Siege of the South: Hunga Tonga-Hunga Ha'apai Water Vapor Excluded from 2022 Antarctic Stratospheric Polar Vortex

Gloria L Manney¹, Michelle L. Santee², Alyn Lambert³, Luis Millan⁴, Ken Minschwaner⁵, Frank Werner², Zachary Duane Lawrence⁶, William G. Read³, Nathaniel J Livesey², and Tao Wang⁷

¹Northwest Research Associates
²Jet Propulsion Laboratory
³Jet Propulsion Lab (NASA)
⁴Jet propulsion laboratory
⁵New Mexico Institute of Mining and Technology
⁶CIRES/NOAA
⁷NASA JPL / Caltech

April 4, 2023

Abstract

We use Aura Microwave Limb Sounder (MLS) trace gas measurements to investigate whether water vapor (H2O) injected into the stratosphere by the Hunga Tonga-Hunga Ha'apai (HTHH) eruption affected the 2022 Antarctic stratospheric vortex. Other MLS-measured long-lived species are used to distinguish high HTHH H2O from that descending in the vortex from the upper-stratospheric H2O peak. HTHH H2O reached high southern latitudes in June–July but was effectively excluded from the vortex by the strong transport barrier at its edge. MLS H2O, nitric acid, chlorine species, and ozone within the 2022 Antarctic polar vortex were near average; the vortex was large, strong, and long-lived, but not exceptionally so. There is thus no clear evidence of HTHH influence on the 2022 Antarctic vortex or its composition. Substantial impacts on the stratospheric polar vortices are expected in succeeding years since the H2O injected by HTHH has spread globally.

Siege of the South: Hunga Tonga-Hunga Ha'apai Water Vapor Excluded from 2022 Antarctic Stratospheric Polar Vortex

Gloria L. Manney^{1,2}, Michelle L. Santee³, Alyn Lambert³, Luis F. Millán³, Ken Minschwaner², Frank Werner³, Zachary D. Lawrence^{4,5}, William G. Read³, Nathaniel J. Livesey³, Tao Wang³

6	¹ NorthWest Research Associates, Socorro, NM, USA
7	² New Mexico Institute of Mining and Technology, Socorro, NM, USA
8	³ Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
9	⁴ Cooperative Institute for Research in Environmental Sciences (CIRES) & NOAA Physical Sciences Laboratory (PSL),
10	University of Colorado, Boulder, Colorado, USA.
11	⁵ NorthWest Research Associates, Boulder, CO, USA

Key Points:

1

2

3
4
5

12

13	•	MLS trace gas data show that the Hunga Tonga-Hunga Ha'apai H ₂ O plume was effec-
14		tively excluded from the 2022 Antarctic polar vortex
15	•	Antarctic lower stratospheric vortex strength, size, and longevity were among the largest
16		on record, but within the range of previous years
17	•	Antarctic chemical ozone loss in 2022 was unexceptional, with MLS ozone and related
18		trace gases observed to be near average

Corresponding author: Gloria L Manney, manney@nwra.com

Abstract 19

We use Aura Microwave Limb Sounder (MLS) trace gas measurements to investigate whether 20

water vapor (H_2O) injected into the stratosphere by the Hunga Tonga-Hunga Ha'apai (HTHH) 21

eruption affected the 2022 Antarctic stratospheric vortex. Other MLS-measured long-lived species 22

are used to distinguish high HTHH H₂O from that descending in the vortex from the upper-stratospheric 23

H₂O peak. HTHH H₂O reached high southern latitudes in June–July but was effectively excluded 24

from the vortex by the strong transport barrier at its edge. MLS H₂O, nitric acid, chlorine species, 25

and ozone within the 2022 Antarctic polar vortex were near average; the vortex was large, strong, 26

and long-lived, but not exceptionally so. There is thus no clear evidence of HTHH influence on 27 the 2022 Antarctic vortex or its composition. Substantial impacts on the stratospheric polar vor-

28 tices are expected in succeeding years since the H₂O injected by HTHH has spread globally.

29

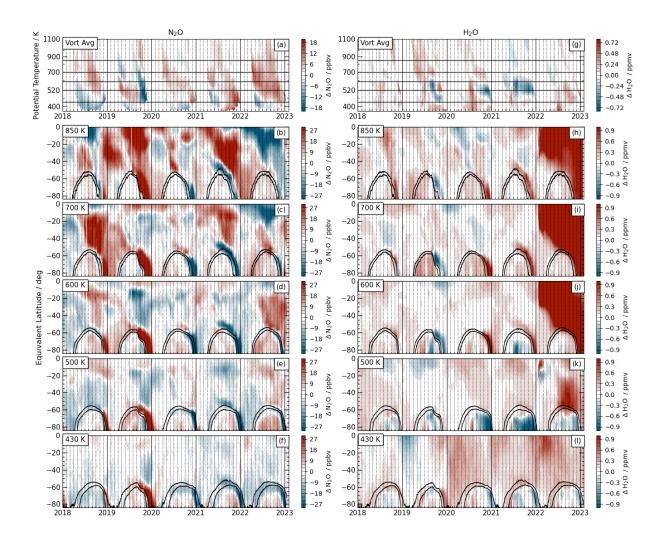
Plain Language Summary 30

The 2022 Hunga Tonga-Hunga Ha'apai eruption injected vast amounts of water vapor into 31 the stratosphere. There has been much speculation that this large increase in water vapor could 32 impact the Antarctic stratospheric polar vortex and Antarctic ozone hole: Water vapor plays an 33 important role in polar vortex ozone depletion by providing the necessary conditions for the for-34 mation of polar stratospheric clouds. These clouds provide surfaces on which ozone-depleting 35 chemical reactions can occur. The excess water vapor could also change the vortex evolution via 36 water vapor's effects on temperature, which could in turn affect the strong band of winds demark-37 ing the polar vortex edge. We use satellite measurements of water vapor and other gasses to show 38 that by the time the water vapor from the Hunga Tonga volcanic eruption reached the south po-30 lar regions in June–July 2022, the polar vortex was too strong for it to penetrate. Measurements 40 of water vapor, ozone, and chemicals involved in destroying ozone all showed near-average amounts 41 and evolution within the vortex. In future years, larger effects on the polar vortex and chemical 42 processing are expected because water vapor from Hunga Tonga that has spread globally will be 43 entrained into the polar vortex. 44

1 Introduction 45

The 15 January 2022 eruption of the underwater volcano Hunga Tonga-Hunga Ha'apai (HTHH) 46 injected an unprecedented amount of water vapor (H₂O) directly into the stratosphere, increas-47 ing the stratospheric H₂O burden by approximately 10% (e.g., Millán et al., 2022; Vömel et al., 48 2022). It also resulted in substantial, though not unprecedented, enhancements in volcanic aerosol 49 loading (Khaykin et al., 2022; Sellitto et al., 2022; Taha et al., 2022). Numerous studies have al-50 ready explored aspects of the stratospheric impacts of HTHH enhancements in aerosol and H₂O; 51 of particular relevance here are suggestions that H₂O and aerosol from HTHH injected into the 52 Southern Hemisphere (SH) stratosphere took many months to reach high latitudes and did not 53 extend poleward of about 60°S (e.g., Legras et al., 2022; Khaykin et al., 2022; Schoeberl et al., 54 2022; Zhu et al., 2022). In the lowermost stratosphere (at and below approximately the 380 K 55 isentropic surface), a few studies suggest that some H₂O and aerosol were transported to high 56 SH latitudes within days to weeks via the shallow branch of the Brewer-Dobson circulation (e.g. 57 Taha et al., 2022; Schoeberl et al., 2022; Khaykin et al., 2022). Radiative cooling from HTHH 58 H₂O led to unprecedented cold in SH mid/low latitudes, with associated circulation and trans-59 port anomalies (Coy et al., 2022; Schoeberl et al., 2022; Sellitto et al., 2022). 60

It was suggested that transport of HTHH aerosol and H₂O into high SH latitudes might im-61 pact the composition of the 2022 SH stratospheric polar vortex, and that circulation changes as-62 sociated with the HTHH H₂O plume might affect the strength, size, and / or longevity of that vor-63 tex (e.g., Taha et al., 2022; Zhu et al., 2022). Here we use Aura Microwave Limb Sounder (MLS) 64 data to analyze the evolution of the SH stratospheric polar vortex in 2022, transport of the HTHH H₂O plume in relation to it, and chemical processing within it. We find no evidence of substan-66 tial impacts of HTHH on the 2022 SH polar vortex or the chemical processing and ozone loss 67 within it. We use temperature, H₂O, N₂O, CO, HCl, ClO, and O₃ from v5 MLS "level 3" (L3) 68


- data (Livesey et al., 2020), along with meteorological fields from NASA's Modern Era Retrospective-69
- analysis for Research and Applications Version 2 (MERRA-2) dataset (Gelaro et al., 2017; Global 70
- Modeling and Assimilation Office (GMAO), 2015). 71
- Immediately following the eruption, standard MLS v5 quality screening (Livesey et al., 2020) 72 flagged many of the profiles most affected by HTHH as suspect retrievals (Millán et al., 2022); 73 thus the H_2O , N_2O , and HNO_3 anomalies shown here may be artificially small for up to three 74 weeks after the eruption. Since our focus is on the subsequent transport and relationship to the 75 SH polar vortex, our results are unaffected. 76

2 Transport of HTHH Stratospheric H₂O

77

Figure 1 shows the evolution of N2O and H2O (both generally long-lived tracers of trans-78 port in the stratosphere) anomalies in the SH lower through middle stratosphere, in vortex av-79 erages as a function of height (expressed as potential temperature, θ) and as a function of equiv-80 alent latitude (EqL, the latitude enclosing the same area between it and the pole as a given po-81 tential vorticity, PV, contour, Butchart & Remsberg, 1986) on several isentropic (θ) surfaces. The 82 past five years include seasons with exceptionally warm / short-lived (2019) and cold / long-lived 83 (2020 and 2021) springtime polar vortices, as well as a year (2018) with more typical vortex char-84 acteristics (WMO, 2023). (Figs. S1-S2 in the Supporting Information, SI, show the full-mission 85 and include MLS temperature.) The evolution of vortex-average N₂O (Fig. 1a) in 2022 is unex-86 ceptional, showing positive anomalies except at the lowest levels; such a vertical dipole pattern 87 of N₂O anomalies is common, with primarily higher values in 2020, 2021, and 2022 consistent 88 with lower vortex temperatures (see below and Figs. S1-3) and accompanying weaker diabatic 89 descent (Fig. S4). N₂O EqL/time evolution (Fig. 1b-f) is also fairly typical; recurring changes 90 above 430 K from high to low anomalies extending from low latitudes show quasi-biennial os-91 cillation (QBO) related transport (e.g., Baldwin et al., 2001; Diallo et al., 2019). Low N₂O anoma-92 lies in austral spring 2020 and 2021 are related to the delayed vortex breakup in those years, with 93 low N_2O values remaining confined longer in a more persistent vortex. Spring 2022 shows sim-94 ilar, but weaker, anomalies, suggesting a long-lived vortex. In contrast, high anomalies in 2019 95 result from a rare SH sudden stratospheric warming that led to a small, warm, and short-lived vor-96 tex (e.g., Wargan et al., 2020). 97

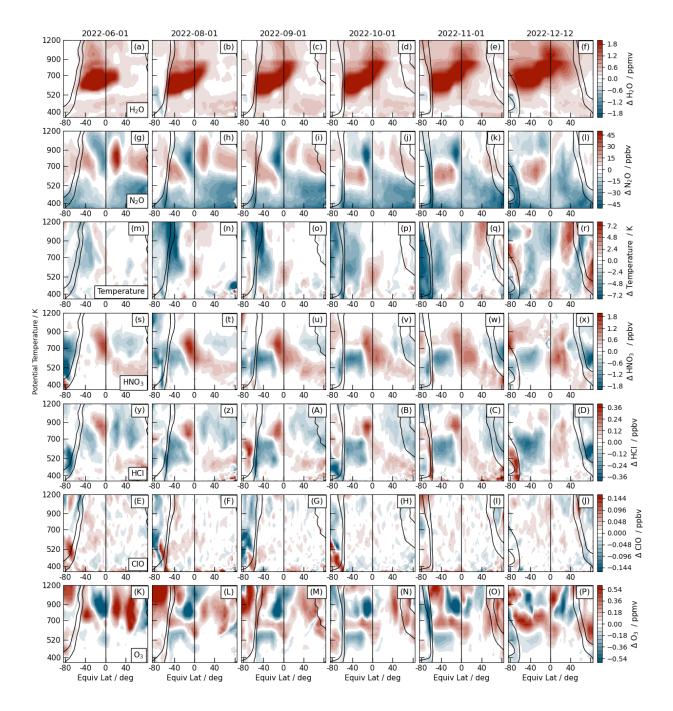
H₂O anomalies (Fig. 1g–1) in the SH lower stratospheric vortex are typically dominated 98 by interannual variations in polar stratospheric cloud extent; strong low H_2O anomalies in spring 99 2020 and 2021 at 500 K and surrounding levels arose from persistent cold anomalies in unusu-100 ally long-lasting vortices. Outside the vortex (Fig. 1h–lFig. 1g–l), high H₂O anomalies often ac-101 company low N₂O anomalies because H₂O and N₂O have opposite vertical and horizontal gra-102 dients in the lower to middle stratosphere. For example, low (high) springtime H_2O (N₂O) anoma-103 lies just outside the vortex edge in 2019, and opposite patterns in 2020 and 2021 at 600–850 K; 104 similar patterns are seen in mid-Eqls in earlier years (Fig. S1). (Note that typical H₂O anoma-105 lies prior to 2022 are washed out by the large colorbar range needed to portray the HTHH H_2O .) 106 Above 500 K, typical signatures of extra-vortex transport of H_2O are overwhelmed by the arrival 107 of HTHH H₂O (Fig. 1h-j, Fig. S1). HTHH H₂O reached the vortex edge in early June 2022, af-108 ter the vortex was fully developed except in the lowermost stratosphere. Above 500 K, extremely 109 strong gradients along the vortex edge suggest that the HTHH plume could not penetrate the vor-110 tex edge. Pervasive high H₂O anomalies since early 2020 below about 500 K may reflect linger-111 ing enhancements from the 2020 Australian New Years fires (e.g., Santee et al., 2022). While small 112 positive anomalies encroach into the vortex region in late winter 2022 at 500 K (near the low-113 est altitude of large HTHH enhancement) and 430 K, similar features are common (e.g., in 2018 114 and 2021), so it is unclear whether they are related to the HTHH plume. At all levels examined 115 (including the lowermost stratosphere, e.g., Fig. S3), H₂O anomalies inside the vortex are within 116 the typical range. 117

Figure 1. Evolution of MLS-observed SH anomalies from the baseline 2005–2021 climatology of N_2O (a–f) and H_2O (g–l) from January 2018 through January 2023: (a,g) vortex-averaged values; (b–f, h–l) evolution as a function of EqL at levels in the middle through lower stratosphere (horizontal lines in a,g). Black contours in b–f and h–l are sPV values indicating the vortex edge region.

