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Abstract

Volcanic earthquakes provide essential information for evaluating volcanic activity. As volcanic earthquakes are often character-

ized by swarm-like features, conventional methods using manual picking require much time in constructing seismic catalogs. In

this study, using a machine learning framework and a trained model from a volcanic earthquake catalog, we obtained a detailed

picture of volcanic earthquakes during the past 12 years at Kirishima volcano, southwestern Japan. We could detect earth-

quakes about 7.5 times larger than those in a conventional seismic catalog and obtain a high-resolution hypocenter distribution

through waveform correlation analysis. Hypocenter clusters were estimated below the craters where magmatic or phreatic

eruptions occurred in recent years. Increases in seismic activities, b-values, and low-frequency earthquakes were detected before

the eruptions. The process can be carried out in real time, and monitoring volcanic earthquakes through machine learning

contributes to understanding the changes in volcanic activity and improving eruption predictions.
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Key Points: 10 

• Using machine learning, earthquakes about 7.5 times larger than those in a conventional 11 
seismic catalog were detected. 12 

• Hypocenter clusters were estimated below the craters where magmatic or phreatic 13 
eruptions occurred in recent years. 14 

• Increases in seismic activities, b-values, and low-frequency earthquakes were detected 15 
before the eruptions. 16 

  17 
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Abstract 18 

Volcanic earthquakes provide essential information for evaluating volcanic activity. As volcanic 19 
earthquakes are often characterized by swarm-like features, conventional methods using manual 20 
picking require much time in constructing seismic catalogs. In this study, using a machine 21 
learning framework and a trained model from a volcanic earthquake catalog, we obtained a 22 
detailed picture of volcanic earthquakes during the past 12 years at Kirishima volcano, 23 
southwestern Japan. We could detect earthquakes about 7.5 times larger than those in a 24 
conventional seismic catalog and obtain a high-resolution hypocenter distribution through 25 
waveform correlation analysis. Hypocenter clusters were estimated below the craters where 26 
magmatic or phreatic eruptions occurred in recent years. Increases in seismic activities, b-values, 27 
and low-frequency earthquakes were detected before the eruptions. The process can be carried 28 
out in real time, and monitoring volcanic earthquakes through machine learning contributes to 29 
understanding the changes in volcanic activity and improving eruption predictions. 30 

 31 

Plain Language Summary 32 

Volcanic earthquakes are caused by the migration of magma or hydrothermal fluid and changes 33 
in the stress field. This is an essential observation for predicting volcanic eruptions. However, 34 
the comprehensive detection of volcanic earthquakes and the estimation of accurate hypocenter 35 
locations involve many difficulties. The arrival time of seismic waves in waveform records must 36 
be picked to obtain reliable hypocenter parameters. On the other hand, phase picking based on 37 
visual inspection is time-consuming. In recent years, new phase-picking methods using machine 38 
learning techniques have been developed. In this study, we obtained a detailed picture of 39 
volcanic earthquakes during the past 12 years at Kirishima volcano, southwestern Japan, using a 40 
machine learning framework and a trained model from a volcanic earthquake catalog. We 41 
detected earthquakes about 7.5 times larger than those in the conventional seismic catalog and 42 
obtained a high-resolution hypocenter distribution through waveform correlation analysis. 43 
Hypocenter clusters were estimated below the craters where magmatic or phreatic eruptions 44 
occurred in recent years. Increases in seismic activities, b-values, and low-frequency earthquakes 45 
were detected before the eruption, which may reflect a precursive signal toward eruptions. 46 
Monitoring volcanic earthquakes through machine learning could thus contribute to improving 47 
our ability to perform eruption forecasting. 48 

