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Abstract

Currently, climate change is considered as an important factor affecting nutrient loads introduced through riverine systems into
the Baltic Sea. Although the prospect of a large increase in pollution has long seemed very real, it still does not translate
into planning of effective remedial actions. One of the factors limiting the development of such activities is the scale of
simulations, focusing generally on catchment outlet profiles. To fill this gap and enable a step forward in understanding
responses towards future predictions in a higher resolution scale (subcatchment), we assessed nutrient load contribution using
calculation profiles localised along a main watercourse and its tributaries. To track spatial and seasonal changes of total
nitrogen and phosphorus under short- and long-term (RCP4.5 and RCP8.5) climate change scenarios we used the digital
platform Macromodel DNS/SWAT. Having at our disposal a catchment model with a good performance we could follow not
only total load changes in particular subcatchments, but also track localisation of the pollution sources and their direct impact
on load estimations. Our results showed an increase of the loads, especially from the agricultural landuse type, up to 34% for
TN and 85% for TP in the most extreme scenario. Moreover, forest areas have been noted as highly reactive to the climate
changes, and through their localisation able to distinctly alter nutrient outflow. Finally, the contribution of urban areas should
be further investigated since the dynamics of nitrogen and phosphorus release from impervious surfaces is noticeably different
here than from the other diffuse sources.
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Key Points: 10 

• Spatio-temporal trends of nutrient loads from various sources have been tracked in the 11 
subcatchment scale under climate change scenarios 12 

• Climate change will result in the load increase from the whole catchment by 34% for 13 
total nitrogen and 85% for total phosphorus 14 

• Outputs from individual nutrient sources could grow up even by 187% for total nitrogen 15 
and 302% for total phosphorus  16 
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Abstract 17 

Currently, climate change is considered as an important factor affecting nutrient loads 18 
introduced through riverine systems into the Baltic Sea. Although the prospect of a large increase 19 
in pollution has long seemed very real, it still does not translate into planning of effective 20 
remedial actions. One of the factors limiting the development of such activities is the scale of 21 
simulations, focusing generally on catchment outlet profiles. To fill this gap and enable a step 22 
forward in understanding responses towards future predictions in a higher resolution scale 23 
(subcatchment), we assessed nutrient load contribution using calculation profiles localised along 24 
a main watercourse and its tributaries. To track spatial and seasonal changes of total nitrogen and 25 
phosphorus under short- and long-term (RCP4.5 and RCP8.5) climate change scenarios we used 26 
the digital platform Macromodel DNS/SWAT. Having at our disposal a catchment model with a 27 
good performance we could follow not only total load changes in particular subcatchments, but 28 
also track localisation of the pollution sources and their direct impact on load estimations. Our 29 
results showed an increase of the loads, especially from the agricultural land use type, up to 34% 30 
for TN and 85% for TP in the most extreme scenario. Moreover, forest areas have been noted as 31 
highly reactive to the climate changes, and through their localisation able to distinctly alter 32 
nutrient outflow. Finally, the contribution of urban areas should be further investigated since the 33 
dynamics of nitrogen and phosphorus release from impervious surfaces is noticeably different 34 
here than from the other diffuse sources. 35 

Plain Language Summary 36 

This paper describes how climate change will affect the amount of nutrients in a small river 37 
catchment in the Baltic Sea region. While it is known that climate change can increase nutrient 38 
loads, effective actions to prevent them are still lacking. Big picture based on whole catchment is 39 
still poor in the terms of finding nutrient “Hot Spots”. In this research, we looked at a more 40 
detailed scale to see where the nutrients are coming from and how they're changing over time. 41 
We used computer modelling to show that the amount of nutrients coming from agriculture, 42 
forests and city areas will increase due to climate change. Overall, the amount of nitrogen can 43 
raise by 34% and the amount of phosphorus by 85%. Our results can be the basis for making 44 
decisions regarding actions aimed at improving the condition of surface waters and counteracting 45 
climate change effects. 46 