Figure 2. As in Fig. 1, but for MLS temperature, HNO₃, HCl, ClO, and O₃; (a–e) vortex averages, (f–j) 430 K, and (k–o) 550 K EqL timeseries, for January 2018 through January 2023. Black contours (f–o) are sPV values demarking the vortex edge region.

3 Polar Vortex Composition and Chemical Processing

Figure 2 shows a similar view of MLS measurements of temperature and species involved 119 in polar chemical processing (Figs. S1-3 show 550 K, 430 K, and 380 K for the full mission). The 120 Antarctic vortex was unusually cold and persistent in spring 2022, but less so than in 2020 and 121 2021. Vortex HNO₃ values were near average throughout the season. Vortex HCl and ClO com-122 monly oscillate between high and low anomalies, and thus they are also generally unexceptional 123 within the 2022 vortex; the high HCl anomalies in spring are related primarily to longer-than-124 usual confinement of the very high values that ensue from chlorine deactivation. Consistent with 125 near-average vortex values of chlorine species, O₃ anomalies in 2022 were also relatively small. 126 Both 2020 and 2021 showed lower O3, consistent with larger cold anomalies and even longer-127 lived (see below) vortices in those years than in 2022. Outside the vortex, temperature anoma-128 lies (arising from radiative effects of HTHH H₂O, e.g., Coy et al., 2022; Schoeberl et al., 2022) 129 and associated mid-latitude transport anomalies (Coy et al., 2022) appear consistent with the ex-130 travortex high N₂O anomalies seen near 500–600 K (Fig. 1), and suggest that accompanying ex-131 travortex HCl, HNO₃, and O₃ anomalies are at least partially transport-driven. 132

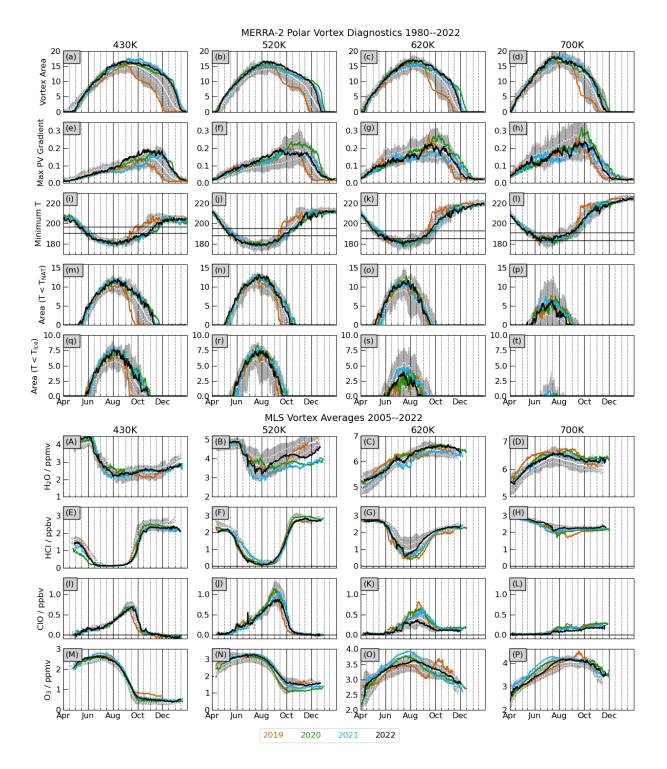

Figure 3 provides a closer look at the EqL/ θ evolution of MLS trace gases in 2022, show-133 ing snapshots of anomalies from climatology (similar anomaly plots in 2018, 2020, and 2021 are 134 shown in Figs. S5–S7). The H₂O plume first approached the SH polar vortex edge in early to mid-135 June. Subsequently, extremely strong H_2O gradients developed along the vortex edge over 520– 800 K and persisted through October (into December below about 700 K; see also Fig 1). By mid-137 December, only a weak remnant of the vortex remained below about 520 K, and the H₂O enhance-138 ment extended into high latitudes above that level. MLS data show no indication of air from the 139 HTHH H₂O plume penetrating substantially into the SH vortex before its breakup. N₂O anoma-140 lies within the vortex were generally small until austral spring; below about 700 K, these anoma-141 lies were near zero from August through October. Low N₂O anomalies along the vortex edge be-142 ginning in early November are consistent with confinement in an unusually persistent vortex. Mid-143 latitude cold anomalies throughout the middle stratosphere (e.g., Coy et al., 2022; Schoeberl et 144 al., 2022) are apparent from June through mid-December. Vortex temperatures were below av-145 erage through much of the season, with largest cold anomalies in October and November (also 146 see Fig. 2). High extra-vortex N₂O anomalies through this period are consistent in extent and lo-147 cation with the circulation anomalies reported by Coy et al. (2022). The co-location of N_2O anoma-148 lies with those in HNO_3 , HCl, and O_3 suggests that transport plays a role in all of them; work 149 is in progress analyzing the relative effects of dynamical and chemical processes. 150

Within the vortex, HNO₃ is slightly lower than usual, consistent with a colder-than-average 151 vortex. HCl (ClO) shows low (high) anomalies during much (but not all, e.g., Fig. 3A,G) of the 152 winter. As noted above, high HCl anomalies appear along the vortex edge in November and in 153 the vortex remnant in mid-December, consistent with high values resulting from deactivation into 154 HCl (as is typical in the SH, e.g., Santee et al., 2008) followed by unusually enduring confine-155 ment in the persistent vortex. Lower stratospheric O_3 anomalies in the early winter (before ex-156 tensive chemical loss) are slightly positive and remain so through October (e.g., Fig. 3O). Taken 157 together, the results in Figs. 2 and 3 suggest that the modest low anomalies in O_3 seen in austral 158 spring 2022 (e.g., Fig. 3P) result primarily (if not entirely) from the unusual persistence of the 159 vortex. 160

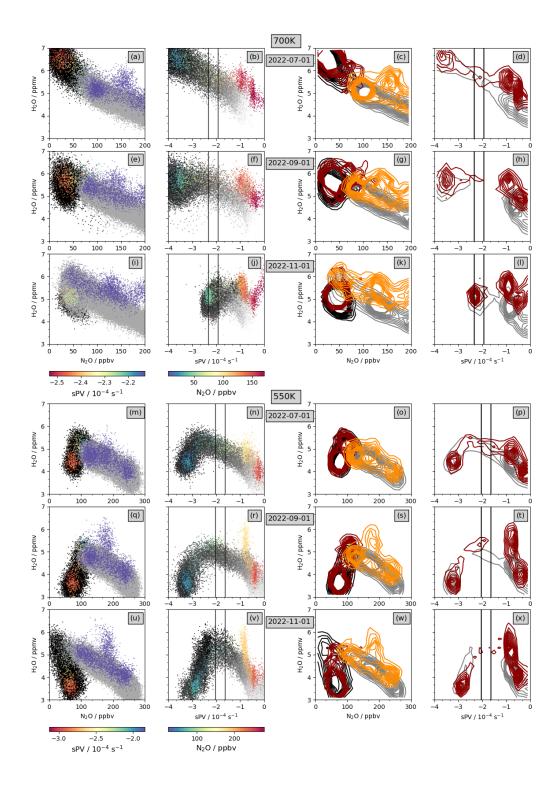
¹⁶¹ 4 Vortex Evolution and Trace Gas Confinement

Figure 4 summarizes the evolution of the 2022 SH vortex in the context of the 43-year MERRA-2 162 record and the evolution of trace gases in the context of the 18-year MLS record, both in rela-163 tion to the previous three SH winters. Figure S8 shows profiles of additional MERRA-2 diag-164 nostics of vortex strength and longevity. Consistent with the indications in the trace gases of its 165 unusual persistence, the 2022 SH late winter and spring vortex was among the largest on record 166 at levels up to about 650 K, approximately matching the maximum size and persistence seen prior 167 to 2020 (Fig. 4a-d; Fig. S8b,d). In spring, the 2021 vortex area was slightly larger, and the 2020 168 vortex area substantially larger than that in 2022 from about 460 K to 650 K, with 2020 setting 169 the record for lower-stratospheric vortex persistence (Fig. 4a-c, S8b-d). Maximum PV gradi-170 ents, indicating vortex strength (that is, robustness as a transport barrier), show unusually strong 171 springtime vortices in 2020 through 2022 below about 500 K, but only the 2020 vortex was stronger 172 than average above about 600 K (Fig. 4e-h; Fig. S8a). Below about 520 K, the area with temper-173 atures below the nitric acid trihydrate (NAT) and ice polar stratospheric cloud (PSC) thresholds 174 was larger than usual (Fig 4m,n,q,r) and PSCs persisted later than usual (Fig. 4m-t, Fig. S8e,f) 175 in spring 2020, 2021, and 2022, but only exceeded previous springtime records in 2020; above 176 about 600 K PSC area and duration were near average. 177

The unexceptional MLS trace gas evolution in the 2022 Antarctic vortex is highlighted in Fig. 4A–P (Fig. S9 shows the vertical structure). Interannual variability in SH polar chemical processing is relatively small, but, with few exceptions, all of the trace gases show 2022 evolution that is well within the previously observed range. Over \sim 450–600 K, persistently low H₂O after October in 2022, and to an even greater extent in 2020 and 2021, is consistent with confinement of dehydrated air in long-lived vortices. Chlorine evolution (seen in HCl and ClO, Fig. 4E–


Figure 3. Snapshots on selected days in 2022 of anomalies from the baseline 2005–2021 climatology of MLS (a–f) H₂O, (g–l) N₂O, (m–r) temperature, (s–x) HNO₃, (y–D) HCl, (E–J) ClO, and (K–P) O₃. Black contours show sPV values demarking the vortex edge region.

L; Fig. S9q–x) was fairly typical throughout the season. Observed O₃ evolution in 2022 was remarkably near average throughout the season (Fig. 4M–P; Fig. S9y–B).


The above results provide visual evidence that the vortex edge presented an effective trans-186 port barrier, preventing substantial penetration of the HTHH H₂O plume. To look more closely 187 at the robustness of the vortex edge transport barrier, Fig. 5 shows scatter and density plots of H_2O 188 versus N_2O and sPV for representative days in 2022 compared with the evolution in all prior years 189 in the MLS record. Low N₂O (relative to the range of values at a given level) and high-magnitude 190 sPV identify vortex air parcels. In the lower stratosphere (exemplified by 550 K), increasingly 191 low vortex H₂O through the season results from dehydration and is very similar to that previously observed by MLS (density plots, right columns, emphasize the similarity of the main distribu-193 tions in 2022 to those in earlier years). Extravortex H_2O at 550 K does not stand out from the pre-194 vious record before July, but after that the HTHH enhancement manifests as a distinct cluster of 195 high H₂O with N₂O near 200 ppbv and sPV magnitudes $<1\times10^{-4}$ s⁻¹ (both values that are un-196 ambiguously extravortex) that is unique to 2022 (compare yellow-orange / purple H_2O / sPV val-197 ues with grey dots; orange with grey contours). In the middle stratosphere (exemplified by 700 K), 198 vortex H₂O values first increase via descent of the upper stratospheric peak, then decrease as continuing descent brings low mesospheric H_2O into the stratospheric vortex (e.g., Ray et al., 2002; 200 Lee et al., 2011); both the high (e.g., Fig. 5a–d) and the low (e.g., Fig. 5e–l) H₂O values that de-201 scend through the vortex (low N₂O, high-magnitude sPV end of the x-axis) at 700 K are distinct 202 from the extravortex population of high H₂O from HTHH, and that is in turn distinguished from 203 extravortex air in previous years by higher H₂O values at extravortex N₂O (\sim 150–200 ppbv) and 204 sPV (magnitude $< \sim 1 \times 10^{-4} \text{ s}^{-1}$). These correlations of H₂O with N₂O and sPV (especially the 205 density plots versus sPV) show clearly that the air with enhanced H₂O from HTHH remained well 206 separated from that within the vortex until vortex breakup at each level (as suggested in Figs. 1 and 3). MLS H_2O / CO correlations show a similar picture in the middle (Fig. S10) and upper 208 stratosphere, with HTHH H₂O associated with low CO values characteristic of extravortex air. 209 Further, because the seawater from HTHH has a higher ratio of HDO to H_2O than background 210 water vapor in the extravortex stratosphere (e.g., Randel et al., 2012; Khaykin et al., 2022), an 211 unprecedented increase in that ratio in SH midlatitudes also marks the HTHH air as separate from 212 (and excluded from) that in the vortex (Figs. S11–12). 213

²¹⁴ 5 Summary

The unprecedented water vapor injection into the stratosphere by HTHH is tracked using 215 MLS and reanalysis data. The H_2O plume [[or The enhanced H_2O]] is shown to have been ef-216 fectively excluded from the 2022 Antarctic polar vortex until the vortex breakdown. In contrast 217 to speculation that HTHH stratospheric H₂O and aerosol injections would lead to substantial anoma-218 lies in the Antarctic polar vortex and lower stratospheric polar processing and ozone loss within 219 it (e.g., Taha et al., 2022; Zhu et al., 2022), our analysis suggests that HTHH did not cause sub-220 stantial changes in polar processing and ozone loss within the vortex: MLS observations of HNO₃, 221 HCl, ClO, and O₃ inside the vortex through the depth of the lower stratosphere all show evolu-222 tion well within the range of previous years during the MLS mission, with near-average O_3 loss. 223 Evidence for possible dynamical impacts on the vortex is likewise not unequivocal: The vortex 224 was among the larger, stronger, and longer-lived in the SH lower stratosphere, but these condi-225 tions were matched or exceeded by those in 2020, 2021, and several previous years in the MERRA-2 226 record since 1980; vortex cold anomalies were even less exceptional. Thus, despite large radia-227 tive, dynamical, and composition perturbations in midlatitudes, the observational evidence shows 228 that chemical processing within the 2022 Antarctic stratospheric polar vortex was fairly typical, 229 and does not show clear evidence of substantial dynamical vortex perturbations. The dispersal 230 of HTHH H₂O following the Antarctic vortex breakup (e.g., Fig. 1) led to unprecedented high 231 H₂O anomalies throughout the SH, which are expected to linger for at least several years (e.g., 232 Millán et al., 2022; Khaykin et al., 2022), raising the expectation of large perturbations to Antarc-233 tic polar vortex chemistry and the ozone hole in 2023 and beyond. HTHH H₂O has also been trans-234 ported into the Northern Hemisphere (e.g., Schoeberl et al., 2023), but reached the Arctic vor-235

Figure 4. (a–t) Time series at four levels in the lower to middle stratosphere of vortex area, maximum PV gradients, high latitude (poleward of 30°) minimum temperature, and area below NAT and ice PSC thresholds, comparing 2019 (orange), 2020 (green), 2021 (cyan), and 2022 (black) with the range (shading), mean (solid white line), and one standard deviation envelope (dotted white lines) over 1980–2018. (A–P) Vortex-averaged H₂O, HCl, ClO, and O₃ in same format as for the dynamical fields, with the range over 2005–2018.

