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Abstract

Two assumptions commonly applied in convection schemes—the diagnostic and quasi-equilibrium assumptions—imply that

convective activity (e.g., convective precipitation) is controlled only by the large-scale (macrostate) environment at the time.

In contrast, numerical experiments indicate a “memory” or dependence of convection also on its own previous activity whereby

subgrid-scale (microstate) structures boost but are also boosted by convection. In this study we investigated this memory

by comparing single-column model behavior in two idealized tests previously executed by a cloud-resolving model (CRM).

Conventional convection schemes that employ the diagnostic assumption fail to reproduce the CRM behavior. The memory-

capable org and LMDZ cold pool schemes partially capture the behavior, but fail to fully exhibit the strong reinforcing feedbacks

implied by the CRM. Analysis of this failure suggests that it is because the CRM supports a linear (or superlinear) dependence

of the subgrid structure growth rate on the precipitation rate, while the org scheme assumes a sublinear dependence. Among

varying versions of the org scheme, the growth rate of the org variable representing subgrid structure is strongly associated with

memory strength. These results demonstrate the importance of parameterizing convective memory, and the ability of idealized

tests to reveal shortcomings of convection schemes and constrain model structural assumptions.
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Key Points:7

• Several convection schemes were tested via two recently proposed, idealized ex-8

periments designed to isolate memory-like behavior9

• All schemes either fail to show any such behavior, or show weaker memory than10

an explicit cloud-resolving model11

• By fitting simple equation sets to the results, structural assumptions and param-12

eters related to subgrid memory processes can be constrained13
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Abstract14

Two assumptions commonly applied in convection schemes—the diagnostic and quasi-15

equilibrium assumptions—imply that convective activity (e.g., convective precipitation)16

is controlled only by the large-scale (macrostate) environment at the time. In contrast,17

numerical experiments indicate a “memory” or dependence of convection also on its own18

previous activity whereby subgrid-scale (microstate) structures boost but are also boosted19

by convection. In this study we investigated this memory by comparing single-column20

model behavior in two idealized tests previously executed by a cloud-resolving model (CRM).21

Conventional convection schemes that employ the diagnostic assumption fail to repro-22

duce the CRM behavior. The memory-capable org and LMDZ cold pool schemes par-23

tially capture the behavior, but fail to fully exhibit the strong reinforcing feedbacks im-24

plied by the CRM. Analysis of this failure suggests that it is because the CRM supports25

a linear (or superlinear) dependence of the subgrid structure growth rate on the precip-26

itation rate, while the org scheme assumes a sublinear dependence. Among varying ver-27

sions of the org scheme, the growth rate of the org variable representing subgrid struc-28

ture is strongly associated with memory strength. These results demonstrate the impor-29

tance of parameterizing convective memory, and the ability of idealized tests to reveal30

shortcomings of convection schemes and constrain model structural assumptions.31

Plain Language Summary32

Convection (clouds) has memory, can remember its own history, and is affected by33

it when evolving to the next step. However, this memory effect is often neglected in con-34

vection schemes, which are approximate sub-models used to represent (parameterize) con-35

vective processes in climate models whose resolutions are too low to properly resolve con-36

vection. In this study we apply two simple tests to probe the memory behavior of var-37

ious convection schemes. We found that most conventional schemes fail to mimic the mem-38

ory response of a cloud-resolving model (CRM) where convection is properly represented.39

In two schemes where memory is parameterized, their responses are more similar but still40

bear significant differences to the CRM. We show that this discrepancy can be explained41

by the equations used in these schemes. For one of the schemes, we also found that the42

strength of memory is related to the growth rate of the memory variable, rather than43

its absolute value. Overall, our results demonstrate the importance of taking memory44

into account in convection schemes, and show that the two tests implemented here are45

simple but useful in shining light on potential shortcomings of convection schemes and46

hence also ways to improve them.47

1 Introduction48

Cumulus convection is a key process in tropical climate dynamics and plays a cru-49

cial role in transporting and redistributing momentum, heat and moisture in the atmo-50

sphere. It is a complex process that involves a multitude of time and spatial scales. In51

general circulation models (GCMs), the impact of unresolved convective processes on re-52

solved scales is accomplished through parameterization. Despite great strides in recent53

years (Villalba-Pradas & Tapiador, 2022; Rio et al., 2019), convective parameterization54

remains an important source of uncertainty in GCMs (Stephens et al., 2010; Stevens &55

Bony, 2013).56

Two structural assumptions or approximations that are commonly applied in con-57

vection schemes and relevant to the present study are the diagnostic and quasi-equilibrium58

assumptions. The former states that convective activity at any given instant can be de-59

termined using solely the resolved grid-scale variables at that instant via an unspecified60

function (typically different in different schemes) and that there is no conditional depen-61

dence of convection on its own history given the current grid-scale state. The latter as-62

sumes that convective instability generated by slowly-evolving large-scale forcing is quickly63
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consumed by fast-acting convective processes and is commonly used as a closure assump-64

tion in convection schemes (Arakawa & Schubert, 1974; Yanai et al., 1973; Yano & Plant,65

2012). However, both assumptions do not fully capture what happens in reality because66

convection takes a finite time to adjust to large-scale forcing (Arakawa & Schubert, 1974;67

Pan & Randall, 1998), and is affected by pre-existing convection (Davies et al., 2009, 2013).68

The fact that convection has inertia, can feel the influence of its own activity at an ear-69

lier time, and is modified by it, is termed the “memory” of convection (Davies et al., 2009).70

Its parameterization is the focus of this study.71

It is important to differentiate between two types of memory that have been iden-72

tified in cloud-resolving model (CRM) studies: macro- and microstate memories (Colin73

et al., 2019, henceforth C19). We refer to the memory effects arising from a changing74

large-scale (“macrostate”) environment as “macrostate memory”. In the context of pa-75

rameterization, it represents the impact of processes that affect the mean profiles of a76

single GCM grid cell over a finite time, relaxing the quasi-equilibrium assumption. It is77

commonly taken into account in convection schemes via a finite “adjustment time scale”78

of 1–5 h (Bechtold et al., 2008; Cohen & Craig, 2004; Kain, 2004; Xu & Randall, 1998).79

In this study we are interested in another memory, which emerges due to small-scale (“mi-80

crostate”) structures or heterogeneities within a GCM grid box (or within a CRM do-81

main), and is produced by but also promotes convection, the so-called “microstate mem-82

ory” (C19). These structures could arise as a consequence of individual clouds chang-83

ing their surroundings during their lifespans and manifest themselves as remnants of past84

convective activity influencing the development of convection at the present time (Davies85

et al., 2009, 2013). This type of memory arises from subgrid-scale processes that remain86

unresolved in GCMs (but resolved in CRMs) and must therefore be parameterized. To87

avoid confusion, memory in the present study refers to microstate memory.88

Multiple CRM studies have shown that memory mainly resides in low-level ther-89

modynamic inhomogeneities (C19; Daleu et al., 2020; Davies et al., 2013). Two of these90

studies are relevant to our analysis. To identify memory and its effects, C19 imposed an91

instantaneous homogenization of the microstate structures (setting a given subset of prog-92

nostic variables to their domain-averaged values) and observed how convective activity93

(precipitation) recovered after this homogenization. They found that memory is predom-94

inantly contributed by the water vapor and temperature microstructures (variability)95

in the subcloud layer compared to winds and hydrometeors. A longer recovery time scale96

was observed when convection is organized (> 24 h) than when disorganized (2–3 h). A97

follow-up study by Colin and Sherwood (2021, henceforth CS21) explored the memory98

behavior of a CRM when the macrostate is held fixed to its equilibrium mean state (“strong-99

nudging” experiment). In this case convection displays a volatile behavior, with precip-100

itation either growing exponentially to an unrealistically large value or decaying to zero.101

Additionally, the authors presented a two-variable, predator-prey model that was able102

to capture this instability, as well as the CRM behavior in C19’s homogenization exper-103

iment. Further description of the predator-prey model is presented in Section 3.3.104

Despite the knowledge gained from CRM experiments it remains unclear how mem-105

ory should be parameterized, and a wide range of approaches have been attempted. These106

include the introduction of prognostic variables that influence the evolution of various107

scheme calculations such as entrainment (Mapes & Neale, 2011, henceforth MN11), clo-108

sure formulation (Pan & Randall, 1998; Randall & Pan, 1993), updraft area fraction (Gerard109

et al., 2009), updraft and downdraft (Tan et al., 2018), convective vertical velocity (Guérémy,110

2011), microphysics (Piriou et al., 2007); the explicit modeling of physical processes such111

as cold pools (Del Genio et al., 2015; Grandpeix & Lafore, 2010; Park, 2014a, 2014b; Qian112

et al., 1998), cloud lifecycles (Sakradzija et al., 2015, 2016), evolution of thermal clus-113

ters (Neggers & Griewank, 2021, 2022); the use of Markov chains (Hagos et al., 2018;114

Khouider et al., 2010; Peters et al., 2013) and cellular automata (CA) (Bengtsson et al.,115

2013, 2021); the adoption of machine learning algorithms such as convolutional and re-116
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current neural networks to capture temporal dependencies (Caseri et al., 2022; Y. Han117

et al., 2020); and embedding CRM in GCM grid cells through super-parameterization118

(Khairoutdinov & Randall, 2001; Khairoutdinov et al., 2005; Pritchard et al., 2011). Given119

the immense diversity in memory parameterizations, we deem it an important task to120

design tests in a simple and intuitive framework to probe the behavior and potentially121

reveal the shortcomings of current schemes. It is therefore the goal of this paper to ex-122

amine two convection schemes with memory using two idealized tests.123

The first convection scheme is the UW-org scheme, which we briefly describe here124

and refer to MN11 for in-depth details. The scheme is based on the University of Wash-125

ington (UW) shallow convection scheme implemented in the Community Atmosphere126

Model (CAM5), which is a single-plume mass flux scheme (Park & Bretherton, 2009).127

The modified UW-org scheme is conceptualized as a unified (shallow and deep) scheme.128

Memory is parameterized via the introduction of a new prognostic org variable meant129

to capture the effects of subgrid-scale structures on convective processes such as entrain-130

ment rate and closure. While an arbitrary number of plumes can be computed, the cur-131

rent implementation contains only two plumes that are computed sequentially, and whose132

mass fluxes and area coverages are combined to determine the total precipitation and133

other convective tendencies. Entrainment rates and plume base conditions (temperature134

and humidity) may differ between the plumes, and thus may also the heights the plumes135

reach. org is a 2D, dimensionless variable whose prognostic equation is given by136

d(org)

dt
= S − (org)

τorg
(1)137

where S is the source of org (defined as the mass-weighted vertically integrated rain evap-138

oration rate in kg m−2 s−1 times evap2org, an adjustable parameter) and τorg its char-139

acteristic time scale. Following MN11, we set evap2org to 2 m2 kg−1 and τorg to 10 ks140

(∼3 h). We elaborate further on the effects of org on entrainment rate and closure in Sec-141

tion 2.2.142

The second scheme we tested is the cold pool (CP) scheme in the Laboratoire de143

Météorologie Dynamique Zoom (LMDZ) model (Grandpeix & Lafore, 2010). This scheme144

represents spreading circular cold pools fed by precipitation evaporation in unsaturated145

downdrafts. Their dynamics follows that of a density current: they convert gravitational146

potential energy into kinetic energy. These cold pools impact convection in three ways.147

First, their negative buoyancy provides energy to trigger deep convection via mechan-148

ical lifting. Second, cold pool edges act as gust fronts and provide power for the convec-149

tive closure via an Available Lifting Power (ALP), which is proportional to total cold150

pool perimeter and increases with cold pool spread speed. Third, cold pools create two151

subgrid-scale environments: the colder cold pool environment seen by downdrafts, and152

the warmer exterior seen by updrafts in the convection scheme. The cold pools are prog-153

nostic, and their memory comes from their density current properties. The prognostic154

memory variables are the cold pool temperature and humidity anomalies, as well as the155

total cold pool surface area. A summary of the main cold pool governing equations is156

presented in Grandpeix et al. (2010).157

The overarching goal of this study is to examine and improve understanding of the158

memory behavior of the UW-org and LMDZ-CP schemes by using a single-column model159

(SCM) setup and comparing their responses to those of previously published CRM re-160

sults (C19 and CS21). The specific research questions addressed are:161

1. How do convection schemes respond when we fix the large-scale environment, i.e.,162

disable the feedback between micro- and macrostates?163

2. How do convection schemes respond when we homogenize their microstate struc-164

tures carrying memory?165

3. How do their above responses compare to those of (1) schemes with no microstate166

memory, and (2) a CRM where convection is resolved?167
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2 Methods168

2.1 Models and Simulation Setup169

Two models in their SCM setup were used in this study: the Weather Research and170

Forecasting (WRF) and LMDZ models. WRF uses the Advanced Research WRF (ARW)171

fully compressible, Eulerian non-hydrostatic solver (version 4.0.2; Skamarock et al., 2019).172

The LMDZ model is the atmospheric component of the IPSL global climate model. Here173

we used the LMDZ5B+ version of the model, which is based on the CMIP5 version (LMDZ5B;174

Hourdin et al., 2013) but with additional developments (revision 2420). As reference we175

used previously published WRF CRM results (202 × 202 grid points, horizontal reso-176

lution of 1 km; see C19 and CS21) and closely followed their simulation setup for our177

SCM experiments, which we briefly summarize below.178

The control simulations were conducted under non-rotating, radiative-convective179

equilibrium (RCE) conditions with the Coriolis parameter set to zero. An ocean surface180

was used, with a fixed SST of 302 K. In WRF SCM, a stretched vertical grid spacing with181

74 model levels was used, with model bottom at around 40 m and model top at around182

33 km. In LMDZ, another stretched vertical grid spacing was used, with 79 vertical lev-183

els, ranging from 10 m to 80 km.184

In terms of convective parameterization, for this study we have imported into WRF185

the UW-org scheme originally developed for the CAM5 model. We also tested in WRF186

five standard convection schemes without memory: the Zhang-McFarlane (ZM; G. Zhang187

& McFarlane, 1995), Kain-Fritsch (KF; Kain, 2004), New-Tiedtke (NT; C. Zhang & Wang,188

2017), New-Simplified Arakawa-Schubert (NSAS; J. Han & Pan, 2011), and Betts-Miller-189

Janjic (BMJ; Betts, 1986; Betts & Miller, 1986; Janjić, 1994) schemes. The LMDZ SCM190

uses a modified version of the mass flux deep convection scheme of Emanuel (1991) and191

Emanuel and Živković-Rothman (1999). In particular, the triggering and closure were192

completely overhauled (Rio et al., 2013) so that both the cold pool scheme (Grandpeix193

& Lafore, 2010) and the thermal plume scheme (Rio & Hourdin, 2008) control trigger-194

ing and closure. Therefore, convection is tightly governed by subgrid, subcloud layer pro-195

cesses (Mapes, 1997; Hourdin et al., 2020). For the other parameterizations, in WRF we196

used the RRTMG longwave and shortwave radiation schemes (Iacono et al., 2008), the197

