 1a). The North-Western region (the Lower Rhine, Weser Rivers)161

is associated with winter flooding and is strongly affected by the Atlantic storms (Conticello162

et al., 2020). The North-Eastern region (the Elbe and Oder Rivers) is often associated163

with moderate winter floods with rare but severe summer floods (Petrow et al., 2007;164

Tarasova, Basso, & Merz, 2020). Finally, the Southern region (the Upper Rhine, Main165

and Danube Rivers) is associated with a mixed seasonality of floods, while in the right166

tributaries of the Danube summer floods are even more frequent compared to all other167

seasons (Beurton & Thieken, 2009). For the analysis we only consider mesoscale catch-168

ments with area range from 31 to 23,700 km2 (median 516 km2).169

Additionally, to every value of the monthly severity of widespread flooding we as-170

sign a corresponding type of flood generation process that is identified as the most fre-171

quent event type among all affected catchments (Figure 1b, color-coding). Flood gen-172
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Figure 1. a) Study area and three distinct hydroclimatic regions (NW - North-Western,

NE - North-Eastern and South - Southern regions); b) Derivation of the schematic index for

widespread flooding (HQ2 stands for a local flood magnitude associated with 2-year return

period); c) a hierarchical decision tree for classification of event types based on the event clas-

sification framework of Tarasova, Basso, Wendi, et al. (2020) (modified from Tarasova et al.

(2023)), Mx,y,t and Px,y,t stand for catchment- and event-averaged snowmelt and total precipita-

tion respectively, Px,y represents a set of daily catchment-averaged total precipitation during the

event, SMx,y(t0) stands for antecedent soil moisture on the day prior to the event begin, max(κ)

indicates the value of soil moisture that corresponds to the point of maximum curvature of the

function that describes the relation between event runoff coefficients and antecedent soil moisture

(see Tarasova et al. (2018) for more details). Final event types are indicated as colored boxes.

For a detailed description of indicators, classification thresholds and event types please refer to

Tarasova, Basso, Wendi, et al. (2020)
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eration processes are identified (see Figure 1c for the assignment process) using the in-173

formation on the proportion of catchment- and event-averaged snowmelt (Mx,y,t) in the174

total volume of precipitation (Px,y,t), catchment-averaged soil moisture on the day be-175

fore the event has started (SMx,y(t0)), proportion of maximum precipitation intensity176

during the event (max(Px,y(t))) and event-averaged total precipitation (Px,y,t) and vari-177

ability of daily catchment-averaged precipitation sums during the event (var(Px,y)) (Tarasova,178

Basso, Wendi, et al., 2020). Daily observed gridded (1 km) precipitation data are ob-179

tained from the REGNIE dataset (Rauthe et al., 2013), daily observed temperature grid-180

ded (4 km) is obtained from Zink et al. (2017). Daily gridded (4 km) soil moisture and181

snowmelt are simulated by the mesoscale Hydrological Model (mHM) (Samaniego et al.,182

2010; Kumar et al., 2013; Zink et al., 2017). All these datasets are available for the whole183

study period from 1951 to 2013. Using this information we distinguish five different event184

types (Figure 1c): Rain.Snow (combination of rainfall and snowmelt when the propor-185

tion of the latter in the total precipitation sum is at least 30%), Rain.Wet.Intensity (intensity-186

dominated (i.e., most of precipitation has occurred in a single time step during event)187

rainfall-induced event with wet antecedent conditions), Rain.Wet.Volume (volume-dominated188

rainfall-induced event with wet antecedent conditions), Rain.Dry.Intensity (intensity-dominated189

rainfall-induced event with dry antecedent conditions), Rain.Dry.Volume (volume-dominated190

rainfall-induced event with dry antecedent conditions (Tarasova et al., 2023). The thresh-191

old between wet and dry conditions (max(κ)) is defined as the value of catchment-averaged192

soil moisture that corresponds to the point of maximum curvature of the non-linear func-193

tion that capture the increase in event runoff coefficients with the increase of soil mois-194

ture (Tarasova et al., 2018). The sensitivity analysis performed in Tarasova, Basso, Wendi,195

et al. (2020) indicates that the parametric uncertainty and the choice of the hydrolog-196

ical model have only minor effect on classification results. For more details on the in-197

dicators and thresholds used for streamflow event classification refer to Tarasova, Basso,198

Wendi, et al. (2020) and for the details on its application for classification of flood events199

to Tarasova et al. (2023).200

2.2 Covariates: large-scale climatic indices and antecedent precipitation201

Climatic indices are a low dimensional proxy of the dynamics of the atmosphere202

and the ocean from seasonal to multi-decadal scales (Domeisen et al., 2018). We selected203

ten different climatic indices that capture the effects of global climatic variability (e.g.,204

Pacific North American Pattern, Southern Oscillation Index, North Pacific, Antarctic205

Oscillation), patterns that capture more local effect of the Baltic Sea (Scandinavian Pat-206

tern, East Atlantic) and the effect of blocking conditions (Greenland Blocking Index, North207

Atlantic Oscillation, Arctic Oscillation) that were previously related to flood occurrence208

in Europe (e.g., Zanardo et al. (2019)). We also include the Mediterranean Oscillation209

Index that captures the effect of the Mediterranean Sea (Trigo et al., 2002). We provide210

a short description of each index that was used in this study.211

Pacific North American Pattern (PNA) is one of the strongest extratropi-212

cal teleconnections (Wallace & Gutzler, 1981) and is recognized as a major mode of planetary-213

scale atmospheric variability evident at all time scales over North America during bo-214

real winter (Leathers et al., 1991). PNA modes are defined by the anomalies in the geopo-215

tential height fields over the North Pacific Ocean and North American continent and are216

strongly influenced by the El Niño-Southern Oscillation (Li et al., 2019).217

Southern Oscillation index (SOI) is based on the sea level pressure differences218

between Tahiti and Darwin, Australia, and represents air pressure differences between219

western and eastern tropical Pacific. Periods of negative index correspond to El Niño220

episodes and abnormally warm ocean in the eastern tropical Pacific (Harrison & Larkin,221

1998). The opposite is representative of La Niña episodes. These irregular occurring episodes222

have a major effect of the Earth’s climate system and result in devastating hydromete-223

orological extremes in different regions of the world (Ward et al., 2016). Although El Niño-224
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Southern Oscillation teleconnections show only weak effect on European region compared225

to tropical regions and Pacific-North American sector, at seasonal time scales it remains226

one of the strongest predictors of European climate (Brönnimann, 2007).227

North Pacific (NP) Oscillation describes the seesaw pattern of sea level pres-228

sure over subtropical and mid-latitude North Pacific Ocean (Wallace & Gutzler, 1981).229