Figure 5. Scatter (left two columns) and density (right two columns) plots of MLS H_2O (y-axis) versus N_2O (first and third columns) and sPV (second and last columns). Grey and black dots (contours) show values from 2005–2021 in the scatter (density) plots; for those years, black (grey) indicates x-axis values of N_2O or sPV characteristic of inside (outside) the vortex. For 2022, colored (purple) dots or dark red (orange) contours show sPV values inside (outside) the vortex. 2022 N_2O (second column) is colored such that blue/blue-green shows typical vortex values. Black vertical lines on the plots versus sPV indicate the vortex edge region.

tex edge after the vortex was well-developed and was only dispersed through the NH after a strong
 sudden stratospheric warming starting in mid-February (paper in preparation). Thus large effects
 on Arctic polar vortex chemistry are also expected to manifest starting in the 2023/2024 cool sea-

239

241

240 6 Open Research

son.

The data used herein are publicly available as follows:

• MERRA-2: (Global Modeling and Assimilation Office (GMAO), 2015) 242 https://disc.sci.gsfc.nasa.gov/uui/datasets?keywords=%22MERRA-2%22 243 • Aura MLS Level-2 and Level-3 data: (Lambert, Read, & Livesey, 2020; Lambert, Livesey, 244 & Read, 2020; Lambert et al., 2021b, 2021a; Schwartz, Pumphrey, et al., 2020; Schwartz, 245 Froidevaux, et al., 2020; Schwartz, Pumphrey, et al., 2021; Schwartz, Froidevaux, et al., 246 2021)247 https://disc.gsfc.nasa.gov/datasets?page=1&keywords=AURA%20MLS 248 ACE-FTS v4.1/4.2 data: http://www.ace.uwaterloo.ca (registration required) 249 ACE-FTS v4.1/4.2 error flags: https://dataverse.scholarsportal.info/api/access/ 250 dataset/:persistentId/versions/:latest?persistentId=doi:10.5683/SP2/ 251 BC4ATC 252 MLS & ACE-FTS derived meteorological products: https://mls.jpl.nasa.gov/eos 253 -aura-mls/dmp (registration required). 254

255 Acknowledgments

Thanks to the MLS team at JPL for data processing and analysis support, especially Brian Knosp 256 for data management, Ryan Fuller for development and production of the MLS L3 products, and 257 Lucien Froidevaux and Michael Schwartz for helpful discussions. Thanks to the ACE science 258 team for making the ACE-FTS data available, especially Kaley Walker and Patrick Sheese for 259 advice on data quality and usage. Thanks to the GMAO for providing the MERRA-2 dataset. G.L. Man-260 ney was supported by the Jet Propulsion Laboratory (JPL) Microwave Limb Sounder team un-261 der JPL subcontract #1521127 to NWRA. Work at the Jet Propulsion Laboratory, California In-262 stitute of Technology, was carried out under a contract with the National Aeronautics and Space 263 Administration (80NM0018D0004).

265 **References**

266	Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., J, W., Taka-
267	hasi, M. (2001). The quasi-biennial oscillation. Rev. Geophys., 39, 179-229.
268	Boone, C., Bernath, P., Cok, D., Jones, S., & Steffen, J. (2020). Version 4 retrievals for the
269	atmospheric chemistry experiment Fourier transform spectrometer (ACE-FTS) and
270	imagers. Journal of Quantitative Spectroscopy and Radiative Transfer, 247, 106939.
271	Retrieved from https://www.sciencedirect.com/science/article/pii/
272	S0022407319305916 doi: https://doi.org/10.1016/j.jqsrt.2020.106939
273	Butchart, N., & Remsberg, E. E. (1986). The area of the stratospheric polar vortex as a diag-
274	nostic for tracer transport on an isentropic surface. J. Atmos. Sci., 43, 1319–1339.
275	Coy, L., Newman, P. A., Wargan, K., Partyka, G., Strahan, S. E., & Pawson,
276	S. (2022). Stratospheric Circulation Changes Associated With the
277	Hunga Tonga-Hunga Ha'apai Eruption. Geophysical Research Let-
278	<i>ters</i> , 49(22), e2022GL100982. Retrieved 2022-11-27, from https://
279	onlinelibrary.wiley.com/doi/abs/10.1029/2022GL100982 (_eprint:
280	https://onlinelibrary.wiley.com/doi/pdf/10.1029/2022GL100982) doi: 10.1029/
281	2022GL100982
282	Diallo, M., Konopka, P., Santee, M. L., Müller, R., Tao, M., Walker, K. A., Ploeger,

283	F. (2019). Structural changes in the shallow and transition branch of the Brewer-
284	Dobson circulation induced by El Niño. Atmos. Chem. Phys., 19(1), 425–446. Re-
285	trieved from https://acp.copernicus.org/articles/19/425/2019/ doi:
286	10.5194/acp-19-425-2019
287	Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Zhao, B.
288	(2017). The Modern-Era Retrospective Analysis for Research and Applications,
289	Version-2 (MERRA-2). J. Clim., 30, 5419–5454. doi: doi:10.1175/JCLI-D-16-0758.1
290	Global Modeling and Assimilation Office (GMAO). (2015). MERRA-2 inst3_3d_asm_nv:
291	3d, 3-hourly, instantaneous, model-level, assimilation, assimilated meteorolog-
292	ical fields v5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and In-
293	formation Services Center (GES DISC), accessed 1 June 2022 [dataset]. doi:
294	10.5067/WWQSXQ8IVFW8
295	Khaykin, S., Podglajen, A., Ploeger, F., Grooß, JU., Tence, F., Bekki, S., Ravetta, F.
295	(2022, December). Global perturbation of stratospheric water and aerosol burden by
	Hunga eruption. Communications Earth & Environment, 3(1), 316. Retrieved from
297	https://doi.org/10.1038/s43247-022-00652-x
298	Lambert, A., Livesey, N., & Read, W. (2020). <i>MLS/Aura level 2 nitrous oxide (N2O)</i>
299	mixing ratio V005, Greenbelt, MD, USA, Goddard Earth Sciences Data and In-
300	formation Services Center (GES DISC), accessed: [26 June 2022] [dataset]. doi:
301	
302	https://doi.org/10.5067/Aura/MLS/DATA2515
303	Lambert, A., Livesey, N., Read, W., & Fuller, R. (2021a). <i>MLS/Aura level 3 daily</i>
304	binned nitrous oxide (N2O) mixing ratio on zonal and similar grids V005, Green-
305	belt, MD, USA, Goddard Earth Sciences Data and Information Services Cen-
306	ter (GES DISC), accessed: [26 June 2022] [dataset]. Retrieved from https://
307	disc.gsfc.nasa.gov/datasets/ML3DZN20_005/summary?keywords=mls doi:
308	https://doi.org/10.5067/Aura/MLS/DATA/3116
309	Lambert, A., Livesey, N., Read, W., & Fuller, R. (2021b). <i>MLS/Aura level 3 daily</i>
310	binned water vapor (H2O) mixing ratio on zonal and similar grids V005, Green-
311	belt, MD, USA, Goddard Earth Sciences Data and Information Services Cen-
312	ter (GES DISC), accessed: [26 June 2022] [dataset]. Retrieved from https://
313	disc.gsfc.nasa.gov/datasets/ML3DZH20_005/summary?keywords=mls doi:
314	https://doi.org/10.5067/Aura/MLS/DATA/3109
315	Lambert, A., Read, W., & Livesey, N. (2020). <i>MLS/Aura Level 2 water vapor (H2O)</i>
316	mixing ratio V005, Greenbelt, MD, USA, Goddard Earth Sciences Data and In-
317	formation Services Center (GES DISC), accessed: [26 June 2022] [dataset]. doi:
318	https://doi.org/10.5067/Aura/MLS/DATA2508
319	Lee, J. N., Wu, D. L., Manney, G. L., Schwartz, M. J., Lambert, A., Livesey, N. J., Read,
320	W. G. (2011). Aura Microwave Limb Sounder observations of the polar middle
321	atmosphere: Dynamics and transport of CO and H_2O . J. Geophys. Res., 116. doi: 10.1020/2010/D014602
322	10.1029/2010JD014608
323	Legras, B., Duchamp, C., Sellitto, P., Podglajen, A., Carboni, E., Siddans, R., Ploeger,
324	F. (2022, November). The evolution and dynamics of the Hunga Tonga–Hunga
325	Ha'apai sulfate aerosol plume in the stratosphere. Atmospheric Chemistry
326	and Physics, 22(22), 14957–14970. Retrieved 2022-11-23, from https://
327	acp.copernicus.org/articles/22/14957/2022/ (Publisher: Copernicus
328	GmbH) doi: 10.5194/acp-22-14957-2022
329	Livesey, N. J., Read, W. G., Wagner, P. A., Froidevaux, L., Lambert, A., Manney, G. L.,
330	Lay, R. R. (2020). EOS MLS version 5.0x level 2 and 3 data quality and description
331	document (Tech. Rep.). JPL. (Available from http://mls.jpl.nasa.gov/)
332	Millán, L., et al. (2022). The Hunga Tonga-Hunga Ha'apai hydration of the strato-
333	sphere. Geophys. Res. Lett., 49(13), e2022GL099381. Retrieved from https://
334	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022GL099381
335	(e2022GL099381 2022GL099381) doi: https://doi.org/10.1029/2022GL099381
336	Randel, W. J., Moyer, E., Park, M., Jensen, E., Bernath, P., Walker, K., & Boone, C.
337	(2012). Global variations of HDO and HDO/H2O ratios in the upper troposphere

338	and lower stratosphere derived from ACE-FTS satellite measurements. Jour-
339	nal of Geophysical Research: Atmospheres, 117(D6). Retrieved from https://
340	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JD016632 doi:
341	https://doi.org/10.1029/2011JD016632
342	Ray, E. A., Moore, F. L., Elkins, J. W., Hurst, D. F., Romashkin, P. A., Dutton, G. S., &
343	Fahey, D. W. (2002). Descent and mixing in the 1999-2000 northern polar vor-
	tex inferred from in situ tracer measurments. J. Geophys. Res., 107, 8285. doi:
344	10.1029/2001JD000961
345	
346	Santee, M. L., Lambert, A., Manney, G. L., Livesey, N. J., Froidevaux, L., Neu, J. L.,
347	Ward, B. M. (2022). Prolonged and pervasive perturbations in the composition of
348	the Southern Hemisphere midlatitude lower stratosphere from the Australian New
349	Year's fires. Geophysical Research Letters, 49(4), e2021GL096270. Retrieved
350	from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
351	2021GL096270 (e2021GL096270 2021GL096270) doi: https://doi.org/10.1029/
352	2021GL096270
353	Santee, M. L., MacKenzie, I. A., Manney, G. L., Chipperfield, M. P., Bernath, P. F., Walker,
354	K. A., Waters, J. W. (2008). A study of stratospheric chlorine partitioning
355	based on new satellite measurements and modeling. J. Geophys. Res., 113. doi:
356	10.1029/2007JD009057
357	Schoeberl, M. R., Wang, Y., Ueyama, R., Taha, G., Jensen, E., & Yu, W. (2022). Anal-
358	ysis and impact of the Hunga Tonga-Hunga Ha'apai stratospheric water vapor
359	plume. Geophys. Res. Lett., 49(20), e2022GL100248. Retrieved from https://
360	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022GL100248
361	(e2022GL100248 2022GL100248) doi: https://doi.org/10.1029/2022GL100248
	Schoeberl, M. R., Wang, Y., Ueyama, R., Taha, G., & Yu, W. (2023). The cross
362	equatorial transport of the Hunga Tonga-Hunga Ha'apai eruption plume. <i>Geo-</i>
363	physical Research Letters, 50(4), e2022GL102443. Retrieved from https://
364	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022GL102443
365	
366	(e2022GL102443 2022GL102443) doi: https://doi.org/10.1029/2022GL102443
367	Schwartz, M., Froidevaux, L., Livesey, N., & Read, W. (2020). MLS/Aura level 2 ozone
368	(O3) mixing ratio V005, Greenbelt, MD, USA, Goddard Earth Sciences Data and
369	Information Services Center (GES DISC), accessed: [26 june 2022] [dataset]. doi:
370	https://doi.org/10.5067/Aura/MLS/DATA2506
371	Schwartz, M., Froidevaux, L., Livesey, N., Read, W., & Fuller, R. (2021). MLS/Aura
372	level 3 daily binned ozone $(O3)$ mixing ratio on zonal and similar grids V005,
373	Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Cen-
374	ter (GES DISC), accessed: [26 June 2022] [dataset]. Retrieved from https://
375	disc.gsfc.nasa.gov/datasets/ML3DZO3_005/summary?keywords=mls doi:
376	https://doi.org/10.5067/Aura/MLS/DATA/3105
377	Schwartz, M., Pumphrey, H., Livesey, N., & Read, W. (2020). MLS/Aura level 2 car-
378	bon monoxide (CO) mixing ratio V005, Greenbelt, MD, USA, Goddard Earth Sci-
379	ences Data and Information Services Center (GES DISC), accessed: [26 June 2022]
380	[dataset]. doi: https://doi.org/10.5067/Aura/MLS/DATA2506
381	Schwartz, M., Pumphrey, H., Livesey, N., Read, W., & Fuller, R. (2021). MLS/Aura level
382	3 daily binned carbon monoxide (CO) mixing ratio on zonal and similar grids V005,
383	Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Cen-
	ter (GES DISC), accessed: [26 June 2022] [dataset]. Retrieved from https://
384	disc.gsfc.nasa.gov/datasets/ML3DZCO_005/summary?keywords=mls doi:
385	
386	https://doi.org/10.5067/Aura/MLS/DATA/3105
387	Sellitto, P., Podglajen, A., Belhadji, R., Boichu, M., Carboni, E., Cuesta, J., Legras, B.
388	(2022, November). The unexpected radiative impact of the Hunga Tonga eruption of $15t_1$ L ₁ 2022 C_1 C_2 C_3 C_4
389	15th January 2022. Communications Earth & Environment, 3(1), 1–10. Retrieved
390	
	2022-11-27, from https://www.nature.com/articles/s43247-022-00618-z
391	2022-11-27, from https://www.nature.com/articles/s43247-022-00618-z (Number: 1 Publisher: Nature Publishing Group) doi: 10.1038/s43247-022-00618-z Sheese, P. E., Walker, K. A., Boone, C. D., Bourassa, A. E., Degenstein, D. A., Froide-