 49 

1 Introduction 50 

Volcanic earthquakes are activated in response to the migration of magma or 51 
hydrothermal fluids (Hayashi & Morita, 2003; Kato et al., 2015; Shelly et al., 2013) or the 52 
changes in the stress field (Toda et al., 2002). They provide important information for evaluating 53 
volcanic activities (e. g., McNutt, 1996). For accurately evaluating the characteristics of 54 
earthquake activity, a precise seismic catalog must be constructed. The construction of an 55 
accurate seismic catalog on a real-time basis is also desirable for the improvement of eruption 56 
forecasting and hazard assessment. In the conventional procedures for constructing an 57 
earthquake catalog, an earthquake is detected using an indicator, such as the short-time to long-58 
time ratio of waveform amplitude. Then, the arrival time and amplitude of the seismic phase are 59 
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picked through visual inspection to obtain reliable hypocenter locations and magnitudes. 60 
Consequently, obtaining a precise seismic catalog takes an enormous amount of time.  61 

In volcanic or geothermal regions, we often observe earthquake swarms during the 62 
activation of volcanic activity, where numerous volcanic earthquakes occur during a short 63 
period. As seismic waves from many events crowd into the waveform record with a short-time 64 
range, detecting earthquakes and phase picking is more complicated, even for expert researchers. 65 
In this regard, the matched filter method (e.g. Peng & Zhao, 2009; Shelly et al., 2007) is a 66 
powerful tool used to detect earthquakes for crowded waveform records. However, because this 67 
method involves cross-correlation analysis using waveforms of template earthquakes and 68 
continuous waveforms, detection is difficult when an earthquake occurs in a different location 69 
from the template earthquakes or when the waveform characteristics temporally change because 70 
of changes in focal mechanisms or surrounding medium, even in identical locations. Also, as the 71 
number of template earthquakes increases, the computational cost increases and real-time 72 
processing becomes more difficult. 73 

Recently, automatic event detection and phase picking using machine learning have been 74 
developed (e. g.,Mousavi et al., 2020; Rossi et al., 2018; Zhu & Beroza, 2019). These methods 75 
reveal detailed pictures of seismicity that could not be obtained using conventional methods. For 76 
example, Ross et al. (2020) detected crustal earthquakes in Sothern California and revealed 77 
highly resolved fault structures from the hypocenter distribution and temporal change of the 78 
hypocentral area related to the migration of crustal fluid within fault zones. Meanwhile, Wilding 79 
et al. (2022) revealed the detailed structure of a sill complex at the deep part of the Hawai'i 80 
volcanic system using a high-resolution earthquake catalog with a machine learning procedure. 81 
In addition to phase picking, based on machine learning, reliable information on seismic activity 82 
could be estimated using clustering based on waveform similarity (Perol et al., 2018), the spatial 83 
pattern of wave propagation (Sugiyama et al., 2021), and classification of the seismic event type 84 
(Nakano et al., 2019). 85 

Although the application of machine learning in monitoring seismic activity has been 86 
widely promoted, its application for volcanic regions is still challenging. One reason is that the 87 
existing trained models are created from the seismic catalog of ordinary earthquakes and may not 88 
fully reflect the characteristics of volcanic earthquakes. It is pointed out that applying optimally 89 
trained models matched to a target region improves the performance of detection and phase 90 
picking (Münchmeyer et al., 2022). Kim et al. (2022) constructed a deep learning model to detect 91 
seismic phase onset using a precise catalog of volcanic earthquakes at the Hakone volcano in 92 
central Japan and showed that the model improved the detection rate and accuracy of phase 93 
picking for volcanic earthquakes compared with the original trained model developed by Zhu 94 
and Beroza (2019), which they used as the starting model. 95 