WSM6 microphysics scheme (Hong & Lim, 2006), the YSU planetary boundary layer (PBL)198

scheme (Hong et al., 2006) which also computes the vertical diffusion due to turbulence,199

and the revised MM5 surface layer scheme based on Monin-Obukhov theory for surface200

fluxes computations (Jiménez et al., 2012). In the LMDZ runs, the radiation scheme is201

from an older ECMWF weather forecast model (Morcrette, 1991). Boundary layer tur-202

bulence is handled by a prognostic turbulent kinetic energy diffusion scheme based on203

Yamada (1983) as well as by the mass flux thermal plume model. LMDZ also includes204

a large-scale condensation-precipitation-evaporation scheme and a gravity wave param-205

eterization (Hourdin et al., 2013, 2020). In WRF, diurnal cycles were removed by set-206

ting the solar constant to 544 W m−2 and a fixed solar zenith angle of 37° to simulate207

equatorial conditions. In LMDZ, the diurnal cycle of radiation was similarly removed.208

The simulations were run for 1,000 days in WRF and 60 days in LMDZ, thereafter two209

types of perturbations were applied, described in Sections 2.3 and 2.4.210

2.2 UW-org and LMDZ Cold Pool Schemes211

In the UW-org scheme, the org variable can have several effects on convection (see212

Figure 1 in MN11). We focused on two of them: entrainment rate and closure. The frac-213

tional entrainment (ϵ) and detrainment (δ) rates per unit height in this scheme are given214

by215

ϵ = ϵoχc
2, (2)216

217

δ = ϵo(1 − χc)
2, (3)218
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where χc is the critical mixing fraction of environmental air in the parcels depending on219

height (see equation B1 in Bretherton, McCaa, & Grenier, 2004), ϵo (m−1) is the frac-220

tional mixing rate and is inversely proportional to height following a common formula-221

tion in literature (de Roode et al., 2000; Holloway & Neelin, 2009; Siebesma et al., 2007),222

i.e., ϵo = r/z. For the 1st plume r is an empirical constant (r1) and set to a large value223

following the original UW shallow scheme (entrainment rates are usually larger in shal-224

low convection schemes), while r for the 2nd plume (r2) undergoes org modification fol-225

lowing the equation226

r2 =
r1

1 + org · org2rkm
, (4)227

where org2rkm is a unitless parameter. Simply put, the org-modulated entrainment rate228

impacts convection development via its changing effect over time: during early stages229

when rain rates are small (small org values, as rain evaporation is a source of org) big230

entrainment rates suppress convection and promote the development of large-scale vari-231

ability (i.e., organization), while in later stages large rain rates (large org values) lead232

to reduced entrainment rates that encourage deeper convection that stabilizes the col-233

umn.234

The second org effect we explored is its impact on cloud-base mass flux (CBMF;235

i.e., closure), which is computed as236

Mb = Mb,1(1 + org · org2cbmf), (5)237

where org2cbmf is a unitless parameter, Mb,1 is the CBMF of the 1st plume (given by238

Eq. A3 in Park & Bretherton, 2009). The sinking of chilled air from downdrafts can po-239

tentially trigger convection by influencing plume base vertical velocity. This has the ef-240

fect of larger CBMFs on rainy days when org values are big and the plumes have a higher241

probability of overcoming convective inhibition (CIN) and attaining their level of free242

convection (the scheme closure is based on CIN).243

We tested a few org configurations by changing and combining the org2rkm and244

org2cbmf parameters. For brevity, we refer to the cases where only the org2rkm param-245

eter was changed as “WRF-RKM” and those where both org2rkm and org2cbmf were246

changed as “WRF-RKMCBMF”.247

For the LMDZ cold pool scheme, the version used here represents a population of248

circular, identical cold pools of radius r. The cold pools are assumed to have a fixed num-249

ber density DCP (m−2) which sets how many cold pools there are per unit area. Hence,250

they occupy a relative surface area251

σCP = DCPπr
2. (6)252

Cold pools can expand horizontally at a horizontal spread speed C following a simple253

geometrical relation:254

∂σCP

∂t
= 2C

√
πDCPσCP , (7)255

although their expansion is capped as soon as they reach the maximum allowed relative256

surface area σCP,max = 0.4.257

Cold pools are characterized by the vertical profile of their potential temperature258

and humidity differences with the external air around them (θ′ and q′). Since they are259

denser than their environment, cold pools have a downward vertical velocity which is trans-260

formed into horizontal spread speed C which can then be converted into upward motion261

at the cold pool edge. The total energy available for this mechanical process is the in-262

tegrated negative buoyancy in cold pools, called ALE (Available Lifting Energy):263

ALE = −g

∫ hCP

0

δθv
θ̄v

dz, (8)264
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where hCP is the cold pool height, g gravity, θv virtual temperature, and θ̄v denotes the265

grid cell mean θv. Deep convection is triggered when ALE > |CIN| (ALE being the largest266

between the ALE provided by cold pools and the ALE provided by PBL thermals), i.e.,267

when PBL processes are strong enough to erode boundary layer stability. In particular,268

PBL thermals may trigger convection only if a stochastic triggering condition is fulfilled269

(Rochetin, Couvreux, et al., 2014; Rochetin, Grandpeix, et al., 2014).270

The experimental cases in this study are listed in Table 1.271

Table 1. Models and experimental cases in this study

Model Convection
scheme

Case name org parame-
ters

Description

WRF

Standard WRF
convection
schemes

ZM, KF, NT,
NSAS, BMJ

- Conventional
convection
schemes in WRF

UW-org

rkm0 org2rkm = 0 Two identical
plumes, no org
effects (memory)
in 2nd plume

rkm10 org2rkm = 10

2nd plume has org effects

rkm20 org2rkm = 20
rkm30 org2rkm = 30
rkm10cbmf10 org2rkm = 10,

org2cbmf = 10
rkm20cbmf10 org2rkm = 20,

org2cbmf = 10
rkm30cbmf10 org2rkm = 30,

org2cbmf = 10

LMDZ Cold pool
+ Modified
Emanuel/ALP/ALE
schemes

LMDZ-CP - LMDZ5B+ ver-
sion, settings for
tropical ocean

2.3 FixMacro Experiment272

We first consider the “strong-nudging” experiment by CS21, where the macrostate273

was fixed to its RCE mean. In the WRF CRM of CS21, this was achieved by applying274

a tendency term for potential temperature (θ), water vapor mixing ratio (q) and hor-275

izontal winds (u, v) uniformly in (x, y) at each model level, proportional to the differ-276

ence between the horizontal mean field and a target profile, with a short nudging time277

scale of 40 s (see Eq. 1 in CS21). The idea is that if the diagnostic assumption used in278

convection schemes were true—using CS21’s notation, convective activity C were related279

to the macrostate ξ via a function (f) : C(x, t) = f [ξ(x, t)]—convective activity would280

remain unchanged while the macrostate is held fixed. In the presence of microstate mem-281

ory, however, in addition to its dependence on the large-scale environment convection282

also remembers its own history. That is, (f) : C(x, t) = f [ξ(x, t), C(x, t − 1)], and283

convection will not remain unchanged but will evolve in time under the influence of the284

macrostate rather than being determined by it instantaneously. Fixing the macrostate285

hence serves as a simple and direct test for microstate memory.286
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In the WRF SCM we emulate this experiment of CS21 via our fixed-macrostate287

(“FixMacro”) experiment. Instead of nudging as in CS21, however, we restarted the SCM288

from its control macrostate so as to call the convection schemes with identical input pro-289

files of thermodynamic and wind fields at every time step. This FixMacro approach achieved290

the desired result more directly and was feasible in the WRF SCM due to the model’s291

modular design. We modified the code of the convection schemes such that at every time292

step the prognostic variables received by the schemes were overwritten with the values293

from specific target profiles. An ensemble of twenty FixMacro experiments was run, each294

with a target profile taken from a 20-day average of the unperturbed control run at a295

different time interval. We also attempted these SCM experiments using the CRM strong-296

nudging method, which yielded similar results (not shown).297

Note that this FixMacro part of the experiment was only conducted in the WRF298

and not LMDZ SCM because in LMDZ it was technically challenging to directly fix the299

prognostic variables received by the convection scheme specifically.300

2.4 HomoMicro Experiment301

We next consider the “HomoMicro” experiment based on C19, where the WRF CRM302

control runs were restarted from an equilibrated RCE state and subsets of prognostic303

variables (T , q, u, v and others) were horizontally homogenized to their domain-mean304

values at restart. This keeps the macrostate unchanged while essentially wiping out their305

microstate structures or memory. The equivalent with parameterized physics would be306

to set internal prognostic or “memory” variables to some reference value (e.g., zero). In307

the UW-org scheme there is a single such variable org, while in the LMDZ cold pool scheme308

there are prognostic cold pool temperature and moisture anomalies (T ′ and q′). For WRF309

UW-org we ran one test setting org to zero, while with LMDZ we ran three tests, ze-310

roing either the T ′, the q′, or both. An ensemble of 20 HomoMicro simulations was con-311

ducted for each test, as for FixMacro. Note that this part of the study cannot be con-312

ducted for the five standard WRF convection schemes, as they do not contain a microstate313

memory variable, so they implicitly predict no change after homogenization. A diagram314

of the control, FixMacro and HomoMicro experiments is shown in Figure 1.315
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Figure 1. Diagram of the macro- and microstate feedbacks for the (a) control, (b) FixMacro

(holding macrostate constant at every time step), and (c) HomoMicro (setting memory variable

to zero at one time step) experiments. Green positive and red negative symbols indicate, respec-

tively, positive and negative feedbacks on convection C or on environmental instability ξ favoring

C. Italicized words are parameters in the UW-org scheme (see text for description).
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3 Results and Discussion316

3.1 RCE Mean State317

Figure 2. RCE steady state profiles of (a) relative humidity (RH) for the CRM and various

SCM configurations (for WRF SCM, only the ZM and UW-org schemes are shown), (b, c) mass

fluxes of the 1st and 2nd plumes of the various UW-org configurations for the WRF SCM, and

(d, e) temperature and moisture anomalies inside cold pools for the LMDZ SCM.

To illustrate the main features of the various model configurations we show the RCE318

mean state profiles of the relative humidity (RH) of the CRM, LMDZ and WRF SCM319

(for the standard convection schemes only ZM is shown as the other schemes have been320

presented in Hwong et al. (2021)), updraft mass flux of each plume in the WRF UW-321

org SCM, and the cold pool temperature and moisture anomalies of the LMDZ SCM,322

in Figure 2. There is a spread of around 20% of near-surface RH among the SCMs (panel323

a), with LMDZ displaying the moistest low-level profile (around 90%). This spread is324

comparable to that seen in previous SCM intercomparisons (e.g., Hwong et al., 2021; Wing325

et al., 2020). Hwong et al. (2021) found a difference of around 30% at near-surface lev-326

els even with constrained surface fluxes and a prescribed radiative profile in all models,327
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and attributed this spread to the different parameterizations (primarily convection schemes)328

used in the SCMs. The CRM near-surface RH profile lies close to the middle of the SCM329

spread while in the free troposphere it is significantly moister. For the UW-org cases,330

configurations with smaller entrainment rates (larger org2rkm values) display a drier free331

tropospheric mean state, suggesting more precipitation-efficient convection and hence332

stronger net drying. The addition of org effects also appears to attenuate the sharp changes333

(kinks) in RH profile around the freezing level frequently seen in convection schemes (Hwong334

et al., 2021), here apparent in the profiles of WRF-ZM and LMDZ-CP. This suggests that335

the UW-org scheme might be more capable of handling state transitions, perhaps be-336

cause its memory effects contribute to the exploration of a wider variety of states. We337

further note that the spread of RH in the troposphere here is smaller than reported in338

previous model intercomparisons, which indicates that—although it does have signifi-339

cant impact—changing the org settings is less impactful than changing convection schemes.340

The mass flux profiles of the two plumes in the UW-org scheme cases are shown341

in panels b and c. For the rkm0 case (two identical plumes and no org effect) the two342

plumes display the same mass flux profiles, while for the other cases a “division of la-343

bor” mechanism develops between the plumes: the 2nd plume, with its reduced entrain-344

ment due to the org2rkm effect, takes up the role of deep convection (deeper than in rkm0)345

while the 1st plume, with its high entrainment rate as determined by the default UW346

shallow convection scheme parameters, assumes the function of shallow convection (con-347

fined below 850 hPa). Further, the addition of org effects in the closure (via org2cbmf ;348

dashed lines in Figure 2) manifests itself in the larger mass flux of the 2nd plume around349

the cloud-base.350

The cold pool temperature (T ′) and moisture (q′) anomaly profiles of LMDZ-CP351

are shown in panels d and e. The profiles show a cold and moist anomaly at the surface352

levels, illustrating the effect of cold pools on the thermodynamic microstate of the model.353

Colder, drier, and deeper cold pools are more powerful to trigger convection and to pro-354

vide upward mass flux for the closure (Eq. 8). The cold pools here in this particular RCE355

configuration are fairly shallow and not very cold, but this is enough to have some in-356

fluence on future convection. In particular, cold pools in this simulation are always dom-357

inant over thermals to trigger convection. Stronger updrafts and downdrafts both cre-358

ate a more distinct situation between cold pools and their environment. Therefore, the359

stronger the unsaturated downdrafts given by the convection scheme, the colder the cold360

pools. And likewise, the stronger the updrafts, the colder the cold pools.361
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3.2 Response to Fixed Macrostate Perturbation362

Figure 3. The FixMacro ensemble-averaged responses of normalized (a) precipitation of the

WRF-ZM and WRF UW-org cases, (b) integrated updraft mass flux and (c) org for the WRF

UW-org cases. The response of one of the CRM ensemble members (growing to ∼3000 mm d−1)

is shown in thick black line and in dashed black line the same response rescaled to the maximum

range of the SCMs. For the SCMs the ensemble members’ responses are normalized by their re-

spective RCE values when FixMacro begins, and the final responses are obtained by averaging

over all members. The RCE values are ∼4 mm d−1 for P , ∼0.3 kg m−1 s−1 for
∫
MF and ∼0.1

for org. The CRM response is reproduced from CS21. © American Meteorological Society. Used

with permission.