393	vaux, L., Zou, J. (2022). Assessment of the quality of ACE-FTS stratospheric
394	ozone data. Atmospheric Measurement Techniques, 15(5), 1233–1249. Re-
395	trieved from https://amt.copernicus.org/articles/15/1233/2022/ doi:
396	10.5194/amt-15-1233-2022
397	Taha, G., Loughman, R., Colarco, P. R., Zhu, T., Thomason, L. W., & Jaross, G.
398	(2022). Tracking the 2022 Hunga Tonga-Hunga Ha'apai Aerosol Cloud in the
399	Upper and Middle Stratosphere Using Space-Based Observations. Geophys-
400	<i>ical Research Letters</i> , 49(19), e2022GL100091. Retrieved 2022-10-13, from
401	https://onlinelibrary.wiley.com/doi/abs/10.1029/2022GL100091
402	(_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2022GL100091) doi:
403	10.1029/2022GL100091
404	Vömel, H., Evan, S., & Tully, M. (2022, September). Water vapor injection into the strato-
405	sphere by Hunga Tonga-Hunga Ha'apai. Science, 377(6613), 1444–1447. Retrieved
406	2022-11-27, from https://www.science.org/doi/10.1126/science.abq2299
407	(Publisher: American Association for the Advancement of Science) doi: 10.1126/
408	science.abq2299
409	Wargan, K., Weir, B., Manney, G. L., Cohn, S. E., & Livesey, N. J. (2020). The anoma-
410	lous 2019 Antarctic ozone hole in the GEOS constituent data assimilation system
411	with MLS observations. Journal of Geophysical Research: Atmospheres, 125(18),
412	e2020JD033335. Retrieved from https://agupubs.onlinelibrary.wiley.com/
413	doi/abs/10.1029/2020JD033335 (e2020JD033335 2020JD033335) doi:
414	https://doi.org/10.1029/2020JD033335
415	WMO. (2023). Scientific assessment of ozone depletion: 2022. Geneva, Switzerland: Global
416	Ozone Res. and Monit. Proj. Rep. 55.
417	Zhu, Y., Bardeen, C. G., Tilmes, S., Mills, M. J., Wang, X., Harvey, V. L., Toon, O. B.
418	(2022, October). Perturbations in stratospheric aerosol evolution due to the water-rich
419	plume of the 2022 Hunga-Tonga eruption. Communications Earth & Environment,
420	3(1), 1-7. Retrieved 2022-11-27, from https://www.nature.com/articles/
421	s43247-022-00580-w (Number: 1 Publisher: Nature Publishing Group) doi:
422	10.1038/s43247-022-00580-w

Siege of the South: Hunga Tonga-Hunga Ha'apai Water Vapor Excluded from 2022 Antarctic Stratospheric Polar Vortex

Gloria L. Manney^{1,2}, Michelle L. Santee³, Alyn Lambert³, Luis F. Millán³, Ken Minschwaner², Frank Werner³, Zachary D. Lawrence^{4,5}, William G. Read³, Nathaniel J. Livesey³, Tao Wang³

6	¹ NorthWest Research Associates, Socorro, NM, USA
7	² New Mexico Institute of Mining and Technology, Socorro, NM, USA
8	³ Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
9	⁴ Cooperative Institute for Research in Environmental Sciences (CIRES) & NOAA Physical Sciences Laboratory (PSL),
10	University of Colorado, Boulder, Colorado, USA.
11	⁵ NorthWest Research Associates, Boulder, CO, USA

Key Points:

1

2

3
4
5

12

13	•	MLS trace gas data show that the Hunga Tonga-Hunga Ha'apai H ₂ O plume was effec-
14		tively excluded from the 2022 Antarctic polar vortex
15	•	Antarctic lower stratospheric vortex strength, size, and longevity were among the largest
16		on record, but within the range of previous years
17	•	Antarctic chemical ozone loss in 2022 was unexceptional, with MLS ozone and related
18		trace gases observed to be near average

Corresponding author: Gloria L Manney, manney@nwra.com

Abstract 19

We use Aura Microwave Limb Sounder (MLS) trace gas measurements to investigate whether 20

water vapor (H_2O) injected into the stratosphere by the Hunga Tonga-Hunga Ha'apai (HTHH) 21

eruption affected the 2022 Antarctic stratospheric vortex. Other MLS-measured long-lived species 22

are used to distinguish high HTHH H₂O from that descending in the vortex from the upper-stratospheric 23

H₂O peak. HTHH H₂O reached high southern latitudes in June–July but was effectively excluded 24

from the vortex by the strong transport barrier at its edge. MLS H₂O, nitric acid, chlorine species, 25

and ozone within the 2022 Antarctic polar vortex were near average; the vortex was large, strong, 26

and long-lived, but not exceptionally so. There is thus no clear evidence of HTHH influence on 27 the 2022 Antarctic vortex or its composition. Substantial impacts on the stratospheric polar vor-

28 tices are expected in succeeding years since the H₂O injected by HTHH has spread globally.

29

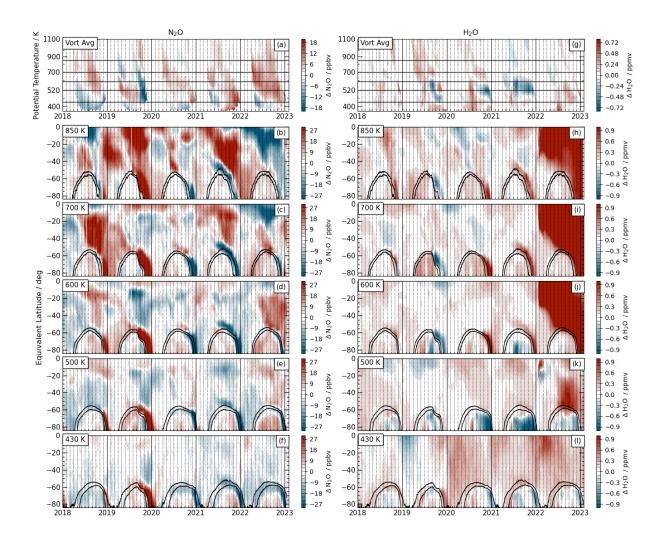
Plain Language Summary 30

The 2022 Hunga Tonga-Hunga Ha'apai eruption injected vast amounts of water vapor into 31 the stratosphere. There has been much speculation that this large increase in water vapor could 32 impact the Antarctic stratospheric polar vortex and Antarctic ozone hole: Water vapor plays an 33 important role in polar vortex ozone depletion by providing the necessary conditions for the for-34 mation of polar stratospheric clouds. These clouds provide surfaces on which ozone-depleting 35 chemical reactions can occur. The excess water vapor could also change the vortex evolution via 36 water vapor's effects on temperature, which could in turn affect the strong band of winds demark-37 ing the polar vortex edge. We use satellite measurements of water vapor and other gasses to show 38 that by the time the water vapor from the Hunga Tonga volcanic eruption reached the south po-30 lar regions in June–July 2022, the polar vortex was too strong for it to penetrate. Measurements 40 of water vapor, ozone, and chemicals involved in destroying ozone all showed near-average amounts 41 and evolution within the vortex. In future years, larger effects on the polar vortex and chemical 42 processing are expected because water vapor from Hunga Tonga that has spread globally will be 43 entrained into the polar vortex. 44

1 Introduction 45

The 15 January 2022 eruption of the underwater volcano Hunga Tonga-Hunga Ha'apai (HTHH) 46 injected an unprecedented amount of water vapor (H₂O) directly into the stratosphere, increas-47 ing the stratospheric H₂O burden by approximately 10% (e.g., Millán et al., 2022; Vömel et al., 48 2022). It also resulted in substantial, though not unprecedented, enhancements in volcanic aerosol 49 loading (Khaykin et al., 2022; Sellitto et al., 2022; Taha et al., 2022). Numerous studies have al-50 ready explored aspects of the stratospheric impacts of HTHH enhancements in aerosol and H₂O; 51 of particular relevance here are suggestions that H₂O and aerosol from HTHH injected into the 52 Southern Hemisphere (SH) stratosphere took many months to reach high latitudes and did not 53 extend poleward of about 60°S (e.g., Legras et al., 2022; Khaykin et al., 2022; Schoeberl et al., 54 2022; Zhu et al., 2022). In the lowermost stratosphere (at and below approximately the 380 K 55 isentropic surface), a few studies suggest that some H₂O and aerosol were transported to high 56 SH latitudes within days to weeks via the shallow branch of the Brewer-Dobson circulation (e.g. 57 Taha et al., 2022; Schoeberl et al., 2022; Khaykin et al., 2022). Radiative cooling from HTHH 58 H₂O led to unprecedented cold in SH mid/low latitudes, with associated circulation and trans-59 port anomalies (Coy et al., 2022; Schoeberl et al., 2022; Sellitto et al., 2022). 60

It was suggested that transport of HTHH aerosol and H₂O into high SH latitudes might im-61 pact the composition of the 2022 SH stratospheric polar vortex, and that circulation changes as-62 sociated with the HTHH H₂O plume might affect the strength, size, and / or longevity of that vor-63 tex (e.g., Taha et al., 2022; Zhu et al., 2022). Here we use Aura Microwave Limb Sounder (MLS) 64 data to analyze the evolution of the SH stratospheric polar vortex in 2022, transport of the HTHH H₂O plume in relation to it, and chemical processing within it. We find no evidence of substan-66 tial impacts of HTHH on the 2022 SH polar vortex or the chemical processing and ozone loss 67 within it. We use temperature, H₂O, N₂O, CO, HCl, ClO, and O₃ from v5 MLS "level 3" (L3) 68


- data (Livesey et al., 2020), along with meteorological fields from NASA's Modern Era Retrospective-69
- analysis for Research and Applications Version 2 (MERRA-2) dataset (Gelaro et al., 2017; Global 70
- Modeling and Assimilation Office (GMAO), 2015). 71
- Immediately following the eruption, standard MLS v5 quality screening (Livesey et al., 2020) 72 flagged many of the profiles most affected by HTHH as suspect retrievals (Millán et al., 2022); 73 thus the H_2O , N_2O , and HNO_3 anomalies shown here may be artificially small for up to three 74 weeks after the eruption. Since our focus is on the subsequent transport and relationship to the 75 SH polar vortex, our results are unaffected. 76

2 Transport of HTHH Stratospheric H₂O

77

Figure 1 shows the evolution of N2O and H2O (both generally long-lived tracers of trans-78 port in the stratosphere) anomalies in the SH lower through middle stratosphere, in vortex av-79 erages as a function of height (expressed as potential temperature, θ) and as a function of equiv-80 alent latitude (EqL, the latitude enclosing the same area between it and the pole as a given po-81 tential vorticity, PV, contour, Butchart & Remsberg, 1986) on several isentropic (θ) surfaces. The 82 past five years include seasons with exceptionally warm / short-lived (2019) and cold / long-lived 83 (2020 and 2021) springtime polar vortices, as well as a year (2018) with more typical vortex char-84 acteristics (WMO, 2023). (Figs. S1-S2 in the Supporting Information, SI, show the full-mission 85 and include MLS temperature.) The evolution of vortex-average N₂O (Fig. 1a) in 2022 is unex-86 ceptional, showing positive anomalies except at the lowest levels; such a vertical dipole pattern 87 of N₂O anomalies is common, with primarily higher values in 2020, 2021, and 2022 consistent 88 with lower vortex temperatures (see below and Figs. S1-3) and accompanying weaker diabatic 89 descent (Fig. S4). N₂O EqL/time evolution (Fig. 1b-f) is also fairly typical; recurring changes 90 above 430 K from high to low anomalies extending from low latitudes show quasi-biennial os-91 cillation (QBO) related transport (e.g., Baldwin et al., 2001; Diallo et al., 2019). Low N₂O anoma-92 lies in austral spring 2020 and 2021 are related to the delayed vortex breakup in those years, with 93 low N_2O values remaining confined longer in a more persistent vortex. Spring 2022 shows sim-94 ilar, but weaker, anomalies, suggesting a long-lived vortex. In contrast, high anomalies in 2019 95 result from a rare SH sudden stratospheric warming that led to a small, warm, and short-lived vor-96 tex (e.g., Wargan et al., 2020). 97

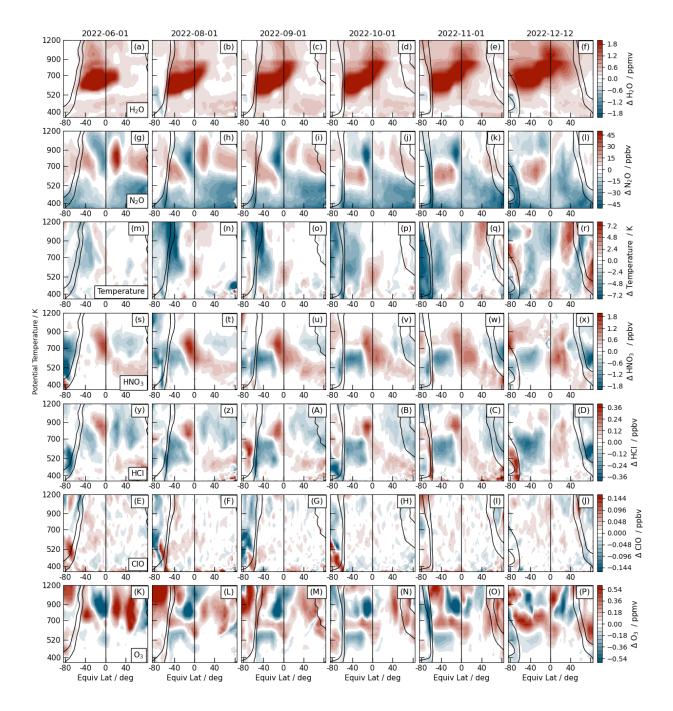
H₂O anomalies (Fig. 1g–1) in the SH lower stratospheric vortex are typically dominated 98 by interannual variations in polar stratospheric cloud extent; strong low H_2O anomalies in spring 99 2020 and 2021 at 500 K and surrounding levels arose from persistent cold anomalies in unusu-100 ally long-lasting vortices. Outside the vortex (Fig. 1h–lFig. 1g–l), high H₂O anomalies often ac-101 company low N₂O anomalies because H₂O and N₂O have opposite vertical and horizontal gra-102 dients in the lower to middle stratosphere. For example, low (high) springtime H_2O (N₂O) anoma-103 lies just outside the vortex edge in 2019, and opposite patterns in 2020 and 2021 at 600–850 K; 104 similar patterns are seen in mid-Eqls in earlier years (Fig. S1). (Note that typical H₂O anoma-105 lies prior to 2022 are washed out by the large colorbar range needed to portray the HTHH H_2O .) 106 Above 500 K, typical signatures of extra-vortex transport of H_2O are overwhelmed by the arrival 107 of HTHH H₂O (Fig. 1h-j, Fig. S1). HTHH H₂O reached the vortex edge in early June 2022, af-108 ter the vortex was fully developed except in the lowermost stratosphere. Above 500 K, extremely 109 strong gradients along the vortex edge suggest that the HTHH plume could not penetrate the vor-110 tex edge. Pervasive high H₂O anomalies since early 2020 below about 500 K may reflect linger-111 ing enhancements from the 2020 Australian New Years fires (e.g., Santee et al., 2022). While small 112 positive anomalies encroach into the vortex region in late winter 2022 at 500 K (near the low-113 est altitude of large HTHH enhancement) and 430 K, similar features are common (e.g., in 2018 114 and 2021), so it is unclear whether they are related to the HTHH plume. At all levels examined 115 (including the lowermost stratosphere, e.g., Fig. S3), H₂O anomalies inside the vortex are within 116 the typical range. 117

Figure 1. Evolution of MLS-observed SH anomalies from the baseline 2005–2021 climatology of N_2O (a–f) and H_2O (g–l) from January 2018 through January 2023: (a,g) vortex-averaged values; (b–f, h–l) evolution as a function of EqL at levels in the middle through lower stratosphere (horizontal lines in a,g). Black contours in b–f and h–l are sPV values indicating the vortex edge region.