In this study, we applied the architecture of machine learning developed by Zhu and 96 
Beroza (2019) and the trained model by Kim et al. (2022) to seismic data from the Kirishima 97 
volcano and discussed its availability for monitoring volcanic earthquakes and the detailed 98 
picture of volcanic activity. The Kirishima volcanic complex is located in southern Kyushu, 99 
Japan and consists of approximately 20 volcanoes (Figure 1a). At Shinmoe-dake, small phreatic 100 
eruptions occurred in August 2008 and March–July 2010. A magmatic eruption after about 101 
300 years (quasi-Plinian eruption) occurred in January 2011. Subsequently, magmatophreatic 102 
eruptions occurred again in October 2017, followed by a magmatic eruption on May 2018. A 103 
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phreatic eruption also occurred at Iwo-Yama, located about 5 km northwest of Shinmoe-dake, in 104 
April 2018. 105 

Several studies have reported the activity of volcanic earthquakes at Kirishima volcano 106 
based on a seismic catalog obtained using the conventional event detection method (Fukuoka 107 
District Meteorological Observatory and Kagoshima Local Meteorological Observatory, 2013; 108 
Yamada et al., 2015). However, the detailed spatial–temporal distribution of volcanic 109 
earthquakes and their relation to eruptive activities have not been fully clarified. Thus, we 110 
estimated a highly resolved hypocenter distribution based on phase-picking data using the 111 
machine learning method to obtain further information associated with volcanic activity. We also 112 
estimated a temporal change in b-values and event types using the frequency index. 113 
 114 

2 Data and Methods 115 

2.1 Seismic Observation 116 

We used continuous waveform data from the past 12 years (2008–2019) recorded at 30 117 
permanent stations installed in and around Kirishima volcano (Figure 1a) by the Earthquake 118 
Research Institute of the University of Tokyo (ERI), the Japan Meteorological Agency (JMA), 119 
the Research Institute for Earth Science and Disaster Resilience, and Kyushu University (Figure 120 
1a). The average station spacing at Kirishima volcano is about 2 km. Broadband seismometers 121 
are installed at ERI stations, whereas short-period seismometers with a natural period of 1 Hz are 122 
installed at other stations. Seismic waveforms are continuously recorded at 100-Hz sampling 123 
intervals at all stations. 124 
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 125 

Figure 1. Map and seismicity at the Kirishima volcano. (a) Map of Kirishima volcano showing 126 
the locations of permanent seismic stations. The inset shows the target regions with respect to the 127 
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western part of the Japanese island. The orange rectangle corresponds to that shown in (b). (b) 128 
Hypocenter distribution of earthquakes beneath Kirishima volcano for the hypocenter catalog 129 
based on machine learning. The top panel shows the epicentral distribution, and the right and 130 
bottom panels indicate the depth distribution along the N–S and E–W sections, respectively. The 131 
depth of 0 km corresponds to the sea level. The red circles show the locations of low-frequency 132 
earthquakes classified based on the frequency index. 133 

 134 

2.2 Phase Picking and Hypocenter Determination 135 

We conducted the following processing for every hour of continuous waveform 136 
recording. The continuous waveform recordings were preprocessed by removing the offset and 137 
trend and then applying a 1-Hz high-pass filter to reduce the contamination of low-frequency 138 
noise. For the waveform record at each station, phase picking was performed using the PhaseNet 139 
architecture developed by Zhu and Beroza (2019) with a trained model by Kim et al. (2022). 140 
This trained model was created based on the seismic catalog of approximately 30,000 volcanic 141 
earthquakes at Hakone volcano over the past 20 years. The probability threshold for identifying 142 
P- and S-wave onsets was set at 0.3. The phase association was conducted using the REAL code 143 
developed by Zhang et al. (2019) for the P- and S-wave arrival times picked by PhaseNet. The 144 
threshold for identification of the same event was set at ≥3 stations for P waves and ≥2 stations 145 
for S waves. The theoretical arrival time from an assumed source to each station during the phase 146 
association was calculated using the 1D velocity structure beneath Kirishima volcano that has 147 
been used for the routine hypocenter determination at Kirishima Volcano Observatory of ERI 148 
(Mikada, 1996). For the picking data identified as seismic phases from the same event by the 149 
REAL code, the hypocenter was determined using the method of Hirata and Matsu'ura (1987), 150 
and the local magnitude was determined using the maximum amplitude following the empirical 151 
relation by Watanabe (1971). The hypocenter locations of 61200 earthquakes were estimated 152 
over 12 years. 153 