It impacts temperature and precipitation over Eurasia and North America (S. Chen et230

al., 2021) and is believed to be a trigger of El Niño-Southern Oscillation events (Park231

et al., 2013).232

Antarctic Oscillation (AAO) also known as Southern Annual Mode strongly233

affects the climate in high-latitudes of the the Southern Hemisphere (Thompson And &234

Wallace, 2000). However, several studies have indicates that seasonally variable effect235

of the El Niño-Southern Oscillation on extratropical circulation is strongly modulated236

by AAO (Silvestri & Vera, 2003; L’heureux & Thompson, 2006).237

Arctic oscillation (AO) variability depends strongly on the strength of the Ice-238

landic and Aleutian Lows that are in turn correspond to the variability of the North Amer-239

ican Oscillation and Pacific North American patterns respectively (Thompson & Wal-240

lace, 1998). Although Arctic Oscillation has a strong correlation with North Atlantic Os-241

cillation, it does not show the same changes in summer period as the latter in the last242

few decades (Hanna et al., 2015).243

North Atlantic Oscillation (NAO) is a hemispheric meridional oscillation rep-244

resented as the surface pressure fluctuation between the Azores and Iceland, which gov-245

erns major weather patterns in Europe (Visbeck et al., 2001). NAO is strongly related246

to the occurrence and intensity of the blocking high pressure over Greenland (Hanna et247

al., 2015).248

East Atlantic (EA) is structurally similar to NAO and is characterized by north-249

south dipole anomaly centers over North Atlantic. Compared to NAO the centers of the250

anomalies are shifted southeastward. Differently from NAO, EA has a strong subtrop-251

ical link (Barnston & Livezey, 1987). EA affects the temperature and precipitation in252

Europe and North America (Comas-Bru & Mcdermott, 2014).253

Greenland Blocking Index (GBI) is the mean 500 hPa geopotential height for254

the 60-80°N, 20-80°W region. GBI represent the blocking over Greenland which has an255

impact on the climate and weather in the Northern Hemisphere (Hanna et al., 2016).256

Variability of the GBI is related to the North Atlantic Oscillation variations, as well as257

to changes in East Atlantic and Scandinavian patterns (Scherrer et al., 2006; Hanna et258

al., 2015).259

Scandinavian Pattern (SCA) is a low-frequency teleconnection that represents260

geopotential height anomalies over the extratropical Northern Hemisphere, particularly261

centered around the Scandinavian Peninsula, northeastern Atlantic and central Siberia262

(Bueh & Nakamura, 2007). The positive phase is related to the major blocking anticy-263

clones over Scandinavia and Russia. This teleconnection is often related to temperature264

and precipitation in Europe with the contrasting effect on the Southern and Northern265

parts (Liu et al., 2014).266

Mediterranean Oscillation Index (MOI) is a patterns that captures pressure267

differences between the West and East Mediterranean (i.e., Algiers and Cairo). The MOI268

is related to the activity of cyclogenesis over the Mediterranean Sea (Trigo et al., 2002).269

Since this process is triggered by the cold fronts from the Atlantic, there is a relation be-270

tween MOI variability and the North Atlantic Oscillation, as well as Arctic Oscillation271

(Dünkeloh & Jacobeit, 2003).272
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The monthly time series of all climatic indices, their wavelet and power spectrums273

(see Section 3.3.2) used in this study are displayed in Figures S2-S3. The links to the274

time series of climatic indices sources is provided in the Open Research Section.275

The time series of antecedent wetness conditions for the whole study period are276

also considered as a possible covariate and approximated as the monthly mean of catchment-277

averaged precipitation of all study catchments for the forecasting of the country-wide278

severity index and of catchments belonging to the respectful region (i.e., North-Western,279

North-Eastern and Southern) for forecasting of the regional severity indices (Figure S4).280

Catchment-averaged precipitation was obtained from daily observed gridded precipita-281

tion dataset REGNIE (Rauthe et al., 2013).282

3 Methods283

3.1 Architecture of the dilated Convolutional Neural Networks284

Convolutional Neural Networks (CNN) are deep learning models that consist of the285

stacked convolutional layers where the output is connected to local regions of the input286

(Figure 2b) by means of a convolution (i.e., dot product) between the input and sliding287

filters (i.e., matrix of weights). This architecture results in much smaller number of train-288

able parameters compared to the fully-connected networks (Figure 2a). Due to their abil-289

ity to effectively recognize patterns in the input series, CNN networks are particularly290

successful in image recognition and time series classification (Krizhevsky et al., 2012; Le-291

cun et al., 2015; Wang et al., 2016). To allow the CNN network to access larger portion292

of time series beyond local nodes and to learn recurring patterns at both shorter and longer293

time scales, a dilation can be added to each convolutional layer (Figure 2c). The dila-294

tion essentially means applying the same sliding filter, but skipping input values with295

a certain step (van den Oord et al., 2016). At each subsequent convolutional layer the296

dilation progressively increases by a factor of two (Figure 2c), hence allowing model to297

efficiently learn connections even between far-apart points while keeping number of train-298

able parameters low (Borovykh et al., 2017). In case of time series forecasting the un-299

derlying idea of the dilated convolutional architecture is to learn repeating patterns in300

the time series and use them to predict future values. Multi-layer structure of these net-301

works acts similar to wavelet transformation and is effective for discerning low- and high-302

frequency components from time series while reducing noise propagation with each layer303

(Aussem & Murtagh, 1997).304

Thanks to the convolutional structure of the dCNN model (Figure 2b), it is much305

easier to train, faster to converge and requires less memory compared to the state-of-the-306

art RNN models (Benhaddi & Ouarzazi, 2021). Moreover, the adapted Wavenet model307

performs dilated convolutions on both the response time series (i.e., index of widespread308

flood severity) and on the covariates (e.g., large-scale climatic indices, antecedent pre-309

cipitation) (Figure 2d) allowing the model to learn not only the inherent patterns from310

the input time series, but also to learn its dependencies with the covariates at different311

time scales. The adapted version uses rectified linear unit (ReLU) instead of the gated312

activation function (Figure 2d,e). The parametrized skip connection at the first layer (Fig-313

ure 2d) ensures that the Wavenet network can learn to discard a covariate if it does not314

improve the forecast. The result from the first layer is the input for the next convolu-315

tional layer (Figure 2e), this step is repeated till the last convolutional layer that cor-316

responds to the selected depth of the network. The output of the last convolutional layer317

is passed through a 1x1 convolution to flatten the output and produce one-dimentional318

forecast (Figure 2f). For a detailed description of the adapted Wavenet model refer to319