Figure 3 shows responses of the CRM and WRF SCM to the FixMacro experiment,363

where the macrostate (large-scale environment) was held fixed to the RCE state. We first364

briefly summarize the CRM results, which are described in detail in CS21. Around half365

of the ensemble members (four out of nine) show exponential precipitation growth to un-366

physical values, an example of which is shown in Figure 3, while for the remaining mem-367

bers precipitation decays to zero. CS21 found the trajectory of precipitation (growth or368

decay) depends on the target profile: members exhibiting growth behavior generally have369

higher CAPE values compared to the decaying members. The authors referred to this370

state of the model as an “unstable equilibrium in a thermodynamically fixed mean en-371

vironment”. By restraining the macrostate—thus preventing it from freely evolving—we372

are essentially overriding the natural negative feedback loop between the large-scale en-373

vironment and subgrid-scale activities (see Figure 1b). Under normal non-nudged cir-374

cumstances, instability caused by the large-scale environment (e.g., water vapor or CAPE)375

would be rapidly eliminated by convective activity C (e.g., convective heating and dry-376
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ing), hence maintaining a state of balance between the macro- and microstates. With-377

out this restoring branch in the system (red negative symbol in Figure 1), an unopposed378

positive feedback loop established itself: a macrostate conducive (unfavorable) to con-379

vection results in increased (decreased) precipitation, boosting (weakening) microstate380

memory, which in turn enhances (reduces) precipitation. Cold pools, for example, are381

a well-known source of microstate memory that are aided by the evaporation of rain and382

aid convection themselves (Schlemmer & Hohenegger, 2016; Tompkins, 2001; Zuidema383

et al., 2017). Further, CS21 also found low-level microstate structures (standard devi-384

ation of temperature and moisture at 2 m) to be the first variables to change during the385

initial development of instability. These findings collectively suggest that boundary layer386

inhomogeneities are the primary source of microstate memory.387

For the WRF SCMs, precipitation remains constant as expected for the standard388

convection schemes and rkm0 (two identical plumes and no org effects) when the macrostate389

is fixed (panel a), illustrative of the diagnostic assumptions in these cases, i.e., absence390

of microstate memory. As the five standard schemes all behave the same way, we only391

show the results of the ZM scheme here. For the cases with org effects, precipitation rates392

exhibit an initial growth stage (between 2–10 h after FixMacro started), before stabi-393

lizing latest by around half a day. Similar to the CRM, either growth or decay in pre-394

cipitation rates was observed amongst the ensemble members, with a smaller proportion395

showing decay (hence the overall growth shown in Figure 3). Precipitation and the org396

variable appear to be monotonically related: precipitation grows amongst members where397

org increases, and decays where org decreases. However, there are marked differences398

between the response trajectory of the org cases and the CRM. Using rkm10 as an ex-399

ample, its response initially closely tracks that of the CRM, but starts to diverge from400

it by around 4 h. While the CRM’s growth accelerates exponentially, rkm10’s growth401

appears to slow down and eventually stabilizes. We will further explore this discrepant402

response between the CRM and UW-org scheme in Section 3.3.403

For the UW-org cases where org affects entrainment only (WRF-RKM), we found404

smaller entrainment rates (larger org2rkm) to be associated with more rapid precipitation-405

rate growth. This can be explained by stronger convection resulting from reduced mix-406

ing with environmental air, rendering a quicker feedback on the precipitation rate. The407

eventual departure from RCE also appears to increase with smaller entrainment rate.408

For the corresponding cases where org also affects the closure (e.g., rkm10 vs. rkm10cbmf10;409

same-colored solid vs. dashed lines in Figure 3), faster initial precipitation growth rates410

and larger eventual departures from RCE were observed, indicating that making the scheme’s411

closure prognostic via dependence on org acts to enhance convection, thereby speeding412

up its reaction time.413

We show in Figure 3 two additional variables that are useful to understand the pre-414

cipitation response: integrated updraft mass flux (panel b) and org (panel c). The growth415

shape of the integrated updraft mass flux bears strong qualitative resemblance to that416

of precipitation (panel a), which is expected given the way the scheme diagnoses precip-417

itation: updraft condensates exceeding a critical mixing ratio (1 g kg−1) are expelled as418

precipitation (Bretherton, McCaa, & Grenier, 2004). As is common in mass flux schemes,419

the mass flux profile is used to compute all thermodynamic variables, including the pre-420

cipitating condensates. Thus, precipitation is roughly proportional to the integral of mass421

flux over the convecting layer. For org, its growing response is emblematic of the microstate422

memory effect: org remembers its previous state and grows when precipitation grows,423

since rain evaporation is a source of org. As mentioned, there appears to be a monotonic424

relationship between org and precipitation, at least in the initial growth stages. Given425

the fixed large-scale environment, this suggests that org (representing microstate mem-426

ory) is chiefly responsible for the precipitation growth, and vice versa.427

–13–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

3.3 Why Does the UW-org Scheme Respond Differently to the CRM?428

The initial exponential growth or decay of the CRM FixMacro responses presented429

in Section 3.2 can be explained using a predator-prey (PP) model, as described in CS21,430

and which we briefly summarize here. For a detailed description of the PP model we re-431

fer readers to Section 3 of CS21. The three key equations of the PP model are432

∂R

∂t
= E0 − P, (9)433

434

∂V

∂t
= αvpP − αdampV, (10)435

436

P = αpRV, (11)437

where R represents aspects of the macrostate environment that are conducive to con-438

vection but are also consumed by it (e.g., CAPE or water vapor), V represents features439

of microstate convective structures that stimulate convection and are stimulated by it440

(convective memory), E0 is the source of R, P is precipitation, and αdamp, αvp and αp441

are the damping rate of V , sensitivity coefficient of V to P and of P to the other vari-442

ables, respectively. Under FixMacro conditions, Eq. (9) disappears. Substituting Eq. (11)443

into (10) and fixing R to a constant R0 (hereafter a zero subscript denotes the target Fix-444

Macro fixing values), combined with one of the steady state (RCE) solutions Rrce =
αdamp

αvpαp
445

(see Eqs. 5−7 of CS21), we get446

∂V

∂t
= αvpαp(R0 −Rrce)V, (12)447

which predicts an exponential growth (if Ro > Rrce) or decay (if Ro < Rrce) of V (and448

P , since they are linearly related when R is fixed). Expressed in terms of quantities nor-449

malized by their RCE values, Eq. (12) can be reformulated as450

dV̂

dt
= αdamp

(
a V̂ − V̂

)
, (13)451

where V̂ = V/Vrce and a = R0/Rrce. Numerical integration of the PP model under452

FixMacro conditions indeed produces qualitatively the initial exponential growth of the453

CRM simulations (Figure 6 of CS21). Hence, by comparing the UW-org scheme to the454

PP model, we can gain useful insights that may shed light on the FixMacro behavior of455

the scheme when compared to the CRM.456

For the UW-org scheme, under FixMacro conditions we have observed a monotonic457

relationship between P and org, as presented in Section 3.2. For simplicity, and moti-458

vated by findings of previous studies (e.g., Kirsch et al., 2021; Kruse et al., 2022), we as-459

sume a linear approximation:460

P = β org, (14)461

where β is the proportionality factor. Eq. (1), describing the UW-org scheme, is roughly462

equivalent to Eq. (10) of the PP model, with V ≡ org, αdamp ≡ 1/τorg, and αvpP ≡ evap2org·463

E, where E is the mass-weighted vertical integral of rain evaporation rate and is pro-464

portional to (1−RH) multiplied by the square root of P (Eq. A8 in Park & Brether-465

ton, 2009). Replacing org with V and reformulated in terms of quantities normalized by466

their RCE values to ease comparison with the PP model, Eq. (1) can be simplified as467

dV̂

dt
= αdamp

(
b
√
V̂ − V̂

)
, (15)468

where αdamp = 1/τorg and b =
1 − RH0

1 − RHrce

, with overbar indicating vertical mean val-469

ues (see Appendix A for a detailed derivation of Eq. 15).470
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Eq. (13) and (15) are equivalent versions of the prognostic equation for the mem-471

ory variable V in the PP model and UW-org scheme under FixMacro conditions. Ap-472

plying a damping rate αdamp of 1×10−4 s−1 the timeseries of V̂ predicted by numer-473

ical integration of the two equations for the growth (a, b > 1) and decay (a, b < 1) cases474

are shown in Figure 4. The results bear strong qualitative resemblance to the simulated475

P responses presented in Section 3.2 (noting that the timeseries of P would be qualita-476

tively similar to org or V given the assumption of their linear relationship). The impact477

of a small mismatch between the target FixMacro and RCE values is initially the same:478

for a = b, the P responses predicted by the PP model and the UW-org scheme initially479

closely follow each. Their behavior begins to depart only when P has changed signifi-480

cantly. In the PP model,
dP

dt
is linearly related to P , producing exponential growth, and481

no value of P can restore the balance between the growth and decay terms on the RHS482

of Eq. (13) if a > 1 (or a < 1 for the decay case). This reproduces the exponential483

growth (or decay) behavior observed in the CRM. By contrast, a negative feedback is484

built into the UW-org scheme because the growth term (first term on the RHS of Eq.485

15) increases more weakly with P than the damping term (second term on the RHS of486

Eq. 15), which eventually brings the system toward a stable equilibrium. Note that this487

behavior is valid given any sub-quadratic function P (org). In other words if P = β orgλ,488

then as long as λ < 2 ôrg (and P ) will eventually stagnate under FixMacro conditions,489

as the source term in Eq. ( 1) will grow slower than the sink term. In our case, scatter-490

plots of model outputs from the FixMacro experiments show that P is approximately491

linearly related to org (not shown), which supports our assumption of a linear relation-492

ship (Eq. 14).493

Figure 4. Timeseries of memory variable V̂ under FixMacro conditions predicted by numer-

ical integration of Eq. (13) of the PP model and Eq. (15) of the UW-org scheme for the (a)

growth and (b) decay cases. Note that the PP curve displays an exponential trajectory similar to

the CRM response shown in Figure 3 when integrated over a longer period of time, even though

it appears linear within the 24 h shown here.

We further note that for the org growth (decay) case, the condition of b > 1 (b <494

1) can only be met if the FixMacro target profile for RH is such that RH0 < RHrce (RH0 >495

RHrce). Indeed, we found these conditions to be true for the respective growing and de-496

caying ensemble members (not shown). Additionally, the org cases with faster growth497

rates generally also have larger average b values (e.g., rkm10 vs. rkm20 in Figure 3), con-498

sistent with the results shown in Figure 4.499

Overall, our results provide strong evidence that the CRM supports a linear (or500

superlinear) relationship between subgrid-scale structure growth rate and the current pre-501

cipitation rate. This implies that—given a linear damping—any scheme that predicts502
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a sublinear relationship would eventually stabilize under FixMacro conditions. The Fix-503

Macro perturbation described here can thus be applied as a simple test to probe the be-504

havior of convection schemes and constrain core modeling assumptions. Nevertheless,505

several caveats must be noted. First, although our assumption that P is proportional506

to org only captures the leading order qualitative behavior and is not exactly quantita-507

tively accurate, our goal is to probe whether the trajectory of P under FixMacro con-508

ditions can be understood from the scheme’s structural assumptions. Our numerical re-509

sults presented here, albeit idealized, can shed light into how the P responses can be ex-510

plained by the scheme’s governing equations. Second, by using the CRM as a benchmark,511

we have made the implicit assumption that the scheme’s more stable response is some-512

how an erroneous behavior compared to the CRM’s exponential growth. Whether this513

assumption is fair remains an open question. There are often sound operational reasons514

to put in checks and balances in a convection scheme—however unrealistic or ad hoc though515

they may be—to prevent simulations from crashing in a GCM (as an exponential pre-516

cipitation growth would be prone to do). Despite these caveats, it is nonetheless useful517

to be able to verify that the scheme’s FixMacro responses do indeed comply with its struc-518

tural assumptions, and that its discrepant response to the CRM can thus be explained.519

3.4 Response to Instantaneous Change in Microstate520

Figure 5 shows the responses of the CRM and SCMs in the HomoMicro experiment521

described in Section 2.4, in which subgrid-scale variabilities at RCE were homogenized522

away at one time step without changing the column/domain average. We show a selec-523

tion of C19’s CRM results in panel a. In most of these CRM cases, homogenization re-524

sults in a drop to (close to) zero in precipitation rates, which then recover to their re-525

spective RCE values over a certain time period, defined here as tmem (black dots in Fig-526

ure 5). If convection were solely dependent on the macrostate, precipitation would re-527

cover almost instantly, as the homogenization step only affects the microstate. The time528

the system takes to recover (tmem) is hence a measure of the strength of the microstate529

memory. In effect, the homogenization step removes the subgrid-scale structures that530

are conducive to convection, hence the system needs to “start from scratch” and wait531

for instability to build up again before precipitating. C19 found that memory is mostly532

stored in thermodynamic heterogeneities, rather than winds or hydrometeors. In par-533

ticular, low-level water vapor variability is the dominant memory carrier. For simula-534

tions where convection is unorganized, homogenizing both T and q led to the longest re-535

covery time (2.5 h), followed by only T (2 h) and q (1.5 h) homogenization. In contrast536

to the other variables, homogenizing T leads to an initial increase in precipitation. C19537

explained this by noting that the precipitating locations usually have cold pools and hence538

also a colder boundary layer. Homogenizing T therefore resulted in an increase in moist539

static energy in these locations (instead of a decrease as when only q or both T and q540

were homogenized), leading to an increase in precipitation. Further, convective organ-541

ization leads to a drastic increase in memory, as seen in the significantly longer tmem’s542

of the wind-shear organized (12 h) and self-aggregated (> 24 h) cases where both ther-543

modynamic quantities were homogenized.544
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Figure 5. The HomoMicro ensemble-averaged responses of precipitation of the (a) CRM, (b)

LMDZ-CP, (c) WRF-RKM, and (d) WRF-RKMCBMF cases. The responses of the vertically

integrated updraft mass flux of the (e) WRF-RKM and (f) WRF-RKMCBMF cases are also

shown. Black dots indicate the times tmem (x coordinates) when the responses first recover to the

RCE values (y coordinates) in the respective control runs. The CRM responses are reproduced

from C19. © American Meteorological Society. Used with permission.