1. Introduction 47 

The problem of nutrient outflows from the HELCOM member countries remains 48 
unresolved (Capell et al., 2021; Preisner et al., 2020; Räike et al., 2020). In addition, pressure on 49 
local, regional and national surface waters within the Baltic Sea catchment area is constantly 50 
increasing (Thorsøe et al., 2022). There are particular concerns about the future of nutrient loads 51 
discharged into this water body from Polish rivers, as they remain major contributors to its 52 
eutrophication (Gustafsson et al., 2012). Although numerous actions have been taken to improve 53 
this situation, their effects should be considered very limited, and definitely, insufficient. So far, 54 
simulation studies have focused on the scale of entire catchments without focusing on the 55 
sources of these problems concentrated in individual sub-basins. However, they allowed to 56 
indicate the projected climate change as another factor influencing non-point sources of 57 
pollution, and consequently causing a significant increase in the loads of nutrients introduced 58 
into rivers. 59 
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Moreover, they also indicate that particularly at risk are small- and medium-sized 60 
catchments or its parts (subcatchments), intensively used for agriculture, from where qualitative 61 
information is missing, or estimated just from the main watercourse data. In such cases, different 62 
modelling tools have been proven to be especially a handful, and exploited in various spatial and 63 
time scales (Andersen et al., 2006; Bai et al., 2019; Fu et al., 2019; Marcinkowski et al., 2017; 64 
Sharps et al., 2017; Sperotto et al., 2019) Through the use of Geographical Information System 65 
data (GIS) these tools allow for the prioritisation of specific subcatchments (Bhattacharya et al., 66 
2020), and identification areas and sources having a pronounced share in the total load from the 67 
discussed catchment, and require dedicated remediation actions (Bojanowski et al., 2022). 68 
However, results of analyses focused on the impact of future temperature and precipitation 69 
changes on nutrient loads, and in the subcatchment scale, are still difficult to find. Therefore, the 70 
current study is motivated by the willingness to improve the understanding of causes and the 71 
extent of these changes by simulations performed on a more precise scale.  72 

The goal of this study is the first comprehensive evaluation of total nitrogen and 73 
phosphorus loads released from different sources (point sources, agriculture, urban runoff, and 74 
forestry) under climate change. The simulations with use of the digital platform – Macromodel 75 
DNS/SWAT (Discharge–Nutrient–Sea/Soil & Water Assessment Tool) (Orlińska-Woźniak, 76 
2020; Wilk et al., 2017; Wilk et al., 2018) were performed for the middle-sized lowland 77 
catchment of the Wełna River (part of the Odra River basin) in central Poland, which was 78 
divided into seven subcatchments reflecting the local hydrological network and terrain features. 79 
Therefore, the temporal and spatial changes of nutrient loads have been tracked on the 80 
subcatchment level enabling detection of current and future trends in specific source contribution 81 
into the total catchment loads. Our approach also enabled identification of the most responsive 82 
sources, i.e., vulnerable areas (Hot Spots), and pressures on the quality of the riverine 83 
environment. Since the applied modelling tool proved to be fully scalable, therefore, it offers a 84 
broad range of instruments for decision makers. 85 

2. Methods 86 

2.1 Analysed area 87 

The Wełna River catchment is located in the belt of central European lowlands and 88 
covers an area of 2 621 km2. The river flows 118 km from the lake located 10 km north-east of 89 
the town of Gniezno and discharges into the Warta River (Odra River basin) near the town of 90 
Oborniki. The whole catchment is covered mostly by agriculture (72%), while forested and 91 
urban areas constitute 22% and 4%, respectively (Table 1). For the purpose of the following 92 
analyses, the Wełna River catchment has been divided into 7 subcatchments (Figure 1) with two 93 
covering the direct catchment of the main river (1 and 7), and five representing subcatchments of 94 
the Wełna River tributaries (2, 3, 4, 5, and 6). Although agriculture remains the dominant land 95 
use form for each of the subcatchments, their share varies from 56%–86%. A similar range of 96 
variability applies to forested areas with the lowest share in subcatchment 2 (6%), and the 97 
highest in 6 (43%). Urban areas constitute generally between 2 and 5% of each subcatchment 98 
total area, with the highest share reflecting the area occupied by the town of Gniezno (1). While 99 
water areas (0–4%) represent the share of the land covered generally by lakes.  100 

In the analysed area polar-sea air masses prevail, which make summers cooler and 101 
winters milder than in the eastern more continental parts of the country. The average annual 102 
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2.2 Input Data and Base Scenario 112 

