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Abstract

Directional discontinuities (DDs) are defined as abrupt changes of the magnetic field orientation. We use observations from

ESA’s Cluster mission to compile a database of events: 4216 events are identified in January-April 2007, and 5194 in January-

April 2008. Localized time-scale images depicting angular changes are created for each event, and a preliminary classification

algorithm is designed to distinguish between: simple - isolated events, and complex - multiple overlapping events. In 2007, 1806

events are pre-classified as simple, and 2410 as complex; in 2008, 1997 events are simple, and 3197 are complex. A supervised

machine learning approach is used to recognize and predict these events. Two models are trained: one for 2007, which is used

to predict the results in 2008, and vice-versa for 2008. To validate our results, we investigate the discontinuity occurrence

rate as a function of spacecraft location. When the spacecraft is in the solar wind, we find an occurrence rate of ˜2 DDs per

hour and a 50/50 % ratio of simple/complex events. When the spacecraft is in the Earth’s magnetosheath, we find that the

total occurrence rate remains around 2 DDs/h, but the ratio of simple/complex events changes to ˜25/75 %. This implies

that about half of the simple events observed in the solar wind are classified as complex when observed in the magnetosheath.

This demonstrates that our classification scheme can provide meaningful insights, and thus be relevant for future studies on

interplanetary discontinuities.
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Key Points: 10 

• In-situ magnetic field observations from Cluster 1 spacecraft are used to compile a 11 
database of events 12 

• Localized time-scale images are created for each event, and supervised machine 13 
learning is used to classify them 14 

• An investigation of average occurrence rates versus spacecraft location, demonstrates 15 
the validity of our results 16 

 17 

Abstract 18 

Directional discontinuities (DDs) are defined as abrupt changes of the magnetic field 19 
orientation. We use observations from ESA’s Cluster mission to compile a database of 20 
events: 4216 events are identified in January-April 2007, and 5194 in January-April 2008. 21 
Localized time-scale images depicting angular changes are created for each event, and a 22 
preliminary classification algorithm is designed to distinguish between: simple - isolated 23 
events, and complex - multiple overlapping events. In 2007, 1806 events are pre-classified as 24 
simple, and 2410 as complex; in 2008, 1997 events are simple, and 3197 are complex. A 25 
supervised machine learning approach is used to recognize and predict these events. Two 26 
models are trained: one for 2007, which is used to predict the results in 2008, and vice-versa 27 
for 2008. To validate our results, we investigate the discontinuity occurrence rate as a 28 
function of spacecraft location. When the spacecraft is in the solar wind, we find an 29 
occurrence rate of ~2 DDs per hour and a 50/50 % ratio of simple/complex events. When the 30 
spacecraft is in the Earth’s magnetosheath, we find that the total occurrence rate remains 31 
around 2 DDs/h, but the ratio of simple/complex events changes to ~25/75 %. This implies 32 
that about half of the simple events observed in the solar wind are classified as complex when 33 
observed in the magnetosheath. This demonstrates that our classification scheme can provide 34 
meaningful insights, and thus be relevant for future studies on interplanetary discontinuities. 35 

 36 
  37 
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1. Introduction 38 

Abrupt changes in the orientation of the interplanetary magnetic field (IMF), referred 39 
to as directional discontinuities (DDs), are ubiquitous structures in the solar wind. With an 40 
average occurrence rate at Earth of about two DDs per hour (e.g., Newman et al., 2020), 41 
these structures represent an omnipresent source of variability for the interplanetary plasma 42 
environment. DDs are known to trigger geomagnetic storms and magnetospheric substorms, 43 
with significant impact on ground-based and spaceborne technologies (e.g., Tsurutani et al., 44 
2011). They can be used, for example, to estimate the solar wind propagation time from an 45 
upstream solar wind monitor to a downstream target (e.g., Mailyan et al., 2008; Haaland et 46 
al., 2010; Munteanu et al., 2013). 47 