We improved the original 1D velocity structure (Mikada, 1996) and estimated station 154 
corrections using the JHD method (Kissling et al., 1994) to obtain reliable absolute locations of 155 
earthquakes. In this analysis, we used earthquakes with at least eight phase pickings of both P 156 
and S waves obtained by the above procedure. With the estimated 1D velocity structure and 157 
station corrections (Figure S1), the hypocenter was determined using the hypomh_ps code 158 
(Kawanishi et al., 2009), only for the earthquake with at least four phase pickings of both P and 159 
S waves. We obtained the initial hypocenters of 55780 events. 160 

We relocated the hypocenters using the double-difference (DD) method (Waldhauser & 161 
Ellsworth, 2000). In addition to the relative arrival time data (catalog data) obtained by 162 
PhaseNet, we also used relative travel time data through waveform correlation analysis (cross-163 
correlation data). The waveforms within a time window of 0.1 s before and 0.4 s after the P- or 164 
S-wave arrival times were used for the correlation processing. For the stations where picking 165 
data were not available, the waveforms were trimmed based on the theoretical arrival time using 166 
the time window with the same length. We used the cross-correlation data with a cross-167 
correlation coefficient ≥0.8. Consequently, 4.6 million station pairs for the catalog data and 12.5 168 
million station pairs for the cross-correlation data were applied to the DD method. During the 169 
relocation process by the DD method, earthquakes with large travel time residuals or determined 170 
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in air depth were eliminated. After applying the DD method, the locations of 40296 events were 171 
finally obtained (we call this hypocenter catalog the ML catalog). 172 

 173 

2.3 b-values 174 

We estimated the temporal variation of b-values for the earthquakes beneath Shinmoe-175 
dake and Iwo-Yama using the ZMAP code (Wiemer & Wyss, 2000). The b-value is defined by 176 
the following equation. 177 

log N = a – bM.     (1) 178 

Earthquakes were selected using a time window containing 300 events, moving the time 179 
window with an 83% overlap. The seismic catalog was split before and after the occurrence time 180 
of the eruptions to avoid mixing preseismicity and postseismicity data for the eruption. 181 
Meanwhile, because the number of earthquakes beneath Shinmoe-dake was limited before the 182 
2011 eruption, we did not split the data during this eruption. For each time window, the 183 
completeness magnitudes (Mc) were calculated using the method of Wiemer and Wyss (2002). 184 
The b- and a-values in equation (1) were estimated, using the earthquakes that meet the condition 185 
of M ≥ Mc. Then, we used the maximum likelihood estimate (Aki, 1965) for the estimation of the 186 
b- and a-values. The estimation of the b-value is detailed in Text S1.  187 
 188 

2.4 Frequency Index 189 

We classified the type of seismic signal on the basis of the frequency index (FI). 190 
Examples of spectra for volcano-tectonic and low-frequency earthquakes (defined by A- and B-191 
type earthquakes, respectively, following the definition of Minakami (1974)) labeled in the 192 
seismic catalog by JMA (Figures S2, S3, and S4) are shown in Figure S5. The JMA catalog was 193 
obtained using manually picked data. Low-frequency earthquakes had a significant amplitude in 194 
the frequency range of 1–4 Hz compared with those of volcano-tectonic earthquakes. Therefore, 195 
for classifying these events, we defined the ratio of the average amplitude between 1–4 Hz and 196 
10–15 Hz in the amplitude spectrum as FI. We could estimate FI for 26966 events. The 197 
estimation of FI is detailed in Text S2. 198 