Figure 2. As in Fig. 1, but for MLS temperature, HNO₃, HCl, ClO, and O₃; (a–e) vortex averages, (f–j) 430 K, and (k–o) 550 K EqL timeseries, for January 2018 through January 2023. Black contours (f–o) are sPV values demarking the vortex edge region.

3 Polar Vortex Composition and Chemical Processing

Figure 2 shows a similar view of MLS measurements of temperature and species involved 119 in polar chemical processing (Figs. S1-3 show 550 K, 430 K, and 380 K for the full mission). The 120 Antarctic vortex was unusually cold and persistent in spring 2022, but less so than in 2020 and 121 2021. Vortex HNO₃ values were near average throughout the season. Vortex HCl and ClO com-122 monly oscillate between high and low anomalies, and thus they are also generally unexceptional 123 within the 2022 vortex; the high HCl anomalies in spring are related primarily to longer-than-124 usual confinement of the very high values that ensue from chlorine deactivation. Consistent with 125 near-average vortex values of chlorine species, O₃ anomalies in 2022 were also relatively small. 126 Both 2020 and 2021 showed lower O3, consistent with larger cold anomalies and even longer-127 lived (see below) vortices in those years than in 2022. Outside the vortex, temperature anoma-128 lies (arising from radiative effects of HTHH H₂O, e.g., Coy et al., 2022; Schoeberl et al., 2022) 129 and associated mid-latitude transport anomalies (Coy et al., 2022) appear consistent with the ex-130 travortex high N₂O anomalies seen near 500–600 K (Fig. 1), and suggest that accompanying ex-131 travortex HCl, HNO₃, and O₃ anomalies are at least partially transport-driven. 132

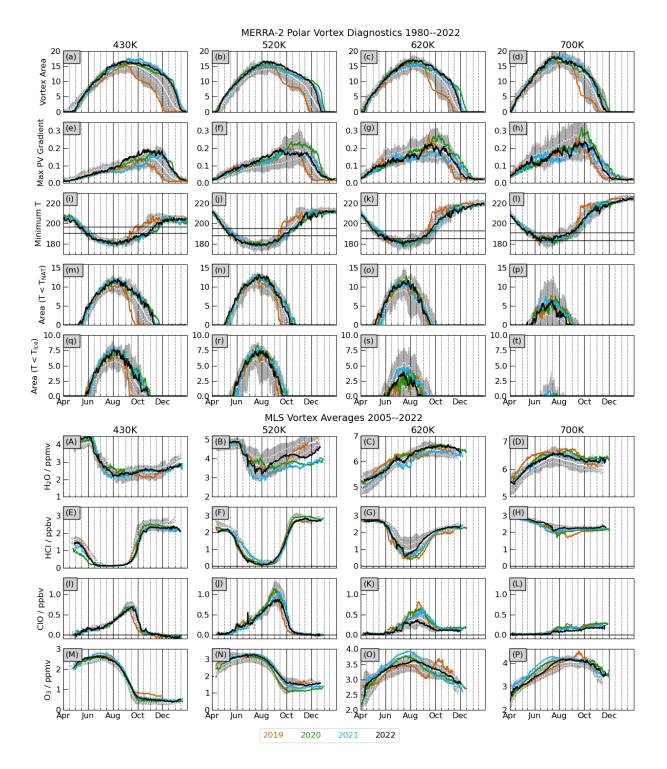

Figure 3 provides a closer look at the EqL/ θ evolution of MLS trace gases in 2022, show-133 ing snapshots of anomalies from climatology (similar anomaly plots in 2018, 2020, and 2021 are 134 shown in Figs. S5–S7). The H₂O plume first approached the SH polar vortex edge in early to mid-135 June. Subsequently, extremely strong H_2O gradients developed along the vortex edge over 520– 800 K and persisted through October (into December below about 700 K; see also Fig 1). By mid-137 December, only a weak remnant of the vortex remained below about 520 K, and the H₂O enhance-138 ment extended into high latitudes above that level. MLS data show no indication of air from the 139 HTHH H₂O plume penetrating substantially into the SH vortex before its breakup. N₂O anoma-140 lies within the vortex were generally small until austral spring; below about 700 K, these anoma-141 lies were near zero from August through October. Low N₂O anomalies along the vortex edge be-142 ginning in early November are consistent with confinement in an unusually persistent vortex. Mid-143 latitude cold anomalies throughout the middle stratosphere (e.g., Coy et al., 2022; Schoeberl et 144 al., 2022) are apparent from June through mid-December. Vortex temperatures were below av-145 erage through much of the season, with largest cold anomalies in October and November (also 146 see Fig. 2). High extra-vortex N₂O anomalies through this period are consistent in extent and lo-147 cation with the circulation anomalies reported by Coy et al. (2022). The co-location of N_2O anoma-148 lies with those in HNO_3 , HCl, and O_3 suggests that transport plays a role in all of them; work 149 is in progress analyzing the relative effects of dynamical and chemical processes. 150

Within the vortex, HNO₃ is slightly lower than usual, consistent with a colder-than-average 151 vortex. HCl (ClO) shows low (high) anomalies during much (but not all, e.g., Fig. 3A,G) of the 152 winter. As noted above, high HCl anomalies appear along the vortex edge in November and in 153 the vortex remnant in mid-December, consistent with high values resulting from deactivation into 154 HCl (as is typical in the SH, e.g., Santee et al., 2008) followed by unusually enduring confine-155 ment in the persistent vortex. Lower stratospheric O_3 anomalies in the early winter (before ex-156 tensive chemical loss) are slightly positive and remain so through October (e.g., Fig. 3O). Taken 157 together, the results in Figs. 2 and 3 suggest that the modest low anomalies in O_3 seen in austral 158 spring 2022 (e.g., Fig. 3P) result primarily (if not entirely) from the unusual persistence of the 159 vortex. 160

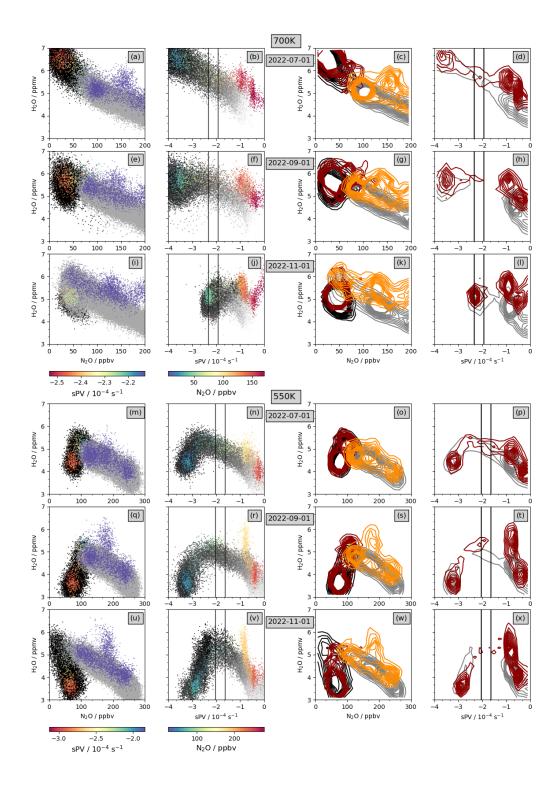
¹⁶¹ 4 Vortex Evolution and Trace Gas Confinement

Figure 4 summarizes the evolution of the 2022 SH vortex in the context of the 43-year MERRA-2 162 record and the evolution of trace gases in the context of the 18-year MLS record, both in rela-163 tion to the previous three SH winters. Figure S8 shows profiles of additional MERRA-2 diag-164 nostics of vortex strength and longevity. Consistent with the indications in the trace gases of its 165 unusual persistence, the 2022 SH late winter and spring vortex was among the largest on record 166 at levels up to about 650 K, approximately matching the maximum size and persistence seen prior 167 to 2020 (Fig. 4a-d; Fig. S8b,d). In spring, the 2021 vortex area was slightly larger, and the 2020 168 vortex area substantially larger than that in 2022 from about 460 K to 650 K, with 2020 setting 169 the record for lower-stratospheric vortex persistence (Fig. 4a-c, S8b-d). Maximum PV gradi-170 ents, indicating vortex strength (that is, robustness as a transport barrier), show unusually strong 171 springtime vortices in 2020 through 2022 below about 500 K, but only the 2020 vortex was stronger 172 than average above about 600 K (Fig. 4e-h; Fig. S8a). Below about 520 K, the area with temper-173 atures below the nitric acid trihydrate (NAT) and ice polar stratospheric cloud (PSC) thresholds 174 was larger than usual (Fig 4m,n,q,r) and PSCs persisted later than usual (Fig. 4m-t, Fig. S8e,f) 175 in spring 2020, 2021, and 2022, but only exceeded previous springtime records in 2020; above 176 about 600 K PSC area and duration were near average. 177

The unexceptional MLS trace gas evolution in the 2022 Antarctic vortex is highlighted in Fig. 4A–P (Fig. S9 shows the vertical structure). Interannual variability in SH polar chemical processing is relatively small, but, with few exceptions, all of the trace gases show 2022 evolution that is well within the previously observed range. Over \sim 450–600 K, persistently low H₂O after October in 2022, and to an even greater extent in 2020 and 2021, is consistent with confinement of dehydrated air in long-lived vortices. Chlorine evolution (seen in HCl and ClO, Fig. 4E–


Figure 3. Snapshots on selected days in 2022 of anomalies from the baseline 2005–2021 climatology of MLS (a–f) H₂O, (g–l) N₂O, (m–r) temperature, (s–x) HNO₃, (y–D) HCl, (E–J) ClO, and (K–P) O₃. Black contours show sPV values demarking the vortex edge region.

L; Fig. S9q–x) was fairly typical throughout the season. Observed O₃ evolution in 2022 was remarkably near average throughout the season (Fig. 4M–P; Fig. S9y–B).


The above results provide visual evidence that the vortex edge presented an effective trans-186 port barrier, preventing substantial penetration of the HTHH H₂O plume. To look more closely 187 at the robustness of the vortex edge transport barrier, Fig. 5 shows scatter and density plots of H_2O 188 versus N_2O and sPV for representative days in 2022 compared with the evolution in all prior years 189 in the MLS record. Low N₂O (relative to the range of values at a given level) and high-magnitude 190 sPV identify vortex air parcels. In the lower stratosphere (exemplified by 550 K), increasingly 191 low vortex H₂O through the season results from dehydration and is very similar to that previously observed by MLS (density plots, right columns, emphasize the similarity of the main distribu-193 tions in 2022 to those in earlier years). Extravortex H_2O at 550 K does not stand out from the pre-194 vious record before July, but after that the HTHH enhancement manifests as a distinct cluster of 195 high H₂O with N₂O near 200 ppbv and sPV magnitudes $<1\times10^{-4}$ s⁻¹ (both values that are un-196 ambiguously extravortex) that is unique to 2022 (compare yellow-orange / purple H_2O / sPV val-197 ues with grey dots; orange with grey contours). In the middle stratosphere (exemplified by 700 K), 198 vortex H₂O values first increase via descent of the upper stratospheric peak, then decrease as continuing descent brings low mesospheric H_2O into the stratospheric vortex (e.g., Ray et al., 2002; 200 Lee et al., 2011); both the high (e.g., Fig. 5a–d) and the low (e.g., Fig. 5e–l) H₂O values that de-201 scend through the vortex (low N₂O, high-magnitude sPV end of the x-axis) at 700 K are distinct 202 from the extravortex population of high H₂O from HTHH, and that is in turn distinguished from 203 extravortex air in previous years by higher H₂O values at extravortex N₂O (\sim 150–200 ppbv) and 204 sPV (magnitude $< \sim 1 \times 10^{-4} \text{ s}^{-1}$). These correlations of H₂O with N₂O and sPV (especially the 205 density plots versus sPV) show clearly that the air with enhanced H₂O from HTHH remained well 206 separated from that within the vortex until vortex breakup at each level (as suggested in Figs. 1 and 3). MLS H_2O / CO correlations show a similar picture in the middle (Fig. S10) and upper 208 stratosphere, with HTHH H₂O associated with low CO values characteristic of extravortex air. 209 Further, because the seawater from HTHH has a higher ratio of HDO to H_2O than background 210 water vapor in the extravortex stratosphere (e.g., Randel et al., 2012; Khaykin et al., 2022), an 211 unprecedented increase in that ratio in SH midlatitudes also marks the HTHH air as separate from 212 (and excluded from) that in the vortex (Figs. S11–12). 213

²¹⁴ 5 Summary

The unprecedented water vapor injection into the stratosphere by HTHH is tracked using 215 MLS and reanalysis data. The H_2O plume [[or The enhanced H_2O]] is shown to have been ef-216 fectively excluded from the 2022 Antarctic polar vortex until the vortex breakdown. In contrast 217 to speculation that HTHH stratospheric H₂O and aerosol injections would lead to substantial anoma-218 lies in the Antarctic polar vortex and lower stratospheric polar processing and ozone loss within 219 it (e.g., Taha et al., 2022; Zhu et al., 2022), our analysis suggests that HTHH did not cause sub-220 stantial changes in polar processing and ozone loss within the vortex: MLS observations of HNO₃, 221 HCl, ClO, and O₃ inside the vortex through the depth of the lower stratosphere all show evolu-222 tion well within the range of previous years during the MLS mission, with near-average O_3 loss. 223 Evidence for possible dynamical impacts on the vortex is likewise not unequivocal: The vortex 224 was among the larger, stronger, and longer-lived in the SH lower stratosphere, but these condi-225 tions were matched or exceeded by those in 2020, 2021, and several previous years in the MERRA-2 226 record since 1980; vortex cold anomalies were even less exceptional. Thus, despite large radia-227 tive, dynamical, and composition perturbations in midlatitudes, the observational evidence shows 228 that chemical processing within the 2022 Antarctic stratospheric polar vortex was fairly typical, 229 and does not show clear evidence of substantial dynamical vortex perturbations. The dispersal 230 of HTHH H₂O following the Antarctic vortex breakup (e.g., Fig. 1) led to unprecedented high 231 H₂O anomalies throughout the SH, which are expected to linger for at least several years (e.g., 232 Millán et al., 2022; Khaykin et al., 2022), raising the expectation of large perturbations to Antarc-233 tic polar vortex chemistry and the ozone hole in 2023 and beyond. HTHH H₂O has also been trans-234 ported into the Northern Hemisphere (e.g., Schoeberl et al., 2023), but reached the Arctic vor-235

Figure 4. (a–t) Time series at four levels in the lower to middle stratosphere of vortex area, maximum PV gradients, high latitude (poleward of 30°) minimum temperature, and area below NAT and ice PSC thresholds, comparing 2019 (orange), 2020 (green), 2021 (cyan), and 2022 (black) with the range (shading), mean (solid white line), and one standard deviation envelope (dotted white lines) over 1980–2018. (A–P) Vortex-averaged H₂O, HCl, ClO, and O₃ in same format as for the dynamical fields, with the range over 2005–2018.

