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Abstract

The Whole Heliosphere and Planetary Interactions (WHPI) is an international initiative to study the most recent solar mini-

mum and its impact on the interconnected solar-heliospheric-planetary system by facilitating and encouraging interdisciplinary

activities. Particular WHPI science foci include the global connected structure of the heliosphere and planetary space envi-

ronments/atmospheres, the origins and impacts of high-speed solar wind streams, coronal mass ejections (CMEs) from Sun-to-

Heliopause, and comparative solar minima. This is achieved through a series of coordinated observing campaigns, including

Parker Solar Probe perihelia, and scientific virtual interactions including a dedicated workshop where observers and modelers

gathered to discuss, compare, and combine research results. This introduction sets the scene for the WHPI interval, placing

it into the context of prior initiatives and describing the overall evolution of the system between 2018-2020. Along with the

accompanying articles, it presents a selection of key scientific results on the interconnected solar-heliospheric-planetary system

at solar minimum.
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Key Points:10

• The Whole Heliosphere and Planetary Interactions initiative studies the solar-heliospheric-11

planetary system’s response to solar minimum.12

• Solar minimum time periods provide an opportunity to characterize the baseline13

system and to trace events from “end to end”.14

• By comparing solar minima of multiple solar cycles, we gain insight into how the15

system changes over decadal times scales.16
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Abstract17

The Whole Heliosphere and Planetary Interactions (WHPI) is an international initia-18

tive to study the most recent solar minimum and its impact on the interconnected solar-19

heliospheric-planetary system by facilitating and encouraging interdisciplinary activities.20

Particular WHPI science foci include the global connected structure of the heliosphere21

and planetary space environments/atmospheres, the origins and impacts of high-speed22

solar wind streams, coronal mass ejections (CMEs) from Sun-to-Heliopause, and com-23

parative solar minima. This is achieved through a series of coordinated observing cam-24

paigns, including Parker Solar Probe perihelia, and scientific virtual interactions includ-25

ing a dedicated workshop where observers and modelers gathered to discuss, compare,26

and combine research results. This introduction sets the scene for the WHPI interval,27

placing it into the context of prior initiatives and describing the overall evolution of the28

system between 2018-2020. Along with the accompanying articles, it presents a selec-29

tion of key scientific results on the interconnected solar-heliospheric-planetary system30

at solar minimum.31

a) b) c)

d)

f)
e)

Figure 1. Three solar minima: 1996 Whole Sun Month (WSM); 2008-2009 Whole Helio-

sphere Interval (WHI); 2019-2020 Whole Heliosphere and Planetary Interactions (WHPI).

a-c) National Solar Observatory Global Oscillations Network Group (NSO-GONG) line-of-

sight coronal hole plots obtained from a potential field source surface extrapolation from so-

lar surface magnetic fields (https://gong.nso.edu/data/magmap/QR/bqg/) for (left to right)

January 31, 1996 (about six months before the official WSM solar rotation, and representa-

tive of that solar minimum’s strongly dipolar structure); December 4, 2008 (WHI2 (Gibson et

al., 2009); a rotation of relatively simple coronal structure); March 22, 2019 (Approximately

midway through WHPI; a time of relatively simple coronal structure (see Section 4)). d-f)

Mauna Loa Solar Observatory (MLSO) white light coronagraph images for the same three dates

https://mlso.hao.ucar.edu/mlso data calendar.php).

1 Introduction32

Why study solar minimum? Isn’t it boring? After all, solar activity waxes and wanes33

with sunspot number, and, at solar minimum, it is definitely wane time (Hathaway, 2015).34

Solar flares and coronal mass ejections (CMEs) and their associated space-weather im-35
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pacts at the Earth and other planets reach their lowest ebb during solar sunspot min-36

imum (Temmer, 2021). However, as this paper and referenced articles demonstrate, there37

is more to the Sun and its impact on the heliosphere and planets than the activity as-38

sociated with sunspots. In addition, when things are simple, end-to-end connections are39

easier to trace. Finally, solar minimum presents an opportunity to characterize the base-40

line, or ground state, of the heliosphere and planetary environments, and to consider how41

this baseline changes from one solar cycle to the next.42

The Whole Heliosphere and Planetary Interactions (WHPI) is an international ini-43

tiative focused on the solar minimum period. WHPI follows two similar initiatives dur-44

ing previous solar minima. Each initiative has expanded in scope, from Sun-to-solar-wind45

science during the Whole Sun Month (WSM) of 1996, to Sun-to-solar-wind-to-geospace46

science during the Whole Heliosphere Intervals (WHI) of 2008-2009, to the studies of Sun-47

to-solar-wind-to-planetary interactions of WHPI in 2018-2020 (Figure 1). The success48

of these efforts relies on a broad participation of scientists worldwide and across disci-49

plines, and with each iteration such participation has increased. The WHPI mailing list50

currently has 777 subscriptors and continues to grow, and the September 2021 WHPI51

workshop had over 200 registered participants from 30 countries, resulting in a broad va-52

riety of talks and posters and a vibrant community discussion that has informed and en-53

riched this introductory paper.54

The structure of this paper is as follows. Section 2 describes the interconnected sys-55

tem at solar minimum, from Sun to solar wind, and from Sun to solar wind to planets.56

Section 3 provides a brief history of the “whole” intervals, for which WHPI is the third57

data point, and discusses WHPI in the context of these and other solar minima. Section 458

steps through “a year in the life” of the WHPI solar minimum, demonstrating the fas-59

cinating science that these quiet time periods inspire. Finally, Section 5 presents our con-60

clusions.61

2 The Interconnected System at Solar Minimum62

2.1 From Sun to Solar Wind63

The heliosphere is filled with a solar wind that originates from and is structured64

by the Sun’s magnetic fields. Most of our observations of the solar wind are obtained in65

situ, by sending a satellite into space and measuring solar wind properties locally. A sig-66

nificant boost to our understanding came when the Ulysses satellite (McComas et al.,67

1998, 2003) moved out of the ecliptic, firmly establishing that fast wind emerges from68

the dark coronal holes seen in solar observations (Figure 2b). At solar minimum, this69

fast wind is primarily from the well-established polar coronal holes (Figure 2a), and slow70

wind is centered on the equator where bright coronal streamers trace out the predom-71

inantly dipolar magnetic structure of the Sun’s corona (Figure 1).72

This is somewhat of an over-simplification: we will discuss the importance of low-73

latitude high-speed solar wind streams at solar minimum and during the declining phase74

leading up to solar minimum, and, as we will see in Section 3, some solar minima have75

more magnetic complexity than others. Nevertheless, it is certainly true that solar min-76

ima are less complex than solar maxima, which are characterized by mixed fast and slow77

solar-wind speed at all latitudes. Solar maxima are also more dynamic than solar min-78

ima, with multiple coronal mass ejections expanding out through the heliosphere on any79

given day. Interestingly, the increase of structure and dynamics in the heliosphere at max-80

imum results in a suppression of galactic cosmic rays (GCRs) so that when sunspot num-81

ber is high at the Sun, GCR levels in the heliosphere are low, while at solar minimum,82

GCR levels reach their maximum level (Potgieter, 2013; Poopakun et al., 2022).83

The source regions of high-speed solar wind observed at the Earth are generally84

low-latitude (near-equatorial) coronal holes – which can occur even during solar mini-85

–3–



manuscript submitted to JGR: Space Physics

a)

b) c)

Coronal 
Holes

Figure 2. Fast solar wind originates in magnetically-open coronal holes. a) Example of a solar

synoptic (latitude vs longitude) McIntosh Archive style map (Gibson et al., 2017; Webb et al.,

2018, https://www2.hao.ucar.edu/mcintosh-archive) developed for WHPI (Hewins, Gibson,

Webb, et al., 2023 under review, for this collection). The map is from Carrington Rotation 2221,

August 22 - September 19, 2019. Coronal holes are represented in blue (positive magnetic polar-

ity) and red (negative magnetic polarity). The polar coronal holes extend across all longitudes

at both poles, but lower latitude (equatorial) coronal holes also exist. The large T-shaped blue

(positive polarity) coronal hole centered around 270◦ solar longitude is discussed in further detail

in Section 4.3, and seen in b) EUV image (SDO/AIA; March 29, 2019). c) Schematic diagram

(view from heliographic pole) of fast wind catching up with slow wind and creating a Stream

Interaction Region (SIR; adapted from Pizzo (1978) and Jian et al. (2006)).

mum (Figure 2b). Global magnetic models that use observations of the magnetic field86

at the Sun’s surface, or photosphere, as a boundary condition (e.g., Figure 1a-c) find that87

when magnetic field lines extending out from the core of coronal holes line up with a space-88
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craft that samples the solar wind in situ, they are the source of high-speed solar wind89

streams (Wang & Sheeley, 1990, 1991; Riley et al., 2019). As the Sun rotates, solar wind90

emerges in a spiral pattern (Figure 2c), and if fast wind from a low-latitude coronal hole91

catches up with slower wind in front of it, it can create a Stream Interaction Regions (SIR;92