Basic information on the Wełna River, i.e., daily flow rates and nutrient concentrations in 113 
the closing profile of the catchment (Oborniki), has been obtained from the state monitoring 114 
services (Institute of Meteorology and Water Management – National Research Institute – 115 
IMGW–PIB), and State Environmental Monitoring – SEM) (Table S1). Other data, such as maps 116 
of elevation, river network and soil maps, as well as meteorological data, necessary for the 117 
development of an accurate representation of the studied catchment area on the digital platform – 118 
Macromodel DNS/SWAT, were also obtained from the state repositories. Data on land use has 119 
been sources from the Corine Land Cover, while detailed information on emissions from point 120 
sources have been obtained mostly from the Local Data Bank of statistical information (Table 121 
S1). The year 2017 was selected for the analyses, which was characterised by the maximum 122 
amount of monitoring data for both flows (365 measurements) (IMGW–PIB), and total nitrogen 123 
(TN) and total phosphorus (TP) (12 measurements – SEM). The average air temperature in 2017 124 
in Poland was 1.5°C higher than the long-term average (1971–2000), and was over 10°C, which 125 
resulted from the warm autumn at the end of the year. The time of snow cover presence was 126 
shorter than the long-term data, and the rest of the year was classified as thermally normal. 127 

The study used the digital platform – Macromodel DNS with the SWAT module, 128 
described in detail in (Orlińska-Woźniak et al., 2020; Szalińska et al., 2021; Wilk, 2022). This 129 
advanced dynamic tool tracks nitrogen and phosphorus migration paths in a river basin taking 130 
into account their spatial and temporal variability. Apart from a very extensive input database 131 
depicting catchment specificity, natural and anthropogenic processes affecting transport and 132 
transformation of nutrients have also been included in this platform. The SWAT module (version 133 
2012) is a tool which operates in the geographic information system (GIS) and is fully integrated 134 
with it and uses data on land use (forests, agriculture, and urban areas), and soil types (31 135 
classes). Based on this data a total of 2,824 hydrological response units (HRUs), homogeneous in 136 
terms of vegetation, soil, and topography, have been identified for the studied Wełna River. 137 
Using a digital terrain model (DEM) these HRUs have been finally aggregated into the seven 138 
subcatchments used for this study. Simulation, transport, and transformation of nutrients required 139 
for the quantitative component of the model have been based on the water balance equation. It is 140 
worth mentioning that this tool also takes into account organic and inorganic forms of nitrogen 141 
and phosphorus. In this study, the results of the model are presented as loads of TN and TP. To 142 
verify that the model properly predicts loads of nutrients, results are calibrated with the TN and 143 
TP values resulting from SEM. Moreover, the model was calibrated not only on the TN and TP, 144 
but also on its particular forms (nitrate, ammonium, and organic nitrogen and phosphates) 145 
(SWH–PW, 2020). 146 

Diffuse sources of nutrients from the different types of land use (agricultural, forest, and 147 
urban) in the SWAT model were simulated in the land phase of the catchment. In this phase, the 148 
model simulates both the infiltration of nutrients into the soil (fertilisation, plant biomass, and 149 
precipitation), and their removal from it (volatilization, denitrification, erosion, and surface 150 
runoff). Additionally, changes in the distribution of nutrients in the soil (uptake by plants) and 151 
the low mobility of phosphorus itself are also taken into account. Moreover, it is assumed that 152 
pollutants from the municipal and industrial point sources are introduced directly into the 153 
riverbed phase. The load of nutrients from atmospheric deposition affects both the land and river 154 
phases due to the presence of two deposition mechanisms in the SWAT module, i.e., wet and dry 155 
deposition. The model also allows for the determination of nutrient loads generated as a result of 156 
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natural processes of nitrogen and phosphorus transformation, and transport in the soil, with the 157 
omission of all anthropogenic pressure. 158 

In this study, the SUFI-2 algorithm (Khalid et al., 2016) was used to investigate SWAT 159 
module sensitivity and uncertainty. Sensitivity analysis performed with the Latin Hypercube 160 
One-factor-at-a-Time (LH-OAT) sampling approach (Ahn et al., 2023) was used to identify the 161 
most influential model parameters for simulating the observed data. It gives two types of results, 162 
the value of statistics “t”, and the level of significance “p”. The smaller the value of “p”, the 163 
more sensitive the parameter. In turn, the value of “t” indicates the intensity and direction of 164 
change of a given parameter (positive values mean its increase and negative values a decrease) 165 
(Tables S3-S6). 166 