 199 

3 Results 200 

The hypocenter distribution of the ML catalog is shown in Figure 1b. For comparison, we 201 
also show the hypocenter distribution based on the JMA catalog in Figure S2. We also show the 202 
time–depth distribution and cumulative number of earthquakes beneath the Kirishima volcano in 203 
Figure 2. Clusters of volcanic earthquakes were identified beneath Shinmoe-dake, Iwo-Yama, 204 
and in the western part of Kirishima volcano. The features of hypocenter distribution on the large 205 
scale are not significantly different from those in the JMA catalog (Figures 2, 3, S2, and S3). 206 
However, the ML catalog revealed a detailed pattern of seismic activities associated with 207 
eruptive activities beneath Shinmoe-dake and Iwo-Yama. The magnitude–frequency distribution 208 
for the ML and JMA catalogs is shown in Figure S4. We obtained the hypocenters of volcanic 209 
earthquakes about 7.5 times larger than that in the JMA catalog through the machine learning. 210 
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The magnitude completeness was −0.8 for the ML catalog, whereas that of the JMA catalog was 211 
0.0, indicating an improvement in the detectability of earthquakes. 212 

  213 
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Figure 2. Depth–time distribution and the cumulative number of earthquakes. The red circles 214 
correspond to low-frequency (LF) earthquakes. The blue and red lines show the cumulative 215 
curve of volcanic and low-frequency earthquakes, respectively. The dotted vertical yellow lines 216 
show the occurrence time of main events: the 2011 Shinmoe-dake eruption, the 2016 Kumamoto 217 
earthquake, the 2017 and 2018 Shinmoedake-eruption, and the 2018 Iwo-yama phreatic eruption. 218 
(a) Whole region, (c) Shinmoe-dake, (e) Iwo-Yama. Panels (b), (d), and (f) show the cumulative 219 
curve of LF earthquakes and the ratio of LF earthquakes  to volcano-tectonic earthquakes (thin 220 
black line) in each region. We used the time window of 7 days, moving at 2-day intervals, to 221 
estimate the LF ratio. 222 

 223 

The seismic activity beneath Shinmoe-dake is shown in Figures 2c, 2d and 3a. Beneath 224 
Shinmoe-dake, numerous small volcanic earthquakes occurred in the depth range from −0.5 to 3 225 
km below the crater (Depth of 0 km corresponds to sea level), showing a vertical hypocenter 226 
lineament that may reflect the magma pathway. At Shinmoe-dake, several eruptive events 227 
occurred: small phreatic eruptions on August 2008 and March–July 2010, a quasi-Plinian 228 
eruption on January 26, 2011, a magmatophreatic eruption on October 11, 2017, and a magmatic 229 
eruption on March 1, 2018. The seismic activity was gradually activated toward the 2011 230 
magmatic eruption since 2010. The activity in the shallow part of the crater was also enhanced 231 
from March 2017 preceding the 2017 eruption. The upper depth of the seismicity area tended to 232 
gradually become shallower toward the 2017 eruption since March 2017 (Figure 2c). After the 233 
2017 eruption, the seismic activity was quiescent for approximately 1 month. From December 234 
2017, the earthquakes were activated again, showing a burst-like increment, leading to the 2018 235 
eruption. The seismic activity remained high after the 2018 eruption until October 2018. 236 

The seismic activity beneath Iwo-Yama is shown in Figures 2e, 2f and 3b. Volcanic 237 
earthquakes are concentrated in the depth range from −0.5 to 0.5 km beneath Iwo-Yama. A 238 
phreatic eruption occurred on April 19, 2018, at Iwo-Yama. In this area, seismic activity has 239 
increased since 2014. The upper depth limit of seismicity became shallower toward the 2018 240 
eruption (Figure 2c). Moreover, before the eruption, seismic activity was remarkably activated 241 
since the end of February 2018. Seismic activity quiesced for a month after the eruption and 242 
activated again from late June 2018 through April 2019. 243 