(Pizzo, 1978)) of compressed magnetized plasma that can drive space weather. If the low-93

latitude coronal hole lives for multiple solar rotations, these become Corotating Inter-94

action Regions (CIRs) and act as periodic drivers of the solar wind and planetary en-95

vironments. Since most of the interaction regions described in this paper persist, the terms96

SIR, CIR, and high-speed solar wind stream will essentially be used interchangeably for97

the remainder of the paper.98

2.2 From Sun to Solar Wind to Planets99

Because of the prevalence of long-lived low-latitude coronal holes during the months100

leading up to solar minima (Hewins et al., 2020), SIRs are the dominant drivers of space101

weather at the Earth and other planets during low-solar-activity times (Tsurutani et al.,102

2006). Although they do not have the coherent, rotating magnetic structure of CMEs,103

SIRs are otherwise quite similar in that they are characterized by a jump in dynamic pres-104

sure along with increased velocity and magnetic field strength (Bingham et al., 2018).105

As a consequence, SIRs compress planetary bowshocks and magnetopauses (Borovsky106

& Denton, 2006).107

In general, the sensitivity of planetary magnetospheres to such solar wind forcing108

varies from planet to planet (Bagenal, 2013) (and from star to star; see Varela et al. (2022)).109

In the solar system, Jupiter and Saturn’s magnetic fields are much stronger than Earth’s,110

and their magnetospheres are only weakly driven by the solar wind as they are domi-111

nated by internal forcing (Vasyliunas, 1983; McComas & Bagenal, 2007; Delamere & Bage-112

nal, 2010, 2013) with primary sources of plasma to their magnetospheres coming from113

their satellites, Io and Enceladus (Delamere et al., 2007; Blanc et al., 2015; Allen et al.,114

2018; Bagenal & Dols, 2020). The nature of Uranus and Neptune’s magnetospheres are115

less well-understood, but Gershman and DiBraccio (2020) argued that, due to their highly116

tilted rotation relative to their magnetic dipoles, solar-wind driving may play an impor-117

tant role in convection within their magnetospheres (Vasyliunas, 1986). In contrast, there118

is no question about the Earth’s magnetospheric response to external processes, as re-119

connection in the magnetotail drives auroral precipitation at the poles and plasma con-120

vection at Earth’s high latitudes (Dungey, 1961). Mercury is also dominated by exter-121

nal forcing, not surprisingly due to its extreme proximity to the Sun. For the most ex-122

treme CME events, its dayside magnetosphere disappears, leaving Mercury exposed to123

the solar wind (Slavin et al., 2019; Winslow et al., 2020). This is always true at Mars,124

which has an induced magnetosphere and is only weakly shielded from impacts by so-125

lar and interplanetary disturbances (Jakosky et al., 2015; Lee et al., 2017). Venus also126

has an induced magnetosphere and auroral processes that depend upon solar wind pres-127

sure (Luhmann et al., 2007, 2008; Edberg et al., 2011).128

The effects of solar wind forcing on a planetary magnetosphere and atmosphere has129

been most comprehensively observed at the Earth, where both CMEs and SIRs drive ge-130

omagnetic storms (Borovsky & Denton, 2006). These in turn lead to enhanced wave ac-131

tivity, auroral and radiation belt particle precipitation (Bingham et al., 2018; Millan &132

Thorne, 2007), which leads to an increase in ionospheric temperature, plasma density,133

and ion upflows and outflows (Wang et al., 2011; Ogawa et al., 2019) and also impacts134

Earth’s neutral atmosphere (thermosphere) thermal structure, density and composition135

(Solomon et al., 2012; Younas et al., 2022, a paper in this collection). When there is a136

CIR surviving for multiple rotations, the result is periodic forcing of the Earth’s space137

environment and upper atmosphere. Such periodicities are observed in a range of indices138

including geomagnetic indices, total electron content (ionosphere), neutral density (ther-139
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mosphere), and energetic electrons (radiation belt) (Gibson et al., 2010; Emery et al.,140

2009; Lei et al., 2011). We will return to this in Section 4.141

As we will also discuss further in Section 4, SIRs in the solar wind have been ob-142

served by the Mars Atmosphere and Volatile EvolutioN (MAVEN) satellite in orbit around143

Mars. In the Martian atmosphere, it can be difficult to separate out the effects of pe-144

riodic particulate (solar wind) forcing vs radiative forcing. The most common periodic145

radiative forcing comes from the Sun’s 27-day rotation which arises from any large long-146

lived solar active region (or indeed any long-lived solar feature) (J. Lean, 1997). Hughes147

et al. (2022) compared MAVEN solar irradiance observations with measurements of Mars148

thermospheric densities, and found clear correlations, especially at high altitudes. In a149

related study, Gasperini et al. (2023, a paper in this collection) compared the response150

of Mars’ and Earth’s thermospheres to EUV variation at solar minimum vs solar max-151

imum and found greatly increased response of the middle thermospheric densities to so-152

lar rotation during the time of reduced EUV forcing at solar minimum for both plan-153

ets. This may be explained by a reduction in adiabatic cooling due to rising motions in154

global circulation at low and middle terrestrial latitudes during solar minimum (Bougher155

et al., 2000, 2015).156

Further subtleties arise at Mars because different wavelengths of light drive differ-157

ent reactions at different heights in the atmosphere (Thiemann et al., 2018). In partic-158

ular, EUV wavelengths drive a direct effect involving local heating that has greatest im-159

pact in the upper Martian atmosphere, while infrared (IR) irradiance, which varies with160

variations in Mars’ orbital distance from the Sun, has an indirect effect through upward161

coupling from the cooled lower-middle atmosphere. As a result, for high altitudes in the162

Mars atmosphere at solar maximum, the EUV effect may dominate compared to the solar-163

cycle-independent orbital (IR) effect, while at solar minimum, the EUV effect plays a164

relatively minor role (Fang et al., 2022).165

3 Comparative Solar Minima166

3.1 A Brief History of the “Whole Intervals”167

168

The first of the “Whole” minimum campaigns was the Whole Sun Month (WSM)169

which occurred during a “classic” solar minimum in 1996. The solar corona was char-170

acterized by a global dipole field with streamer belts at the equator and large coronal171

holes at both poles (Figure 1a,d) as well as one equatorial coronal hole extension known172

as the Elephant’s Trunk, which was the source of a fast wind stream impacting the Earth.173

The papers coming out of WSM marked the opening of the floodgates of Sun/solar wind174

scientific collaborations inspired by the SOHO satellite (Torsti, Anttila, & Sahla, 1999;175

Fludra et al., 1999; Linker et al., 1999; Del Zanna & Bromage, 1999; Dobrzycka et al.,176

1999; Biesecker et al., 1999; Warren & Hassler, 1999; Riley et al., 1999; Guhathakurta177

et al., 1999; Clegg et al., 1999; Breen et al., 1999; Panasyuk, 1999; Galvin & Kohl, 1999;178

Posner et al., 1999; Alexander, 1999; Gopalswamy et al., 1999; Torsti, Kocharov, et al.,179

1999; Zidowitz, 1999; Zhao et al., 1999; Gibson et al., 1999; Strachan et al., 1999; Gib-180

son et al., 1999; Strachan et al., 2000; Bromage et al., 2000; Riley et al., 2001; Frazin &181

Janzen, 2002; Guhathakurta et al., 2006; Lionello et al., 2009).182

This first WSM initiative focused on just one solar rotation (August 10-September183

8, 1996) during solar minimum, but was followed by two related campaigns in 1998 (WSM2)184

and 1999 (WSM3) (Eiscat et al., 2000; Moran et al., 2000; Breen et al., 2000; Gibson et185

al., 2002; Gibson, 2001; Del Zanna et al., 2002; Ko et al., 2005).186

The next solar minimum saw the organization of the Whole Heliosphere Interval187

(WHI) in 2008. The scope was expanded from Sun to Earth, and dozens of solar, helio-188
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spheric, and geospace instruments were involved. The WHI minimum was surprisingly189

different than WSM and other prior space-age solar minima. Despite an extremely low190

number of sunspots, there was more structure in the corona and heliosphere, with mul-191

tiple broad low-latitude coronal holes and periodic forcing of the earth’s space environ-192

ment by high speed streams in 2008 (WHI1: CR2068, March 20 - April 16, 2008). The193

WHI minimum continued to evolve and become even quieter in 2009, becoming longer194

and deeper than any space-age solar minimum witnessed prior to it (WHI2/WHI3: CR2078/195

CR2085, December 17, 2008 - January 12, 2009/ June 26 – July 22, 2009). The high-196

speed streams faded out, resulting in extreme depletion of radiation belt electrons at Earth197

(X. Li et al., 2013), as well as weak interplanetary magnetic field and record high lev-198

els of galactic cosmic rays (Mewaldt et al., 2010; Schwadron et al., 2018). However, the199