The SWAT module for the Wełna River has been calibrated, verified, and validated using 167 
the SWAT–CUP software (Abbaspour, 2013) which was described in detail in Bojanowski et al., 168 
2022. Flow data for the 18-year period (2001–2018) came from the water gauge stations on the 169 
Wełna River (Pruśce and Kowanówko), and its tributary (Flinta River – Ryczywół). The nitrogen 170 
and phosphorus concentration in the catchment was gathered from the SEM stations localised at 171 
the Wełna River (Oborniki and Rogoźno), and covered a period of 13 years (2005–2018). Three 172 
statistical measures, coefficient of determination (R2), percent bias (PBIAS), and Kling-Gupta 173 
efficiency (KGE), have been used to indicate the Wełna River model performance. For flow, the 174 
calibration and verification coefficients R2, KGE, and PBIAS classified the model performance 175 
generally as good and very good for the main river (Wełna), and satisfactory and good for its 176 
tributary (Flinta). During the validation procedure, all coefficient values rated the model 177 
performance for daily flow simulations as very good. For nitrogen and phosphorus, the model 178 
performance for TN simulations can be considered as very good or good, according to the all-179 
applied coefficients. Lower model performance, mostly satisfactory, was observed for TP mainly 180 
due to the variability of phosphorus temporal distribution patterns. 181 

The final simulation of the model, which has undergone calibration, verification, and 182 
validation procedures, has been used in the current study as a baseline scenario (BL) to provide 183 
data series for TN and TP loads from 5 described above emission sources (AGRO, FOREST, 184 
URBAN, POINT, and BACKGROUND) at the closure of 7 subcatchments with a monthly time 185 
step. Loads assigned into the individual subcatchments of the Wełna River tributaries (2, 3, 4, 186 
and 5) resulted from loads originating from the given subcatchment as simulated by the SWAT 187 
model. For the subcatchments representing the main river (1 and 7) they were obtained by 188 
subtraction of loads from upstream subcatchments from the loads resulting in the closure of the 189 
subcatchment located downstream. Therefore, the sum of all assigned loads is equal to the loads 190 
estimated at the Wełna River River closure. 191 

2.3 Climate Scenarios 192 

The climate scenarios have been developed using the UAP (Urban Adaptation Plans) 193 
project predictions (UAP, 2023), based on the data from the Euro-CORDEX, Regional climate 194 
models (RCM) (Dosio, 2016; Rummukainen, 2016), and the Global Climate Models (GCM) 195 
(Yang et al., 2019). Data from the Poznań – Ławica synoptic station (52.416885, 16.834444) has 196 
been used, and is located 25 km away from the Oborniki calculation profile. The statistical 197 
postprocessing (downscaling) (Eum et al., 2017; Iturbide et al., 2019) was performed using the 198 
tools available in the R environment (R, 2023). The climate condition analysis in the UAP 199 
project covered the moderate (RCP4.5) and extrapolative (RCP8.5) scenarios, and two future 200 
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The implemented V1–V4 scenarios will result in an increase of nutrient loads for the 230 
Oborniki calculation profile. The TN loads discharged from the Wełna River catchment will be 231 
higher by over 400 ty-1 (19%) in the short-time perspective (V1 and V3), while in the long-time 232 
perspective this increase will be even higher, reaching almost 750 ty-1 for V2 and V4, 233 
respectively (about 32–34%). Similarly, for TP, a load increase of almost 12.5 ty-1 (24–28%) 234 
should be expected in the short-time perspective (V3 and V1, respectively), while the long-term 235 
prediction will bring TP loads elevated by more than 44 ty-1 (57% for V2, or even 85% for V4) 236 
(Table S2). 237 

The climate change scenario simulations for the individual subcatchments displayed even 238 
more pronounced and variable nutrient load changes. Generally, the future TN and TP load 239 
increase is expected to reach higher values in the long-time perspective scenarios, as observed 240 
previously for the entire catchment. In case of the TN loads, the increase ranged from 14 – 222 241 
ty-1 (respectively 11–31%) for all subcatchments (1–6), whereas for subcatchment 7 these 242 
changes are expected to be almost 150 ty-1 (increase of 89% to 127%). For the TP loads, higher 243 
changes, in each of the adopted scenarios, are to be expected in subcatchments 4, 6, and 7, where 244 
they can reach an increase of over 149% under V4. While in the remaining subcatchments the 245 
increase will average about 23% for V1 and V3, and 57% in V2 and V4. 246 