The temporal changes in the b-values within the two regions are shown in Figure 4. The 244 
b-values of earthquakes beneath Shinmoe-dake (Figure 4a) exceeded 1.2 before the 2011 245 
eruption. After the 2011 eruption, b-values remained high, dropped temporarily, and again 246 
elevated at the end of 2011. The b-value rose again to a high value of 2 in early 2013 and then 247 
gradually declined through 2015, showing slight fluctuations. From the beginning of 2017, it 248 
increased again toward the 2017 eruption. After the eruption, the b-values increased again 249 
toward the 2018 magmatic eruption. Although the fitness for the Gutenberg–Richter law is not 250 
very good in the Iwo-Yama region (Figure 4b), the b-value increased through the beginning of 251 
2016. After once dropping, we see an abrupt increase in the b-values just before the 2018 252 
phreatic eruption at Iwo-Yama. 253 

Low-frequency earthquakes concentrated on the area just beneath the crater of Shinmoe-254 
dake and Iwo-Yama. Another cluster of low-frequency earthquakes was also identified at a depth 255 
of 3 km below Karakuni-dake (Figure 1b). The temporal sequence of seismicity shows that the 256 
number of low-frequency earthquakes just below the crater of Shinmoe-dake and Iwo-Yama 257 
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increased before the eruptions (Figures 2d and 2f). From 2014 to 2015, the number of low-258 
frequency earthquakes slightly increased (Figure 2b). Although the eruption did not occur during 259 
this period, an expansion of the GPS baseline length was observed (Kurihara et al., 2019), 260 
suggesting that the supply of magmatic fluid was activated. 261 

 262 

 263 
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 264 

Figure 3. Hypocenter distributions beneath Shinmoe-dake and Iwo-yama. (a) Hypocenter 265 
distribution of earthquakes beneath Shinmoe-dake. (top) Epicentral distribution and (right and 266 
bottom) depth distributions along the N–S and E-W sections. Red circles correspond to the 267 
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hypocenters of low-frequency earthquakes. (b) Hypocenter distribution of earthquakes beneath 268 
Iwo-Yama. 269 

 270 

4 Discussion and Conclusions 271 

In this study, we developed a seismic catalog for the Kirishima volcano using automatic 272 
phase picking based on the machine learning framework. The resulting catalog was improved in 273 
terms of detectability compared with the JMA catalog based on manual phase picking (Figure 274 
S4). In this study, we obtained the detailed history of volcanic earthquakes at Kirishima volcano 275 
using the learning model derived from the hypocenter catalog at the different volcano, showing 276 
the applicability of the model. This model enables us to obtain seismic activity at volcanoes that 277 
have not been adequately developed seismic catalogs yet. Following the 2016 Kumamoto 278 
earthquake in the central part of Kyushu, numerous aftershocks occurred (e.g., Asano & Iwata, 279 
2016). The seismicity beneath Kirishima volcano did not change for both seismic catalogs 280 
(Figures 2a, S3). This result implies that event detection based on machine learning has hardly 281 
caused any false detections even if the waveforms were contaminated by wave trains from 282 
outside of the study area. 283 

We compared the seismic catalog derived from the original learning model developed by 284 
Zhu and Beroza (2019) from 2017 to 2019 to evaluate the performance of the trained model 285 
based on volcanic earthquakes (Kim et al., 2022) (Figure S7). Although the main characteristics 286 
of hypocenter distributions were not significantly different between the two catalogs, we can 287 
detect about 16% more earthquakes using the learning model derived from volcanic earthquakes 288 
compared with the original learning model, suggesting an improvement in the detectability in 289 
volcanic regions. 290 