Sun’s corona never became as predominantly dipolar as in 1996 (Figure 1), possibly be-200

cause the polar magnetic fields in 2009 were significantly weaker than in 1996.201

WHI science was rich, with analyses continuing for years after the original cam-202

paign time periods (Woods et al., 2009; Chamberlin et al., 2009; Bisi et al., 2009; Gib-203

son et al., 2009; Bisi et al., 2010; Verkhoglyadova et al., 2011; Bisi et al., 2011; Gibson204

et al., 2011; Thompson et al., 2011; Webb et al., 2011; Muller et al., 2011; Welsch et al.,205

2011; White et al., 2011; Petrie et al., 2011; de Toma, 2011; Nitta, 2011; Cremades et206

al., 2011; Altrock, 2011; Vásquez et al., 2011; Benito et al., 2022; Echer et al., 2011; Lep-207

ping et al., 2011; Riley et al., 2011; Zhao & Fisk, 2011; Emery et al., 2011; Lei et al., 2011;208

Araujo-Pradere et al., 2011; Wang et al., 2011, 2011; Haberreiter, 2011; Jackman & Ar-209

ridge, 2011; Wiltberger et al., 2012; Hudson et al., 2012; Lopez et al., 2012; Bruntz et210

al., 2012; Solomon et al., 2012; Z. Li et al., 2014; J. L. Lean et al., 2014; Lin & Chen,211

2015; Wiltberger et al., 2017; Candido et al., 2018; Chadney et al., 2022).212

The third iteration was the Whole Heliosphere and Planetary Interactions (WHPI).213

Based on lessons learned from WSM and WHI, the interval was not confined to a few214

solar rotations, but covered the period from late 2018 through early 2020. The level of215

participation increased with its expanded scope encompassing Sun to solar wind to plan-216

etary magnetospheres and atmospheres. The articles accompanying this introduction (Hudson217

et al., 2021; Lloveras et al., 2022; Riley et al., 2022; Gasperini et al., 2023; Luhmann et218

al., 2022; Younas et al., 2022; Palmerio et al., 2022; Bregou et al., 2022; Mlynczak et al.,219

2022; Varela et al., 2022; Badman et al., 2023; Hewins, Gibson, Webb, et al., 2023 un-220

der review; Allen et al., 2023 under review) represent the beginnings of analyses that are221

likely to continue for years to come.222

3.2 Comparative Solar Minima223

At first glance, considering Figure 1, it appears that the solar magnetic structure224

of WHPI was a bit more like WSM than WHI, in that it had a more dipole-type struc-225

ture with coronal holes centered on the poles. On the other hand, as discussed in Hewins,226

Gibson, Webb, et al. (2023 under review, a paper in this collection), the extended WHPI227

period had significant and persistent low-latitude coronal holes that disrupted this sim-228

ple morphology, similar to what was observed during WHI. As we will discuss further229

in Section 4, the white light corona during WHPI was not always as dipolar as Figure 1230

c). The low-latitude coronal holes were least prevalent in late March 2019 when the ob-231

servations shown in Figure 1c) were taken, so that it represents the simplest, but not nec-232

essarily the typical structure during the WHPI extended interval.233

Figure 3 shows the dipole vs quadrupole components of the photospheric magnetic234

field, showing that the dipole component was strongest during WSM, weakest during WHI,235

and in the middle during WHPI. This is consistent with the results of Riley et al. (2022,236

a paper in this collection) who found similar trends in the solar polar magnetic field, which237

is controlled by the strength of the dipole term. The overall coronal magnetic morphol-238

ogy of closed vs open field is impacted by the ratio of this dipole term relative to higher-239
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WSM WHI WHPI

25 Gauss

0
25 Gauss

0

Figure 3. Dipole (top) and quadrupole (bottom) components of the solar photospheric

magnetic field, as determined from observations obtained by Stanford’s Wilcox Solar Observa-

tory http://wso.stanford.edu/gifs/Multipole.gif. The three intervals, WSM, WHI, and

WHPI are indicated by the shaded blue rectangles. From this it is clear that the dipolar field was

strongest for WSM and weakest for WHI, with WHPI lying in between, but that the quadrupolar

field was similar for all three.

order multipole fields. Figure 3 illustrates that the quadrupolar magnetic term is sim-240

ilar in all three intervals, but varies somewhat. In particular, it hits a low during March241

2019. Thus, the global coronal magnetic structure as manifested in white-light observa-242

tions (Figure 1) was predominantly dipolar during the shorter minimum of WSM, never243

attained that status during the extended minimum of WHI, and demonstrated both white-244

light dipolar structure and sustained low-latitude coronal holes during the extended WHPI245

minimum.246

These differences of solar dipole strength and coronal magnetic morphology affect247

the nature of the solar wind near sunspot minimum. Riley et al. (2022) did a statisti-248

cal comparison of the three solar minima and found, as was the case with the polar mag-249

netic fields, that the WHPI solar wind properties lay in between those of WSM and WHI.250

Luhmann et al. (2022, a paper in this collection) determined the sources of solar wind251

velocity measured in the ecliptic from global coronal magnetic models and found that252

low-to-mid latitude open fields (as opposed to polar open fields) were the primary source253

of solar wind measured at the Earth, in particular during the extended minima of WHI254

and WHPI. Thus, to summarize, coronal magnetic field and solar wind observations in-255

dicate that WHPI was similar to WHI in its length and magnetic complexity, but demon-256

strated at least a “partial recovery” of solar dipole dominance and solar wind density257

and velocity. Thus, WSM > WHPI > WHI in terms of dipole dominance and solar wind258

properties at solar minimum.259

However, the behavior at the Earth paints a somewhat different picture. Once an-260

thropogenic effects (rising CO2 levels, which cause a secular decrease in thermospheric261

temperatures) are taken into account, the Earth’s upper atmosphere can be a sensitive262

measure of differences between solar minima. Using measurements of satellite drag, Emmert263

et al. (2010) found a decrease in thermospheric density (∼ 30% at 400 km) and tem-264

perature during the WHI minimum relative to prior minima. (Solomon et al., 2011) con-265

ducted model simulations and found a ∼ 27% decrease of annual mean density changes266

at 400 km altitude from 1996 to 2008. Among this ∼ 27% decrease, ∼ 22%, ∼ 2.2%,267

and ∼ 3% were attributed to solar EUV decrease, geomagnetic activity change, and CO2268
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increase, respectively. Mlynczak et al. (2022, a paper in this collection) measured a down-269

ward trend in thermospheric temperatures from 2002 to 2019 using measurements from270

the TIMED satellite. After accounting for anthropogenic CO2 increase, they found tem-271

peratures at lower thermospheric altitudes (10−4hPa, 105km) had dropped -14.37 K be-272

tween 2002 and 2019 – and that the lower thermospheric temperatures in the 2019 min-273

imum (WHPI) were ∼ 3K colder than the 2008-2009 minimum (WHI). Thus, in terms274

of thermospheric temperature, WSM < WHI < WHPI, with no sign of the “partial re-275

covery” discussed by Riley et al. (2022).276

Relatedly, Bregou et al. (2022, a paper in this collection) found a long-term (1980277

to mid-2021) increase in inner zone radiation belt proton flux that they interpreted as278

a manifestation of the secular downtrend in F10.7 correlated with sunspot number known279

as the Centennial Gleissberg Cycle (Gleissberg, 1944; Feynman & Ruzmaikin, 2011). F10.7280

serves as a proxy for solar EUV in the Bregou et al. study, with a decrease implying a281

reduced atmospheric (and ionospheric) scale height and reduced collisional drag at a fixed282

altitude, which is the primary loss mechanism for inner zone protons. Each solar min-283

imum since 1980 has been followed by a maximum trapped proton flux which has shown284

a secular increase, modulated by the solar cycle, over the past 40 years. Thus, correlated285

with cooling in the thermosphere, the inner zone radiation belt proton flux has contin-286

ued to increase with each successive minimum, so WSM < WHI < WHPI — again, no287

sign of a partial recovery and consistent with a response to the Sun’s secular approach288

to the Gleissberg minimum in solar activity.289

To explain the apparent discrepancy between the solar wind and planetary envi-290

ronmental trends, we consider the sometimes competing natures of radiative vs partic-291

ulate forcing of planetary atmospheres. (Emmert et al., 2010) argued that the decrease292

in thermospheric densities and temperatures was a result of a decrease in EUV spectral293

irradiance from the WSM to the WHI solar minimum, and this was supported by the294

Solomon et al. (2011) modeling study, which found that irradiance changes between WSM295

and WHI were the dominant cause of the secular trend (relative to particulate and an-296

thropogenic forcings). The case for decreased irradiance being the cause of the ongoing297

downward trend in thermospheric temperatures from WHI to WHPI is less clear: Us-298

ing SORCE satellite data from 2003-2020, Woods et al. (2022) found no significant dif-299

ferences in integrated solar spectral irradiance between the two time periods – so, nei-300

ther a “partial recovery” in irradiance nor a continuing decrease in integrated spectral301

solar irradiance. However, Mlynczak et al. (2022) argued that when one considered just302

the narrow Schumann-Runge Bands of solar ultraviolet radiation from 175 to 200 nm,303

a region responsible for heating of the lower thermosphere, there was a statistically sig-304

nificant decrease in SORCE-measured irradiance between the WHI and WHPI minima.305