In the SCMs, we mimicked the CRM HomoMicro perturbation by setting the mem-545

ory variable(s) (org in the UW-org scheme in WRF, T ′ and/or q′ in LMDZ-CP) to zero546

at one time step. For LMDZ-CP (panel b), HomoMicro led to an initial growth instead547

of reduction in precipitation for all three cases, with very similar tmem’s of 1–2 h, which548

are comparable to the CRM’s unorganized cases. We think that the increase in precip-549

itation of LMDZ-CP after HomoMicro is related to the fact that in all cases, the per-550

turbation increases ALP, which directly controls convection intensity (closure). Inter-551

estingly, the ALE (triggering) provided by cold pools is successfully decreased by Ho-552

moMicro for about 10 to 15 min when T ′ or both T ′ and q′ are set to zero. Likewise, the553
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ALP provided by cold pools also decreases after HomoMicro for about 45 min for these554

two tests. However, it is the ALP provided by the PBL thermals that dramatically in-555

creases for 15 min after HomoMicro and causes precipitation to first increase. After rain556

increases, cold pools become colder, more powerful, and they partially maintain an ad-557

ditional supply of mass flux. In contrast to the diverse CRM responses to the three types558

of homogenization (T , q or Tq), LMDZ-CP displays similar behavior in all three. The559

CRM recovery time almost doubled when homogenizing both Tq compared to when only560

T or q was homogenized, while in LMDZ-CP tmem when both Tq were homogenized is561

almost the same as when homogenizing only T . Analyses of the responses of cold pool562

properties (T ′, q′ and cold pool surface area) also show that homogenizing Tq and T only563

led to almost identical behavior. Moreover, T homogenization has a clear impact on q′,564

but q homogenization did not affect T ′. These results suggest that memory is mainly car-565

ried by the temperature variable in the LMDZ-CP scheme (Colin, 2020), as opposed to566

a dominant moisture memory in the CRM.567

For the UW-org cases with memory (panels c, d), the responses are strikingly sim-568

ilar to the CRM where both thermodynamic variables or only moisture were homoge-569

nized, with precipitation falling immediately almost to zero, then overshooting and fi-570

nally returning to RCE. Although both schemes employ rain evaporation as the mem-571

ory source, it appears that—in contrast to LMDZ-CP—the UW-org scheme emphasizes572

a stronger moisture memory effect, reminiscent of the CRM response. The responses are573

especially close to the wind-shear experiment in the CRM, which had an intermediate574

level of convective organisation. Since org represents subgrid-scale variability (organi-575

zation) that both promotes and is promoted by convection, setting its value to zero is576

akin to removing the self-enhancing effect of convection via its own memory (positive577

feedback), hence precipitation takes time to build up again (see Figure 1c). As expected,578

the rkm0 case (which does not contain memory) does not respond to the perturbation.579

Similar to the FixMacro results, we again found the time evolutions of the integrated mass580

flux (panels e, f) to be very similar to those of precipitation. Additionally, the cases with581

longer recovery times here appear to correspond to those with slower precipitation growth582

in the FixMacro experiment. For instance, rkm10 displays the longest recovery time here583

and the slowest growth in the FixMacro experiment amongst the WRF-RKM cases. This584

is also true for corresponding WRF-RKM and WRF-RKMCBMF cases: cases where org585

also affects CBMF evolve more rapidly than their WRF-RKM counterparts in FixMacro586

and also recover more quickly here. This shows that both experiments have managed to587

capture similar aspects of memory, albeit via different perturbation methods.588

For WRF-RKM, larger entrainment rates (smaller org2rkm) correspond to longer589

tmem’s. As stronger dilution by entrainment suppresses convection, precipitation thus590

takes a longer time to recover to its RCE values. In other words, entrainment acts as a591

brake on convection: stronger entrainment means it takes more time for convective up-592

drafts to develop and evolve, hence a longer memory. For WRF-RKMCBMF, the ad-593

dition of org effects to the scheme’s closure seems to attenuate the dilution by entrain-594

ment by providing an additional boost to convection, leading to quicker precipitation re-595

covery compared to the corresponding WRF-RKM cases. We could also interpret the596

positive correlation between entrainment rate and tmem in terms of convective organi-597

zation, whose effect the org variable is meant to capture: higher entrainment rates have598

been found to correlate with more organized convection (Tompkins & Semie, 2017) and,599

by extension, stronger memory. The longer recovery times revealed here for the UW-org600

cases with smaller org2rkm values are therefore demonstrative of the function of org in601

mimicking the effects of stronger convective organization / memory via higher entrain-602

ment rates. We explore the org variable further in Section 3.5.603
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3.5 Convective Memory and org604

The HomoMicro experiment revealed that larger entrainment rates in the UW-org605

scheme are related to longer tmem’s. An important question then is their relationship to606

the org variable of the scheme: if org adequately represents the effects of subgrid-scale607

heterogeneity, or convective organization, in principle it would be related to tmem. Here,608

we explore the org variable and its relationship to convective memory. To improve sta-609

tistical confidence, we conducted four additional experiments with org2rkm = 40, 50 and610

additionally paired them with org2cbmf = 10, resulting in a total of 10 simulations for611

our analyses (excluding rkm0 run as it does not contain memory). Additionally, to ac-612

count for the possibility that setting org to zero may represent disparate effects for cases613

with different orgrce values (i.e., a configuration with larger orgrce value could display614

bigger tmem simply because of the stronger perturbation incurred when org is set to zero),615

we conducted another set of experiments where we set org to a value equals to the re-616

spective RCE org values minus 0.05, representing the same absolute change for all con-617

figurations. We refer to this set of experiment as ORG ABS and to the experiments where618

org is set to zero as ORG ZERO.619

Figure 6. Scatterplots of tmem versus the (a) mean org values at RCE for the ORG ZERO ex-

periment, where org is set to zero, (b) same as panel a but for the ORG ABS experiment, where

org is set to the respective orgrce values minus 0.05, (c) ôrg growth rate over one time step after

HomoMicro begins for ORG ZERO, and (d) same as panel c but for ORG ABS.
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Results are shown as scatterplots in Figure 6, where data from the final 300 days620

of the 1000 days control simulations were used to derive the mean orgrce values (results621

are not sensitive to the averaging period). For ORG ZERO, we found a very high cor-622

relation between tmem and the mean values of orgrce (r = 0.92, p < 0.001; panel a).623

A weaker but still high negative correlation (r = −0.81, p = 0.005; panel c) was also624

found between tmem and the initial d(ôrg)/dt immediately after HomoMicro was applied625

(where ôrg = org/orgrce as described in Section 3.3), indicating that a slower org re-626

covery rate is associated with larger tmem. For ORG ABS, the strong association between627

tmem and orgrce discovered for ORG ZERO disappears (r = 0.45, panel b), but a mod-628

erately strong correlation remains between tmem and the org growth rate (r = −0.77,629

p = 0.01; panel d). Note that as the ORG ABS results contain an outlier (rkm10), we630

have computed the Spearman’s rank correlation coefficient, which is less sensitive to out-631

liers (Pearson’s coefficient returns r values of 0.83 and −0.95 for panels b and d, respec-632

tively). With the exception of rkm10, the tmem’s for the ORG ABS cases are significantly633

more similar to each other (they are closer to each other in panels b and d) compared634

to the ORG ZERO cases, pointing to the possibility that the highly linear relationship635

between tmem and orgrce found for ORG ZERO could be due to the more vigorous per-636

turbation the homogenization step has when there is more org to be homogenized, which637

leads to longer recovery times. Overall, the robustness of the results between panels c638

and d suggest that it is not the absolute value of org but its rate of change that encodes639

information about the memory strength of a system (before perturbation, it is the same640

RCE system in c and d, so it should have the same memory). Further evidence for this641

can be seen in the initial negative growth rates of a few configurations with the strongest642

memory (longest tmem’s) in the ORG ABS experiment (panel d), indicating that org con-643

tinued to decrease (instead of immediately recovering as in other cases) after the instan-644

taneous homogenization step because of its higher inertia in these cases.645

By changing the entrainment rates of the different cases via the org2rkm param-646

eter, org simulates the functionality of convective organization: higher entrainment rates647

are associated with increased mixing of dry air into convecting plumes, resulting in the648

confinement of convection to sufficiently moist regions and hence more organized con-649

vection and stronger memory. When HomoMicro is applied, cases with more feeble con-650

vection—owing to the larger entrainment rates—therefore display slower recovery. Note651

that although the rkm10 (and rkm20 for HomoMicro) responses appear closest to those652

of the CRM in both the FixMacro and HomoMicro experiments, we have refrained from653

suggesting the “best” values for the org2rkm and org2cbmf parameters. As is usual for654

parameterization, these are essentially tunable parameters and the most appropriate val-655

ues probably depend on the scenario that one wishes to simulate. Here, we merely demon-656

strate the relationship between entrainment rate and convective memory, facilitated via657

the org variable.658

4 Conclusions659

The main objective of the present study is to evaluate the memory behavior of sev-660

eral configurations of the UW-org scheme as well as the LMDZ cold pool convection scheme,661

with memory being defined as the dependence of convection on its own history given its662

current environment, present in these schemes. As control (memory-less) cases we also663

tested five conventional convection schemes. We compare the responses of these schemes664

in a single-column model (SCM) setup to those of a cloud-resolving model (CRM) us-665

ing two idealized RCE experiments. The CRM results are taken from previously pub-666

lished studies (Colin et al., 2019; Colin & Sherwood, 2021), and include two tests: Fix-667

Macro, where we hold the macrostate environment of convection fixed and observe the668

evolution of convection; and HomoMicro, where we reset subgrid prognostic variables to669

neutral values at one time and observe the subsequent evolution as they recover. These670

tests serve two purposes. As presented in the previous studies, they allow us to test the671
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diagnostic assumption where convective activity is assumed to be instantaneously and672

solely determined by the macrostate. As newly implemented here, they further allow us673

to differentiate between different possible parameterizations of convective memory pro-674

cesses.675

The picture that emerges from these experiments can be summarized into three main676

points. First, standard convection schemes that do not contain any internal prognostic677

variables and diagnose convective behavior from their environment behave very differ-678

ently to the CRM in the FixMacro experiment. Precipitation (a proxy for convective ac-679

tivity) remains invariant in time, while in the CRM it grows or decays exponentially. This680

invariance reveals the diagnostic assumption used in these convection schemes: convec-681

tion is slave to and only to the macrostate, hence when the large-scale environment is682

restrained, convective activity also remains unchanged. These results are unsurprising,683

but nonetheless serve as a clear and easy-to-understand demonstration of the memory684

(or rather, lack thereof) behavior of schemes that employ the diagnostic assumption. Since685

the time scales of growth or decay shown by the CRM are many hours, this failure of686

diagnostic schemes is likely to cause large discrepancies in transient convective behav-687

ior on subdaily time scales.688

Second, the memory-capable UW-org and LMDZ-CP schemes partially, but do not689

fully, capture the behavior of the CRM under FixMacro and HomoMicro conditions. For690

the UW-org scheme, precipitation mimics the behavior of the CRM in that precipita-691

tion either grows or decays when its large-scale environment is fixed, indicating the ef-692

fects of microstate memory. However, its growth trajectory departs from that of the CRM693

after a few hours, trending towards a stable equilibrium, while in the CRM precipita-694

tion continues to evolve exponentially. This behavior can be explained by the scheme’s695

structural assumptions, in particular that the impact of precipitation on the subgrid state696

scales sublinearly with precipitation, while the CRM exhibits a linear (or superlinear)697

dependence between the two. When the microstate memory variables are set to zero in-698

stantaneously, the UW-org scheme behaves similarly to the CRM cases where both Tq699

or only q were homogenized: precipitation falls to zero and then recovers to its RCE state.700

The LMDZ-CP scheme, on the other hand, displays responses that mimic the CRM be-701

havior when only T was homogenized: precipitation grows before falling back to its RCE702

value after a few oscillations. We found bigger entrainment rates in the UW-org scheme703

to be associated with slower precipitation growth (in FixMacro) and recovery (in Ho-704

moMicro). This more sluggish behavior is symptomatic of a bigger inertia or persistence705

of past convective states, which we interpret as greater memory strengths. Further, the706

rate of change in time of org is shown to be correlated with memory strength in both707

the FixMacro and HomoMicro experiments, suggesting that org has captured crucial as-708

pects of memory.709

Third, different ways convection schemes parameterize memory clearly have an im-710

pact on their behavior. Again, this might seem trivial and unsurprising, but it is use-711

ful to be able to highlight these differences in a clear and convincing way. One impor-712

tant difference that was revealed here was the dominant type of memory represented by713

the schemes. Even though both schemes use rain evaporation as their memory source714

(with explicit dependence on relative humidity, a thermodynamic variable), the LMDZ-715

CP scheme appears to emphasize temperature-stored memory while the UW-org scheme716

displays a prevailing moisture memory response that is more similar to the CRM’s be-717

havior. This intriguing disparity is no doubt a manifestation of the general conceptual718

difference between the schemes, and indeed, the way they aim to represent memory through719

their governing equations. Perhaps the UW-org scheme’s use of a prognostic org vari-720

able that mimics the behavior of the prey in the predator-prey equations (akin to Colin721

and Sherwood (2021)) was better at reproducing the CRM’s behavior. Of course, whether722

our results imply one scheme’s definitive superiority over another cannot be ascertained723

based only on two simple idealized tests: the LMDZ-CP scheme may very well perform724
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better in other (perhaps more realistic) tests, which we have not taken into account here.725

Nevertheless, our findings could perhaps inspire ideas about or guide the search for ways726

to investigate potential flaws in a scheme.727

Our study has several limitations. We have relied on results from a single CRM728

(WRF) to provide “truth” for assessing the convection schemes. Findings could poten-729

tially differ with another CRM. Even in the WRF CRM we found varying results with730

different states of convective organization. We hence cannot rule out the possibility that731

other model configurations (e.g., domain size, horizontal resolution) could also influence732

the results presented here. The two experiments conducted are highly idealized and do733

not resemble anything that would happen naturally in the atmosphere, and thus poten-734

tially may be unfair tests of parameterizations that might reveal deficiencies that don’t735

matter in practice. We acknowledge that these experiments are indeed more akin to lab-736

oratory experiments and are not meant to be realistic. However, they serve the purpose737

of providing ways to understand the behavior of convection schemes (which is not at all738

a straightforward endeavour) in a simple framework that may offer useful insights on their739

complicated behavior in realistic scenarios. Under steady-state conditions we investigated740

here (RCE), the importance of the temporal dependence of convection on its own past741

state (i.e., the prognosticity of the memory variable) may not be as apparent compared742

to transient scenarios. Nonetheless, the memory timescales revealed in our experiments743

(∼12 h in the UW-org scheme) are very similar to that of the diurnal cycle as well as744

the moisture adjustment time scale observed over the tropical oceans (Bretherton, Pe-745

ters, & Back, 2004), suggesting that our experiments have likely isolated issues related746

to the inability of some memory-less schemes in the correct simulation of diurnal cycles747

(Daleu et al., 2020; Harvey et al., 2022). Lastly, our SCM setup necessarily means that748

no insights about convective organization can be provided, which limits the interpreta-749

tion of certain results. The connection between convective memory and organization, for750

example, cannot be verified. Nevertheless, 1D and 3D results have been found to be com-751

parable (Hwong et al., 2022), suggesting there is a chance the findings of our study can752

be applied to improve temporal memory parameterization, which in turn could help im-753

prove the representation of spatial organization (Tobin et al., 2013). It is therefore a high754

priority to validate the results discussed here using a 3D setup.755

5 Appendix A756

The source term of the org prognostic equation (Eq. 1 ) is evap2org·E, where E757

is the mass-weighted vertical integral of rain evaporation rate, given by the following equa-758

tion (Eq. A8 in Park & Bretherton, 2009):759

E =

∫ EL

0

(1 − RH)
√
K2

e p′ ρdz, (16)760

where RH, p′ and ρ are the vertical profiles of relative humidity, precipitation flux and761

air density, respectively, EL is the equilibrium level, and Ke is a constant and has the762

value of 0.2×10−5 [(kg m−2 s−1)−1/2s−1] (Park & Bretherton, 2009). E and p′ are in763

the units of kg m−2 s−1. To enable a more numerically tractable formulation, we sim-764

plify Eq. (16) to765

E = K(1 − RH)
√
P , (17)766

where P is surface precipitation (in units kg m−2 s−1), RH is the vertical mean of rel-767

ative humidity, and K is a constant (in units [kg m−2 s−1]1/2). Substituting Eq. (17)768

in (1) we get769

d(org)

dt
= evap2org ·K(1 − RH)

√
P − org

τorg
, (18)770
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We have assumed a linear approximation for the relationship between P and org771

(i.e., P = βorg), Eq. (18) thus becomes772

d(org)

dt
= evap2org ·K(1 − RH)

√
β org − (org)

τorg
, (19)773

There are two steady state (RCE) solutions to the system

(
d(org)

dt
= 0

)
, one of774

which is orgrce = 0, and the other one gives775

√
orgrce =

√
β evap2org ·Kτorg(1 − RHrce). (20)776

Combining Eq. (19) and (20) we get777

d(org)

dt
=

orgrce
τorg

[(
1 − RH

1 − RHrce

)√
org

orgrce
− org

orgrce

]
. (21)778

Under FixMacro conditions, Eq. (21) can be formulated in terms of a normalized779

org, with ôrg = org/orgrce, and a FixMacro profile, RH0780

d(ôrg)

dt
=

1

τorg

(
b
√
ôrg − ôrg

)
, (22)781

where b =
1 − RH0

1 − RHrce

. Substituting ôrg with the normalized memory variable V̂ we get782

Eq. (15). Numerical integration of Eq. (22) shows that, for an initial value of ôrg0 =783

1 (i.e., org = orgrce),784 

ôrg = 1, if b = 1, control case.

d(ôrg)

dt
> 0, if b > 1, FixMacro growth case.

d(ôrg)

dt
< 0, if b < 1, FixMacro decay case.