Borovykh et al. (2017).320
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Figure 2. Architecture of dilated Convolutional Neural Networks and the structure of the

adapted Wavenet model: a) example of a fully-connected network where all nodes of the output

layer are connected to all nodes of the input resulting in many trainable parameters; b) exam-

ple of a convolutional network where each node is connected only to a local region of the input

and the weights are shared, i.e., reducing number of trainable parameters compared to the fully-

connected network and allowing more efficient training, but only learning local (i.e., short-term)

dependencies); c) example of a dilated convolutional network where regular local convolutions as

in panel b are substituted by dilations to allow output to be influenced by more nodes from the

input and efficiently learn the connections even between far-apart data points, i.e., in case of time

series this allows to account for short-term (i.e., local) and long-term structures in the data; d)

network structure of the adapted Wavenet model: dilation of the input (i.e., autoregressive part)

and covariate time series with ReLU activation function (non-linearity term) and parametrized

skip connection at the first convolutional layer that allows the model learn to discard covariates

if they do not improve the forecast; e) dilation at each subsequent convolutional layer i of the

network; f) 1x1 convolution of the last convolutional layer L to reduce dimentionality and obtain

one-dimentional forecast. Differently from fully-connected networks (panel a) where the data is

passed through all layers sequentially, residual connections at each convolutional layer allow data

to bypass some layers resulting in very efficient training (modified from Borovykh et al. (2017))
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Table 1. Model set-ups and corresponding covariates to forecast severity of widespread floods

at time step t

Model Structure # covariates

auto [severity1, severityt−1]
a 0

season [severity1, severityt−1] + [sin1, sint−1] + [cos1, cost−1]
b 2

precip [severity1, severityt−1] + [sin1, sint−1] + [cos1, cost−1] + [P1, Pt−1]
c 3

climate [severity1, severityt−1] + [sin1, sint−1] + [cos1, cost−1] + [Clim1, Climt−1]
d 12

full [severity1, severityt−1] + [sin1, sint−1] + [cos1, cost−1] + [P1, Pt−1] + [Clim1, Climt−1] 13

a Forecast of flood severity for time step t using only past observations of flood severity index from time

step 1 to t− 1 (i.e., autoregressive part)
b Sine and cosine of the month of the year as a proxy of seasonality
c Mean monthly country-averaged or region-averaged observed precipitation
d Ten different climatic indexes are considered simultaneously: PNA, SOI, NP, AAO, AO, NAO, EA,

GBI, SCA, MOI

3.2 Setup of the adapted Wavenet model321

We use a dCNN network with four dilation layers, which means that 32 input time322

steps (i.e., 25 months) are used to produce a single output time step (i.e., forecast) (Fig-323

ure 2c). This choice leverages the length of the available time series and the number of324

trainable weights. The total length of monthly time series (756 months, i.e., 63 years from325

January 1951 to December 2013) was split into training (32+640 months, i.e., ca. 2.7+53.3326

years) and test samples (32+52 months, i.e., 2.7+4.3 years). The test sample includes327

one of the most severe floods (June 2013) recorded in instrumental observation period328

in Germany that affected the Elbe River and the Danube River catchments (Blöschl et329

al., 2013) (the North-Eastern and the Southern regions respectively). We use time-series-330

split cross-validation that resembles K-fold cross-validation for ordered time series and331

is designed specifically for time series forecasting (i.e., validation split never preceeds train-332

ing splits). In our case we use 7 time series splits (i.e., folds) for the training set. We use333

adaptive model estimation (Adam) optimizer (Kingma & Ba, 2014) with the initial learn-334

ing rate of 0.005 to train the model and mean absolute error as a measure of model per-335

formance. The maximum number of epochs was set to 150. Additionally, we used an early336

stopping strategy to avoid overfitting.337

To efficiently analyze the value of different covariates used in this study we exam-338

ine models of different complexity that correspond to a different number of covariates339

used for conditioning the forecast of widespread flood severity. The simplest model (auto340

model) does not use any covariates and makes the forecast purely based on the struc-341

ture of the patterns identified from the past time series of flood severity index (Table 1).342

The seasonal model uses two covariates, namely the sine and cosine of the month of the343

year to allow the model learning of the seasonality dynamics (Jiang et al., 2022). The344

precipitation model (precip model) adds the mean monthly precipitation time series, i.e.,345

it can use observed precipitation from previous months for the forecast (Table 1). Es-346

sentially, it only uses antecedent precipitation since the model structure is causal (i.e.,347

only past data is used for generating the forecast (Y. Chen et al., 2019)). The climate348

model does not use precipitation as a covariate (Table 1), but instead includes ten dif-349

ferent climatic indices listed in the Section 2.2. Again, similar to precipitation only cli-350

matic indexes from previous months (Table 1) are used for the forecast given the causal351

structure of the model. The full model uses all above mentioned information (i.e., to-352

tal of 13 covariates, Table 1).353
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To account for the stochastic nature of the training of the deep learning models we354

initialize training of each of the above mentioned models 10 times independently of each355

other (Jiang et al., 2022). Therefore, we obtain an ensemble of 10 realizations for train-356

ing and also for test period in forecasting mode for each examined model complexity. To357

avoid overfitting of the model during training we use L1 type of regularization that re-358

duces the weights of the less influential covariates to zero (i.e., it only selects covariates359

that are essential for the forecasting of flood severity). We identify an optimal regular-360

ization parameter value for each model complexity by systematically varying L1 param-361

eter value and examining corresponding model performance (Figure S13). Too low a value362

of L1 parameter results in model overfitting (i.e., higher errors for test samples compared363

to train samples in cross-validation), while too high values of L1 parameter results in a364

very strict penalty and can prevent model from learning the variability beyond the long-365

term mean and seasonality (Figure S13).366

Although from the theoretical point of view dCNN models are specifically designed367

to effectively learn patterns from short time series (Borovykh et al., 2017), the length368

of the input data available for training can still affect model performance. To evaluate369

the effect of the length of time series available for training on model performance we per-370

form an experiment by systematically reducing the length of the training series, while371

keeping the length of the test series unchanged. In all examined cases we compare the372

performance with the baseline (i.e., mean monthly flood severity index derived from the373

whole observed series) to identify minimum requirements for the duration of training data374

for flood forecasting using dCNN models.375

3.3 Explainable machine learning376

Recently, explainable machine learning methods (XAI) (Buhrmester et al., 2021)377

have been shown to be useful for understanding the structure of the otherwise black-box378

deep learning models. Interpretability and explainability of deep learning models rests379

on the ability of the post hoc explanation of model prediction strategy by understand-380

ing the importance of the features used for predictions (Mamalakis et al., 2022b) and381

by evaluating the physical plausibility of the identified importances (Ebert-Uphoff & Hilburn,382