Further modeling is needed to fully understand the causes of the decrease in thermospheric306

temperatures from WHI to WHPI.307

4 Evolution of a Solar Minimum308

WHPI spanned the entire solar minimum period between 2018 and 2020. For the309

purpose of coordinating targeted observations, we identified a few focus “campaign” time310

periods that took advantage of solar-heliosphere-planetary synergies. These included the311

solar eclipse in July 2019 – which was studied both for its solar structure (Lloveras et312

al., 2022, a paper in this collection) and for the Earth’s thermospheric response to it as313

measured by the GOLD satellite (Aryal et al., 2020). They also included the Parker So-314

lar Probe perihelion passage in January 2020 – which served as a template for commu-315

nity coordination and predictive targeting (Badman et al., 2023, a paper in this collec-316

tion). Beyond that, we trusted to solar serendipity to provide interesting time periods317

for study, and we were not disappointed!318
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Figure 4. (left and middle columns) McIntosh Archive style Carrington maps (latitude vs.

longitude; see Figure 2) for Carrington rotations 2209 through 2214 (September 21 2018 – March

5, 2019; note the ∼27-day solar rotations shown are “padded” on each side by a week of observa-

tions), showing long-lived low-latitude coronal holes of both polarities in the right half of maps

(green circles). Adapted from Figure 10 of Hewins, Gibson, Webb, et al. (2023 under review).

The effects of differential rotation (faster solar rotation at equator than higher latitudes) can be

seen in the drift of the equatorial portion of both coronal holes to the right (the equator rotates

prograde relative to the synoptic Carrington rate of 27.3 days; see discussion in Luhmann et al.

(2022)). (right column) Solar wind at Earth vs time (top) and related wavelet (bottom) showing

periodic solar wind 7-9 day forcing. Data from https://omniweb.gsfc.nasa.gov/.

4.1 September 2018 - March 2019 – Long-lived low-latitude coronal holes319

and periodic forcing320

Even when solar activity was low, low-latitude coronal holes were present for a sig-321

nificantly long time period. In particular, two coronal holes of opposite polarity sepa-322

rated by approximately 90 degrees remained visible for several rotations (Figure 4 left323

and middle columns). As discussed in Hewins, Gibson, and Emery (2023 under review),324

both of these coronal holes resulted in repeating fast wind streams observed at Earth,325

Mars, and STEREO-A. This 7-9-day periodic solar-wind forcing, shown in Figure 4 right326

column, is not unlike that observed in the early phases of WSM (Gibson et al., 2010; Emery327

et al., 2009; Lei et al., 2011), with impact felt in the Earth’s upper atmosphere as mea-328

sured in neutral density by the Swarm-C satellites. Large effects were also registered in329

the ionosphere through ground-based GNSS total electron content (F. Gasperini, in prepa-330

ration).331

4.2 March 2019 - July 2019: Quiet with a burst of activity in the mid-332

dle333

The interval 2018 – 2020 was a long period of low solar sunspot number and so-334

lar magnetic activity, but it was briefly interrupted by a burst of old-cycle sunspot emer-335

gence and associated activity in April – June 2019 (Figure 5). This burst of activity re-336

sulted in multiple CMEs that erupted from a nest of active regions with impacts mea-337

sured at both the Earth and Mars (E. Palmerio, private communication). Such events338

are excellent candidates for studying the evolution of CMEs in the solar wind as a func-339

tion of distance from their solar origin (Witasse et al., 2017), as well as for considering340

the relative effects of CMEs vs SIRs on planetary space environments during times of341
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Figure 5. (left) Total sunspot area determined from Solar Dynamics Observatory (SDO) Heli-

seismic and Magnetic Imager (HMI) intensities (top) and associated magnetic flux (bottom), as a

function of time during the WHPI solar minimum. (right) Nest of active regions during (May 12,

2019) which resulted in multiple CMEs detected throughout the solar system (SDO/AIA image,

obtained via helioviewer.org)

.

relative heliospheric simplicity (Hudson et al., 2021, a paper in this collection). In an anal-342

ysis of a series of solar transient events immediately prior to the WHPI time period (Au-343

gust 2018), Palmerio et al. (2022, a paper in this collection) was able to separate out the344

effects of two CMEs and a following high-speed stream by comparing observations at the345

Earth and Mars in the context of a global MHD model.346

4.3 August - December, 2019: The persistance of “Mr. T”347

The long-lived, low-latitude coronal holes of September 2018 - March, 2019 shown348

in Figure 4 had largely dissipated by April, 2019, in part due to differential rotation of349

these latitudinally-extended structures and resulting distortion and fragmentation (Hewins,350

Gibson, Webb, et al., 2023 under review). They were replaced by the active region nest351

of April-June 2019, which emerged and then decayed, to be replaced in turn by a new352

positive-polarity (blue) coronal hole that survived for approximately six months (Fig-353

ure 6; see also Figure 2)).354

This coronal hole was extremely geoeffective, perhaps due to its ‘T’ shape which355

meant that, near the equator, it was both wide in longitude (and so driving a longer-lasting356

fast wind stream in time), and tall in latitude (increasing the likelihood of the Earth be-357

ing repeatedly hit by at least part of its stream). In early September, the sustained fast358

wind resulted in a radiation belt response that was the highest energy (hardest relativis-359

tic electron spectrum) observed in the last two years of the Van Allen Probes mission360

(Mauk et al., 2013). The radiation-belt response to the CIR lasted into October 2019361

and was higher than the response seen during the CME events associated with the ac-362

tive region nest of May 2019 (Hudson et al., 2021).363
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July 5, 2019 August 2, 2019 August 29, 2019

September 25, 2019 October 23, 2019 November 18, 2019

Figure 6. The ‘Mr. T’ long-lived coronal hole which recurred over six solar Carrington rota-

tions. Shown here in 195 Å as observed by SDO/AIA.

The presence of this long-lived coronal hole at the Sun also overlapped with a time364

period when Parker Solar Probe was radially aligned with the STEREO-A spacecraft,365

allowing analyses of the evolution of the associated SIR and a study of energetic parti-366

cle acceleration (Allen et al., 2021; Wijsen et al., 2021). Measurements of SIRs and CMEs367

at different longitudinal points in the solar system were also made possible via multi-368

spacecraft measurements. For a comprehensive overview of this coronal hole and its im-369

pacts throughout the heliosphere, see Allen et al. (2023 under review, a paper in this col-370

lection).371

5 Conclusions372

The science enabled by focusing on solar minimum is rich and rewarding. During373

WSM (1996) and WHI (2008-2009) we gained global understanding about the sources374

and impacts of solar wind, and new insight about how different solar minimum “quiet375

times” can be from one another. WHPI (2018-2020) is providing yet more insights into376

the whole heliospheric system. For example:377

• The response to solar-wind and solar-irradiance forcings varies greatly from planet378

to planet. Analyses of the space-weather impacts that do occur is an excellent way379

to test our understanding of the coupled mechanisms at play.380

• By coronal/solar wind forcing standards, WSM > WHPI > WHI, but radiation-381

belt and upper atmospheric observations show more of a monotonic secular trend,382

WSM < WHI < WHPI. This may be due to opposing trends in spectral irradi-383

ance vs. solar wind forcing over the past two minima. It illustrates the complex-384

ity of understanding system variability when multiple mechanisms – including an-385

thropogenic ones – are involved.386
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• Multispacecraft/multipoint measurements throughout the heliosphere, varying both387

in distance and longitude, enable detailed analyses of the evolution of solar wind388

structures and their sources.389

A final comment: with each minimum, observational and modeling capabilities have390

improved along with data-model interpretation schema. The international interdisciplinary391

initiatives of WSM, WHI, and WHPI act as catalysts for new analysis approaches and392

(importantly) play a role in building enduring cohorts of scientific collaborators across393

scientific disciplines. These efforts should be continued in future minima, as they play394

an important role in quantifying and understanding long-term changes in the Sun and395

their effects on the solar wind and planetary space environments and atmospheres.396

6 Open Research397

GONG magnetic field extrapolations are available at https://gong.nso.edu/data/398

magmap/QR/bqg/.399

Mauna Loa Solar Observatory white light coronagraph images are available at https://400

mlso.hao.ucar.edu/mlso data calendar.php).401

McIntosh archive maps presented in this paper are available through the NOAA402

National Centers for Environmental Information. doi:10.7289/V5765CCQ. The maps and403

supplemental reference/methodology materials are archived at https://www.ngdc.noaa404