The term “directional discontinuity” was originally introduced by Burlaga (1969) to 48 
denote a variation of IMF direction larger than 30 degrees in less than 30 seconds. Many 49 
previous studies used the limit of 30° to distinguish between the population of turbulent 50 
fluctuations (characterized by directional changes below the limit) and the population of 51 
discontinuities (above the limit; see, e.g., Borovsky et al., 2008). This definition was the 52 
starting point for multiple detection algorithms. Li (2008), for example, describe a rather 53 
complex algorithm to identify discontinuities based on directional changes. Borovsky (2010) 54 
used a similar approach to identify solar wind DDs, and then studied their effects on the 55 
power spectrum. Chian & Muñoz (2011) used the Li (2008) detection method, and 56 
investigated the relation between discontinuities, turbulence, and magnetic reconnection at 57 
the leading edge of an interplanetary coronal mass ejection. The detection algorithm of Li 58 
(2008) was further developed by Miao et al. (2011), who introduced a way of automatically 59 
estimating the discontinuity thickness. 60 

There are other ways of identifying magnetic field discontinuities. Vasquez et al. 61 
(2007), for example, developed a detection algorithm which is independent of directional 62 
changes, and instead relies on changes of the amplitude of magnetic field components. They 63 
used their algorithm to identify a large number of events, and found that the occurrence rate 64 
of solar wind discontinuities from their algorithm is comparable with that from algorithms 65 
based on directional changes. Tsurutani and Smith (1979) were among the first to develop a 66 
detection method based on changes of the amplitude of field components, and showed that it 67 
provides similar results to directional change-based methods. Burkholder and Otto (2019) 68 
introduced yet another detection algorithm based on amplitude changes. A notable 69 
contribution is the method called partial variance of increments (PVI; Greco et al., 2008; 70 
Greco & Perry, 2014; Greco et al., 2016; Greco et al., 2018). Greco et al. (2008) compared 71 
the results from PVI with those obtained using the Tsurutani and Smith (1979) method, and 72 
found that the two sets of results are remarkably similar, suggesting that most of the events 73 
identified by the two methods are the same. 74 

Due to various computational difficulties encountered when implementing automated 75 
detection algorithms, even recent studies still use visual inspection to identify discontinuities 76 
(Mailyan et al., 2008; Munteanu et al., 2013; Artemyev et al., 2018, 2019a, 2019b). Note that 77 
even the (partially) automated detection algorithm of Burkholder and Otto (2019) still uses 78 
visual inspection to eliminate events that are not clearly isolated from other structures in the 79 
time series. For relatively small datasets, detection by visual inspection can be acceptable, 80 
but, for large-scale studies, visual inspection is certainly not suitable. 81 

Magnetohydrodynamics defines two idealized classes of discontinuities: (a) stationary 82 
structures, i.e. discontinuities that do not propagate with respect to the ambient plasma 83 
(tangential (TDs) and contact discontinuities), and (b) propagating discontinuities (rotational 84 
discontinuities (RDs) and shocks). The most frequent small-scale discontinuities in 85 
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interplanetary space are the abrupt changes in the direction of the magnetic field, 86 
predominantly expected for TDs and RDs (e.g., Paschmann et al., 2013). Discontinuity 87 
detection is not very difficult, especially using algorithms based on angular changes. In 88 
contrast, distinguishing between classical TDs and RDs is difficult. Recent studies have 89 
approached discontinuity classification from a rather different perspective. Greco et al. 90 
(2016), for example, classified discontinuities in terms of their internal structure: (a) those 91 
with simple transitions from one side to the other are referred to as isolated events, and (b) 92 
those associated with complex networks of multiple small-scale interconnected 93 
discontinuities, are referred to as connected events. 94 

Interplanetary discontinuities arrive at 1 AU and interact with the Earth’s bow shock. 95 
Karlson et al. (2022) showed how some DDs can pass through the bowshock almost 96 
unchanged, while Kropotina et al. (2021) argued that the interaction with the Earth’s bow 97 
shock can significantly alter discontinuity structure and stability. Webster et al. (2021) 98 
studied the interaction between solar wind discontinuities and the Earth’s bow shock, and 99 
showed that discontinuities become thinner and that their current density (a measure of their 100 
strength) increases in the magnetosheath. 101 