(23)785
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Abstract14

Two assumptions commonly applied in convection schemes—the diagnostic and quasi-15

equilibrium assumptions—imply that convective activity (e.g., convective precipitation)16

is controlled only by the large-scale (macrostate) environment at the time. In contrast,17

numerical experiments indicate a “memory” or dependence of convection also on its own18

previous activity whereby subgrid-scale (microstate) structures boost but are also boosted19

by convection. In this study we investigated this memory by comparing single-column20

model behavior in two idealized tests previously executed by a cloud-resolving model (CRM).21

Conventional convection schemes that employ the diagnostic assumption fail to repro-22

duce the CRM behavior. The memory-capable org and LMDZ cold pool schemes par-23

tially capture the behavior, but fail to fully exhibit the strong reinforcing feedbacks im-24

plied by the CRM. Analysis of this failure suggests that it is because the CRM supports25

a linear (or superlinear) dependence of the subgrid structure growth rate on the precip-26

itation rate, while the org scheme assumes a sublinear dependence. Among varying ver-27

sions of the org scheme, the growth rate of the org variable representing subgrid struc-28

ture is strongly associated with memory strength. These results demonstrate the impor-29

tance of parameterizing convective memory, and the ability of idealized tests to reveal30

shortcomings of convection schemes and constrain model structural assumptions.31

Plain Language Summary32

Convection (clouds) has memory, can remember its own history, and is affected by33

it when evolving to the next step. However, this memory effect is often neglected in con-34

vection schemes, which are approximate sub-models used to represent (parameterize) con-35

vective processes in climate models whose resolutions are too low to properly resolve con-36

vection. In this study we apply two simple tests to probe the memory behavior of var-37

ious convection schemes. We found that most conventional schemes fail to mimic the mem-38

ory response of a cloud-resolving model (CRM) where convection is properly represented.39

In two schemes where memory is parameterized, their responses are more similar but still40

bear significant differences to the CRM. We show that this discrepancy can be explained41

by the equations used in these schemes. For one of the schemes, we also found that the42

strength of memory is related to the growth rate of the memory variable, rather than43

its absolute value. Overall, our results demonstrate the importance of taking memory44

into account in convection schemes, and show that the two tests implemented here are45

simple but useful in shining light on potential shortcomings of convection schemes and46

hence also ways to improve them.47

1 Introduction48

Cumulus convection is a key process in tropical climate dynamics and plays a cru-49

cial role in transporting and redistributing momentum, heat and moisture in the atmo-50

sphere. It is a complex process that involves a multitude of time and spatial scales. In51

general circulation models (GCMs), the impact of unresolved convective processes on re-52

solved scales is accomplished through parameterization. Despite great strides in recent53

years (Villalba-Pradas & Tapiador, 2022; Rio et al., 2019), convective parameterization54

remains an important source of uncertainty in GCMs (Stephens et al., 2010; Stevens &55

Bony, 2013).56

Two structural assumptions or approximations that are commonly applied in con-57

vection schemes and relevant to the present study are the diagnostic and quasi-equilibrium58

assumptions. The former states that convective activity at any given instant can be de-59

termined using solely the resolved grid-scale variables at that instant via an unspecified60

function (typically different in different schemes) and that there is no conditional depen-61

dence of convection on its own history given the current grid-scale state. The latter as-62

sumes that convective instability generated by slowly-evolving large-scale forcing is quickly63
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consumed by fast-acting convective processes and is commonly used as a closure assump-64

tion in convection schemes (Arakawa & Schubert, 1974; Yanai et al., 1973; Yano & Plant,65

2012). However, both assumptions do not fully capture what happens in reality because66

convection takes a finite time to adjust to large-scale forcing (Arakawa & Schubert, 1974;67

Pan & Randall, 1998), and is affected by pre-existing convection (Davies et al., 2009, 2013).68

The fact that convection has inertia, can feel the influence of its own activity at an ear-69

lier time, and is modified by it, is termed the “memory” of convection (Davies et al., 2009).70

Its parameterization is the focus of this study.71

It is important to differentiate between two types of memory that have been iden-72

tified in cloud-resolving model (CRM) studies: macro- and microstate memories (Colin73

et al., 2019, henceforth C19). We refer to the memory effects arising from a changing74

large-scale (“macrostate”) environment as “macrostate memory”. In the context of pa-75

rameterization, it represents the impact of processes that affect the mean profiles of a76

single GCM grid cell over a finite time, relaxing the quasi-equilibrium assumption. It is77

commonly taken into account in convection schemes via a finite “adjustment time scale”78

of 1–5 h (Bechtold et al., 2008; Cohen & Craig, 2004; Kain, 2004; Xu & Randall, 1998).79

In this study we are interested in another memory, which emerges due to small-scale (“mi-80

crostate”) structures or heterogeneities within a GCM grid box (or within a CRM do-81

main), and is produced by but also promotes convection, the so-called “microstate mem-82

ory” (C19). These structures could arise as a consequence of individual clouds chang-83

ing their surroundings during their lifespans and manifest themselves as remnants of past84

convective activity influencing the development of convection at the present time (Davies85

et al., 2009, 2013). This type of memory arises from subgrid-scale processes that remain86

unresolved in GCMs (but resolved in CRMs) and must therefore be parameterized. To87

avoid confusion, memory in the present study refers to microstate memory.88

Multiple CRM studies have shown that memory mainly resides in low-level ther-89

modynamic inhomogeneities (C19; Daleu et al., 2020; Davies et al., 2013). Two of these90

studies are relevant to our analysis. To identify memory and its effects, C19 imposed an91

instantaneous homogenization of the microstate structures (setting a given subset of prog-92

nostic variables to their domain-averaged values) and observed how convective activity93

(precipitation) recovered after this homogenization. They found that memory is predom-94

inantly contributed by the water vapor and temperature microstructures (variability)95

in the subcloud layer compared to winds and hydrometeors. A longer recovery time scale96

was observed when convection is organized (> 24 h) than when disorganized (2–3 h). A97

follow-up study by Colin and Sherwood (2021, henceforth CS21) explored the memory98

behavior of a CRM when the macrostate is held fixed to its equilibrium mean state (“strong-99

nudging” experiment). In this case convection displays a volatile behavior, with precip-100

itation either growing exponentially to an unrealistically large value or decaying to zero.101

Additionally, the authors presented a two-variable, predator-prey model that was able102

to capture this instability, as well as the CRM behavior in C19’s homogenization exper-103

iment. Further description of the predator-prey model is presented in Section 3.3.104

Despite the knowledge gained from CRM experiments it remains unclear how mem-105

ory should be parameterized, and a wide range of approaches have been attempted. These106

include the introduction of prognostic variables that influence the evolution of various107

scheme calculations such as entrainment (Mapes & Neale, 2011, henceforth MN11), clo-108

sure formulation (Pan & Randall, 1998; Randall & Pan, 1993), updraft area fraction (Gerard109

et al., 2009), updraft and downdraft (Tan et al., 2018), convective vertical velocity (Guérémy,110

2011), microphysics (Piriou et al., 2007); the explicit modeling of physical processes such111

as cold pools (Del Genio et al., 2015; Grandpeix & Lafore, 2010; Park, 2014a, 2014b; Qian112

et al., 1998), cloud lifecycles (Sakradzija et al., 2015, 2016), evolution of thermal clus-113

ters (Neggers & Griewank, 2021, 2022); the use of Markov chains (Hagos et al., 2018;114

Khouider et al., 2010; Peters et al., 2013) and cellular automata (CA) (Bengtsson et al.,115

2013, 2021); the adoption of machine learning algorithms such as convolutional and re-116
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current neural networks to capture temporal dependencies (Caseri et al., 2022; Y. Han117

et al., 2020); and embedding CRM in GCM grid cells through super-parameterization118

(Khairoutdinov & Randall, 2001; Khairoutdinov et al., 2005; Pritchard et al., 2011). Given119

the immense diversity in memory parameterizations, we deem it an important task to120

design tests in a simple and intuitive framework to probe the behavior and potentially121

reveal the shortcomings of current schemes. It is therefore the goal of this paper to ex-122

amine two convection schemes with memory using two idealized tests.123

The first convection scheme is the UW-org scheme, which we briefly describe here124

and refer to MN11 for in-depth details. The scheme is based on the University of Wash-125

ington (UW) shallow convection scheme implemented in the Community Atmosphere126

Model (CAM5), which is a single-plume mass flux scheme (Park & Bretherton, 2009).127

The modified UW-org scheme is conceptualized as a unified (shallow and deep) scheme.128

Memory is parameterized via the introduction of a new prognostic org variable meant129

to capture the effects of subgrid-scale structures on convective processes such as entrain-130

ment rate and closure. While an arbitrary number of plumes can be computed, the cur-131

rent implementation contains only two plumes that are computed sequentially, and whose132

mass fluxes and area coverages are combined to determine the total precipitation and133

other convective tendencies. Entrainment rates and plume base conditions (temperature134

and humidity) may differ between the plumes, and thus may also the heights the plumes135

reach. org is a 2D, dimensionless variable whose prognostic equation is given by136

d(org)

dt
= S − (org)

τorg
(1)137

where S is the source of org (defined as the mass-weighted vertically integrated rain evap-138

oration rate in kg m−2 s−1 times evap2org, an adjustable parameter) and τorg its char-139

acteristic time scale. Following MN11, we set evap2org to 2 m2 kg−1 and τorg to 10 ks140

(∼3 h). We elaborate further on the effects of org on entrainment rate and closure in Sec-141

tion 2.2.142

The second scheme we tested is the cold pool (CP) scheme in the Laboratoire de143

Météorologie Dynamique Zoom (LMDZ) model (Grandpeix & Lafore, 2010). This scheme144

represents spreading circular cold pools fed by precipitation evaporation in unsaturated145

downdrafts. Their dynamics follows that of a density current: they convert gravitational146

potential energy into kinetic energy. These cold pools impact convection in three ways.147

First, their negative buoyancy provides energy to trigger deep convection via mechan-148

ical lifting. Second, cold pool edges act as gust fronts and provide power for the convec-149

tive closure via an Available Lifting Power (ALP), which is proportional to total cold150

pool perimeter and increases with cold pool spread speed. Third, cold pools create two151

subgrid-scale environments: the colder cold pool environment seen by downdrafts, and152

the warmer exterior seen by updrafts in the convection scheme. The cold pools are prog-153

nostic, and their memory comes from their density current properties. The prognostic154

memory variables are the cold pool temperature and humidity anomalies, as well as the155

total cold pool surface area. A summary of the main cold pool governing equations is156

presented in Grandpeix et al. (2010).157

The overarching goal of this study is to examine and improve understanding of the158

memory behavior of the UW-org and LMDZ-CP schemes by using a single-column model159

(SCM) setup and comparing their responses to those of previously published CRM re-160

sults (C19 and CS21). The specific research questions addressed are:161

1. How do convection schemes respond when we fix the large-scale environment, i.e.,162

disable the feedback between micro- and macrostates?163

2. How do convection schemes respond when we homogenize their microstate struc-164

tures carrying memory?165

3. How do their above responses compare to those of (1) schemes with no microstate166

memory, and (2) a CRM where convection is resolved?167
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2 Methods168

2.1 Models and Simulation Setup169

Two models in their SCM setup were used in this study: the Weather Research and170

Forecasting (WRF) and LMDZ models. WRF uses the Advanced Research WRF (ARW)171

fully compressible, Eulerian non-hydrostatic solver (version 4.0.2; Skamarock et al., 2019).172

The LMDZ model is the atmospheric component of the IPSL global climate model. Here173

we used the LMDZ5B+ version of the model, which is based on the CMIP5 version (LMDZ5B;174

Hourdin et al., 2013) but with additional developments (revision 2420). As reference we175

used previously published WRF CRM results (202 × 202 grid points, horizontal reso-176

lution of 1 km; see C19 and CS21) and closely followed their simulation setup for our177

SCM experiments, which we briefly summarize below.178

The control simulations were conducted under non-rotating, radiative-convective179

equilibrium (RCE) conditions with the Coriolis parameter set to zero. An ocean surface180

was used, with a fixed SST of 302 K. In WRF SCM, a stretched vertical grid spacing with181

74 model levels was used, with model bottom at around 40 m and model top at around182

33 km. In LMDZ, another stretched vertical grid spacing was used, with 79 vertical lev-183

els, ranging from 10 m to 80 km.184

In terms of convective parameterization, for this study we have imported into WRF185

the UW-org scheme originally developed for the CAM5 model. We also tested in WRF186

five standard convection schemes without memory: the Zhang-McFarlane (ZM; G. Zhang187

& McFarlane, 1995), Kain-Fritsch (KF; Kain, 2004), New-Tiedtke (NT; C. Zhang & Wang,188

2017), New-Simplified Arakawa-Schubert (NSAS; J. Han & Pan, 2011), and Betts-Miller-189

Janjic (BMJ; Betts, 1986; Betts & Miller, 1986; Janjić, 1994) schemes. The LMDZ SCM190

uses a modified version of the mass flux deep convection scheme of Emanuel (1991) and191

Emanuel and Živković-Rothman (1999). In particular, the triggering and closure were192

completely overhauled (Rio et al., 2013) so that both the cold pool scheme (Grandpeix193

& Lafore, 2010) and the thermal plume scheme (Rio & Hourdin, 2008) control trigger-194

ing and closure. Therefore, convection is tightly governed by subgrid, subcloud layer pro-195

cesses (Mapes, 1997; Hourdin et al., 2020). For the other parameterizations, in WRF we196

used the RRTMG longwave and shortwave radiation schemes (Iacono et al., 2008), the197

WSM6 microphysics scheme (Hong & Lim, 2006), the YSU planetary boundary layer (PBL)198

scheme (Hong et al., 2006) which also computes the vertical diffusion due to turbulence,199

and the revised MM5 surface layer scheme based on Monin-Obukhov theory for surface200

fluxes computations (Jiménez et al., 2012). In the LMDZ runs, the radiation scheme is201

from an older ECMWF weather forecast model (Morcrette, 1991). Boundary layer tur-202

bulence is handled by a prognostic turbulent kinetic energy diffusion scheme based on203

Yamada (1983) as well as by the mass flux thermal plume model. LMDZ also includes204

a large-scale condensation-precipitation-evaporation scheme and a gravity wave param-205

eterization (Hourdin et al., 2013, 2020). In WRF, diurnal cycles were removed by set-206

ting the solar constant to 544 W m−2 and a fixed solar zenith angle of 37° to simulate207

equatorial conditions. In LMDZ, the diurnal cycle of radiation was similarly removed.208