3.2. Source Attributed Total Nitrogen and Phosphorus Loads 247 

Following the approach adopted in the previous study (Bojanowski et al., 2022), nutrient 248 
loads attributed to the five different sources (AGRO, FOREST, URBAN, POINT, and 249 
BACKGROUND) were also tracked in the current approach. The average values for the entire 250 
catchment area for the first three are shown in Figure 3. Since agriculture (AGRO) is the 251 
dominant type of land use in the studied catchment, this source accounts for 86% and 56% of the 252 
total TN and TP loads, respectively in the BL. However, for the individual subcatchments these 253 
shares clearly differ from 64% in subcatchment 7 to 89% in subcatchment 3 for TN, and from 254 
44% in subcatchment 7 to 74% in subcatchment 2 for TP. Implementation of the climate 255 
scenarios showed the pronounced susceptibility of this source to the future changes to the 256 
combined effects of precipitation and temperature changes. Generally, a considerable increase of 257 
AGRO loads should be expected in the closing profile of the Wełna River catchment (Oborniki), 258 
approx. by 382–734 ty-1 (from 21–41%), and 9–28 ty-1 (from 31–97%) for TN and TP loads, 259 
respectively. As observed previously, the highest values were detected for the long-term 260 
scenarios (V2 and V4). The response of the AGRO source at the level of individual 261 
subcatchments to the climate scenarios displayed an even higher increase, up to 187% in 262 
subcatchment 7 (approx. 135 ty-1, V2) for TN, and to 225% (approx. 5 ty-1, V4) in subcatchment 263 
6. 264 
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subcatchments (4 and 6) were completely indiscernible, while the highest values were noted for 281 
subcatchment 1, where the town of Gniezno is located, and reached approx. 12 ty-1, and 0.6 ty-1 282 
for TN and TP, respectively. The changes induced by the incorporated climate scenarios again 283 
displayed a more pronounced impact of the long-term scenarios (V2 and V4), especially for the 284 
TP loads. The predicted changes display an increase of this nutrient load by 4 ty-1 (215%) for the 285 
total catchment TP load, and by 0.6 ty-1 (302%) for subcatchment 7. 286 

The point source of nutrients (POINT) constituted the second largest source among 287 
subcatchments, accounting for the approx. 9% and 26% of the total TN and TP, respectively. 288 
Similarly, the URBAN nutrient loads showed a spatial distribution related to the localisation of 289 
these sources (Figure 1). Therefore, the largest loads should be expected in subcatchment 7, 290 
where the town of Oborniki is located, reaching approx. 27.5 ty-1 and 1.7 ty-1 for TN and TP, 291 
respectively. As expected, future changes of temperature and precipitation will generally have 292 
little impact on this type of source, with changes not exceeding -11% of the pertinent loads. 293 

In the previously adopted approach (Bojanowski et al., 2022), the BACKGROUND 294 
source of nutrients has also been distinguished and consisted of both atmospheric deposition and 295 
the natural background. Since simulations for this source have certain limitations, related to, for 296 
example the SWAT model specificity and lack of detailed data on both the dry and wet 297 
deposition in Poland, only the total values are discussed in the rest of the study. For the closing 298 
profile of the Wełna River catchment (Oborniki) in the BL they reached nearly 99 ty-1 and 5.5 ty-299 
1 for TN and TP, respectively, and under the implemented climate scenarios these values could 300 
increase by a further 30% (above 29 ty-1 – V2) for TN, and 140% (almost 8 ty-1 – V4) for TP 301 
loads. 302 

To track temporal changes in the BL and climate scenarios, the monthly values of TN and 303 
TP loads were also extracted from the Wełna River model and discussed for the three main 304 
nutrient sources in this catchment (AGRO, FOREST, and URBAN). As expected, the pattern of 305 
these changes for the AGRO and FOREST sources was similar, with the largest increases 306 
occurring in the autumn and winter periods due to the forecasted precipitation and temperature 307 
changes. For AGRO, these changes reached 87% (approx. 180 tm-1 – tonnes per month), and 308 
302% (approx. 9 tm-1) for TN and TP, respectively in October under V2. While for the FOREST 309 
source they reached 134% (approx. 7 tm-1 – V2), and even over 735% (approx. 2 tm-1 – V4) for 310 
TN and TP, respectively (October and December). As for the URBAN source, the monthly 311 
pattern of changes notably differed. The highest response from this source could be expected in 312 
late spring, i.e., May and June. By far the weakest response to changes in precipitation and 313 
temperature is understandably exhibited by TN and TP loads from the POINT source, regardless 314 
of the month (maximum of 12% and 17% increase in January for V2 and V3, respectively) 315 
(Table 2).  316 
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Table 1. Total nitrogen and phosphorus load results for the baseline scenario in individual 317 
months for the selected sources (AGRO, FOREST, and URBAN). 318 

Month AGRO FOREST URBAN AGRO FOREST URBAN 
 TN – BASE [kgm-1] TP – BASE [kgm-1] 