The highly resolved seismic catalog provides important information that may correspond 291 
to precursive signals toward eruptions. We detected the activation of volcanic earthquakes before 292 
the eruptions at Shinmoe-dake and Iwo-Yama (Figure 2). The 2017 and 2018 eruptions at 293 
Shinmoe-dake occurred when the b-values were close to 1.5 (Figure 4a). We also observed the 294 
abrupt increase in the b-value before the 2018 eruption at Iwo-Yama (Figure 4b). The high b-295 
values observed during fluid-induced seismicity are interpreted as reflecting a low shear stress 296 
level on fault planes (Mukuhira et al., 2021). The activation of volcanic earthquakes with the 297 
increment of the b-values is caused by an elevation of magmatic fluid pressure (Nanjo et al., 298 
2018). The high b-values with the increment of seismic activity before an eruption (Figures 2 and 299 
4) may reflect unstable conditions in and around a volcanic conduit due to the increment of fluid 300 
pressure accompanied by the supply of magma. Meanwhile, as enough earthquakes were not 301 
obtained before the 2011 eruption at Shinmoe-dake, the detailed temporal sequence of b-values 302 
preceding the 2011 eruption could not be discussed in this study. 303 

We also detected the activation of low-frequency earthquakes before the 2011, 2017, and 304 
2018 eruptions at Shinmoe-dake (Figure 2d). The increment of the ratio of low-frequency 305 
earthquakes to volcano-tectonic earthquakes before the eruptions may reflect the interaction 306 
between magmatic and shallow hydrothermal fluids (e.g., McNutt, 1996). The activation of low-307 
frequency earthquakes at the deeper part of the volcano (deeper than 10 km) and crustal 308 
expansions due to an inflation of pressure source at the depth of 8 km were detected 309 
approximately 1 year before the 2011 eruptions, suggesting the supply of magma into the 310 
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volcanic root (Kurihara et al., 2019; Nakao et al., 2013). The rapid increment of the ratio of low-311 
frequency earthquakes since April 2010 suggests the supply of new magmatic fluid into the 312 
shallow part beneath the volcanic conduit. The expansion of the hypocenter area to the shallow 313 
region beneath Iwo-Yama since 2014 toward the 2018 phreatic eruption may reflect a gradual 314 
intrusion of hydrothermal fluid beneath the low-permeable cap structure developed in the 315 
shallow hydrothermal system (Tsukamoto et al., 2018). 316 

 317 

Figure 4. Temporal changes in b-values. (a) Shinmoe-dake and (b) Iwo-yama. The horizontal 318 
and vertical gray lines at each circle show the time window for selecting the earthquakes and the 319 
error bar of the b-value estimated using the bootstrap resampling method. Red circles represent 320 
reliable b-value estimations with residuals for the theoretical Gutenberg–Richter law distribution 321 
≤10%. Inset diagrams in panels (a) and (b) show the magnified plot around the 2017 and 2018 322 
eruptions at Shinmoe-dake and the 2018 eruption at Iwo-Yama, respectively. 323 

 324 

Using the machine learning architecture developed by Zhu and Beroza (2019) and a 325 
trained model from the seismic catalog of the Hakone volcano (Kim et al., 2022), we obtained a 326 
high-quality seismic catalog of volcanic earthquakes at Kirishima volcano from 2008 to 2019. 327 
We could produce a seismic catalog with higher detectability than the conventional seismic 328 
catalog based on manual phase picking and could estimate the highly resolved hypocenter 329 
distribution through relative hypocenter relocation using wave cross-correlation analysis. From 330 
the seismic catalog, the activations of volcanic earthquakes and increment of b-values were 331 
detected preceding the magmatic and phreatic eruptions at Kirishima volcano. This improved 332 
detectability enables evaluating eruption risks through statistical analysis based on b-values and 333 
the temporal sequence of low-frequency earthquake activity, as well as the spatial–temporal 334 
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sequence of volcanic earthquakes. Using a standard Linux machine, the computation time to 335 
obtain initial hypocenters for a 1-h waveform record is only a few minutes. Therefore, this 336 
system contributes to the improvement of our ability to perform eruption forecasting. 337 

 338 
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