2020). In our case, this means evaluating the role of different climatic indices and an-383

tecedent precipitation for the forecasting of widespread flood severity using a model de-384

pendent feature attribution method (i.e., Shapley values, see Section 3.3.1) and compar-385

ing the results with the model-independent wavelet coherence analysis between these vari-386

ables (see Section 3.3.2), as well as analyzing the results on the importance of different387

features obtained from this study with the reports from previous studies (see Section 5).388

3.3.1 Feature attribution: Shapley value389

To evaluate the usefulness of different covariates used in this study (i.e., large-scale390

climatic indices, antecedent precipitation) we used the SHAP method (Lundberg et al.,391

2017) implemented in DeepExplainer library that approximates Shapley values (Shapley,392

1952). Shapley values quantify the average marginal contribution of a feature value (e.g.,393

antecedent precipitation) across all possible coalitions (i.e., all possible combinations of394

the features). The Shapley value of each feature shows how the forecast will change when395

this feature is added to the set of all other considered features. We implemented SHAP396

method in a global setting, i.e., by computing Shapley values not for a single forecast397

(i.e., month or event), but for the full sample to understand the overall effect of each co-398

variate on model decisions (Buhrmester et al., 2021).399

3.3.2 Wavelet transformation and wavelet coherence400

Given the inherent similarity of the dCNN and wavelet transform (Aussem & Murtagh,401

1997) we compare the results of the model-dependent feature attribution method described402
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in the previous Section with the model-independent continuous wavelet transform and403

biwavelet analysis of the flood severity index and the covariates used in this study. Wavelet404

analysis is an effective tool to transform 1D-time series into 2D-time-frequency spectrum.405

We performed wavelet analysis using a continuous wavelet transform with the Morlet wavelet406

function (Torrence & Compo, 1998) of the monthly time series of climatic indices (Fig-407

ure S2-S3), as well as the flood severity index (Figure S1) and precipitation (Figure S4)408

for the whole country and for the three hydroclimatic regions individually. The signif-409

icance level of the wavelet spectrum is computed in relation to red noise (Torrence & Compo,410

1998).411

Biwavelet analysis is performed using Wavelet Coherence Transform (R package412

’biwavelet’) to identify the relation between two time series at different scales. In this413

case the coherence is quantified by a cross-wavelet power (the measure of the coherence414

in a time frequency domain) that resembles standard correlation coefficient (Torrence415

& Compo, 1998).416

4 Results417

4.1 Forecasting performance in Germany and its three hydroclimatic418

regions419

All investigated models reduce the mean absolute error (MAE) of the forecast when420

compared to the baseline (i.e., mean monthly observed flood severity index) (Figure 3).421

However, more complex models that include climatic indices (i.e., climate and full model)422

are able to predict the widespread flood severity index more accurately when compared423

to the models with fewer covariates (R2 increases from 0.04 to 0.32, Figure 4). Partic-424

ularly, more complex models reduce the phase shift that is apparent for simpler mod-425

els (Figure 4), although there is still a considerable underestimation of flood severity, es-426

pecially for the most extreme events (Figure S14). The forecasting skill of the best model427

(i.e., climate or full model depending on the hydroclimatic region) varies across differ-428

ent regions when compared to the corresponding baseline: the models show higher skill429

in the North-Western and the North-Eastern regions (Figure 3), indicating that the pre-430

dictability of widespread flooding in these regions from climate indices and antecedent431

precipitation might be higher.432

4.2 The role of antecedent precipitation for forecast performance433

There is a clear reduction of mean absolute error with increasing model complex-434

ity when forecasting flood severity index in Germany, although it is worth to mention435

that the full model is associated with the highest level of performance variability as may436

be expected given the increase in the number of effective parameters (Figure 3). When437

comparing the performance of the climate and full models we observe considerable re-438

gional differences. As for the country-wide forecast, in the North-Eastern region the full439

model outperforms the climate model that does not account for antecedent precipita-440

tion. In the Southern and North-Western region the full model shows much higher un-441

certainty (i.e., high variability in the performance among different realizations) compared442

to the climate model, with considerably better median performance of the climate model443

in the Southern region (Figure 3). Variable regional performance of the model that ac-444

counts for antecedent wetness conditions (i.e., full model, Table 1) confirms a variable445

role of antecedent wetness for generation of widespread flooding in different German re-446

gions suggested in R. Merz et al. (2020) who showed that especially in the drier North-447

Eastern parts of Germany antecedent soil moisture is an even more important feature448

for generation of annual maximum floods than the volume of precipitation events that449

induces the corresponding flood.450
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Figure 3. Mean absolute error (MAE) for the forecast of monthly widespread flood severity

in Germany (DE) and its three hydroclimatic regions (NW: North-Western region; NE: North-

Eastern region; South: Southern region) for the test period (August 2009-December 2013) using

models of different complexity (ensemble of 10 realizations for each case) (see Table 1). Grey

dashed line indicates MAE for the baseline case (i.e., mean monthly index of flood severity for

the whole study period from 1951 to 2013). The tendency in performance improvement of the

auto, season and precip models in Germany and individual regions are very similar, therefore,

only the performance of climate and full models are shown for the three hydroclimatic regions
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Figure 4. One month ahead forecast of monthly severity of widespread flooding in Germany

for test period (August 2009-December 2013) using models of increasing complexity (see Table