12 177 582 8 278 2 492 4 525 261 190 
1 247 996 4 328 2 078 1 899 207 133 
2 182 033 7 336 4 826 6 532 261 144 
3 250 232 7 424 3 865 1 941 169 113 
4 110 265 3 483 2 738 1 372 143 87 
5 70 472 2 536 3 423 849 110 99 
6 36 436 1 601 5 380 397 88 139 
7 42 464 2 671 3 718 1 099 261 197 
8 146 002 3 661 1 915 2 195 119 154 
9 141 004 2 531 1 939 1 698 123 146 

10 206 308 5 312 2 305 3 024 251 234 
11 189 328 7 319 2 346 3 235 237 189 

Total 1 800 123 56 478 37 026 28 766 2 231 1 823 

4. Discussion 319 

Simulations of the climate forecast impacts on pollutant loads from agricultural 320 
catchments are generally aimed at estimating changes in transport, changes, and loads of 321 
nitrogen and phosphorus from designated areas (Cho et al., 2016; Huttunen et al., 2015; 322 
Marcinkowski et al., 2017; Merriman et al., 2019; Molina-Navarro et al., 2018; Ockenden et al., 323 
2016; Shi et al., 2021; Tattari et al., 2017). Therefore, in the current approach we decided to 324 
analyse the spatial and temporal variability of runoff as part of future climate projections, taking 325 
into account both different sources of nutrients, and the division into subcatchments. The original 326 
division of the Wełna River catchment into subcatchments, used for comparison of different 327 
methods to estimate nitrogen and phosphorus loads from different sources (Bojanowski et al., 328 
2022), enabled a step forward in understanding responses of riverine catchments towards future 329 
precipitation and temperature changes. Having at our disposal a catchment model with a good 330 
performance (based on statistical measures), we could follow not only total load changes in 331 
particular subcatchments, as in previous studies, but also track localisation of the pollution 332 
sources and their direct impact on load estimations, and moreover, do it in future time-horizons. 333 

Even relatively small catchments such as the Wełna River, dominated by one type of land 334 
use, are not homogeneous. The diversity of individual features of each of their subcatchments 335 
(location, area, land use, crops, soils, and slopes) significantly affect total loads of nutrients 336 
discharged from these areas. Our research showed first that the differences in these loads, in 337 
calculation profiles closing each of the analysed subcatchments (Figure 1), differ by almost 7 and 338 
3 times for total nitrogen and phosphorus, respectively. Such large differences in nutrient loads 339 
should not be surprising since the individual subcatchments differ significantly in total surface 340 
area (from 164 km2 – 688 km2). Moreover, the predominant share of these subcatchments is 341 
occupied by agriculture which is the main driver of nutrient pollution in this catchment. 342 
However, it should be noticed that total loads are not simply driven by acreage of agricultural 343 
land use. When unit loads for individual subcatchments in the BL are taken into consideration 344 
(from 327 to 1538 kgkm-2 of TN, and from 9 to 30 kgkm-2 of TP), the influence of other factors 345 
is clearly visible. Among them especially is slopes (e.g., differences between the flat north-346 
western and central part vs. southern subcatchments), and also soil type, crops, and thus 347 
fertilisation and agrotechnical treatments. 348 
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predicted climate changes will deepen the problem of agriculture as the main pressure on surface 407 
waters for most months of the year. Particularly large changes can be expected in the autumn and 408 
winter months (even by more than 210 tm-1 in January for V4, and more than 9 tm-1 in October 409 
for V2, TN and TP respectively), where the temperature is expected to increase by even more 410 
than 2oC. It will result in the shortening of the frost and snow cover period protecting the soil 411 
against the erosive action of increased precipitation, and will additionally enlarge nutrient loads 412 
(Huttunen et al., 2015). A similar monthly pattern has been observed for forest areas, however, 413 
considerable differences in nutrient loads should be noticed. From November to March, forests 414 
release the largest TN and TP loads (maximum 8.2 tm-1 and 0.3 tm-1, respectively) when leaf 415 
litter can additionally increase nutrient loads in the outflow from this type of source (Bratt et al., 416 
2017). Forests also show greater reactivity to changes in individual months than agriculture, 417 
which is visible for TN throughout the year, and for TP in autumn and winter (Figure 5). As for 418 
urbanised areas, they differ from other sources in terms of response to monthly changes in 419 
precipitation and temperature. Especially in the long-term RCP8.5 scenario (V4), where 420 
previously discussed changes in the behaviour of both elements in impervious areas are the most 421 
noticeable. As a consequence, we can observe a clear decrease in TN loads for most of the year, 422 
and an increase in TP loads at the same time (Figure 5). 423 