.gov/stp/space-weather/solar-data/solar-imagery/composites/synoptic-maps/405

mc-intosh/. Further information on the use and application these data can be found406

at https://www2.hao.ucar.edu/mcintosh-archive.407

Additional data appears from the Solar Dynamics Observatory Atmospheric Imag-408

ing Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) as accessed through409

Helioviewer (https://helioviewer.org/?movieId=hnTN5). SDO data courtesy of NASA/SDO410

and the AIA, EVE, and HMI science teams.411

Stanford Wilcox Solar Observatory dipole and quadrupole data may be obtained412

at http://wso.stanford.edu/#Other.413

Solar wind data are available at https://omniweb.gsfc.nasa.gov/.414
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• The Whole Heliosphere and Planetary Interactions initiative studies the solar-heliospheric-11
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Abstract17

The Whole Heliosphere and Planetary Interactions (WHPI) is an international initia-18

tive to study the most recent solar minimum and its impact on the interconnected solar-19

heliospheric-planetary system by facilitating and encouraging interdisciplinary activities.20

Particular WHPI science foci include the global connected structure of the heliosphere21

and planetary space environments/atmospheres, the origins and impacts of high-speed22

solar wind streams, coronal mass ejections (CMEs) from Sun-to-Heliopause, and com-23

parative solar minima. This is achieved through a series of coordinated observing cam-24

paigns, including Parker Solar Probe perihelia, and scientific virtual interactions includ-25

ing a dedicated workshop where observers and modelers gathered to discuss, compare,26

and combine research results. This introduction sets the scene for the WHPI interval,27

placing it into the context of prior initiatives and describing the overall evolution of the28

system between 2018-2020. Along with the accompanying articles, it presents a selec-29

tion of key scientific results on the interconnected solar-heliospheric-planetary system30

at solar minimum.31

a) b) c)

d)

f)
e)

Figure 1. Three solar minima: 1996 Whole Sun Month (WSM); 2008-2009 Whole Helio-

sphere Interval (WHI); 2019-2020 Whole Heliosphere and Planetary Interactions (WHPI).

a-c) National Solar Observatory Global Oscillations Network Group (NSO-GONG) line-of-

sight coronal hole plots obtained from a potential field source surface extrapolation from so-

lar surface magnetic fields (https://gong.nso.edu/data/magmap/QR/bqg/) for (left to right)

January 31, 1996 (about six months before the official WSM solar rotation, and representa-

tive of that solar minimum’s strongly dipolar structure); December 4, 2008 (WHI2 (Gibson et

al., 2009); a rotation of relatively simple coronal structure); March 22, 2019 (Approximately

midway through WHPI; a time of relatively simple coronal structure (see Section 4)). d-f)

Mauna Loa Solar Observatory (MLSO) white light coronagraph images for the same three dates

https://mlso.hao.ucar.edu/mlso data calendar.php).

1 Introduction32

Why study solar minimum? Isn’t it boring? After all, solar activity waxes and wanes33

with sunspot number, and, at solar minimum, it is definitely wane time (Hathaway, 2015).34

Solar flares and coronal mass ejections (CMEs) and their associated space-weather im-35
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pacts at the Earth and other planets reach their lowest ebb during solar sunspot min-36

imum (Temmer, 2021). However, as this paper and referenced articles demonstrate, there37

is more to the Sun and its impact on the heliosphere and planets than the activity as-38

sociated with sunspots. In addition, when things are simple, end-to-end connections are39

easier to trace. Finally, solar minimum presents an opportunity to characterize the base-40

line, or ground state, of the heliosphere and planetary environments, and to consider how41

this baseline changes from one solar cycle to the next.42

The Whole Heliosphere and Planetary Interactions (WHPI) is an international ini-43

tiative focused on the solar minimum period. WHPI follows two similar initiatives dur-44

ing previous solar minima. Each initiative has expanded in scope, from Sun-to-solar-wind45

science during the Whole Sun Month (WSM) of 1996, to Sun-to-solar-wind-to-geospace46

science during the Whole Heliosphere Intervals (WHI) of 2008-2009, to the studies of Sun-47

to-solar-wind-to-planetary interactions of WHPI in 2018-2020 (Figure 1). The success48

of these efforts relies on a broad participation of scientists worldwide and across disci-49

plines, and with each iteration such participation has increased. The WHPI mailing list50

currently has 777 subscriptors and continues to grow, and the September 2021 WHPI51

workshop had over 200 registered participants from 30 countries, resulting in a broad va-52

riety of talks and posters and a vibrant community discussion that has informed and en-53

riched this introductory paper.54

The structure of this paper is as follows. Section 2 describes the interconnected sys-55

tem at solar minimum, from Sun to solar wind, and from Sun to solar wind to planets.56

Section 3 provides a brief history of the “whole” intervals, for which WHPI is the third57

data point, and discusses WHPI in the context of these and other solar minima. Section 458

steps through “a year in the life” of the WHPI solar minimum, demonstrating the fas-59

cinating science that these quiet time periods inspire. Finally, Section 5 presents our con-60

clusions.61

2 The Interconnected System at Solar Minimum62

2.1 From Sun to Solar Wind63

The heliosphere is filled with a solar wind that originates from and is structured64

by the Sun’s magnetic fields. Most of our observations of the solar wind are obtained in65

situ, by sending a satellite into space and measuring solar wind properties locally. A sig-66

nificant boost to our understanding came when the Ulysses satellite (McComas et al.,67

1998, 2003) moved out of the ecliptic, firmly establishing that fast wind emerges from68

the dark coronal holes seen in solar observations (Figure 2b). At solar minimum, this69

fast wind is primarily from the well-established polar coronal holes (Figure 2a), and slow70

wind is centered on the equator where bright coronal streamers trace out the predom-71

inantly dipolar magnetic structure of the Sun’s corona (Figure 1).72

This is somewhat of an over-simplification: we will discuss the importance of low-73

latitude high-speed solar wind streams at solar minimum and during the declining phase74

leading up to solar minimum, and, as we will see in Section 3, some solar minima have75

more magnetic complexity than others. Nevertheless, it is certainly true that solar min-76

ima are less complex than solar maxima, which are characterized by mixed fast and slow77

solar-wind speed at all latitudes. Solar maxima are also more dynamic than solar min-78

ima, with multiple coronal mass ejections expanding out through the heliosphere on any79

given day. Interestingly, the increase of structure and dynamics in the heliosphere at max-80

imum results in a suppression of galactic cosmic rays (GCRs) so that when sunspot num-81

ber is high at the Sun, GCR levels in the heliosphere are low, while at solar minimum,82

GCR levels reach their maximum level (Potgieter, 2013; Poopakun et al., 2022).83

The source regions of high-speed solar wind observed at the Earth are generally84

low-latitude (near-equatorial) coronal holes – which can occur even during solar mini-85
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a)

b) c)

Coronal 
Holes

Figure 2. Fast solar wind originates in magnetically-open coronal holes. a) Example of a solar

synoptic (latitude vs longitude) McIntosh Archive style map (Gibson et al., 2017; Webb et al.,

2018, https://www2.hao.ucar.edu/mcintosh-archive) developed for WHPI (Hewins, Gibson,

Webb, et al., 2023 under review, for this collection). The map is from Carrington Rotation 2221,

August 22 - September 19, 2019. Coronal holes are represented in blue (positive magnetic polar-

ity) and red (negative magnetic polarity). The polar coronal holes extend across all longitudes

at both poles, but lower latitude (equatorial) coronal holes also exist. The large T-shaped blue

(positive polarity) coronal hole centered around 270◦ solar longitude is discussed in further detail

in Section 4.3, and seen in b) EUV image (SDO/AIA; March 29, 2019). c) Schematic diagram

(view from heliographic pole) of fast wind catching up with slow wind and creating a Stream

Interaction Region (SIR; adapted from Pizzo (1978) and Jian et al. (2006)).

mum (Figure 2b). Global magnetic models that use observations of the magnetic field86

at the Sun’s surface, or photosphere, as a boundary condition (e.g., Figure 1a-c) find that87

when magnetic field lines extending out from the core of coronal holes line up with a space-88
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craft that samples the solar wind in situ, they are the source of high-speed solar wind89

streams (Wang & Sheeley, 1990, 1991; Riley et al., 2019). As the Sun rotates, solar wind90

emerges in a spiral pattern (Figure 2c), and if fast wind from a low-latitude coronal hole91

catches up with slower wind in front of it, it can create a Stream Interaction Regions (SIR;92

(Pizzo, 1978)) of compressed magnetized plasma that can drive space weather. If the low-93

latitude coronal hole lives for multiple solar rotations, these become Corotating Inter-94

action Regions (CIRs) and act as periodic drivers of the solar wind and planetary en-95

vironments. Since most of the interaction regions described in this paper persist, the terms96

SIR, CIR, and high-speed solar wind stream will essentially be used interchangeably for97

the remainder of the paper.98

2.2 From Sun to Solar Wind to Planets99

Because of the prevalence of long-lived low-latitude coronal holes during the months100

leading up to solar minima (Hewins et al., 2020), SIRs are the dominant drivers of space101

weather at the Earth and other planets during low-solar-activity times (Tsurutani et al.,102