1). The black solid line indicates observed flood severity index. Blue solid line represent the

mean of the ensemble of 10 realizations for each model. Light shaded area shows the spread of

the ensemble simulations with darker color indicating the spread between 25th and 75th per-

centiles.
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4.3 Temporal variability of performance: forecasting floods generated451

by different processes452

We also detect considerable differences in the forecast skill in time (Figure 4). For453

example, the forecast for summer 2013 when one of the most extreme flood events in Ger-454

many occurred was very poor for all models (Figure 4). On the other hand, the forecast455

of monthly severity corresponding to the winter-spring flood of 2011 was fairly accurate456

(Figure 4), especially in individual regions (Figure S15). This indicates that there might457

be considerable differences in the predictability of floods in the examined sample.458

As floods can be generated by different atmospheric and hydrological processes (Hirschboeck,459

1987; Tarasova et al., 2019) and might be characterized by considerably different con-460

tribution of different ingredients (e.g., volume and intensity of inducing precipitation events,461

wetness states) (R. Merz et al., 2020), their intrinsic predictability from climatic indices462

and antecedent precipitation might indeed be different. Therefore, we compare the abil-463

ity of the full model to forecast events that correspond to different event types accord-464

ing to Tarasova, Basso, Wendi, et al. (2020). The results show that during the test phase465

there is on average higher underestimation (in terms of percent bias) of rainfall-generated466

events compared to the events that are generated by mixture of rainfall and snowmelt467

(Rain.Snow) (Figure 5d), although the variability in the performance for individual events468

is rather high. Despite their rarity only rainfall intensity-dominated events (Rain.Dry.Intensity,469

Figure 5b) are associated with smaller bias than mixtures of rainfall and snowmelt in470

the cross-validation phase (Figure 5c). However, these events also correspond to the low-471

est severity (in terms of the number of affected gauges and the magnitude of the events)472

(Figure 5a), while Rain.Snow events together with the Rain.Wet.Volume are associated473

with the highest severity. Interestingly, although Rain.Wet.Intensity and Rain.Dry.Volume474

that usually occur in autumn and summer (Tarasova, Basso, Wendi, et al., 2020) are as-475

sociated with smaller severity, they are strongly underestimated (Figure 5). Therefore,476

it seems that winter/spring processes can be better predicted using monthly climatic in-477

dices than summer processes when convection might contribute considerably to the gen-478

eration of rainfall (Conticello et al., 2020).479

4.4 Model-independent regional wavelet coherence of the covariates and480

flood severity index481

To increase interpretability of modeling results, first we analyze wavelet coherence482

between model covariates and flood severity index that is independent from model per-483

formance. As expected, we observe a very strong coherence between precipitation and484

flood severity index in Germany, especially at longer time scales (up to several years, Fig-485

ure 6) that corresponds well with the previously reported dependence between the oc-486

currences of multi-year flood-rich and flood-poor periods and antecedent wetness con-487

ditions in Germany (B. Merz et al., 2018). Interestingly, at the shorter time scales the488

coherence is rather intermittent. We also detect considerable differences in coherence among489

different regions (Figure 6). Particularly in the Southern region the coherence with pre-490

cipitation is lower than in the rest of the country, which corresponds well with inferior491

performance of the full model in this region (Figure 3).492

Among climatic indices that reflect global-scale climatic patterns and are related493

with the El Niño Southern Oscillation, there is particularly persistent coherence between494

PNA and NP and flood severity index in Germany (Figure 7, Figure S5). A very sim-495

ilar coherence pattern is observed in the North-Western region (Figure 7, Figure S6), while496

in the North-Eastern the coherence is very intermittent indicating weaker effect of these497

global patterns on the occurrence of widespread flooding in the region (Figure 7, Fig-498

ure S7). Generally, there is also a very weak coherence between flooding in the North-499

Eastern region and all considered global patterns compared to the North-Western region500

(Figure S6 and S7). Interestingly, PNA seems to be very coherent with flood severity in501
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Figure 5. Severity of flood events generated by different processes in Germany (a) and under-

estimation (expressed as bias = (severityobs − severitymod)/severityobs) of their corresponding

magnitudes during: c) cross-validation and d) test periods. Forecast is based on the ensemble

of 10 full models that consider all covariates. Significance between event types is evaluated us-

ing pairwise Kruskal-Wallis test with false discovery rate correction. Significance levels: *** for

p<0.01; ** for p<0.05; * for p<0.1. Panel b shows the proportions of events generated by differ-

ent processes during cross-validation and test periods. Panel a is shown in log space. Panels b, c

and d are shown in linear space.
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Figure 6. Wavelet coherence (WC) between monthly flood severity index and antecedent

precipitation in Germany (DE) and its three hydroclimatic regions (NW: North-Western region;

NE: North-Eastern region; South: Southern region). x axis is a time axis in months from the

beginning to the end of the time series. y axis indicates periodicity or scale at which two time

series are coherent at a given moment in time of the x axis. Black outline highlights regions of

significant coherence. Red colors correspond to higher coherence values, blue colors correspond

to lower coherence values. The shaded part outlines the cone of influence. Wavelet spectrum of

the corresponding monthly flood severity index and precipitation series can be found in Figure S1

and Figure S4.

the Southern region especially at multi-annual time scales and this relation is even more502

persistent than in the North-Western region (Figure 7, Figure S8).503

Previous study indicated the importance of the climatic patterns associated with504

the activity Atlantic Ocean, particularly of the Baltic Sea, and with the occurrence of505

blocking situations for precipitation and flooding in the Northern Europe (Zanardo et506

al., 2019; Comas-Bru & Mcdermott, 2014). Indeed, our results also indicate coherence507

between widespread flooding and SCA in all regions (Figure 7). There is also consider-508

able coherence with NAO at annual and multi-annual scales in the North-Western and509

North-Eastern regions and with EA at longer time scales (Figure 7). Instead, in the South-510

ern region the flooding is coherent with AO at longer time scales (Figure S8).511

The coherence between widespread flooding and MOI seems to be rather similar512

between North-Western and North-Eastern regions where the dependence is strong at513

longer time scales. Differently, in the Southern region, the coherence is stronger at shorter514

time scales (Figure 7). Generally, wavelet coherence analysis between climatic indices515

and widespread flood severity shows clear differences in hydroclimatic controls across three516

German regions.517

4.5 Model-dependent feature attribution using Shapley values518

Since climate model showed a comparable or even better performance than the full519

model in the North-Western and Southern regions we performed feature attribution us-520

ing Shapley values for these model complexity versions. We compare the differences be-521

tween the feature rankings of two model versions to provide insights on the importance522

of different covariates and on potential of substituting antecedent precipitation solely by523

the information available from climatic indices in different hydroclimatic regions of Ger-524

many (Figure S9-S12).525
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Figure 7. Wavelet coherence (WC) between monthly flood severity index and large scale cli-

matic indices in Germany (DE) and its three hydroclimatic regions (NW: North-Western region;