The complex nature of the solar-terrestrial system imposes more advanced tools to be 102 
used in computational space physics. In recent years, there has been a clear growth of 103 
published articles on applied machine learning techniques in space plasmas, such as  solar 104 
wind characterization and prediction (Li et al., 2020; Upendran et al., 2020), space whether 105 
research (Camporeale et al., 2018; Camporeale, 2019), forecasting radiation belt dynamics 106 
(Bernoux et al., 2021), and geomagnetic storm prediction (Cristoforetti et al., 2022). Machine 107 
learning (ML) algorithms can be used to build models based on a training data set, and then 108 
try to make predictions without being explicitly programmed how to do so. In this study we 109 
use a hybrid method, based on convolutional neural networks (CNN) and support vector 110 
machines (SVM), for a binary classification of interplanetary discontinuities. 111 

Munteanu et al. (2022) describe a hardware, field programmable gate-array (FPGA), 112 
implementation of a discontinuity detector, designed for use on-board a satellite to 113 
continuously monitor local magnetic field rotation angles. A software implementation of that 114 
discontinuity detector is included in the freely-distributed software analysis tool called 115 
Integrated Nonlinear Analysis (INA; Munteanu et al., 2023; see also the PhD thesis 116 
Munteanu, 2017). In this study we further develop this discontinuity detector by designing 117 
and implementing a novel multiscale detection and classification algorithm for 118 
discontinuities. This improved algorithm can automatically detect and classify 119 
discontinuities, based on classification criteria similar to those in Greco et al. (2016). 120 
Localized time-scale images depicting angular changes for each event are created, and then 121 
used as input for supervised machine learning classification schemes. In-situ magnetic field 122 
observations in 2007 and 2008 from ESA’s Cluster mission are used to test and validate our 123 
detection and classification approach. 124 

The paper is structured as follows. Section 2 presents the in-situ magnetic field 125 
observations used in our study. Section 3 describes the discontinuity identification algorithm, 126 
and presents the catalogue of events. Section 4 introduces the preliminary classification 127 
scheme, and presents the supervised machine learning models. Section 5 shows the results 128 
and discusses the accuracy of the CNN-SVM classifier. Our investigation of the occurrence 129 
rate of interplanetary discontinuities as a function of spacecraft location, is also included in 130 
this section. We give our conclusions in Section 6. 131 

 132 
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2. Data 133 

We use in-situ observations from ESA’s Cluster mission in 2007 and 2008, a multi-134 
spacecraft mission with nearly 90° inclination elliptical polar orbit, perigee at about 4 RE and 135 
apogee at about 20 RE geocentric distance (1 RE = 6371 km), and an orbital period of 136 
approximately 57 h (Escoubet et al, 2001). Cluster enters the upstream solar wind during 137 
apogee in January-April every year, therefore we focus only on these intervals. We use spin 138 
resolution (4 s) magnetic field measurements from the fluxgate magnetometer on-board 139 
Cluster 1 (C1) spacecraft (Balogh et al., 2001; https://cdaweb.gsfc.nasa.gov/cgi-140 
bin/eval2.cgi?dataset=C1_CP_FGM_SPIN&index=sp_phys). 141 

Individual orbits centered on perigee are extracted. An example is depicted in Figure 142 
1, which shows orbit no. 5 of the 2008 data set. The C1 spacecraft is in the solar wind around 143 
apogee at 9:05 UT on January 12. Typical solar wind observations are characterized by 144 
relatively small-amplitude magnetic field fluctuations and an average field magnitude below 145 
~10 nT. As the spacecraft approaches Earth, it will cross the bow shock and enter into the 146 
magnetosheath, which is characterized by larger-amplitude fluctuations. As the spacecraft 147 
moves even closer to Earth, it will cross the magnetopause and enter the magnetosphere. At 148 
orbit perigee the magnetic field magnitude attains a maximum value of ~1500 nT, and then 149 
decreases as the spacecraft moves away from the Earth, again encountering the 150 
magnetosheath and the solar wind. 151 