Figure 5. Scatter (left two columns) and density (right two columns) plots of MLS H_2O (y-axis) versus N_2O (first and third columns) and sPV (second and last columns). Grey and black dots (contours) show values from 2005–2021 in the scatter (density) plots; for those years, black (grey) indicates x-axis values of N_2O or sPV characteristic of inside (outside) the vortex. For 2022, colored (purple) dots or dark red (orange) contours show sPV values inside (outside) the vortex. 2022 N_2O (second column) is colored such that blue/blue-green shows typical vortex values. Black vertical lines on the plots versus sPV indicate the vortex edge region.

tex edge after the vortex was well-developed and was only dispersed through the NH after a strong
 sudden stratospheric warming starting in mid-February (paper in preparation). Thus large effects
 on Arctic polar vortex chemistry are also expected to manifest starting in the 2023/2024 cool sea-

239

241

240 6 Open Research

son.

The data used herein are publicly available as follows:

• MERRA-2: (Global Modeling and Assimilation Office (GMAO), 2015) 242 https://disc.sci.gsfc.nasa.gov/uui/datasets?keywords=%22MERRA-2%22 243 • Aura MLS Level-2 and Level-3 data: (Lambert, Read, & Livesey, 2020; Lambert, Livesey, 244 & Read, 2020; Lambert et al., 2021b, 2021a; Schwartz, Pumphrey, et al., 2020; Schwartz, 245 Froidevaux, et al., 2020; Schwartz, Pumphrey, et al., 2021; Schwartz, Froidevaux, et al., 246 2021)247 https://disc.gsfc.nasa.gov/datasets?page=1&keywords=AURA%20MLS 248 ACE-FTS v4.1/4.2 data: http://www.ace.uwaterloo.ca (registration required) 249 ACE-FTS v4.1/4.2 error flags: https://dataverse.scholarsportal.info/api/access/ 250 dataset/:persistentId/versions/:latest?persistentId=doi:10.5683/SP2/ 251 BC4ATC 252 MLS & ACE-FTS derived meteorological products: https://mls.jpl.nasa.gov/eos 253 -aura-mls/dmp (registration required). 254

255 Acknowledgments

Thanks to the MLS team at JPL for data processing and analysis support, especially Brian Knosp 256 for data management, Ryan Fuller for development and production of the MLS L3 products, and 257 Lucien Froidevaux and Michael Schwartz for helpful discussions. Thanks to the ACE science 258 team for making the ACE-FTS data available, especially Kaley Walker and Patrick Sheese for 259 advice on data quality and usage. Thanks to the GMAO for providing the MERRA-2 dataset. G.L. Man-260 ney was supported by the Jet Propulsion Laboratory (JPL) Microwave Limb Sounder team un-261 der JPL subcontract #1521127 to NWRA. Work at the Jet Propulsion Laboratory, California In-262 stitute of Technology, was carried out under a contract with the National Aeronautics and Space 263 Administration (80NM0018D0004).

265 **References**

266	Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., J, W., Taka-
267	hasi, M. (2001). The quasi-biennial oscillation. Rev. Geophys., 39, 179-229.
268	Boone, C., Bernath, P., Cok, D., Jones, S., & Steffen, J. (2020). Version 4 retrievals for the
269	atmospheric chemistry experiment Fourier transform spectrometer (ACE-FTS) and
270	imagers. Journal of Quantitative Spectroscopy and Radiative Transfer, 247, 106939.
271	Retrieved from https://www.sciencedirect.com/science/article/pii/
272	S0022407319305916 doi: https://doi.org/10.1016/j.jqsrt.2020.106939
273	Butchart, N., & Remsberg, E. E. (1986). The area of the stratospheric polar vortex as a diag-
274	nostic for tracer transport on an isentropic surface. J. Atmos. Sci., 43, 1319–1339.
275	Coy, L., Newman, P. A., Wargan, K., Partyka, G., Strahan, S. E., & Pawson,
276	S. (2022). Stratospheric Circulation Changes Associated With the
277	Hunga Tonga-Hunga Ha'apai Eruption. Geophysical Research Let-
278	<i>ters</i> , 49(22), e2022GL100982. Retrieved 2022-11-27, from https://
279	onlinelibrary.wiley.com/doi/abs/10.1029/2022GL100982 (_eprint:
280	https://onlinelibrary.wiley.com/doi/pdf/10.1029/2022GL100982) doi: 10.1029/
281	2022GL100982
282	Diallo, M., Konopka, P., Santee, M. L., Müller, R., Tao, M., Walker, K. A., Ploeger,

283	F. (2019). Structural changes in the shallow and transition branch of the Brewer-
284	Dobson circulation induced by El Niño. Atmos. Chem. Phys., 19(1), 425–446. Re-
285	trieved from https://acp.copernicus.org/articles/19/425/2019/ doi:
286	10.5194/acp-19-425-2019
287	Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Zhao, B.
288	(2017). The Modern-Era Retrospective Analysis for Research and Applications,
289	Version-2 (MERRA-2). J. Clim., 30, 5419–5454. doi: doi:10.1175/JCLI-D-16-0758.1
290	Global Modeling and Assimilation Office (GMAO). (2015). MERRA-2 inst3_3d_asm_nv:
291	3d, 3-hourly, instantaneous, model-level, assimilation, assimilated meteorolog-
292	ical fields v5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and In-
293	formation Services Center (GES DISC), accessed 1 June 2022 [dataset]. doi:
294	10.5067/WWQSXQ8IVFW8
295	Khaykin, S., Podglajen, A., Ploeger, F., Grooß, JU., Tence, F., Bekki, S., Ravetta, F.
295	(2022, December). Global perturbation of stratospheric water and aerosol burden by
	Hunga eruption. Communications Earth & Environment, 3(1), 316. Retrieved from
297	https://doi.org/10.1038/s43247-022-00652-x
298	Lambert, A., Livesey, N., & Read, W. (2020). <i>MLS/Aura level 2 nitrous oxide (N2O)</i>
299	mixing ratio V005, Greenbelt, MD, USA, Goddard Earth Sciences Data and In-
300	formation Services Center (GES DISC), accessed: [26 June 2022] [dataset]. doi:
301	
302	https://doi.org/10.5067/Aura/MLS/DATA2515
303	Lambert, A., Livesey, N., Read, W., & Fuller, R. (2021a). <i>MLS/Aura level 3 daily</i>
304	binned nitrous oxide (N2O) mixing ratio on zonal and similar grids V005, Green-
305	belt, MD, USA, Goddard Earth Sciences Data and Information Services Cen-
306	ter (GES DISC), accessed: [26 June 2022] [dataset]. Retrieved from https://
307	disc.gsfc.nasa.gov/datasets/ML3DZN20_005/summary?keywords=mls doi:
308	https://doi.org/10.5067/Aura/MLS/DATA/3116
309	Lambert, A., Livesey, N., Read, W., & Fuller, R. (2021b). <i>MLS/Aura level 3 daily</i>
310	binned water vapor (H2O) mixing ratio on zonal and similar grids V005, Green-
311	belt, MD, USA, Goddard Earth Sciences Data and Information Services Cen-
312	ter (GES DISC), accessed: [26 June 2022] [dataset]. Retrieved from https://
313	disc.gsfc.nasa.gov/datasets/ML3DZH20_005/summary?keywords=mls doi:
314	https://doi.org/10.5067/Aura/MLS/DATA/3109
315	Lambert, A., Read, W., & Livesey, N. (2020). <i>MLS/Aura Level 2 water vapor (H2O)</i>
316	mixing ratio V005, Greenbelt, MD, USA, Goddard Earth Sciences Data and In-
317	formation Services Center (GES DISC), accessed: [26 June 2022] [dataset]. doi:
318	https://doi.org/10.5067/Aura/MLS/DATA2508
319	Lee, J. N., Wu, D. L., Manney, G. L., Schwartz, M. J., Lambert, A., Livesey, N. J., Read,
320	W. G. (2011). Aura Microwave Limb Sounder observations of the polar middle
321	atmosphere: Dynamics and transport of CO and H_2O . J. Geophys. Res., 116. doi: 10.1020/2010/D014602
322	10.1029/2010JD014608
323	Legras, B., Duchamp, C., Sellitto, P., Podglajen, A., Carboni, E., Siddans, R., Ploeger,
324	F. (2022, November). The evolution and dynamics of the Hunga Tonga–Hunga
325	Ha'apai sulfate aerosol plume in the stratosphere. Atmospheric Chemistry
326	and Physics, 22(22), 14957–14970. Retrieved 2022-11-23, from https://
327	acp.copernicus.org/articles/22/14957/2022/ (Publisher: Copernicus
328	GmbH) doi: 10.5194/acp-22-14957-2022
329	Livesey, N. J., Read, W. G., Wagner, P. A., Froidevaux, L., Lambert, A., Manney, G. L.,
330	Lay, R. R. (2020). EOS MLS version 5.0x level 2 and 3 data quality and description
331	document (Tech. Rep.). JPL. (Available from http://mls.jpl.nasa.gov/)
332	Millán, L., et al. (2022). The Hunga Tonga-Hunga Ha'apai hydration of the strato-
333	sphere. Geophys. Res. Lett., 49(13), e2022GL099381. Retrieved from https://
334	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022GL099381
335	(e2022GL099381 2022GL099381) doi: https://doi.org/10.1029/2022GL099381
336	Randel, W. J., Moyer, E., Park, M., Jensen, E., Bernath, P., Walker, K., & Boone, C.
337	(2012). Global variations of HDO and HDO/H2O ratios in the upper troposphere

338	and lower stratosphere derived from ACE-FTS satellite measurements. Jour-
339	nal of Geophysical Research: Atmospheres, 117(D6). Retrieved from https://
340	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JD016632 doi:
341	https://doi.org/10.1029/2011JD016632
342	Ray, E. A., Moore, F. L., Elkins, J. W., Hurst, D. F., Romashkin, P. A., Dutton, G. S., &
343	Fahey, D. W. (2002). Descent and mixing in the 1999-2000 northern polar vor-
	tex inferred from in situ tracer measurments. J. Geophys. Res., 107, 8285. doi:
344	10.1029/2001JD000961
345	
346	Santee, M. L., Lambert, A., Manney, G. L., Livesey, N. J., Froidevaux, L., Neu, J. L.,
347	Ward, B. M. (2022). Prolonged and pervasive perturbations in the composition of
348	the Southern Hemisphere midlatitude lower stratosphere from the Australian New
349	Year's fires. Geophysical Research Letters, 49(4), e2021GL096270. Retrieved
350	from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
351	2021GL096270 (e2021GL096270 2021GL096270) doi: https://doi.org/10.1029/
352	2021GL096270
353	Santee, M. L., MacKenzie, I. A., Manney, G. L., Chipperfield, M. P., Bernath, P. F., Walker,
354	K. A., Waters, J. W. (2008). A study of stratospheric chlorine partitioning
355	based on new satellite measurements and modeling. J. Geophys. Res., 113. doi:
356	10.1029/2007JD009057
357	Schoeberl, M. R., Wang, Y., Ueyama, R., Taha, G., Jensen, E., & Yu, W. (2022). Anal-
358	ysis and impact of the Hunga Tonga-Hunga Ha'apai stratospheric water vapor
359	plume. Geophys. Res. Lett., 49(20), e2022GL100248. Retrieved from https://
360	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022GL100248
361	(e2022GL100248 2022GL100248) doi: https://doi.org/10.1029/2022GL100248
	Schoeberl, M. R., Wang, Y., Ueyama, R., Taha, G., & Yu, W. (2023). The cross
362	equatorial transport of the Hunga Tonga-Hunga Ha'apai eruption plume. <i>Geo-</i>
363	physical Research Letters, 50(4), e2022GL102443. Retrieved from https://
364	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022GL102443
365	
366	(e2022GL102443 2022GL102443) doi: https://doi.org/10.1029/2022GL102443
367	Schwartz, M., Froidevaux, L., Livesey, N., & Read, W. (2020). MLS/Aura level 2 ozone
368	(O3) mixing ratio V005, Greenbelt, MD, USA, Goddard Earth Sciences Data and
369	Information Services Center (GES DISC), accessed: [26 june 2022] [dataset]. doi:
370	https://doi.org/10.5067/Aura/MLS/DATA2506
371	Schwartz, M., Froidevaux, L., Livesey, N., Read, W., & Fuller, R. (2021). MLS/Aura
372	level 3 daily binned ozone (O3) mixing ratio on zonal and similar grids V005,
373	Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Cen-
374	ter (GES DISC), accessed: [26 June 2022] [dataset]. Retrieved from https://
375	disc.gsfc.nasa.gov/datasets/ML3DZO3_005/summary?keywords=mls doi:
376	https://doi.org/10.5067/Aura/MLS/DATA/3105
377	Schwartz, M., Pumphrey, H., Livesey, N., & Read, W. (2020). MLS/Aura level 2 car-
378	bon monoxide (CO) mixing ratio V005, Greenbelt, MD, USA, Goddard Earth Sci-
379	ences Data and Information Services Center (GES DISC), accessed: [26 June 2022]
380	[dataset]. doi: https://doi.org/10.5067/Aura/MLS/DATA2506
381	Schwartz, M., Pumphrey, H., Livesey, N., Read, W., & Fuller, R. (2021). MLS/Aura level
382	3 daily binned carbon monoxide (CO) mixing ratio on zonal and similar grids V005,
383	Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Cen-
	ter (GES DISC), accessed: [26 June 2022] [dataset]. Retrieved from https://
384	disc.gsfc.nasa.gov/datasets/ML3DZCO_005/summary?keywords=mls doi:
385	
386	https://doi.org/10.5067/Aura/MLS/DATA/3105
387	Sellitto, P., Podglajen, A., Belhadji, R., Boichu, M., Carboni, E., Cuesta, J., Legras, B.
388	(2022, November). The unexpected radiative impact of the Hunga Tonga eruption of $15t_1$ L ₁ 2022 C_1 C_2 C_3 C_4
389	15th January 2022. Communications Earth & Environment, 3(1), 1–10. Retrieved
390	
	2022-11-27, from https://www.nature.com/articles/s43247-022-00618-z
391	2022-11-27, from https://www.nature.com/articles/s43247-022-00618-z (Number: 1 Publisher: Nature Publishing Group) doi: 10.1038/s43247-022-00618-z Sheese, P. E., Walker, K. A., Boone, C. D., Bourassa, A. E., Degenstein, D. A., Froide-