NE: North-Eastern region; South: Southern region): PNA - Pacific North American Pattern;

NAO - North Atlantic Oscillation; EA - East Atlantic; SCA - Scandinavian Pattern; MOI -

Mediterranean Oscillation Index. x axis is a time axis in months from the beginning to the end

of the time series. y axis indicates periodicity or scale at which two time series are coherent at a

given moment in time of the x axis. Black outline highlights regions of significant coherence. Red

colors correspond to higher coherence values, blue colors correspond to lower coherence values

(see colorbar in Figure 6). The shaded part outlines the cone of influence. Wavelet spectrum of

the corresponding monthly flood severity and climate indices can be found in Figures S1-S3.
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Regardless of model complexity, sine and cosine of the month of the year corresponds526

to high Shapley values in all regions (Figure 8), as widespread flooding is associated with527

very pronounced seasonality, especially in the Northern regions (Figure S1). In the South-528

ern region where floods occur throughout the year (Beurton & Thieken, 2009) and the529

seasonality of widespread flooding is not as pronounced (Figure S1), sine and cosine cor-530

respondingly are ranked lower (Figure 8).531

4.5.1 Germany-wide model532

For the forecasting of the Germany-wide flood severity index the full model that533

includes antecedent precipitation performed better than climate model. Feature attri-534

bution shows that apart from antecedent precipitation and seasonality, global patterns,535

such as PNA and AAO, patterns associated with the Baltic Sea (EA and SCA) and with536

the Mediterranean Sea (MOI) are found important for the model performance (Figure537

8). This corresponds well with the wavelet coherence analysis (Figure 7) that indicates538

a coherence between these indices and the flood severity index at different time scales.539

Interestingly, despite a clear coherence between Germany-wide flood severity indices and540

NP pattern (Figure S5), it was not identified as an important predictor by the Wavenet541

model (Figure 8). This might be explained by a strong relation between NP and other542

global atmospheric patterns related to the El Niño Southern Oscillation (Park et al., 2013).543

There is also a strong relation to the GBI index at annual scale for Germany-wide flood544

severity (Figure S5), although GBI does not seem to be an important covariate for model545

predictions (Figure 8). A very pronounced seasonality of GBI (Figure S3) might be al-546

ready accounted for by sine and cosine of month of the year that are used as support co-547

variates to improve seasonality learning (Jiang et al., 2022). Interestingly, when the pre-548

cipitation are not considered (i.e., in the case of climate model), the importance of the549

NP and GBI indices that have strong coherence with precipitation at annual scale (Fig-550

ure S9) increases (Figure S16).551

4.5.2 North-Western region552

The climate model (i.e., the model without the antecedent precipitation) performs553

slightly better than the full model in the North-Western region (Figure 3), indicating that554

the information on antecedent precipitation can be efficiently substituted by monthly555

variability of other covariates in this region. In fact, although antecedent precipitation556

is ranked first among covariates of the full model, feature attribution of the climate model557

shows that SCA index gains more importance in the absence of precipitation (Figure 8),558

as they are both strongly related to each other in this region according to the model in-559

dependent wavelet coherence analysis (Figure S10). Also the importance of the dynam-560

ics of the historical flood severity index itself increases for climate model compared to561

the full model of the North-Western region.562

Apart from antecedent precipitation and seasonality, global patterns that are par-563

ticularly related to the El Niño Northern Oscillation (e.g., PNA, NP, AAO and SOI),564

as well as the East Atlantic pattern that indicates the strong effect of the Baltic Sea, are565

ranked high for model performance (Figure 8). Interestingly, according to the wavelet566

coherence analysis there is a strong relation between PNA and SOI patterns and flood567

severity index particularly at medium time scale (annual to bi-annual) (Figure 7, Fig-568

ure S6), at which the relation between the flood severity index and precipitation is the569

lowest (Figure 6). AAO is related to flood severity index at much shorter scales, while570

the coherence with the East Atlantic pattern is instead detected at longer (ca. 3 to 5 years)571

time scales (Figure 7, Figure S6).572
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Figure 8. Shapley values of the covariates of the full model (for Germany and all regions)

and for climate model (for the North-Western and Southern region where climate model per-

formed comparable or better than the full model) computed for the whole time series from 1951

to 2013 (i.e., global settings) ordered by decreasing variable importance: auto - the historical

time series of flood severity; sin - sine of the month of the year; cos - cosine of the month of the

year; Precip - antecedent mean monthly precipitation; NP - North Pacific Patterns; PNA - Pacific

North American Pattern; SOI - Southern Oscillation Index; AAO - Antarctic Oscillation; AO -

Arctic Oscillation; NAO - North Atlantic Oscillation; GBI - Greenwich Blocking Index; SCA -

Scandinavian Pattern; EA - East Atlantic; MOI - Mediterranean Oscillation Index
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4.5.3 North-Eastern region573

In contrast to the North-Western region, feature attribution analysis does not in-574

dicate any major effect of global patterns on the occurrence of widespread flooding in575

the North-Eastern region, where apart from very strong effect of seasonality, only an-576

tecedent precipitation and East Atlantic pattern contribute considerably to the perfor-577

mance of the full model (Figure 8). The strong effect of the latter on the flood severity578

index especially at longer time scales is also apparent from the corresponding wavelet579

coherence analysis (Figure 7). Interestingly, there is no difference in feature importance580

of climatic indices between climate and full model of the North-Eastern region (Figure581

S16), but the full model performs considerably better (Figure 3).582

4.5.4 Southern region583

In the Southern region, the PNA pattern has the highest contribution to model per-584

formance for both climate and full models (Figure 8), and is strongly related to the flood585

severity index at longer time scales (Figure 7). At shorter time scales the effect of the586

MOI pattern is apparent that is also associated with high Shapley values (Figure 8) and587

might indicate the importance of the Mediterranean Sea for the occurrence of flooding588

in this region (Figure 7). In this region the climate model performs considerably bet-589

ter than the full model and the feature attribution indicates that the importance of SCA,590

EA and NAO indices increases in the absence of precipitation covariate (Figure 8). Ac-591

cording to wavelet coherence analysis precipitation in the Southern region show strong592

dependencies with SCA at longer time scales and with EA and NAO at shorter time scales593