2006). Although they do not have the coherent, rotating magnetic structure of CMEs,103

SIRs are otherwise quite similar in that they are characterized by a jump in dynamic pres-104

sure along with increased velocity and magnetic field strength (Bingham et al., 2018).105

As a consequence, SIRs compress planetary bowshocks and magnetopauses (Borovsky106

& Denton, 2006).107

In general, the sensitivity of planetary magnetospheres to such solar wind forcing108

varies from planet to planet (Bagenal, 2013) (and from star to star; see Varela et al. (2022)).109

In the solar system, Jupiter and Saturn’s magnetic fields are much stronger than Earth’s,110

and their magnetospheres are only weakly driven by the solar wind as they are domi-111

nated by internal forcing (Vasyliunas, 1983; McComas & Bagenal, 2007; Delamere & Bage-112

nal, 2010, 2013) with primary sources of plasma to their magnetospheres coming from113

their satellites, Io and Enceladus (Delamere et al., 2007; Blanc et al., 2015; Allen et al.,114

2018; Bagenal & Dols, 2020). The nature of Uranus and Neptune’s magnetospheres are115

less well-understood, but Gershman and DiBraccio (2020) argued that, due to their highly116

tilted rotation relative to their magnetic dipoles, solar-wind driving may play an impor-117

tant role in convection within their magnetospheres (Vasyliunas, 1986). In contrast, there118

is no question about the Earth’s magnetospheric response to external processes, as re-119

connection in the magnetotail drives auroral precipitation at the poles and plasma con-120

vection at Earth’s high latitudes (Dungey, 1961). Mercury is also dominated by exter-121

nal forcing, not surprisingly due to its extreme proximity to the Sun. For the most ex-122

treme CME events, its dayside magnetosphere disappears, leaving Mercury exposed to123

the solar wind (Slavin et al., 2019; Winslow et al., 2020). This is always true at Mars,124

which has an induced magnetosphere and is only weakly shielded from impacts by so-125

lar and interplanetary disturbances (Jakosky et al., 2015; Lee et al., 2017). Venus also126

has an induced magnetosphere and auroral processes that depend upon solar wind pres-127

sure (Luhmann et al., 2007, 2008; Edberg et al., 2011).128

The effects of solar wind forcing on a planetary magnetosphere and atmosphere has129

been most comprehensively observed at the Earth, where both CMEs and SIRs drive ge-130

omagnetic storms (Borovsky & Denton, 2006). These in turn lead to enhanced wave ac-131

tivity, auroral and radiation belt particle precipitation (Bingham et al., 2018; Millan &132

Thorne, 2007), which leads to an increase in ionospheric temperature, plasma density,133

and ion upflows and outflows (Wang et al., 2011; Ogawa et al., 2019) and also impacts134

Earth’s neutral atmosphere (thermosphere) thermal structure, density and composition135

(Solomon et al., 2012; Younas et al., 2022, a paper in this collection). When there is a136

CIR surviving for multiple rotations, the result is periodic forcing of the Earth’s space137

environment and upper atmosphere. Such periodicities are observed in a range of indices138

including geomagnetic indices, total electron content (ionosphere), neutral density (ther-139
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mosphere), and energetic electrons (radiation belt) (Gibson et al., 2010; Emery et al.,140

2009; Lei et al., 2011). We will return to this in Section 4.141

As we will also discuss further in Section 4, SIRs in the solar wind have been ob-142

served by the Mars Atmosphere and Volatile EvolutioN (MAVEN) satellite in orbit around143

Mars. In the Martian atmosphere, it can be difficult to separate out the effects of pe-144

riodic particulate (solar wind) forcing vs radiative forcing. The most common periodic145

radiative forcing comes from the Sun’s 27-day rotation which arises from any large long-146

lived solar active region (or indeed any long-lived solar feature) (J. Lean, 1997). Hughes147

et al. (2022) compared MAVEN solar irradiance observations with measurements of Mars148

thermospheric densities, and found clear correlations, especially at high altitudes. In a149

related study, Gasperini et al. (2023, a paper in this collection) compared the response150

of Mars’ and Earth’s thermospheres to EUV variation at solar minimum vs solar max-151

imum and found greatly increased response of the middle thermospheric densities to so-152

lar rotation during the time of reduced EUV forcing at solar minimum for both plan-153

ets. This may be explained by a reduction in adiabatic cooling due to rising motions in154

global circulation at low and middle terrestrial latitudes during solar minimum (Bougher155

et al., 2000, 2015).156

Further subtleties arise at Mars because different wavelengths of light drive differ-157

ent reactions at different heights in the atmosphere (Thiemann et al., 2018). In partic-158

ular, EUV wavelengths drive a direct effect involving local heating that has greatest im-159

pact in the upper Martian atmosphere, while infrared (IR) irradiance, which varies with160

variations in Mars’ orbital distance from the Sun, has an indirect effect through upward161

coupling from the cooled lower-middle atmosphere. As a result, for high altitudes in the162

Mars atmosphere at solar maximum, the EUV effect may dominate compared to the solar-163

cycle-independent orbital (IR) effect, while at solar minimum, the EUV effect plays a164

relatively minor role (Fang et al., 2022).165

3 Comparative Solar Minima166

3.1 A Brief History of the “Whole Intervals”167

168

The first of the “Whole” minimum campaigns was the Whole Sun Month (WSM)169

which occurred during a “classic” solar minimum in 1996. The solar corona was char-170

acterized by a global dipole field with streamer belts at the equator and large coronal171

holes at both poles (Figure 1a,d) as well as one equatorial coronal hole extension known172

as the Elephant’s Trunk, which was the source of a fast wind stream impacting the Earth.173

The papers coming out of WSM marked the opening of the floodgates of Sun/solar wind174

scientific collaborations inspired by the SOHO satellite (Torsti, Anttila, & Sahla, 1999;175

Fludra et al., 1999; Linker et al., 1999; Del Zanna & Bromage, 1999; Dobrzycka et al.,176

1999; Biesecker et al., 1999; Warren & Hassler, 1999; Riley et al., 1999; Guhathakurta177

et al., 1999; Clegg et al., 1999; Breen et al., 1999; Panasyuk, 1999; Galvin & Kohl, 1999;178

Posner et al., 1999; Alexander, 1999; Gopalswamy et al., 1999; Torsti, Kocharov, et al.,179

1999; Zidowitz, 1999; Zhao et al., 1999; Gibson et al., 1999; Strachan et al., 1999; Gib-180

son et al., 1999; Strachan et al., 2000; Bromage et al., 2000; Riley et al., 2001; Frazin &181

Janzen, 2002; Guhathakurta et al., 2006; Lionello et al., 2009).182

This first WSM initiative focused on just one solar rotation (August 10-September183

8, 1996) during solar minimum, but was followed by two related campaigns in 1998 (WSM2)184

and 1999 (WSM3) (Eiscat et al., 2000; Moran et al., 2000; Breen et al., 2000; Gibson et185

al., 2002; Gibson, 2001; Del Zanna et al., 2002; Ko et al., 2005).186

The next solar minimum saw the organization of the Whole Heliosphere Interval187

(WHI) in 2008. The scope was expanded from Sun to Earth, and dozens of solar, helio-188
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spheric, and geospace instruments were involved. The WHI minimum was surprisingly189

different than WSM and other prior space-age solar minima. Despite an extremely low190

number of sunspots, there was more structure in the corona and heliosphere, with mul-191

tiple broad low-latitude coronal holes and periodic forcing of the earth’s space environ-192

ment by high speed streams in 2008 (WHI1: CR2068, March 20 - April 16, 2008). The193

WHI minimum continued to evolve and become even quieter in 2009, becoming longer194

and deeper than any space-age solar minimum witnessed prior to it (WHI2/WHI3: CR2078/195

CR2085, December 17, 2008 - January 12, 2009/ June 26 – July 22, 2009). The high-196

speed streams faded out, resulting in extreme depletion of radiation belt electrons at Earth197

(X. Li et al., 2013), as well as weak interplanetary magnetic field and record high lev-198

els of galactic cosmic rays (Mewaldt et al., 2010; Schwadron et al., 2018). However, the199

Sun’s corona never became as predominantly dipolar as in 1996 (Figure 1), possibly be-200

cause the polar magnetic fields in 2009 were significantly weaker than in 1996.201

WHI science was rich, with analyses continuing for years after the original cam-202

paign time periods (Woods et al., 2009; Chamberlin et al., 2009; Bisi et al., 2009; Gib-203

son et al., 2009; Bisi et al., 2010; Verkhoglyadova et al., 2011; Bisi et al., 2011; Gibson204

et al., 2011; Thompson et al., 2011; Webb et al., 2011; Muller et al., 2011; Welsch et al.,205