393	vaux, L., Zou, J. (2022). Assessment of the quality of ACE-FTS stratospheric
394	ozone data. Atmospheric Measurement Techniques, 15(5), 1233–1249. Re-
395	trieved from https://amt.copernicus.org/articles/15/1233/2022/ doi:
396	10.5194/amt-15-1233-2022
397	Taha, G., Loughman, R., Colarco, P. R., Zhu, T., Thomason, L. W., & Jaross, G.
398	(2022). Tracking the 2022 Hunga Tonga-Hunga Ha'apai Aerosol Cloud in the
399	Upper and Middle Stratosphere Using Space-Based Observations. Geophys-
400	<i>ical Research Letters</i> , 49(19), e2022GL100091. Retrieved 2022-10-13, from
401	https://onlinelibrary.wiley.com/doi/abs/10.1029/2022GL100091
402	(_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2022GL100091) doi:
403	10.1029/2022GL100091
404	Vömel, H., Evan, S., & Tully, M. (2022, September). Water vapor injection into the strato-
405	sphere by Hunga Tonga-Hunga Ha'apai. Science, 377(6613), 1444–1447. Retrieved
406	2022-11-27, from https://www.science.org/doi/10.1126/science.abq2299
407	(Publisher: American Association for the Advancement of Science) doi: 10.1126/
408	science.abq2299
409	Wargan, K., Weir, B., Manney, G. L., Cohn, S. E., & Livesey, N. J. (2020). The anoma-
410	lous 2019 Antarctic ozone hole in the GEOS constituent data assimilation system
411	with MLS observations. Journal of Geophysical Research: Atmospheres, 125(18),
412	e2020JD033335. Retrieved from https://agupubs.onlinelibrary.wiley.com/
413	doi/abs/10.1029/2020JD033335 (e2020JD033335 2020JD033335) doi:
414	https://doi.org/10.1029/2020JD033335
415	WMO. (2023). Scientific assessment of ozone depletion: 2022. Geneva, Switzerland: Global
416	Ozone Res. and Monit. Proj. Rep. 55.
417	Zhu, Y., Bardeen, C. G., Tilmes, S., Mills, M. J., Wang, X., Harvey, V. L., Toon, O. B.
418	(2022, October). Perturbations in stratospheric aerosol evolution due to the water-rich
419	plume of the 2022 Hunga-Tonga eruption. Communications Earth & Environment,
420	3(1), 1-7. Retrieved 2022-11-27, from https://www.nature.com/articles/
421	s43247-022-00580-w (Number: 1 Publisher: Nature Publishing Group) doi:
422	10.1038/s43247-022-00580-w

Supporting Information for "Siege of the South: Hunga Tonga-Hunga Ha'apai Water Vapor Excluded from 2022 Antarctic Stratospheric Polar Vortex"

Gloria L. Manney^{1,2}, Michelle L. Santee³, Alyn Lambert³, Luis F. Millán³, Ken

Minschwaner², Frank Werner³, Zachary D. Lawrence^{4,5}, William G. Read³,

Nathaniel J. Livesey³, Tao Wang³

¹NorthWest Research Associates, Socorro, NM, USA

²New Mexico Institute of Mining and Technology, Socorro, NM, USA

³Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

⁴Cooperative Institute for Research in Environmental Sciences (CIRES) & NOAA Physical Sciences Laboratory (PSL), University of Colorado, Boulder,

Colorado, USA.

⁵NorthWest Research Associates, Boulder, CO, USA

Contents of this file

1. Figures S1 to S12

Corresponding author: Gloria L Manney, NorthWest Research Associates & New Mexico Institute of Mining and Technology, Department of Physics, 333 Workman, Socorro, NM 87801, USA. (man-ney@nwra.com)

Introduction

This file contains supplementary figures for "Siege of the South: Hunga Tonga-Hunga Ha'apai Water Vapor Excluded from 2022 Antarctic Stratospheric Polar Vortex".

Figures S1 and S2 show full-mission equivalent latitude (EqL) time series of the MLS fields shown in Figs. 1 and 2 in the main text, confirming the uniqueness of the extravortex HTHH signature in H_2O and the ordinariness of the evolution of all species within the stratospheric polar vortex. Fig. S3 presents Aura mission-long EqL/time plots at 380 K, showing only MLS species that have scientifically useful data at pressures of 215 hPa or above (since much of the 380 K surface is at pressures near or above that level), confirming that composition was not unusual in 2022 at subvortex levels. Figures S1 through S3 also include anomalies in two indicators of mixing, effective diffusivity (K_{eff}) and PV gradients. The years 2020 through 2022 all show relatively high PV gradient anomalies and low K_{eff} anomalies near the vortex edge in late winter and spring at all levels, consistent with the long-lived polar vortices in these years; other years during the Aura mission, including 2006, 2010, 2011, and 2015, show similar features, also generally related to long-lived polar vortices.

Figure S4 shows anomalies from the 2005–2021 climatology of vortex-averaged diabatic descent rates from MERRA-2 (note that stronger descent, that is, more negative values, is shown in red for emphasis), demonstrating that descent rates in the middle stratospheric vortex in late winter/early spring 2022 were smaller than usual (consistent, to first order, with lower vortex temperatures) but no more so than in several other years during the Aura mission. This is in contrast to large changes in descent in mid-latitudes (e.g., Coy et al., 2022). Figures S5 through S7 show EqL/ θ snapshots like those in Fig. 3 in the main text, but for 2018, 2020, and 2021 (a near-average year and two unusually cold years with larger-than-usual Antarctic "ozone holes"). Comparing these with Fig. 3 emphasizes that vortex conditions in 2022 were not extreme at any point during the season.

Figures S8 and S9 show profiles summarizing the evolution of dynamical diagnostics and trace gases presented in Fig. 4 in the main text. None of the vortex diagnostics (Fig. S8) show 2022 as the most extreme year in the 43-year MERRA-2 record at any level. Several of those maxima, especially related to vortex and polar processing potential duration, were redefined in 2020. 2021 also had an unusually strong and persistent lower stratospheric vortex, as did 2022, but there were previous years with stronger or more persistent vortices than each of these years. The MLS measurements (Fig. S9) emphasize clearly the near-average nature of the trace gas evolution in the vortex in 2022 from subvortex levels (the lower limit of the profiles shown is 370 K) to the upper stratosphere, consistent with the time series at selected levels shown in Fig. 4 in the main text. In particular, CIO was lower and lower-stratospheric O₃ higher in spring (October/November) 2022 than in 2020, 2021, and several other years also characterized by cold long-lived polar vortices.

As shown in Fig. 5 in the main text, scatter plots of H_2O with long-lived transport tracers demonstrate the separation of the HTHH enhancement from high H_2O that may descend inside the stratospheric polar vortex. Figure S10 shows the relationship between H_2O and CO in the middle stratosphere in the same way that Fig. 5 shows its relationship with N_2O . The results confirm the separation by the vortex edge transport barrier of air with high H_2O and low CO in the HTHH plume from air with high H_2O and high CO that descends inside the polar vortex.

X - 4 MANNEY ET AL.: HUNGA TONGA H_2O EXCLUDED FROM 2022 ANTARCTIC VORTEX

Measurements from the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS) also show the distinction between and separation from vortex air of the HTHH H₂O. Version 4.1/4.2 ACE-FTS data are used here, along with corresponding error flags (Boone et al., 2020; Sheese et al., 2022). Figure S11 shows mission-long ACE-FTS measurements of H₂O and the HDO / H₂O ratio (Δ D) at 700 and 550 K. The unprecedentedly high extravortex values of Δ D associated with the high H₂O demark the HTHH plume, since the seawater injected by HTHH has a higher isotope ratio (e.g., Randel et al., 2012; Khaykin et al., 2022, and references therein). Δ D generally increases with height and latitude in the stratosphere, similar to age of air (Randel et al., 2012), hence the larger values in the polar vortex. While ACE-FTS has coverage of much of the Antarctic polar vortex only in July–September, Figure S12 shows that during that time period, the high Δ D values in the HTHH plume are clearly separated from the high values in the polar vortex, with the latter generally occurring at lower H₂O values.

References

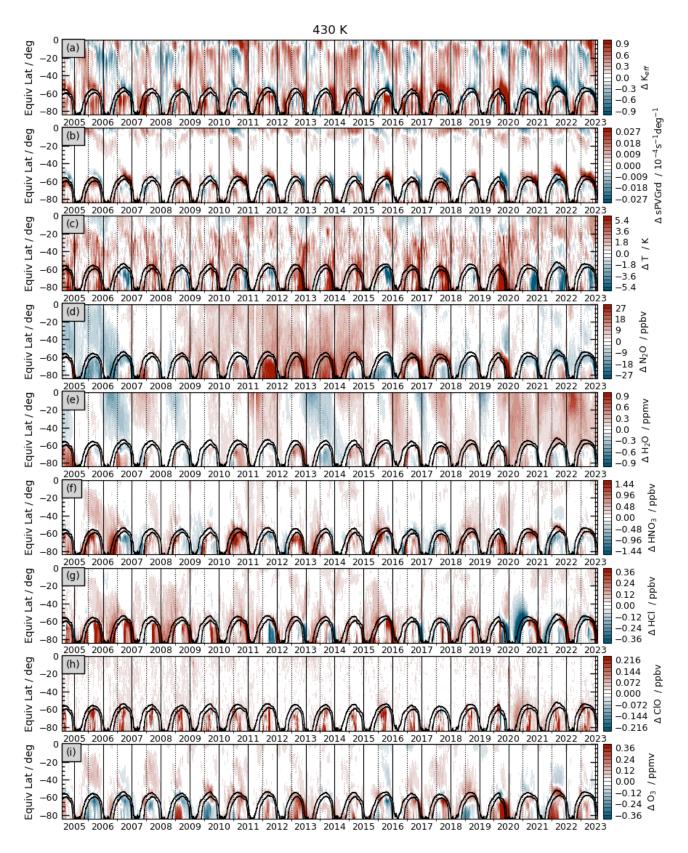
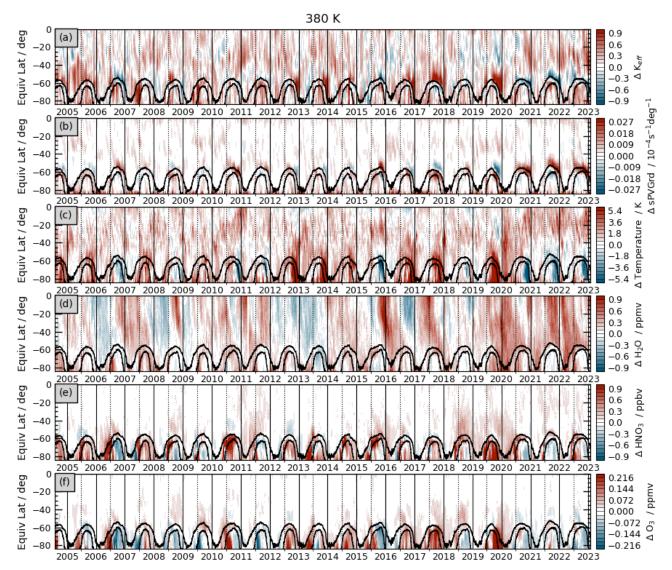
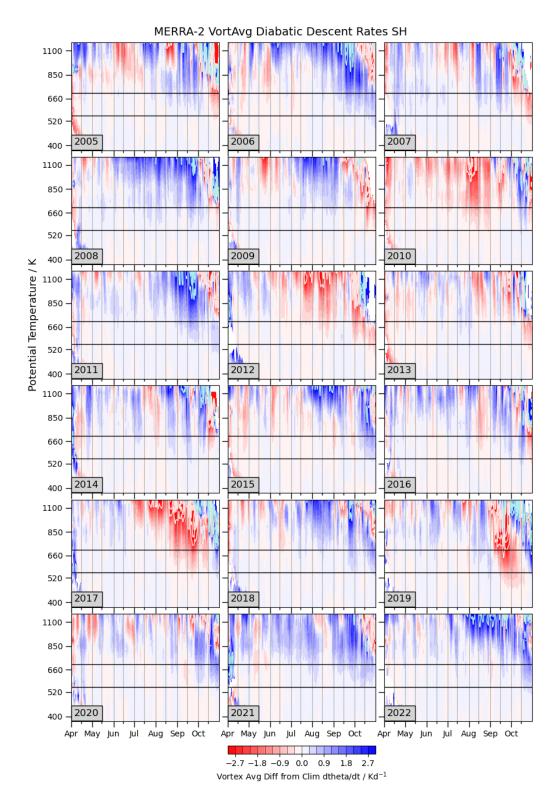
- Boone, C., Bernath, P., Cok, D., Jones, S., & Steffen, J. (2020). Version 4 retrievals for the atmospheric chemistry experiment Fourier transform spectrometer (ACE-FTS) and imagers. *Journal of Quantitative Spectroscopy and Radiative Transfer*, 247, 106939. Retrieved from https://www.sciencedirect.com/science/article/pii/S0022407319305916 doi: https://doi.org/10.1016/j.jqsrt.2020.106939
- Coy, L., Newman, P. A., Wargan, K., Partyka, G., Strahan, S. E., & Pawson, S. (2022). Stratospheric Circulation Changes Associated With the Hunga Tonga-Hunga Ha'apai Eruption. *Geophysical Research Letters*, 49(22), e2022GL100982. Retrieved 2022-11-27, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2022GL100982

MANNEY ET AL.: HUNGA TONGA H₂O EXCLUDED FROM 2022 ANTARCTIC VORTEX (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2022GL100982) doi: 10.1029/ 2022GL100982

X - 5

- Khaykin, S., Podglajen, A., Ploeger, F., Grooß, J.-U., Tence, F., Bekki, S., ... Ravetta, F. (2022, December). Global perturbation of stratospheric water and aerosol burden by Hunga eruption. *Communications Earth & Environment*, 3(1), 316. Retrieved from https://doi.org/10.1038/s43247-022-00652-x
- Randel, W. J., Moyer, E., Park, M., Jensen, E., Bernath, P., Walker, K., & Boone, C. (2012).
 Global variations of HDO and HDO/H2O ratios in the upper troposphere and lower stratosphere derived from ACE-FTS satellite measurements. *Journal of Geophysical Research: Atmospheres*, *117*(D6). Retrieved from https://agupubs.onlinelibrary.wiley .com/doi/abs/10.1029/2011JD016632 doi: https://doi.org/10.1029/2011JD016632
- Sheese, P. E., Walker, K. A., Boone, C. D., Bourassa, A. E., Degenstein, D. A., Froidevaux, L., ... Zou, J. (2022). Assessment of the quality of ACE-FTS stratospheric ozone data. *Atmospheric Measurement Techniques*, 15(5), 1233–1249. Retrieved from https://amt .copernicus.org/articles/15/1233/2022/ doi: 10.5194/amt-15-1233-2022

Figure S1. SH equivalent latitude / time series at 550 K of anomalies from the 2005–2021 climatology of (top to bottom) MERRA-2 effective diffusivity (K_{eff}) and sPV gradients and MLS temperature, N_2O , H_2O , HNO_3 , HCl, ClO, and O_3 , shown for the full Aura mission through January 2023. Black overlays are sPV contours indicating the vortex edge region.