As for the point sources our results showed that they will be the least affected by the 424 
discussed changes. Their attributed nutrient loads have been almost constant in the scale of the 425 
whole catchment with changes resulting from the introduced variant scenarios at the level of 0–426 
2%. While at the level of individual subcatchment, differences between the BL and V1–V4 were 427 
between -11% and +11% for both TN and TP. While general invariability of loads from this 428 
source, in relation to weather conditions is evident, the minor differences at the subcatchment 429 
level results mainly from localisation of point sources and efficiency of treatment techniques. It 430 
should be also noted that available demography data does not predict major changes in the 431 
population of this area (Statistics Poland, 2022). 432 

Moreover, the available data on spatial land use changes, based on Corine Land Cover 433 
(EEA, 2002; EEA, 2018), although does not provide a forecast, enables a valuable trend analysis. 434 
Changes in spatial development between 2002 and 2018 indicate mainly a growth of urban areas 435 
in the studied catchment by an average of 2 km2y-1. Therefore, the impact of land use changes on 436 
nutrient loads seem to be negligible in this catchment when compared to the impact of climate 437 
change. Such a trend has been confirmed for other catchments (e.g., Luo et al., 2020), however, 438 
the impact of socio-economic changes has also been recently discussed (Bartosova at al., 2019; 439 
Huttunen et al., 2021; Pihlainen et al., 2020). Since translation of shared socio-economic 440 
pathway narratives (SSP) (Riahi et al., 2017) to fertiliser and crop prices, and estimation of the 441 
impact of these changes on nutrient loading to water bodies, it is still far from being uniform; 442 
further studies on this subject are desirable. This clearly identifies gaps which can be addressed 443 
by extending variant scenario simulations under the Macromodel DNS/SWAT climate scenarios 444 
to include planned and potential nutrient stewardship techniques, and water management 445 
activities. 446 

Such an approach is particularly desirable in catchments belonging to areas supplying 447 
water bodies particularly at risk of eutrophication. Waters of the Baltic Sea have been recognised 448 
for many years as being eutrophied due to the high inflow of nutrients from inland and 449 
atmospheric deposition (Gustafsson et al., 2012; HELCOM, 2021; Pedde et al., 2017). Moreover, 450 
the Helsinki Commission’s (HELCOM) reports, and many authors indicate clearly that 451 
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agriculture is the main source of nutrients discharged into the Baltic Sea (HELCOM, 2011; 452 
HELCOM, 2022; Piniewski et al., 2014). Similar studies have also identified that predicted 453 
climate change will increase nutrient outflow from these areas in the future (Arheimer et al., 454 
2012; Andersson et al., 2015; Friedland et al., 2012; McCrackin et al., 2018). Although the 455 
Wełna River is not discharging directly into the Baltic Sea through the hydrologic network, it 456 
contributes to the total riverine input into this sea basin. Moreover, a foreseen increase of 457 
nutrient loads from this relatively small area (2 621 km2) can reach in a long-term perspective up 458 
to 34% of TN, and 85% of TP in the scale of the whole catchment. Therefore, it serves as a good 459 
example illustrating the current situation related to the nutrient management issues in this part of 460 
the Baltic Sea catchment. 461 

The whole area of Poland is designated as a vulnerable zone in the terms of the so-called 462 
Nitrate Directive (91/676/EEC), and measures aimed to reduce nitrate input are covered by the 463 
adequate program. However, it should be noted that the parallel program for phosphorus has 464 
never been created. Moreover, the national system of water services fees is not whatsoever 465 
related to the quantity of discharged nitrogen and phosphorus loads, nor to their concentrations in 466 
wastewater (excluding fees for exceeding substances specified in water permits). Also, nutrient 467 
emission from agricultural sources (diffuse losses) is not included in the fee system in any way. 468 
Therefore, these sources are not subjected to the polluter pays principle. Enforcement of these 469 
fees, although difficult to be introduced to national legislation and modelling tools, could 470 
contribute to changing the balance of nutrient sources into the environment. It would be also 471 
fully compatible with current insights on socio-economic-driven changes in the environment ( 472 
Olesen et al., 2019; O’Neill et al., 2014). Furthermore, projects of the second update of Polish 473 
River Basin Management Plans (IIaPGW) basically do not contain technical measures aimed at 474 
reduction of agricultural origin diffuse nutrient load (SWH–PW, 2022). Most measures in this 475 
category are focused on administrative, educational, or policy activities. This as well limits their 476 
impact assessment with the tool on the SWAT software. The effects of IIaPGW on agricultural 477 
loads may be implemented only by modifying input of scenarios i.e., reducing fertiliser doses 478 
and agricultural practice calendars, reducing surface runoff, and modifying spatial development 479 
of buffer zones. However, modification of agricultural practices and crop production in SWAT 480 
input (Xie et al., 2017), fertilisation intensity (Zhang et al., 2020), and management operations 481 
offered by the SWAT tool (Himanshu, 2019) should be thoroughly tested if such measures are 482 
sufficient to prevent effects of climate changes on nutrient loads. 483 