(Figure S12), indicating that the the information on antecedent precipitation can be ef-594

fectively extracted from the climatic indices in this region.595

5 Discussion596

5.1 Adapted Wavenet conditioned by climatic indices for monthly flood597

forecasting598

Dilated convolutional neural networks provide a powerful tool for time series fore-599

casting when only limited length of time series is available for training (Borovykh et al.,600

2017), especially compared to the recurrent neural networks (Y. Chen et al., 2019). The601

consistent improvement compared with the baseline (i.e., mean monthly values of widespread602

flood severity index) for all model complexities investigated in our study shows the po-603

tential of dilated convolutional models for flood forecasting, although even the most com-604

plex model tends to underestimate the most extreme events (Figure S14). Moreover, un-605

fortunately, even for the adapted Wavenet there is a clear dependence between model606

performance and the length of time series available for training. When less than 40 years607

of the data is available the model is not able to outperform the baseline based on mean608

monthly flood severity for the whole study period (Figure S13). This indicates that ex-609

tending forecast lead times to seasonal and longer scales using the Wavenet model alone610

does not seem feasible yet. However, using high-fidelity seasonal forecasts of climate in-611

dices produced by the global climate models (Feng et al., 2021) as the input for the Wavenet612

model might be a promising avenue to extend lead times also for flood forecasting.613

Apart from that, wavelet coherence analysis clearly shows that there are strong de-614

pendences between severity of widespread flooding and climatic indices even at long time615

scales (i.e., longer than 5 years) (Figure 7, Figure S5-S8). Rather shallow dilation depth616

(i.e., four layers) selected in our study due to the limited time series available for train-617

ing might have impacted the ability of the adapted Wavenet model to account for such618

dependencies.619
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Despite this, a good agreement between the model-independent wavelet coherence620

analysis and feature attribution analysis using Shapley values indicate that the model621

was able to identify the primary climatic drivers and might become a valuable forecast-622

ing tool especially as the length of flood observations increases.623

Even with good agreement between wavelet coherence analysis and feature attri-624

bution method, it might be difficult to pre-select the features beforehand using wavelet625

coherence analysis alone due to high inter-relation between the indices (Figure S9-S12).626

Despite the comprehensiveness of monthly climatic indices they do not capture the full627

picture of large scale climatic patterns that might be important for spatially co-occurring628

floods. An alternative design of the Wavenet model including daily indices that resolve629

shorter phenomena such as synoptic waves (Lu et al., 2013) might provide an opportu-630

nity for a more detailed near-time event-based widespread flood forecasting. Moreover,631

a more comprehensive and flexible patterns (e.g., based on integrated vapor transport)632

(Nakamura et al., 2013; Lima et al., 2017; Conticello et al., 2020), in combination with633

the convolutional neural networks might also be a promising avenue for a more accurate634

event-based forecasting of spatially co-occurring floods.635

5.2 Predictability of floods generated by different processes636

The predictability seems to vary depending on generation processes of individual637

widespread flooding events (Figure 5). Rain-on-snow events (i.e., mixture of rainfall and638

snowmelt) are associated with the highest predictability despite their severity. In Ger-639

many these events are associated with westerly and north-westerly circulation patterns640

(Nied et al., 2014), and are often the cause of the widespread transboundary floods par-641

ticularly during negative NAO and SCA phases (Krug et al., 2020). Our results also in-642

dicate that SCA is one of the most important covariates for the forecasting of widespread643

flooding in Germany (Figure 8). Moreover, Conticello et al. (2020) notes that high flow644

events in the North-Western part of Germany, where floods almost exclusively occur in645

winter and are usually generated by rain-on-snow processes (Tarasova, Basso, & Merz,646

2020), are associated with higher predictability from large scale circulation patterns than647

the events in the Eastern and Southern parts of the country.648

In contrast, volume-dominated floods generated by rainfall during dry conditions649

often occur in late summer and the beginning of the autumn (Tarasova, Basso, & Merz,650

2020) and have limited predictability (Figure 5). On one hand it can be limited by the651

complex patterns of soil moisture that modulate local occurrence of floods and hence di-652

rectly affect the spatial extent of flooding (Nied et al., 2017), while on the other hand653

the meteorological phenomenon that are not well captured by the climatic indices, such654

as local convective processes (R. Merz & Blöschl, 2003; Kemter et al., 2020) and the ac-655

tivity of the Vb cyclones that is associated with heavy precipitation and recent summer656

floods in Central Europe and particularly in Germany (Hofstätter et al., 2018; Krug et657

al., 2021), might play a more important role for the generation of these events.658

Changing climatic conditions and changing flood generation processes indicate that659

the predictability of widespread flooding might decrease as the number of dry rainfall660

generated events increases in Central, Eastern and Southern Germany (Tarasova et al.,661

2023; Winter et al., 2022), which might deteriorate the efficiency of early warning sys-662

tems in these regions and urges the development of the methods that might integrate663

the atmospheric phenomena and soil moisture patterns relevant for their forecasting.664

5.3 Regionally variable importance of climatic indices and antecedent665

wetness conditions for forecasting widespread floods666

Feature attribution analysis implemented in our study shows clear differences in667

hydroclimatic drivers of widespread flooding across different regions in Germany. Par-668
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ticularly, there is apparent difference in the value of global patterns associated with El669

Niño Southern Oscillation between Western and Eastern parts of Germany. While in the670

North-West and in the Southern parts a global Pacific North American pattern is a very671

important feature for model predictions (Figure 8), it has only secondary effect in the672

North-Eastern part. Although there is few evidence about the effect of El Niño in Eu-673

rope (Brönnimann, 2007), there is a clear coherence between widespread floods in the674

North-West of Germany and PNA patterns (Figure 7) that is also coherent with the find-675

ings of Conticello et al. (2020), who found that high discharge events in the Western part676

of Germany are associated with intensive moisture transport from Tropics that is gov-677

erned by global patterns, such as PNA.678

Feature attribution analysis indicates that AAO pattern might be important for679

forecasting widespread flood severity in the North-Western region as well. However, al-680

though AAO is able to modulate the effect of El Niño Southern Oscillation on the ex-681

tratropical circulations (L’heureux & Thompson, 2006), the exact process chain of its682

effect on flooding in the Northern Hemisphere is not understood.683

In the drier North-Eastern region we see a very pronounced role of seasonality and684

antecedent wetness conditions (Figure 8). This is in line with R. Merz et al. (2020), who685

noted that in this region the antecedent moisture conditions is even more important for686

the emergence of local floods than the volume of inducing precipitation events. Also Nied687

et al. (2017) found that in this region the spatial extent of moderate floods (i.e., 2-year688

return periods) are modulated more by the specifics of the soil moisture patterns than689

by weather patterns. This was later corroborated by B. Merz et al. (2018) highlighting690

the ultimate role of antecedent wetness conditions in this region for the occurrence of691

spatially coherent flood-rich periods. It is also important to note the effect of the East692