The simulations were run for 1,000 days in WRF and 60 days in LMDZ, thereafter two209

types of perturbations were applied, described in Sections 2.3 and 2.4.210

2.2 UW-org and LMDZ Cold Pool Schemes211

In the UW-org scheme, the org variable can have several effects on convection (see212

Figure 1 in MN11). We focused on two of them: entrainment rate and closure. The frac-213

tional entrainment (ϵ) and detrainment (δ) rates per unit height in this scheme are given214

by215

ϵ = ϵoχc
2, (2)216

217

δ = ϵo(1 − χc)
2, (3)218
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where χc is the critical mixing fraction of environmental air in the parcels depending on219

height (see equation B1 in Bretherton, McCaa, & Grenier, 2004), ϵo (m−1) is the frac-220

tional mixing rate and is inversely proportional to height following a common formula-221

tion in literature (de Roode et al., 2000; Holloway & Neelin, 2009; Siebesma et al., 2007),222

i.e., ϵo = r/z. For the 1st plume r is an empirical constant (r1) and set to a large value223

following the original UW shallow scheme (entrainment rates are usually larger in shal-224

low convection schemes), while r for the 2nd plume (r2) undergoes org modification fol-225

lowing the equation226

r2 =
r1

1 + org · org2rkm
, (4)227

where org2rkm is a unitless parameter. Simply put, the org-modulated entrainment rate228

impacts convection development via its changing effect over time: during early stages229

when rain rates are small (small org values, as rain evaporation is a source of org) big230

entrainment rates suppress convection and promote the development of large-scale vari-231

ability (i.e., organization), while in later stages large rain rates (large org values) lead232

to reduced entrainment rates that encourage deeper convection that stabilizes the col-233

umn.234

The second org effect we explored is its impact on cloud-base mass flux (CBMF;235

i.e., closure), which is computed as236

Mb = Mb,1(1 + org · org2cbmf), (5)237

where org2cbmf is a unitless parameter, Mb,1 is the CBMF of the 1st plume (given by238

Eq. A3 in Park & Bretherton, 2009). The sinking of chilled air from downdrafts can po-239

tentially trigger convection by influencing plume base vertical velocity. This has the ef-240

fect of larger CBMFs on rainy days when org values are big and the plumes have a higher241

probability of overcoming convective inhibition (CIN) and attaining their level of free242

convection (the scheme closure is based on CIN).243

We tested a few org configurations by changing and combining the org2rkm and244

org2cbmf parameters. For brevity, we refer to the cases where only the org2rkm param-245

eter was changed as “WRF-RKM” and those where both org2rkm and org2cbmf were246

changed as “WRF-RKMCBMF”.247

For the LMDZ cold pool scheme, the version used here represents a population of248

circular, identical cold pools of radius r. The cold pools are assumed to have a fixed num-249

ber density DCP (m−2) which sets how many cold pools there are per unit area. Hence,250

they occupy a relative surface area251

σCP = DCPπr
2. (6)252

Cold pools can expand horizontally at a horizontal spread speed C following a simple253

geometrical relation:254

∂σCP

∂t
= 2C

√
πDCPσCP , (7)255

although their expansion is capped as soon as they reach the maximum allowed relative256

surface area σCP,max = 0.4.257

Cold pools are characterized by the vertical profile of their potential temperature258

and humidity differences with the external air around them (θ′ and q′). Since they are259

denser than their environment, cold pools have a downward vertical velocity which is trans-260

formed into horizontal spread speed C which can then be converted into upward motion261

at the cold pool edge. The total energy available for this mechanical process is the in-262

tegrated negative buoyancy in cold pools, called ALE (Available Lifting Energy):263

ALE = −g

∫ hCP

0

δθv
θ̄v

dz, (8)264
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where hCP is the cold pool height, g gravity, θv virtual temperature, and θ̄v denotes the265

grid cell mean θv. Deep convection is triggered when ALE > |CIN| (ALE being the largest266

between the ALE provided by cold pools and the ALE provided by PBL thermals), i.e.,267

when PBL processes are strong enough to erode boundary layer stability. In particular,268

PBL thermals may trigger convection only if a stochastic triggering condition is fulfilled269

(Rochetin, Couvreux, et al., 2014; Rochetin, Grandpeix, et al., 2014).270

The experimental cases in this study are listed in Table 1.271

Table 1. Models and experimental cases in this study

Model Convection
scheme

Case name org parame-
ters

Description

WRF

Standard WRF
convection
schemes

ZM, KF, NT,
NSAS, BMJ

- Conventional
convection
schemes in WRF

UW-org

rkm0 org2rkm = 0 Two identical
plumes, no org
effects (memory)
in 2nd plume

rkm10 org2rkm = 10

2nd plume has org effects

rkm20 org2rkm = 20
rkm30 org2rkm = 30
rkm10cbmf10 org2rkm = 10,

org2cbmf = 10
rkm20cbmf10 org2rkm = 20,

org2cbmf = 10
rkm30cbmf10 org2rkm = 30,

org2cbmf = 10

LMDZ Cold pool
+ Modified
Emanuel/ALP/ALE
schemes

LMDZ-CP - LMDZ5B+ ver-
sion, settings for
tropical ocean

2.3 FixMacro Experiment272

We first consider the “strong-nudging” experiment by CS21, where the macrostate273

was fixed to its RCE mean. In the WRF CRM of CS21, this was achieved by applying274

a tendency term for potential temperature (θ), water vapor mixing ratio (q) and hor-275

izontal winds (u, v) uniformly in (x, y) at each model level, proportional to the differ-276

ence between the horizontal mean field and a target profile, with a short nudging time277

scale of 40 s (see Eq. 1 in CS21). The idea is that if the diagnostic assumption used in278

convection schemes were true—using CS21’s notation, convective activity C were related279

to the macrostate ξ via a function (f) : C(x, t) = f [ξ(x, t)]—convective activity would280

remain unchanged while the macrostate is held fixed. In the presence of microstate mem-281

ory, however, in addition to its dependence on the large-scale environment convection282

also remembers its own history. That is, (f) : C(x, t) = f [ξ(x, t), C(x, t − 1)], and283

convection will not remain unchanged but will evolve in time under the influence of the284

macrostate rather than being determined by it instantaneously. Fixing the macrostate285

hence serves as a simple and direct test for microstate memory.286
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In the WRF SCM we emulate this experiment of CS21 via our fixed-macrostate287

(“FixMacro”) experiment. Instead of nudging as in CS21, however, we restarted the SCM288

from its control macrostate so as to call the convection schemes with identical input pro-289

files of thermodynamic and wind fields at every time step. This FixMacro approach achieved290

the desired result more directly and was feasible in the WRF SCM due to the model’s291

modular design. We modified the code of the convection schemes such that at every time292

step the prognostic variables received by the schemes were overwritten with the values293

from specific target profiles. An ensemble of twenty FixMacro experiments was run, each294

with a target profile taken from a 20-day average of the unperturbed control run at a295

different time interval. We also attempted these SCM experiments using the CRM strong-296

nudging method, which yielded similar results (not shown).297

Note that this FixMacro part of the experiment was only conducted in the WRF298

and not LMDZ SCM because in LMDZ it was technically challenging to directly fix the299

prognostic variables received by the convection scheme specifically.300

2.4 HomoMicro Experiment301

We next consider the “HomoMicro” experiment based on C19, where the WRF CRM302

control runs were restarted from an equilibrated RCE state and subsets of prognostic303

variables (T , q, u, v and others) were horizontally homogenized to their domain-mean304

values at restart. This keeps the macrostate unchanged while essentially wiping out their305

microstate structures or memory. The equivalent with parameterized physics would be306

to set internal prognostic or “memory” variables to some reference value (e.g., zero). In307

the UW-org scheme there is a single such variable org, while in the LMDZ cold pool scheme308

there are prognostic cold pool temperature and moisture anomalies (T ′ and q′). For WRF309

UW-org we ran one test setting org to zero, while with LMDZ we ran three tests, ze-310

roing either the T ′, the q′, or both. An ensemble of 20 HomoMicro simulations was con-311

ducted for each test, as for FixMacro. Note that this part of the study cannot be con-312

ducted for the five standard WRF convection schemes, as they do not contain a microstate313

memory variable, so they implicitly predict no change after homogenization. A diagram314

of the control, FixMacro and HomoMicro experiments is shown in Figure 1.315
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Figure 1. Diagram of the macro- and microstate feedbacks for the (a) control, (b) FixMacro

(holding macrostate constant at every time step), and (c) HomoMicro (setting memory variable

to zero at one time step) experiments. Green positive and red negative symbols indicate, respec-

tively, positive and negative feedbacks on convection C or on environmental instability ξ favoring

C. Italicized words are parameters in the UW-org scheme (see text for description).
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3 Results and Discussion316

3.1 RCE Mean State317

Figure 2. RCE steady state profiles of (a) relative humidity (RH) for the CRM and various

SCM configurations (for WRF SCM, only the ZM and UW-org schemes are shown), (b, c) mass

fluxes of the 1st and 2nd plumes of the various UW-org configurations for the WRF SCM, and

(d, e) temperature and moisture anomalies inside cold pools for the LMDZ SCM.

To illustrate the main features of the various model configurations we show the RCE318

mean state profiles of the relative humidity (RH) of the CRM, LMDZ and WRF SCM319

(for the standard convection schemes only ZM is shown as the other schemes have been320

presented in Hwong et al. (2021)), updraft mass flux of each plume in the WRF UW-321

org SCM, and the cold pool temperature and moisture anomalies of the LMDZ SCM,322

in Figure 2. There is a spread of around 20% of near-surface RH among the SCMs (panel323

a), with LMDZ displaying the moistest low-level profile (around 90%). This spread is324

comparable to that seen in previous SCM intercomparisons (e.g., Hwong et al., 2021; Wing325

et al., 2020). Hwong et al. (2021) found a difference of around 30% at near-surface lev-326

els even with constrained surface fluxes and a prescribed radiative profile in all models,327
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and attributed this spread to the different parameterizations (primarily convection schemes)328

used in the SCMs. The CRM near-surface RH profile lies close to the middle of the SCM329

spread while in the free troposphere it is significantly moister. For the UW-org cases,330

configurations with smaller entrainment rates (larger org2rkm values) display a drier free331

tropospheric mean state, suggesting more precipitation-efficient convection and hence332

stronger net drying. The addition of org effects also appears to attenuate the sharp changes333

(kinks) in RH profile around the freezing level frequently seen in convection schemes (Hwong334

et al., 2021), here apparent in the profiles of WRF-ZM and LMDZ-CP. This suggests that335

the UW-org scheme might be more capable of handling state transitions, perhaps be-336

cause its memory effects contribute to the exploration of a wider variety of states. We337

further note that the spread of RH in the troposphere here is smaller than reported in338

previous model intercomparisons, which indicates that—although it does have signifi-339

cant impact—changing the org settings is less impactful than changing convection schemes.340

The mass flux profiles of the two plumes in the UW-org scheme cases are shown341

in panels b and c. For the rkm0 case (two identical plumes and no org effect) the two342

plumes display the same mass flux profiles, while for the other cases a “division of la-343

bor” mechanism develops between the plumes: the 2nd plume, with its reduced entrain-344

ment due to the org2rkm effect, takes up the role of deep convection (deeper than in rkm0)345

while the 1st plume, with its high entrainment rate as determined by the default UW346

shallow convection scheme parameters, assumes the function of shallow convection (con-347

fined below 850 hPa). Further, the addition of org effects in the closure (via org2cbmf ;348

dashed lines in Figure 2) manifests itself in the larger mass flux of the 2nd plume around349

the cloud-base.350

The cold pool temperature (T ′) and moisture (q′) anomaly profiles of LMDZ-CP351

are shown in panels d and e. The profiles show a cold and moist anomaly at the surface352

levels, illustrating the effect of cold pools on the thermodynamic microstate of the model.353

Colder, drier, and deeper cold pools are more powerful to trigger convection and to pro-354

vide upward mass flux for the closure (Eq. 8). The cold pools here in this particular RCE355

configuration are fairly shallow and not very cold, but this is enough to have some in-356

fluence on future convection. In particular, cold pools in this simulation are always dom-357

inant over thermals to trigger convection. Stronger updrafts and downdrafts both cre-358

ate a more distinct situation between cold pools and their environment. Therefore, the359

stronger the unsaturated downdrafts given by the convection scheme, the colder the cold360

pools. And likewise, the stronger the updrafts, the colder the cold pools.361
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3.2 Response to Fixed Macrostate Perturbation362

Figure 3. The FixMacro ensemble-averaged responses of normalized (a) precipitation of the

WRF-ZM and WRF UW-org cases, (b) integrated updraft mass flux and (c) org for the WRF

UW-org cases. The response of one of the CRM ensemble members (growing to ∼3000 mm d−1)

is shown in thick black line and in dashed black line the same response rescaled to the maximum

range of the SCMs. For the SCMs the ensemble members’ responses are normalized by their re-

spective RCE values when FixMacro begins, and the final responses are obtained by averaging

over all members. The RCE values are ∼4 mm d−1 for P , ∼0.3 kg m−1 s−1 for
∫
MF and ∼0.1

for org. The CRM response is reproduced from CS21. © American Meteorological Society. Used

with permission.