2011; White et al., 2011; Petrie et al., 2011; de Toma, 2011; Nitta, 2011; Cremades et206

al., 2011; Altrock, 2011; Vásquez et al., 2011; Benito et al., 2022; Echer et al., 2011; Lep-207

ping et al., 2011; Riley et al., 2011; Zhao & Fisk, 2011; Emery et al., 2011; Lei et al., 2011;208

Araujo-Pradere et al., 2011; Wang et al., 2011, 2011; Haberreiter, 2011; Jackman & Ar-209

ridge, 2011; Wiltberger et al., 2012; Hudson et al., 2012; Lopez et al., 2012; Bruntz et210

al., 2012; Solomon et al., 2012; Z. Li et al., 2014; J. L. Lean et al., 2014; Lin & Chen,211

2015; Wiltberger et al., 2017; Candido et al., 2018; Chadney et al., 2022).212

The third iteration was the Whole Heliosphere and Planetary Interactions (WHPI).213

Based on lessons learned from WSM and WHI, the interval was not confined to a few214

solar rotations, but covered the period from late 2018 through early 2020. The level of215

participation increased with its expanded scope encompassing Sun to solar wind to plan-216

etary magnetospheres and atmospheres. The articles accompanying this introduction (Hudson217

et al., 2021; Lloveras et al., 2022; Riley et al., 2022; Gasperini et al., 2023; Luhmann et218

al., 2022; Younas et al., 2022; Palmerio et al., 2022; Bregou et al., 2022; Mlynczak et al.,219

2022; Varela et al., 2022; Badman et al., 2023; Hewins, Gibson, Webb, et al., 2023 un-220

der review; Allen et al., 2023 under review) represent the beginnings of analyses that are221

likely to continue for years to come.222

3.2 Comparative Solar Minima223

At first glance, considering Figure 1, it appears that the solar magnetic structure224

of WHPI was a bit more like WSM than WHI, in that it had a more dipole-type struc-225

ture with coronal holes centered on the poles. On the other hand, as discussed in Hewins,226

Gibson, Webb, et al. (2023 under review, a paper in this collection), the extended WHPI227

period had significant and persistent low-latitude coronal holes that disrupted this sim-228

ple morphology, similar to what was observed during WHI. As we will discuss further229

in Section 4, the white light corona during WHPI was not always as dipolar as Figure 1230

c). The low-latitude coronal holes were least prevalent in late March 2019 when the ob-231

servations shown in Figure 1c) were taken, so that it represents the simplest, but not nec-232

essarily the typical structure during the WHPI extended interval.233

Figure 3 shows the dipole vs quadrupole components of the photospheric magnetic234

field, showing that the dipole component was strongest during WSM, weakest during WHI,235

and in the middle during WHPI. This is consistent with the results of Riley et al. (2022,236

a paper in this collection) who found similar trends in the solar polar magnetic field, which237

is controlled by the strength of the dipole term. The overall coronal magnetic morphol-238

ogy of closed vs open field is impacted by the ratio of this dipole term relative to higher-239
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WSM WHI WHPI
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0
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Figure 3. Dipole (top) and quadrupole (bottom) components of the solar photospheric

magnetic field, as determined from observations obtained by Stanford’s Wilcox Solar Observa-

tory http://wso.stanford.edu/gifs/Multipole.gif. The three intervals, WSM, WHI, and

WHPI are indicated by the shaded blue rectangles. From this it is clear that the dipolar field was

strongest for WSM and weakest for WHI, with WHPI lying in between, but that the quadrupolar

field was similar for all three.

order multipole fields. Figure 3 illustrates that the quadrupolar magnetic term is sim-240

ilar in all three intervals, but varies somewhat. In particular, it hits a low during March241

2019. Thus, the global coronal magnetic structure as manifested in white-light observa-242

tions (Figure 1) was predominantly dipolar during the shorter minimum of WSM, never243

attained that status during the extended minimum of WHI, and demonstrated both white-244

light dipolar structure and sustained low-latitude coronal holes during the extended WHPI245

minimum.246

These differences of solar dipole strength and coronal magnetic morphology affect247

the nature of the solar wind near sunspot minimum. Riley et al. (2022) did a statisti-248

cal comparison of the three solar minima and found, as was the case with the polar mag-249

netic fields, that the WHPI solar wind properties lay in between those of WSM and WHI.250

Luhmann et al. (2022, a paper in this collection) determined the sources of solar wind251

velocity measured in the ecliptic from global coronal magnetic models and found that252

low-to-mid latitude open fields (as opposed to polar open fields) were the primary source253

of solar wind measured at the Earth, in particular during the extended minima of WHI254

and WHPI. Thus, to summarize, coronal magnetic field and solar wind observations in-255

dicate that WHPI was similar to WHI in its length and magnetic complexity, but demon-256

strated at least a “partial recovery” of solar dipole dominance and solar wind density257

and velocity. Thus, WSM > WHPI > WHI in terms of dipole dominance and solar wind258

properties at solar minimum.259

However, the behavior at the Earth paints a somewhat different picture. Once an-260

thropogenic effects (rising CO2 levels, which cause a secular decrease in thermospheric261

temperatures) are taken into account, the Earth’s upper atmosphere can be a sensitive262

measure of differences between solar minima. Using measurements of satellite drag, Emmert263

et al. (2010) found a decrease in thermospheric density (∼ 30% at 400 km) and tem-264

perature during the WHI minimum relative to prior minima. (Solomon et al., 2011) con-265

ducted model simulations and found a ∼ 27% decrease of annual mean density changes266

at 400 km altitude from 1996 to 2008. Among this ∼ 27% decrease, ∼ 22%, ∼ 2.2%,267

and ∼ 3% were attributed to solar EUV decrease, geomagnetic activity change, and CO2268
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increase, respectively. Mlynczak et al. (2022, a paper in this collection) measured a down-269

ward trend in thermospheric temperatures from 2002 to 2019 using measurements from270

the TIMED satellite. After accounting for anthropogenic CO2 increase, they found tem-271

peratures at lower thermospheric altitudes (10−4hPa, 105km) had dropped -14.37 K be-272

tween 2002 and 2019 – and that the lower thermospheric temperatures in the 2019 min-273

imum (WHPI) were ∼ 3K colder than the 2008-2009 minimum (WHI). Thus, in terms274

of thermospheric temperature, WSM < WHI < WHPI, with no sign of the “partial re-275

covery” discussed by Riley et al. (2022).276

Relatedly, Bregou et al. (2022, a paper in this collection) found a long-term (1980277

to mid-2021) increase in inner zone radiation belt proton flux that they interpreted as278

a manifestation of the secular downtrend in F10.7 correlated with sunspot number known279

as the Centennial Gleissberg Cycle (Gleissberg, 1944; Feynman & Ruzmaikin, 2011). F10.7280

serves as a proxy for solar EUV in the Bregou et al. study, with a decrease implying a281

reduced atmospheric (and ionospheric) scale height and reduced collisional drag at a fixed282

altitude, which is the primary loss mechanism for inner zone protons. Each solar min-283

imum since 1980 has been followed by a maximum trapped proton flux which has shown284

a secular increase, modulated by the solar cycle, over the past 40 years. Thus, correlated285

with cooling in the thermosphere, the inner zone radiation belt proton flux has contin-286

ued to increase with each successive minimum, so WSM < WHI < WHPI — again, no287

sign of a partial recovery and consistent with a response to the Sun’s secular approach288

to the Gleissberg minimum in solar activity.289

To explain the apparent discrepancy between the solar wind and planetary envi-290

ronmental trends, we consider the sometimes competing natures of radiative vs partic-291

ulate forcing of planetary atmospheres. (Emmert et al., 2010) argued that the decrease292

in thermospheric densities and temperatures was a result of a decrease in EUV spectral293

irradiance from the WSM to the WHI solar minimum, and this was supported by the294

Solomon et al. (2011) modeling study, which found that irradiance changes between WSM295

and WHI were the dominant cause of the secular trend (relative to particulate and an-296

thropogenic forcings). The case for decreased irradiance being the cause of the ongoing297

downward trend in thermospheric temperatures from WHI to WHPI is less clear: Us-298

ing SORCE satellite data from 2003-2020, Woods et al. (2022) found no significant dif-299

ferences in integrated solar spectral irradiance between the two time periods – so, nei-300

ther a “partial recovery” in irradiance nor a continuing decrease in integrated spectral301

solar irradiance. However, Mlynczak et al. (2022) argued that when one considered just302

the narrow Schumann-Runge Bands of solar ultraviolet radiation from 175 to 200 nm,303

a region responsible for heating of the lower thermosphere, there was a statistically sig-304

nificant decrease in SORCE-measured irradiance between the WHI and WHPI minima.305

Further modeling is needed to fully understand the causes of the decrease in thermospheric306

temperatures from WHI to WHPI.307

4 Evolution of a Solar Minimum308

WHPI spanned the entire solar minimum period between 2018 and 2020. For the309

purpose of coordinating targeted observations, we identified a few focus “campaign” time310

periods that took advantage of solar-heliosphere-planetary synergies. These included the311

solar eclipse in July 2019 – which was studied both for its solar structure (Lloveras et312

al., 2022, a paper in this collection) and for the Earth’s thermospheric response to it as313

measured by the GOLD satellite (Aryal et al., 2020). They also included the Parker So-314

lar Probe perihelion passage in January 2020 – which served as a template for commu-315

nity coordination and predictive targeting (Badman et al., 2023, a paper in this collec-316

tion). Beyond that, we trusted to solar serendipity to provide interesting time periods317

for study, and we were not disappointed!318
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Figure 4. (left and middle columns) McIntosh Archive style Carrington maps (latitude vs.

longitude; see Figure 2) for Carrington rotations 2209 through 2214 (September 21 2018 – March

5, 2019; note the ∼27-day solar rotations shown are “padded” on each side by a week of observa-

tions), showing long-lived low-latitude coronal holes of both polarities in the right half of maps

(green circles). Adapted from Figure 10 of Hewins, Gibson, Webb, et al. (2023 under review).