Atlantic pattern for widespread flooding in this region (Figure 8) indicating the primary693

role of the Baltic Sea for moisture transport and generation of flood-producing precip-694

itation in this region.695

Interestingly, the results of feature attribution indicates relatively low importance696

of the North Atlantic Oscillation on model predictions, that is also confirmed by the model-697

independent wavelet coherence analysis that shows rather low coherence between the sever-698

ity of widespread flooding and NAO (Figure 7-8). Previous studies have shown strong699

dependence between NAO and winter precipitation in Europe (Haylock & Goodess, 2004;700

Villarini et al., 2011). However, particularly for flood losses the effect of NAO is notably701

weaker in Germany compared to the Atlantic coast of Great Britain and Norway and702

the Mediterranean region (Zanardo et al., 2019).703

In the Southern region in addition to the effect of global PNA pattern, the effect704

of the Mediterranean Sea in terms of the Mediterranean Oscillation Index also becomes705

apparent (Figure 8). Severe floods in this region are often associated with the activity706

of the Vb cyclones propagating north-eastward from the Mediterranean Sea to Central707

Europe (Blöschl et al., 2013; Hofstätter et al., 2018; B. Merz et al., 2018) that might be708

additionally intensified by the Mediterranean Sea through pre-moistening of the conti-709

nental moisture (Krug et al., 2021). Therefore, adding more indices or patterns related710

to the activity of the Mediterranean Sea might improve the forecasting of widespread711

flooding, especially in the regions where summer floods occur.712

It is worth to note that the relevance of the climatic indices discussed above is con-713

ditioned on the selected study period. The attribution results depend greatly on the cho-714

sen reference period (Mamalakis et al., 2022a) (i.e., in our case the period from 1951 to715

2013) and the relevance of climatic indices might change for a different period of refer-716

ence.717
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6 Conclusions718

In this study we investigate the potential of the adapted Wavenet model to fore-719

cast the monthly severity of the widespread flooding in Germany and its three distinct720

hydroclimatic regions individually using various large-scale climatic indices and antecedent721

precipitation as covariates. We observe a consistent increase in model performance with722

increasing model complexity (i.e., increasing number of covariates), but there is a clear723

dependence between the length of the available time series for training and model skill.724

This dependence indicates that even the dilated structure of the Wavenet model is not725

able to reconcile the limited data availability and the number of trainable parameters,726

which might be also a limiting factor for adapting the Wavenet model for flood forecast-727

ing at longer (e.g., annual) time scales.728

The results of the model-dependent feature attribution based on Shapley values are729

consistent with the model-independent wavelet coherence analysis indicating the relia-730

bility of trained Wavenet model for forecasting of widespread floods. Both methods high-731

light considerable differences in the large-scale hydroclimatic drivers of widespread flood-732

ing across different regions in Germany. While in the North-Western and the Southern733

regions the effect of the global patterns associated with El Niño Southern Oscillation (i.e.,734

Pacific North American pattern) is apparent, the North Eastern region is affected by more735

local processes related to the Baltic Sea activity (East Atlantic pattern). In the South-736

ern region, where summer floods are as frequent as winter events, we also detect the ef-737

fect of the Mediterranean Sea (Mediterranean Oscillation Index).738

Moreover, the feature attribution based on the trained Wavenet model indicates739

variable importance of antecedent wetness conditions across German regions. Apart from740

the Southern region antecedent precipitation is ranked as one of the most important co-741

variates. Especially in drier North-Eastern region model performance increases consid-742

erably when antecedent precipitation is added as a covariate.743

We also see considerable differences in the predictability of flood events generated744

by different processes. Despite their superior severity, events generated by the mixture745

of rainfall and snowmelt are associated with low biases, while the predictability of volume-746

dominated rainfall events generated during dry conditions is low. Increasing frequency747

of the latter in several regions might lead to the deterioration of the predictability of widespread748

flooding in Germany when only using large scale climatic indices for the forecast. There-749

fore, more efforts should focus on developing sub-seasonal to seasonal forecasting approaches750

based on convolutional neural networks conditioned on more flexible spatial climatic pat-751

terns that might be more relevant for flood generation in warmer and drier periods.752

Open Research Section753

Time series of SOI, NP, AAO, NAO, AO, PNA and GBI used in this study are avail-754

able from https://psl.noaa.gov/data/climateindices/list/ (no registration required, in-755

dividual download for each climatic index), MOI data (Algiers and Cairo) are available756

from https://crudata.uea.ac.uk/cru/data//moi/ (no registration required, individual down-757

load for each computational variant of the index) and SCA and EA data are available758

in Comas-Bru and Hernández (2018). Mean monthly precipitation per catchment were759

obtained from the daily interpolated precipitation dataset available in Rauthe et al. (2013).760

Severity index of spatial flooding is computed using streamflow events (available in Tarasova761

et al. (2018)) identified from daily streamflow observations available for download from762

Global Runoff Dataset (https://portal.grdc.bafg.de/applications/ no registration required,763

individual download for each streamflow gauge or selected region) and Bavarian Min-764

istry for Environment (https://www.gkd.bayern.de/de/fluesse/abfluss no registration re-765

quired, individual download for each streamflow gauge). The post-processed data used766

in this study: the severity index of widespread flooding, flood generation processes of each767
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flood event and monthly precipitation for Germany and its three hydroclimatic regions,768

are available in Tarasova (2023).769
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Merz, B., Blöschl, G., Vorogushyn, S., Dottori, F., Aerts, J. C., Bates, P., . . .932

Macdonald, E. (2021). Causes, impacts and patterns of disastrous river933

floods. Nature Reviews Earth and Environment , 2 (9), 592–609. doi:934

10.1038/s43017-021-00195-3935

Merz, B., Dung, N. V., Apel, H., Gerlitz, L., Schröter, K., Steirou, E., & Voro-936
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