 152 

Figure 1. Illustration of data selection methodology. Individual orbits centered on perigee, are 153 
exctracted; shown is orbit no. 5 in 2008. Top panel: GSE magnetic field from Cluster 1 (C1) 154 
spacecraft; Bx, By, Bz, and magnitude Bm, are depicted using red, green, blue and black, 155 
respectively. Bottom panel: GSE position of C1. Numbers from 1 to 10 mark sub-intervals 156 
(see text for details). 157 

 158 

Each individual orbit is further divided into 10 smaller intervals, of about 5.7 h each, 159 
labeled in Fig. 1 using numbers from 1 to 10. Based on Fig. 1, we assume that intervals 160 
labeled 1, 2, 9 and 10, correspond to unperturbed solar wind regions; intervals labeled 3, 4, 7 161 
and 8, contain magnetosheath observations; and during intervals 5 and 6, the spacecraft is 162 

a)

b)
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inside the Earth’s magnetosphere. The division into orbits and intervals is designed to: (a) 163 
manage the computation time and computer resources required to generate the results, and (b) 164 
obtain a way of estimating the discontinuity occurrence rate as a function of spacecraft 165 
location. 166 

Following the example in Fig. 1, each data set is divided into individual orbits. The 167 
result is a total number of 100 orbits distributed equally among the two years, that is, a set 50 168 
orbits for January-April 2007 and another set of 50 orbits for January-April 2008. 169 

 170 

3. Identification 171 

Let us consider the magnetic field vector 𝑩(𝒕) = [𝐵(	𝐵*	𝐵+], in an arbitrary reference 172 
system. Magnetic field directional discontinuities are characterized by sharp changes in the 173 
direction of this vector, computed as: 174 

𝜑(𝑡/) = 0123
4
5	cos91 0 𝑩𝟏∙𝑩𝟐

|𝑩𝟏|∙|𝑩𝟐|
5      (1) 175 

where 𝜑, in degrees, is computed at time 𝑡/; 𝑩𝟏 = 〈?𝐵(	𝐵*	𝐵+@〉BC and 𝑩𝟐 = 〈?𝐵(	𝐵*	𝐵+@〉BD, 176 
with the symbol 〈∙〉B denoting time averaging. We define a window 𝑊 centered on time 𝑡/: 177 
𝑊 = [𝑡/9B F⁄ , 𝑡/IB F⁄ ], with 𝜏 denoting the length of this window. Relative to 𝑡/,	the intervals 178 
𝜏1 and 𝜏F are defined as: 𝜏1 = [𝑡/9B F⁄ , 𝑡/] and 𝜏F = [𝑡/, 𝑡/IB F⁄ ]. Clearly, 𝜏1 and 𝜏F contain 179 
the same number of data samples (𝜏1 = 𝜏F = 𝜏/2); in the following, we will refer to 𝜏 as the 180 
analysis scale. According to Equation (1), 𝜑 takes values between 0° (parallel orientation 181 
between 𝑩𝟏 and 𝑩𝟐) and 180° (antiparallel orientation). 182 

For the analysis of a signal continuously sampled in-situ, we developed a sliding-183 
window algorithm which computes the angular changes 𝜑 for windows 𝑊 centered at each 184 
time instance 𝑡/ . In the case of an isolated discontinuity, a specific variation of angular 185 
changes is artificially created by this sliding window algorithm. Due to the relative position 186 
of the sliding window with respect to the center of the discontinuity, an increasing 187 
(decreasing) trend in angular changes results, as the window moves closer to (away from) the 188 
discontinuity center; 𝜑 attains a maximum value at the center of an isolated discontinuity. 189 

The discontinuity detection algorithm is based on a critical value of the angular 190 
change. This value, denoted as 𝜑Q, is set here to 30°. We define a local discontinuity measure 191 
(LDM), and use it as a quantitative measure for the presence of directional discontinuities. 192 
LDM is defined to be equal to 𝜑, when 𝜑 ≥ 𝜑Q, and zero otherwise: 193 