The effects of differential rotation (faster solar rotation at equator than higher latitudes) can be

seen in the drift of the equatorial portion of both coronal holes to the right (the equator rotates

prograde relative to the synoptic Carrington rate of 27.3 days; see discussion in Luhmann et al.

(2022)). (right column) Solar wind at Earth vs time (top) and related wavelet (bottom) showing

periodic solar wind 7-9 day forcing. Data from https://omniweb.gsfc.nasa.gov/.

4.1 September 2018 - March 2019 – Long-lived low-latitude coronal holes319

and periodic forcing320

Even when solar activity was low, low-latitude coronal holes were present for a sig-321

nificantly long time period. In particular, two coronal holes of opposite polarity sepa-322

rated by approximately 90 degrees remained visible for several rotations (Figure 4 left323

and middle columns). As discussed in Hewins, Gibson, and Emery (2023 under review),324

both of these coronal holes resulted in repeating fast wind streams observed at Earth,325

Mars, and STEREO-A. This 7-9-day periodic solar-wind forcing, shown in Figure 4 right326

column, is not unlike that observed in the early phases of WSM (Gibson et al., 2010; Emery327

et al., 2009; Lei et al., 2011), with impact felt in the Earth’s upper atmosphere as mea-328

sured in neutral density by the Swarm-C satellites. Large effects were also registered in329

the ionosphere through ground-based GNSS total electron content (F. Gasperini, in prepa-330

ration).331

4.2 March 2019 - July 2019: Quiet with a burst of activity in the mid-332

dle333

The interval 2018 – 2020 was a long period of low solar sunspot number and so-334

lar magnetic activity, but it was briefly interrupted by a burst of old-cycle sunspot emer-335

gence and associated activity in April – June 2019 (Figure 5). This burst of activity re-336

sulted in multiple CMEs that erupted from a nest of active regions with impacts mea-337

sured at both the Earth and Mars (E. Palmerio, private communication). Such events338

are excellent candidates for studying the evolution of CMEs in the solar wind as a func-339

tion of distance from their solar origin (Witasse et al., 2017), as well as for considering340

the relative effects of CMEs vs SIRs on planetary space environments during times of341
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Figure 5. (left) Total sunspot area determined from Solar Dynamics Observatory (SDO) Heli-

seismic and Magnetic Imager (HMI) intensities (top) and associated magnetic flux (bottom), as a

function of time during the WHPI solar minimum. (right) Nest of active regions during (May 12,

2019) which resulted in multiple CMEs detected throughout the solar system (SDO/AIA image,

obtained via helioviewer.org)

.

relative heliospheric simplicity (Hudson et al., 2021, a paper in this collection). In an anal-342

ysis of a series of solar transient events immediately prior to the WHPI time period (Au-343

gust 2018), Palmerio et al. (2022, a paper in this collection) was able to separate out the344

effects of two CMEs and a following high-speed stream by comparing observations at the345

Earth and Mars in the context of a global MHD model.346

4.3 August - December, 2019: The persistance of “Mr. T”347

The long-lived, low-latitude coronal holes of September 2018 - March, 2019 shown348

in Figure 4 had largely dissipated by April, 2019, in part due to differential rotation of349

these latitudinally-extended structures and resulting distortion and fragmentation (Hewins,350

Gibson, Webb, et al., 2023 under review). They were replaced by the active region nest351

of April-June 2019, which emerged and then decayed, to be replaced in turn by a new352

positive-polarity (blue) coronal hole that survived for approximately six months (Fig-353

ure 6; see also Figure 2)).354

This coronal hole was extremely geoeffective, perhaps due to its ‘T’ shape which355

meant that, near the equator, it was both wide in longitude (and so driving a longer-lasting356

fast wind stream in time), and tall in latitude (increasing the likelihood of the Earth be-357

ing repeatedly hit by at least part of its stream). In early September, the sustained fast358

wind resulted in a radiation belt response that was the highest energy (hardest relativis-359

tic electron spectrum) observed in the last two years of the Van Allen Probes mission360

(Mauk et al., 2013). The radiation-belt response to the CIR lasted into October 2019361

and was higher than the response seen during the CME events associated with the ac-362

tive region nest of May 2019 (Hudson et al., 2021).363
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July 5, 2019 August 2, 2019 August 29, 2019

September 25, 2019 October 23, 2019 November 18, 2019

Figure 6. The ‘Mr. T’ long-lived coronal hole which recurred over six solar Carrington rota-

tions. Shown here in 195 Å as observed by SDO/AIA.

The presence of this long-lived coronal hole at the Sun also overlapped with a time364

period when Parker Solar Probe was radially aligned with the STEREO-A spacecraft,365

allowing analyses of the evolution of the associated SIR and a study of energetic parti-366

cle acceleration (Allen et al., 2021; Wijsen et al., 2021). Measurements of SIRs and CMEs367

at different longitudinal points in the solar system were also made possible via multi-368

spacecraft measurements. For a comprehensive overview of this coronal hole and its im-369

pacts throughout the heliosphere, see Allen et al. (2023 under review, a paper in this col-370

lection).371

5 Conclusions372

The science enabled by focusing on solar minimum is rich and rewarding. During373

WSM (1996) and WHI (2008-2009) we gained global understanding about the sources374

and impacts of solar wind, and new insight about how different solar minimum “quiet375

times” can be from one another. WHPI (2018-2020) is providing yet more insights into376

the whole heliospheric system. For example:377

• The response to solar-wind and solar-irradiance forcings varies greatly from planet378

to planet. Analyses of the space-weather impacts that do occur is an excellent way379

to test our understanding of the coupled mechanisms at play.380

• By coronal/solar wind forcing standards, WSM > WHPI > WHI, but radiation-381

belt and upper atmospheric observations show more of a monotonic secular trend,382

WSM < WHI < WHPI. This may be due to opposing trends in spectral irradi-383

ance vs. solar wind forcing over the past two minima. It illustrates the complex-384

ity of understanding system variability when multiple mechanisms – including an-385

thropogenic ones – are involved.386

–12–



manuscript submitted to JGR: Space Physics

• Multispacecraft/multipoint measurements throughout the heliosphere, varying both387

in distance and longitude, enable detailed analyses of the evolution of solar wind388

structures and their sources.389

A final comment: with each minimum, observational and modeling capabilities have390

improved along with data-model interpretation schema. The international interdisciplinary391

initiatives of WSM, WHI, and WHPI act as catalysts for new analysis approaches and392

(importantly) play a role in building enduring cohorts of scientific collaborators across393

scientific disciplines. These efforts should be continued in future minima, as they play394

an important role in quantifying and understanding long-term changes in the Sun and395

their effects on the solar wind and planetary space environments and atmospheres.396

6 Open Research397

GONG magnetic field extrapolations are available at https://gong.nso.edu/data/398

magmap/QR/bqg/.399

Mauna Loa Solar Observatory white light coronagraph images are available at https://400

mlso.hao.ucar.edu/mlso data calendar.php).401

McIntosh archive maps presented in this paper are available through the NOAA402

National Centers for Environmental Information. doi:10.7289/V5765CCQ. The maps and403

supplemental reference/methodology materials are archived at https://www.ngdc.noaa404

.gov/stp/space-weather/solar-data/solar-imagery/composites/synoptic-maps/405

mc-intosh/. Further information on the use and application these data can be found406

at https://www2.hao.ucar.edu/mcintosh-archive.407

Additional data appears from the Solar Dynamics Observatory Atmospheric Imag-408

ing Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) as accessed through409

Helioviewer (https://helioviewer.org/?movieId=hnTN5). SDO data courtesy of NASA/SDO410

and the AIA, EVE, and HMI science teams.411

Stanford Wilcox Solar Observatory dipole and quadrupole data may be obtained412

at http://wso.stanford.edu/#Other.413

Solar wind data are available at https://omniweb.gsfc.nasa.gov/.414
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