The performed analyses in the Wełna River catchment can also contribute to the so-called 484 
hybrid approach to the nutrient loads estimation, i.e., combining the mass-balance and modelling 485 
approaches (Bojanowski et al., 2022). The results of the climate change scenarios (modelling 486 
approach) can be recalculated to obtain new coefficients which can be then used in a mass-487 
balance approach, with the assumption that the sources of nutrients (emission) will remain 488 
constant or increased by known forecasts. So far, in the original mass-balance approach the 489 
coefficients representing agricultural runoff from the catchment were sourced from the available 490 
literature, and in some cases raised questions on their representativeness in local conditions. 491 
Therefore, obtaining them directly from the catchment model can definitely refine mass-balance 492 
calculations which are useful in the preliminary nutrient load assessments. 493 

Despite huge benefits of the modelling approach, it should also be remembered that the 494 
presented results must be taken as an indication of future spatio-temporal trends in this 495 
catchment, not as a source of specific values. Quite a limited number of available field 496 
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monitoring values (qualitative), sufficient for the Water Framework Directive (WFD) induced 497 
measurements, is often inconsistent with data required to calibrate and validate the catchment 498 
model, which possibly leads to load over/underestimation. It should be remembered that climate 499 
change scenarios, in terms of precipitation and temperature, were obtained for the nearest 500 
meteorological station localised outside of the catchment (Poznań), and were not distributed 501 
across the land surface as the process occurs in nature. Moreover, reliable predictions of future 502 
land use changes and spatial development would definitely increase simulation accuracy. It 503 
should also be remembered that some limitations result directly from the SWAT model. 504 
Differentiation of particular nutrient sources requires many generalisations and assumptions, like 505 
in case of background source impact, which could be defined in different manners. Finally, 506 
future research should include further steps to incorporate more specific field information on 507 
specific sources, e.g., urban, to limit the use of default coefficients embedded in the model. 508 

5. Conclusions 509 

In this study, using possibilities of the digital platform Macromodel DNS/SWAT, we 510 
elucidated climate change effects in a middle-sized lowland catchment with emphasis on the 511 
spatio-temporal behaviour of different nutrient sources. The catchment model proved to be a 512 
fully scalable tool which enabled tracking loads in the subcatchment level in the short- and long-513 
term perspective, therefore offering a broad range of instruments for decision makers, e.g., 514 
identification of hot-spots or contribution of sources in outflowing nutrient loads. 515 

Our results confirmed the increase of the nutrient loads under the predicted climate 516 
changes in all the subcatchments. Chiefly from the agricultural land use type, which may 517 
constitute up to 86% and 56% of total nitrogen and phosphorus loads, respectively. This type of 518 
the land use will also remain the main pressure in the foreseen scenarios under the short- and 519 
long-term perspective. In this study we also highlighted the impact of the other land use types. 520 
Especially of forest areas, which are highly reactive to climate changes, and through their 521 
localisation within the subcatchment, can distinctly alter nutrient outflow. Moreover, our results 522 
indicated that contribution of urban areas to the total nutrient loads should be further investigated 523 
since the dynamics of nitrogen and phosphorus release, from impervious surfaces, is noticeably 524 
different from the other diffuse sources. 525 

Furthermore, considering the current lack of concrete technical solutions aimed to reduce 526 
nutrient loads from Polish catchments, we suggest that modelling, as presented in the current 527 
example, must be recognized as an important tool for testing specific measures. Implementation 528 
of different nutrient stewardship techniques or checking the effectiveness of buffer zones along 529 
rivers will bring important information from the catchment management point of view. Finally, 530 
further studies should also take into account factors which may reflect potential changes in 531 
spatial and economic development of catchments, as specified by the Shared Socioeconomic 532 
Pathways (SSP) scenarios. 533 
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