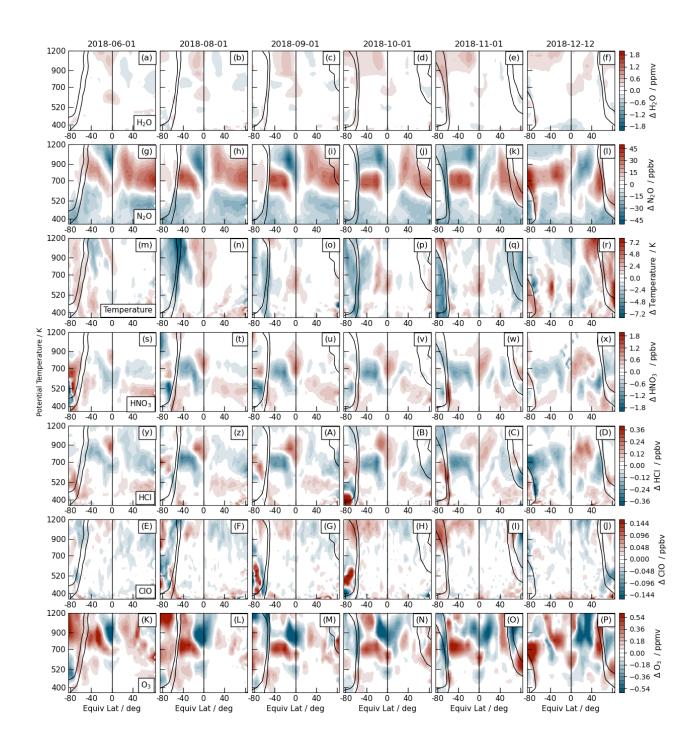

Figure S2. As in Fig. S1 but at 430 K.

Figure S3. As in Fig. S1, but for 380 K and showing only MLS species with scientifically useful data at 215 hPa and larger pressures.

Figure S4. Cross-sections of anomalies from the 2005–2021 climatology of vortex-averaged diabatic heating/cooling rates from MERRA-2 for April through October in 2005 through 2022. Rates are expressed as $d\theta/dt$. Up to three contours with an interval five times that shown in the colorbar are overlaid above the high value (cyan) and below the low value (pink) at which the color bar saturates. Overlaid horizontal lines mark 550 and 700 K. Note that the color scale has been inverted (negative values are reds) to emphasize anomalies indicating unusually strong descent.

Figure S5. As in Fig. 3 in the main text, but for 2018: Snapshots on selected days in 2018 of anomalies from the 2005–2021 climatology of (top to bottom) MLS H_2O , N_2O , temperature, HNO₃, HCl, ClO, and O₃. Black overlaid contours are two contours of sPV representative of the vortex edge region.

March 24, 2023, 7:16pm

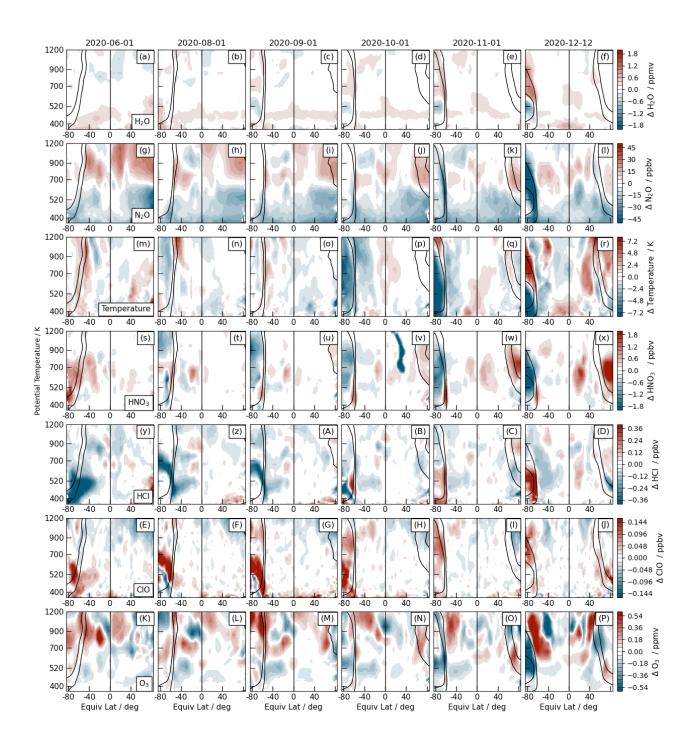


Figure S6. As in Fig. S5 but for 2020.

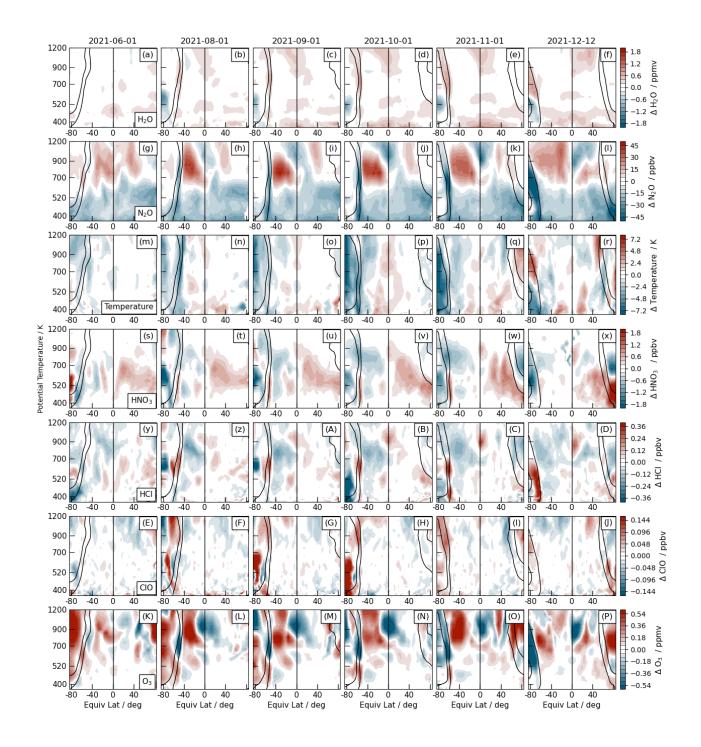
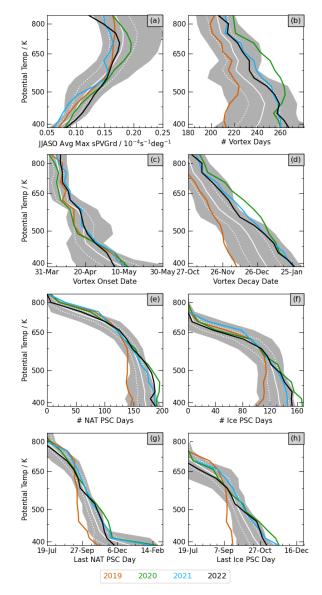
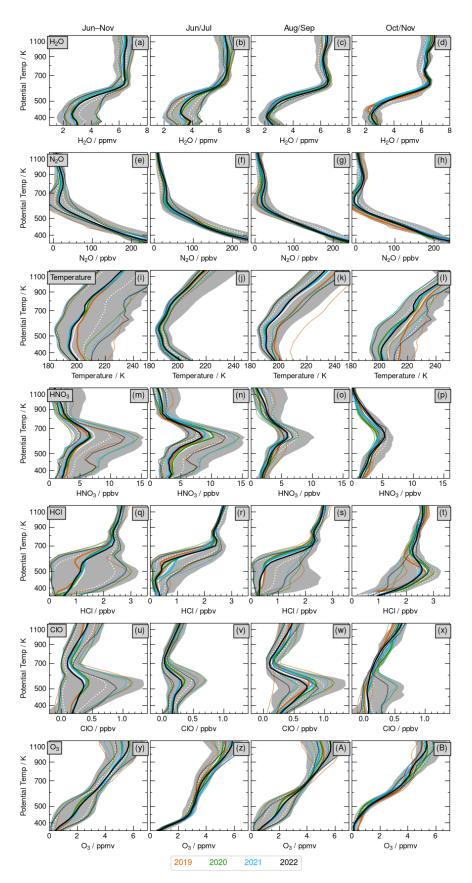




Figure S7. As in Fig. S5 but for 2021.

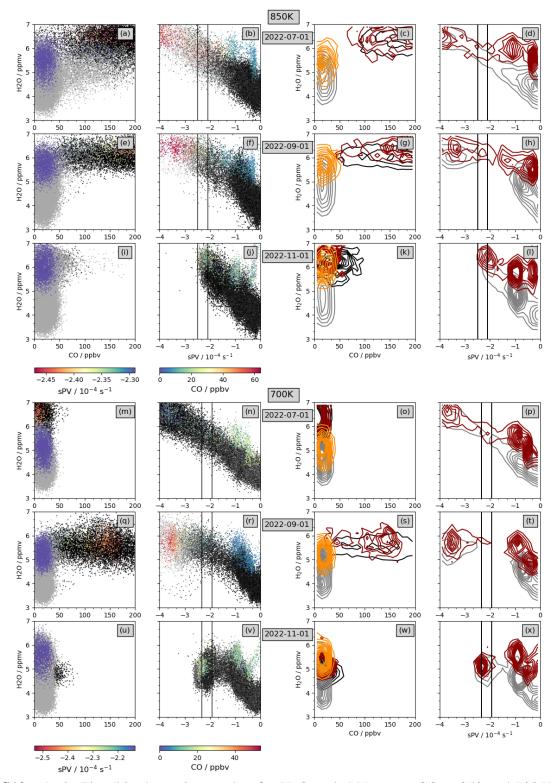


Figure S8. Profiles of summary vortex diagnostics calculated from MERRA-2 for 1979 through 2021 (excluding highlighted years). Highlighted years are 2019 (orange), 2020 (green), 2021 (cyan), and 2022 (black). Diagnostics are (left to right, top to bottom): June–October Average maximum sPV gradients; number of days when a vortex existed (defined as vortex area greater than 1% of a hemisphere); first date a vortex existed; last date a vortex existed; number of days with temperature less than the NAT PSC threshold; number of days with temperature less than the ice PSC threshold; last day temperatures were below the NAT PSC threshold; and last day temperatures were below the ice PSC threshold.

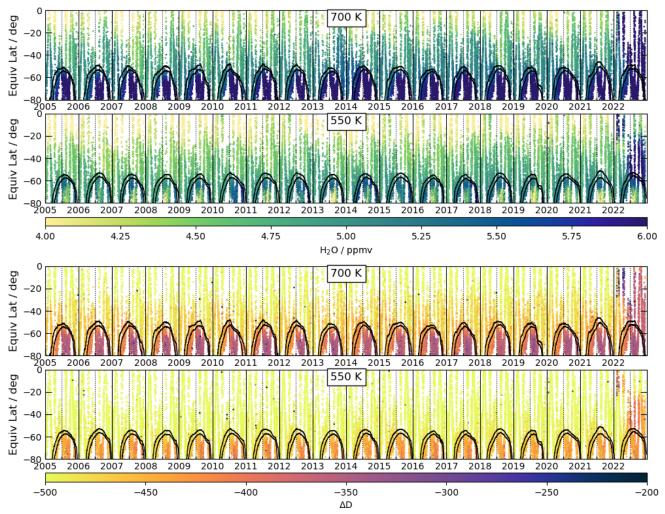


Figure S9. Profiles of vortex-averaged MLS data, averaged over (left to right) June through November; June/July; August/September; October/November. Fields shown are (top to bottom) H_2O , N_2O , temperature, HNO₃, HCl, ClO, and O₃. Grey envelope is the range excluding the highlighted years, and solid and dashed white lines are the mean and one standard deviation envelope for those years. Highlighted years are 2019 (orange), 2020 (green), 2021 (cyan), and 2022 (black).

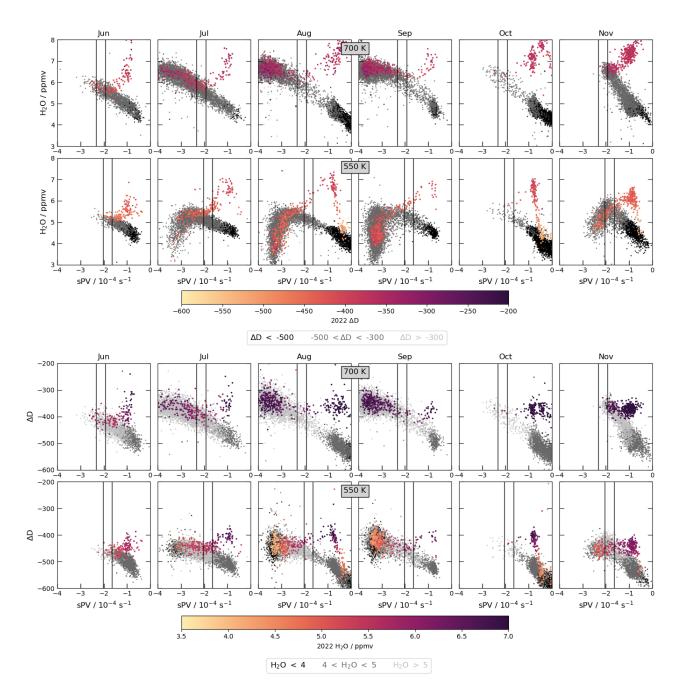

March 24, 2023, 7:16pm

Figure S10. As in Fig. 5 in the main text, but for H_2O and sPV versus CO at 850 and 700 K: Scatter (left two columns) and density (right two columns) plots of MLS H_2O (y-axis) versus CO (first and third columns) and sPV (second and last columns). Grey and black dots (contours) show values from 2005–2021 in the scatter (density) plots; for those years, black (grey) indicates x-axis values of CO or sPV characteristic of inside (outside) the vortex. For 2022, colored (purple) dots or dark red (orange) contours show sPV values inside (outside) the vortex. 2022 CO (second column) is colored such that blue/blue-green shows typical vortex values. Black vertical lines on the plots versus sPV indicate the vortex edge region.

Figure S11. 700 and 550 K EqL/time plots of ACE-FTS H_2O and ΔD (HDO/ H_2O , scaled as in Randel et al., 2012) for 2005–2022. Black overlays are sPV contours in the vortex edge region.

Figure S12. ACE-FTS H_2O and ΔD as a function of sPV, with 2022 values colored by ΔD and H_2O , respectively, and high, medium, and low values shown in black, grey, and pale grey, respectively, for preceding years from 2005 through 2021.