Figure 3 shows responses of the CRM and WRF SCM to the FixMacro experiment,363

where the macrostate (large-scale environment) was held fixed to the RCE state. We first364

briefly summarize the CRM results, which are described in detail in CS21. Around half365

of the ensemble members (four out of nine) show exponential precipitation growth to un-366

physical values, an example of which is shown in Figure 3, while for the remaining mem-367

bers precipitation decays to zero. CS21 found the trajectory of precipitation (growth or368

decay) depends on the target profile: members exhibiting growth behavior generally have369

higher CAPE values compared to the decaying members. The authors referred to this370

state of the model as an “unstable equilibrium in a thermodynamically fixed mean en-371

vironment”. By restraining the macrostate—thus preventing it from freely evolving—we372

are essentially overriding the natural negative feedback loop between the large-scale en-373

vironment and subgrid-scale activities (see Figure 1b). Under normal non-nudged cir-374

cumstances, instability caused by the large-scale environment (e.g., water vapor or CAPE)375

would be rapidly eliminated by convective activity C (e.g., convective heating and dry-376
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ing), hence maintaining a state of balance between the macro- and microstates. With-377

out this restoring branch in the system (red negative symbol in Figure 1), an unopposed378

positive feedback loop established itself: a macrostate conducive (unfavorable) to con-379

vection results in increased (decreased) precipitation, boosting (weakening) microstate380

memory, which in turn enhances (reduces) precipitation. Cold pools, for example, are381

a well-known source of microstate memory that are aided by the evaporation of rain and382

aid convection themselves (Schlemmer & Hohenegger, 2016; Tompkins, 2001; Zuidema383

et al., 2017). Further, CS21 also found low-level microstate structures (standard devi-384

ation of temperature and moisture at 2 m) to be the first variables to change during the385

initial development of instability. These findings collectively suggest that boundary layer386

inhomogeneities are the primary source of microstate memory.387

For the WRF SCMs, precipitation remains constant as expected for the standard388

convection schemes and rkm0 (two identical plumes and no org effects) when the macrostate389

is fixed (panel a), illustrative of the diagnostic assumptions in these cases, i.e., absence390

of microstate memory. As the five standard schemes all behave the same way, we only391

show the results of the ZM scheme here. For the cases with org effects, precipitation rates392

exhibit an initial growth stage (between 2–10 h after FixMacro started), before stabi-393

lizing latest by around half a day. Similar to the CRM, either growth or decay in pre-394

cipitation rates was observed amongst the ensemble members, with a smaller proportion395

showing decay (hence the overall growth shown in Figure 3). Precipitation and the org396

variable appear to be monotonically related: precipitation grows amongst members where397

org increases, and decays where org decreases. However, there are marked differences398

between the response trajectory of the org cases and the CRM. Using rkm10 as an ex-399

ample, its response initially closely tracks that of the CRM, but starts to diverge from400

it by around 4 h. While the CRM’s growth accelerates exponentially, rkm10’s growth401

appears to slow down and eventually stabilizes. We will further explore this discrepant402

response between the CRM and UW-org scheme in Section 3.3.403

For the UW-org cases where org affects entrainment only (WRF-RKM), we found404

smaller entrainment rates (larger org2rkm) to be associated with more rapid precipitation-405

rate growth. This can be explained by stronger convection resulting from reduced mix-406

ing with environmental air, rendering a quicker feedback on the precipitation rate. The407

eventual departure from RCE also appears to increase with smaller entrainment rate.408

For the corresponding cases where org also affects the closure (e.g., rkm10 vs. rkm10cbmf10;409

same-colored solid vs. dashed lines in Figure 3), faster initial precipitation growth rates410

and larger eventual departures from RCE were observed, indicating that making the scheme’s411

closure prognostic via dependence on org acts to enhance convection, thereby speeding412

up its reaction time.413

We show in Figure 3 two additional variables that are useful to understand the pre-414

cipitation response: integrated updraft mass flux (panel b) and org (panel c). The growth415

shape of the integrated updraft mass flux bears strong qualitative resemblance to that416

of precipitation (panel a), which is expected given the way the scheme diagnoses precip-417

itation: updraft condensates exceeding a critical mixing ratio (1 g kg−1) are expelled as418

precipitation (Bretherton, McCaa, & Grenier, 2004). As is common in mass flux schemes,419

the mass flux profile is used to compute all thermodynamic variables, including the pre-420

cipitating condensates. Thus, precipitation is roughly proportional to the integral of mass421

flux over the convecting layer. For org, its growing response is emblematic of the microstate422

memory effect: org remembers its previous state and grows when precipitation grows,423

since rain evaporation is a source of org. As mentioned, there appears to be a monotonic424

relationship between org and precipitation, at least in the initial growth stages. Given425

the fixed large-scale environment, this suggests that org (representing microstate mem-426

ory) is chiefly responsible for the precipitation growth, and vice versa.427

–13–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

3.3 Why Does the UW-org Scheme Respond Differently to the CRM?428

The initial exponential growth or decay of the CRM FixMacro responses presented429

in Section 3.2 can be explained using a predator-prey (PP) model, as described in CS21,430

and which we briefly summarize here. For a detailed description of the PP model we re-431

fer readers to Section 3 of CS21. The three key equations of the PP model are432

∂R

∂t
= E0 − P, (9)433

434

∂V

∂t
= αvpP − αdampV, (10)435

436

P = αpRV, (11)437

where R represents aspects of the macrostate environment that are conducive to con-438

vection but are also consumed by it (e.g., CAPE or water vapor), V represents features439

of microstate convective structures that stimulate convection and are stimulated by it440

(convective memory), E0 is the source of R, P is precipitation, and αdamp, αvp and αp441

are the damping rate of V , sensitivity coefficient of V to P and of P to the other vari-442

ables, respectively. Under FixMacro conditions, Eq. (9) disappears. Substituting Eq. (11)443

into (10) and fixing R to a constant R0 (hereafter a zero subscript denotes the target Fix-444

Macro fixing values), combined with one of the steady state (RCE) solutions Rrce =
αdamp

αvpαp
445

(see Eqs. 5−7 of CS21), we get446

∂V

∂t
= αvpαp(R0 −Rrce)V, (12)447

which predicts an exponential growth (if Ro > Rrce) or decay (if Ro < Rrce) of V (and448

P , since they are linearly related when R is fixed). Expressed in terms of quantities nor-449

malized by their RCE values, Eq. (12) can be reformulated as450

dV̂

dt
= αdamp

(
a V̂ − V̂

)
, (13)451

where V̂ = V/Vrce and a = R0/Rrce. Numerical integration of the PP model under452

FixMacro conditions indeed produces qualitatively the initial exponential growth of the453

CRM simulations (Figure 6 of CS21). Hence, by comparing the UW-org scheme to the454

PP model, we can gain useful insights that may shed light on the FixMacro behavior of455

the scheme when compared to the CRM.456

For the UW-org scheme, under FixMacro conditions we have observed a monotonic457

relationship between P and org, as presented in Section 3.2. For simplicity, and moti-458

vated by findings of previous studies (e.g., Kirsch et al., 2021; Kruse et al., 2022), we as-459

sume a linear approximation:460

P = β org, (14)461

where β is the proportionality factor. Eq. (1), describing the UW-org scheme, is roughly462

equivalent to Eq. (10) of the PP model, with V ≡ org, αdamp ≡ 1/τorg, and αvpP ≡ evap2org·463

E, where E is the mass-weighted vertical integral of rain evaporation rate and is pro-464

portional to (1−RH) multiplied by the square root of P (Eq. A8 in Park & Brether-465

ton, 2009). Replacing org with V and reformulated in terms of quantities normalized by466

their RCE values to ease comparison with the PP model, Eq. (1) can be simplified as467

dV̂

dt
= αdamp

(
b
√
V̂ − V̂

)
, (15)468

where αdamp = 1/τorg and b =
1 − RH0

1 − RHrce

, with overbar indicating vertical mean val-469

ues (see Appendix A for a detailed derivation of Eq. 15).470
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Eq. (13) and (15) are equivalent versions of the prognostic equation for the mem-471

ory variable V in the PP model and UW-org scheme under FixMacro conditions. Ap-472

plying a damping rate αdamp of 1×10−4 s−1 the timeseries of V̂ predicted by numer-473

ical integration of the two equations for the growth (a, b > 1) and decay (a, b < 1) cases474

are shown in Figure 4. The results bear strong qualitative resemblance to the simulated475

P responses presented in Section 3.2 (noting that the timeseries of P would be qualita-476

tively similar to org or V given the assumption of their linear relationship). The impact477

of a small mismatch between the target FixMacro and RCE values is initially the same:478

for a = b, the P responses predicted by the PP model and the UW-org scheme initially479

closely follow each. Their behavior begins to depart only when P has changed signifi-480

cantly. In the PP model,
dP

dt
is linearly related to P , producing exponential growth, and481

no value of P can restore the balance between the growth and decay terms on the RHS482

of Eq. (13) if a > 1 (or a < 1 for the decay case). This reproduces the exponential483

growth (or decay) behavior observed in the CRM. By contrast, a negative feedback is484

built into the UW-org scheme because the growth term (first term on the RHS of Eq.485

15) increases more weakly with P than the damping term (second term on the RHS of486

Eq. 15), which eventually brings the system toward a stable equilibrium. Note that this487

behavior is valid given any sub-quadratic function P (org). In other words if P = β orgλ,488

then as long as λ < 2 ôrg (and P ) will eventually stagnate under FixMacro conditions,489

as the source term in Eq. ( 1) will grow slower than the sink term. In our case, scatter-490

plots of model outputs from the FixMacro experiments show that P is approximately491

linearly related to org (not shown), which supports our assumption of a linear relation-492

ship (Eq. 14).493

Figure 4. Timeseries of memory variable V̂ under FixMacro conditions predicted by numer-

ical integration of Eq. (13) of the PP model and Eq. (15) of the UW-org scheme for the (a)

growth and (b) decay cases. Note that the PP curve displays an exponential trajectory similar to

the CRM response shown in Figure 3 when integrated over a longer period of time, even though

it appears linear within the 24 h shown here.

We further note that for the org growth (decay) case, the condition of b > 1 (b <494

1) can only be met if the FixMacro target profile for RH is such that RH0 < RHrce (RH0 >495

RHrce). Indeed, we found these conditions to be true for the respective growing and de-496

caying ensemble members (not shown). Additionally, the org cases with faster growth497

rates generally also have larger average b values (e.g., rkm10 vs. rkm20 in Figure 3), con-498

sistent with the results shown in Figure 4.499

Overall, our results provide strong evidence that the CRM supports a linear (or500

superlinear) relationship between subgrid-scale structure growth rate and the current pre-501

cipitation rate. This implies that—given a linear damping—any scheme that predicts502

–15–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

a sublinear relationship would eventually stabilize under FixMacro conditions. The Fix-503

Macro perturbation described here can thus be applied as a simple test to probe the be-504

havior of convection schemes and constrain core modeling assumptions. Nevertheless,505

several caveats must be noted. First, although our assumption that P is proportional506

to org only captures the leading order qualitative behavior and is not exactly quantita-507

tively accurate, our goal is to probe whether the trajectory of P under FixMacro con-508

ditions can be understood from the scheme’s structural assumptions. Our numerical re-509

sults presented here, albeit idealized, can shed light into how the P responses can be ex-510

plained by the scheme’s governing equations. Second, by using the CRM as a benchmark,511

we have made the implicit assumption that the scheme’s more stable response is some-512

how an erroneous behavior compared to the CRM’s exponential growth. Whether this513

assumption is fair remains an open question. There are often sound operational reasons514

to put in checks and balances in a convection scheme—however unrealistic or ad hoc though515

they may be—to prevent simulations from crashing in a GCM (as an exponential pre-516

cipitation growth would be prone to do). Despite these caveats, it is nonetheless useful517

to be able to verify that the scheme’s FixMacro responses do indeed comply with its struc-518

tural assumptions, and that its discrepant response to the CRM can thus be explained.519

3.4 Response to Instantaneous Change in Microstate520

Figure 5 shows the responses of the CRM and SCMs in the HomoMicro experiment521

described in Section 2.4, in which subgrid-scale variabilities at RCE were homogenized522

away at one time step without changing the column/domain average. We show a selec-523

tion of C19’s CRM results in panel a. In most of these CRM cases, homogenization re-524

sults in a drop to (close to) zero in precipitation rates, which then recover to their re-525

spective RCE values over a certain time period, defined here as tmem (black dots in Fig-526

ure 5). If convection were solely dependent on the macrostate, precipitation would re-527

cover almost instantly, as the homogenization step only affects the microstate. The time528

the system takes to recover (tmem) is hence a measure of the strength of the microstate529

memory. In effect, the homogenization step removes the subgrid-scale structures that530

are conducive to convection, hence the system needs to “start from scratch” and wait531

for instability to build up again before precipitating. C19 found that memory is mostly532

stored in thermodynamic heterogeneities, rather than winds or hydrometeors. In par-533

ticular, low-level water vapor variability is the dominant memory carrier. For simula-534

tions where convection is unorganized, homogenizing both T and q led to the longest re-535

covery time (2.5 h), followed by only T (2 h) and q (1.5 h) homogenization. In contrast536

to the other variables, homogenizing T leads to an initial increase in precipitation. C19537

explained this by noting that the precipitating locations usually have cold pools and hence538

also a colder boundary layer. Homogenizing T therefore resulted in an increase in moist539

static energy in these locations (instead of a decrease as when only q or both T and q540

were homogenized), leading to an increase in precipitation. Further, convective organ-541

ization leads to a drastic increase in memory, as seen in the significantly longer tmem’s542

of the wind-shear organized (12 h) and self-aggregated (> 24 h) cases where both ther-543

modynamic quantities were homogenized.544
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Figure 5. The HomoMicro ensemble-averaged responses of precipitation of the (a) CRM, (b)

LMDZ-CP, (c) WRF-RKM, and (d) WRF-RKMCBMF cases. The responses of the vertically

integrated updraft mass flux of the (e) WRF-RKM and (f) WRF-RKMCBMF cases are also

shown. Black dots indicate the times tmem (x coordinates) when the responses first recover to the

RCE values (y coordinates) in the respective control runs. The CRM responses are reproduced

from C19. © American Meteorological Society. Used with permission.

In the SCMs, we mimicked the CRM HomoMicro perturbation by setting the mem-545

ory variable(s) (org in the UW-org scheme in WRF, T ′ and/or q′ in LMDZ-CP) to zero546

at one time step. For LMDZ-CP (panel b), HomoMicro led to an initial growth instead547

of reduction in precipitation for all three cases, with very similar tmem’s of 1–2 h, which548

are comparable to the CRM’s unorganized cases. We think that the increase in precip-549

itation of LMDZ-CP after HomoMicro is related to the fact that in all cases, the per-550

turbation increases ALP, which directly controls convection intensity (closure). Inter-551

estingly, the ALE (triggering) provided by cold pools is successfully decreased by Ho-552

moMicro for about 10 to 15 min when T ′ or both T ′ and q′ are set to zero. Likewise, the553
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ALP provided by cold pools also decreases after HomoMicro for about 45 min for these554

two tests. However, it is the ALP provided by the PBL thermals that dramatically in-555

creases for 15 min after HomoMicro and causes precipitation to first increase. After rain556

increases, cold pools become colder, more powerful, and they partially maintain an ad-557

ditional supply of mass flux. In contrast to the diverse CRM responses to the three types558

of homogenization (T , q or Tq), LMDZ-CP displays similar behavior in all three. The559

CRM recovery time almost doubled when homogenizing both Tq compared to when only560

T or q was homogenized, while in LMDZ-CP tmem when both Tq were homogenized is561

almost the same as when homogenizing only T . Analyses of the responses of cold pool562

properties (T ′, q′ and cold pool surface area) also show that homogenizing Tq and T only563

led to almost identical behavior. Moreover, T homogenization has a clear impact on q′,564

but q homogenization did not affect T ′. These results suggest that memory is mainly car-565

ried by the temperature variable in the LMDZ-CP scheme (Colin, 2020), as opposed to566

a dominant moisture memory in the CRM.567

For the UW-org cases with memory (panels c, d), the responses are strikingly sim-568

ilar to the CRM where both thermodynamic variables or only moisture were homoge-569

nized, with precipitation falling immediately almost to zero, then overshooting and fi-570

nally returning to RCE. Although both schemes employ rain evaporation as the mem-571

ory source, it appears that—in contrast to LMDZ-CP—the UW-org scheme emphasizes572

a stronger moisture memory effect, reminiscent of the CRM response. The responses are573

especially close to the wind-shear experiment in the CRM, which had an intermediate574

level of convective organisation. Since org represents subgrid-scale variability (organi-575

zation) that both promotes and is promoted by convection, setting its value to zero is576

akin to removing the self-enhancing effect of convection via its own memory (positive577

feedback), hence precipitation takes time to build up again (see Figure 1c). As expected,578

the rkm0 case (which does not contain memory) does not respond to the perturbation.579

Similar to the FixMacro results, we again found the time evolutions of the integrated mass580

flux (panels e, f) to be very similar to those of precipitation. Additionally, the cases with581

longer recovery times here appear to correspond to those with slower precipitation growth582

in the FixMacro experiment. For instance, rkm10 displays the longest recovery time here583

and the slowest growth in the FixMacro experiment amongst the WRF-RKM cases. This584

is also true for corresponding WRF-RKM and WRF-RKMCBMF cases: cases where org585

also affects CBMF evolve more rapidly than their WRF-RKM counterparts in FixMacro586

and also recover more quickly here. This shows that both experiments have managed to587

capture similar aspects of memory, albeit via different perturbation methods.588

For WRF-RKM, larger entrainment rates (smaller org2rkm) correspond to longer589

tmem’s. As stronger dilution by entrainment suppresses convection, precipitation thus590

takes a longer time to recover to its RCE values. In other words, entrainment acts as a591

brake on convection: stronger entrainment means it takes more time for convective up-592

drafts to develop and evolve, hence a longer memory. For WRF-RKMCBMF, the ad-593

dition of org effects to the scheme’s closure seems to attenuate the dilution by entrain-594

ment by providing an additional boost to convection, leading to quicker precipitation re-595

covery compared to the corresponding WRF-RKM cases. We could also interpret the596

positive correlation between entrainment rate and tmem in terms of convective organi-597

zation, whose effect the org variable is meant to capture: higher entrainment rates have598

been found to correlate with more organized convection (Tompkins & Semie, 2017) and,599

by extension, stronger memory. The longer recovery times revealed here for the UW-org600

cases with smaller org2rkm values are therefore demonstrative of the function of org in601

mimicking the effects of stronger convective organization / memory via higher entrain-602

ment rates. We explore the org variable further in Section 3.5.603
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3.5 Convective Memory and org604

The HomoMicro experiment revealed that larger entrainment rates in the UW-org605

scheme are related to longer tmem’s. An important question then is their relationship to606

the org variable of the scheme: if org adequately represents the effects of subgrid-scale607

heterogeneity, or convective organization, in principle it would be related to tmem. Here,608

we explore the org variable and its relationship to convective memory. To improve sta-609

tistical confidence, we conducted four additional experiments with org2rkm = 40, 50 and610

additionally paired them with org2cbmf = 10, resulting in a total of 10 simulations for611

our analyses (excluding rkm0 run as it does not contain memory). Additionally, to ac-612

count for the possibility that setting org to zero may represent disparate effects for cases613

with different orgrce values (i.e., a configuration with larger orgrce value could display614

bigger tmem simply because of the stronger perturbation incurred when org is set to zero),615

we conducted another set of experiments where we set org to a value equals to the re-616

spective RCE org values minus 0.05, representing the same absolute change for all con-617

figurations. We refer to this set of experiment as ORG ABS and to the experiments where618

org is set to zero as ORG ZERO.619

Figure 6. Scatterplots of tmem versus the (a) mean org values at RCE for the ORG ZERO ex-

periment, where org is set to zero, (b) same as panel a but for the ORG ABS experiment, where

org is set to the respective orgrce values minus 0.05, (c) ôrg growth rate over one time step after

HomoMicro begins for ORG ZERO, and (d) same as panel c but for ORG ABS.
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Results are shown as scatterplots in Figure 6, where data from the final 300 days620

of the 1000 days control simulations were used to derive the mean orgrce values (results621

are not sensitive to the averaging period). For ORG ZERO, we found a very high cor-622

relation between tmem and the mean values of orgrce (r = 0.92, p < 0.001; panel a).623

A weaker but still high negative correlation (r = −0.81, p = 0.005; panel c) was also624

found between tmem and the initial d(ôrg)/dt immediately after HomoMicro was applied625

(where ôrg = org/orgrce as described in Section 3.3), indicating that a slower org re-626

covery rate is associated with larger tmem. For ORG ABS, the strong association between627

tmem and orgrce discovered for ORG ZERO disappears (r = 0.45, panel b), but a mod-628

erately strong correlation remains between tmem and the org growth rate (r = −0.77,629

p = 0.01; panel d). Note that as the ORG ABS results contain an outlier (rkm10), we630

have computed the Spearman’s rank correlation coefficient, which is less sensitive to out-631

liers (Pearson’s coefficient returns r values of 0.83 and −0.95 for panels b and d, respec-632

tively). With the exception of rkm10, the tmem’s for the ORG ABS cases are significantly633

more similar to each other (they are closer to each other in panels b and d) compared634

to the ORG ZERO cases, pointing to the possibility that the highly linear relationship635

between tmem and orgrce found for ORG ZERO could be due to the more vigorous per-636

turbation the homogenization step has when there is more org to be homogenized, which637

leads to longer recovery times. Overall, the robustness of the results between panels c638

and d suggest that it is not the absolute value of org but its rate of change that encodes639

information about the memory strength of a system (before perturbation, it is the same640

RCE system in c and d, so it should have the same memory). Further evidence for this641

can be seen in the initial negative growth rates of a few configurations with the strongest642

memory (longest tmem’s) in the ORG ABS experiment (panel d), indicating that org con-643

tinued to decrease (instead of immediately recovering as in other cases) after the instan-644

taneous homogenization step because of its higher inertia in these cases.645

By changing the entrainment rates of the different cases via the org2rkm param-646

eter, org simulates the functionality of convective organization: higher entrainment rates647

are associated with increased mixing of dry air into convecting plumes, resulting in the648

confinement of convection to sufficiently moist regions and hence more organized con-649

vection and stronger memory. When HomoMicro is applied, cases with more feeble con-650

vection—owing to the larger entrainment rates—therefore display slower recovery. Note651

that although the rkm10 (and rkm20 for HomoMicro) responses appear closest to those652

of the CRM in both the FixMacro and HomoMicro experiments, we have refrained from653

suggesting the “best” values for the org2rkm and org2cbmf parameters. As is usual for654

parameterization, these are essentially tunable parameters and the most appropriate val-655

ues probably depend on the scenario that one wishes to simulate. Here, we merely demon-656

strate the relationship between entrainment rate and convective memory, facilitated via657

the org variable.658

4 Conclusions659

The main objective of the present study is to evaluate the memory behavior of sev-660

eral configurations of the UW-org scheme as well as the LMDZ cold pool convection scheme,661

with memory being defined as the dependence of convection on its own history given its662

current environment, present in these schemes. As control (memory-less) cases we also663

tested five conventional convection schemes. We compare the responses of these schemes664

in a single-column model (SCM) setup to those of a cloud-resolving model (CRM) us-665

ing two idealized RCE experiments. The CRM results are taken from previously pub-666

lished studies (Colin et al., 2019; Colin & Sherwood, 2021), and include two tests: Fix-667

Macro, where we hold the macrostate environment of convection fixed and observe the668

evolution of convection; and HomoMicro, where we reset subgrid prognostic variables to669

neutral values at one time and observe the subsequent evolution as they recover. These670

tests serve two purposes. As presented in the previous studies, they allow us to test the671
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diagnostic assumption where convective activity is assumed to be instantaneously and672

solely determined by the macrostate. As newly implemented here, they further allow us673

to differentiate between different possible parameterizations of convective memory pro-674

cesses.675

The picture that emerges from these experiments can be summarized into three main676

points. First, standard convection schemes that do not contain any internal prognostic677

variables and diagnose convective behavior from their environment behave very differ-678

ently to the CRM in the FixMacro experiment. Precipitation (a proxy for convective ac-679

tivity) remains invariant in time, while in the CRM it grows or decays exponentially. This680

invariance reveals the diagnostic assumption used in these convection schemes: convec-681

tion is slave to and only to the macrostate, hence when the large-scale environment is682

restrained, convective activity also remains unchanged. These results are unsurprising,683

but nonetheless serve as a clear and easy-to-understand demonstration of the memory684

(or rather, lack thereof) behavior of schemes that employ the diagnostic assumption. Since685

the time scales of growth or decay shown by the CRM are many hours, this failure of686

diagnostic schemes is likely to cause large discrepancies in transient convective behav-687

ior on subdaily time scales.688

Second, the memory-capable UW-org and LMDZ-CP schemes partially, but do not689

fully, capture the behavior of the CRM under FixMacro and HomoMicro conditions. For690

the UW-org scheme, precipitation mimics the behavior of the CRM in that precipita-691

tion either grows or decays when its large-scale environment is fixed, indicating the ef-692

fects of microstate memory. However, its growth trajectory departs from that of the CRM693

after a few hours, trending towards a stable equilibrium, while in the CRM precipita-694

tion continues to evolve exponentially. This behavior can be explained by the scheme’s695

structural assumptions, in particular that the impact of precipitation on the subgrid state696

scales sublinearly with precipitation, while the CRM exhibits a linear (or superlinear)697

dependence between the two. When the microstate memory variables are set to zero in-698

stantaneously, the UW-org scheme behaves similarly to the CRM cases where both Tq699

or only q were homogenized: precipitation falls to zero and then recovers to its RCE state.700

The LMDZ-CP scheme, on the other hand, displays responses that mimic the CRM be-701

havior when only T was homogenized: precipitation grows before falling back to its RCE702

value after a few oscillations. We found bigger entrainment rates in the UW-org scheme703

to be associated with slower precipitation growth (in FixMacro) and recovery (in Ho-704

moMicro). This more sluggish behavior is symptomatic of a bigger inertia or persistence705

of past convective states, which we interpret as greater memory strengths. Further, the706

rate of change in time of org is shown to be correlated with memory strength in both707

the FixMacro and HomoMicro experiments, suggesting that org has captured crucial as-708

pects of memory.709

Third, different ways convection schemes parameterize memory clearly have an im-710

pact on their behavior. Again, this might seem trivial and unsurprising, but it is use-711

ful to be able to highlight these differences in a clear and convincing way. One impor-712

tant difference that was revealed here was the dominant type of memory represented by713

the schemes. Even though both schemes use rain evaporation as their memory source714

(with explicit dependence on relative humidity, a thermodynamic variable), the LMDZ-715

CP scheme appears to emphasize temperature-stored memory while the UW-org scheme716

displays a prevailing moisture memory response that is more similar to the CRM’s be-717

havior. This intriguing disparity is no doubt a manifestation of the general conceptual718

difference between the schemes, and indeed, the way they aim to represent memory through719

their governing equations. Perhaps the UW-org scheme’s use of a prognostic org vari-720

able that mimics the behavior of the prey in the predator-prey equations (akin to Colin721

and Sherwood (2021)) was better at reproducing the CRM’s behavior. Of course, whether722

our results imply one scheme’s definitive superiority over another cannot be ascertained723

based only on two simple idealized tests: the LMDZ-CP scheme may very well perform724
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better in other (perhaps more realistic) tests, which we have not taken into account here.725

Nevertheless, our findings could perhaps inspire ideas about or guide the search for ways726

to investigate potential flaws in a scheme.727

Our study has several limitations. We have relied on results from a single CRM728

(WRF) to provide “truth” for assessing the convection schemes. Findings could poten-729

tially differ with another CRM. Even in the WRF CRM we found varying results with730

different states of convective organization. We hence cannot rule out the possibility that731

other model configurations (e.g., domain size, horizontal resolution) could also influence732

the results presented here. The two experiments conducted are highly idealized and do733

not resemble anything that would happen naturally in the atmosphere, and thus poten-734

tially may be unfair tests of parameterizations that might reveal deficiencies that don’t735

matter in practice. We acknowledge that these experiments are indeed more akin to lab-736

oratory experiments and are not meant to be realistic. However, they serve the purpose737

of providing ways to understand the behavior of convection schemes (which is not at all738

a straightforward endeavour) in a simple framework that may offer useful insights on their739

complicated behavior in realistic scenarios. Under steady-state conditions we investigated740

here (RCE), the importance of the temporal dependence of convection on its own past741

state (i.e., the prognosticity of the memory variable) may not be as apparent compared742

to transient scenarios. Nonetheless, the memory timescales revealed in our experiments743

(∼12 h in the UW-org scheme) are very similar to that of the diurnal cycle as well as744

the moisture adjustment time scale observed over the tropical oceans (Bretherton, Pe-745

ters, & Back, 2004), suggesting that our experiments have likely isolated issues related746

to the inability of some memory-less schemes in the correct simulation of diurnal cycles747

(Daleu et al., 2020; Harvey et al., 2022). Lastly, our SCM setup necessarily means that748

no insights about convective organization can be provided, which limits the interpreta-749

tion of certain results. The connection between convective memory and organization, for750

example, cannot be verified. Nevertheless, 1D and 3D results have been found to be com-751

parable (Hwong et al., 2022), suggesting there is a chance the findings of our study can752

be applied to improve temporal memory parameterization, which in turn could help im-753

prove the representation of spatial organization (Tobin et al., 2013). It is therefore a high754

priority to validate the results discussed here using a 3D setup.755

5 Appendix A756

The source term of the org prognostic equation (Eq. 1 ) is evap2org·E, where E757

is the mass-weighted vertical integral of rain evaporation rate, given by the following equa-758

tion (Eq. A8 in Park & Bretherton, 2009):759

E =

∫ EL

0

(1 − RH)
√
K2

e p′ ρdz, (16)760

where RH, p′ and ρ are the vertical profiles of relative humidity, precipitation flux and761

air density, respectively, EL is the equilibrium level, and Ke is a constant and has the762

value of 0.2×10−5 [(kg m−2 s−1)−1/2s−1] (Park & Bretherton, 2009). E and p′ are in763

the units of kg m−2 s−1. To enable a more numerically tractable formulation, we sim-764

plify Eq. (16) to765

E = K(1 − RH)
√
P , (17)766

where P is surface precipitation (in units kg m−2 s−1), RH is the vertical mean of rel-767

ative humidity, and K is a constant (in units [kg m−2 s−1]1/2). Substituting Eq. (17)768

in (1) we get769

d(org)

dt
= evap2org ·K(1 − RH)

√
P − org

τorg
, (18)770
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We have assumed a linear approximation for the relationship between P and org771

(i.e., P = βorg), Eq. (18) thus becomes772

d(org)

dt
= evap2org ·K(1 − RH)

√
β org − (org)

τorg
, (19)773

There are two steady state (RCE) solutions to the system

(
d(org)

dt
= 0

)
, one of774

which is orgrce = 0, and the other one gives775

√
orgrce =

√
β evap2org ·Kτorg(1 − RHrce). (20)776

Combining Eq. (19) and (20) we get777

d(org)

dt
=

orgrce
τorg

[(
1 − RH

1 − RHrce

)√
org

orgrce
− org

orgrce

]
. (21)778

Under FixMacro conditions, Eq. (21) can be formulated in terms of a normalized779

org, with ôrg = org/orgrce, and a FixMacro profile, RH0780

d(ôrg)

dt
=

1

τorg

(
b
√
ôrg − ôrg

)
, (22)781

where b =
1 − RH0

1 − RHrce

. Substituting ôrg with the normalized memory variable V̂ we get782

Eq. (15). Numerical integration of Eq. (22) shows that, for an initial value of ôrg0 =783

1 (i.e., org = orgrce),784 

ôrg = 1, if b = 1, control case.

d(ôrg)

dt
> 0, if b > 1, FixMacro growth case.

d(ôrg)

dt
< 0, if b < 1, FixMacro decay case.

(23)785
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