𝐿𝐷𝑀(𝑡/) = W𝜑(𝑡/), 𝑖𝑓	𝜑(𝑡/) ≥ 𝜑Q
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       (2) 194 

Described above is the discontinuity detector as it was implemented by Munteanu et 195 
al. (2022), and included in the software tool INA (Munteanu et al., 2023). In this study we 196 
further develop this algorithm, by computing a matrix 𝐿𝐷𝑀(𝑡, 𝜏), defined for a series of 197 
scales 𝜏. As a quantitative measure for the presence of discontinuities, in this updated version 198 
of the discontinuity detector we inspect the values of 𝐿𝐷𝑀`(𝑡), defined as the average value 199 
of 𝐿𝐷𝑀(𝑡/) over a range of scales 𝜏. The averaging procedure is designed to minimize the 200 
effect random fluctuations, and enable the identification of only the dominant discontinuities. 201 

Figure 2 illustrates our new identification procedure, applied to interval labeled 1 in 202 
Fig. 1. Figure 2a shows the magnetic field observations during this interval. Multiple abrupt 203 
changes in the filed component amplitudes are observed, as, for example, the jump in the Bz 204 
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component from -2 nT to +2 nT, observed around sample number 1100. Figure 2b depicts the 205 
measure 𝐿𝐷𝑀`(𝑡/) for this interval, and it is clear that most of the abrupt amplitude changes 206 
observed in Fig 2a correspond to values of 𝐿𝐷𝑀` > 30°, thus, they are catalogued as events. 207 

 208 

Figure 2. Illustration of directional discontinuity (DD) identification procedure. Shown is 209 
interval no. 1 of orbit no. 5 in 2008. Panel a): magnetic field versus sample number. Panel b): 210 
blue line shows 𝐿𝐷𝑀` versus sample number; red line marks the threshold 𝜑Q = 30°. Panels 211 
c) and e): magnetic field for 128 samples centered on event no. 2, and the corresponding 212 
color representation of the matrix 𝐿𝐷𝑀(𝑡, 𝜏). Panels d) and f): similar to c) and e), but for 213 
event no. 3. 214 

 215 

A number of 11 directional discontinuities are identified within this interval, with 216 
corresponding angular changes ranging from 30° (weak events) to 130° (strong events), see 217 
Fig. 2b. We note that the discontinuities identified here are not equally distributed in time, 218 
that is, periods with almost no discontinuities are followed by periods with multiple 219 
discontinuities. This is a well-known results; Burlaga (1969) was among the first to show that 220 

a)

b)

c) d)

e) f)
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there is a tendency for discontinuities to cluster together. Since then, many other studies have 221 
revealed this property (see, e. g., the review by Tsurutani et al., 1999). 222 

Figures 2c and 2d depict the magnetic field observations in a window of 128 samples 223 
centered on events no. 2 and 3, respectively. Corresponding time-scale, color representations 224 
of 𝐿𝐷𝑀(𝑡, 𝜏) for the two events are depicted in Figs. 2e and 2f, respectively. Figure 2b 225 
showed that the maximum value of 𝐿𝐷𝑀` is around 90° for event no. 2, and around 50° for 226 
event no. 3; from this, we can state that event no. 2 is stronger than event no. 3. In Fig. 2e, 227 
two weak discontinuities can be observed on each side of the central event: one around 228 
sample no. 1341 and the second one around sample no. 1401; their strength decreases rapidly 229 
as we go to larger scales. Since our algorithm is designed to select only the strongest 230 
discontinuity within the analyzed window, only the central DD is automatically identified and 231 
catalogued by our code. In contrast, DD no. 3 is clearly isolated from other structures (see 232 
Fig. 2f). This discussion is relevant for discontinuity classification, as shown in the next 233 
section. 234 

The identification procedure illustrated in Figure 2 is applied to our data set of 100 235 
orbits in 2007 and 2008. The final catalogue consists in 4215 events in 2007 and 5194 in 236 
2008. 237 

 238 

4. Classification 239 

4.1. Preliminary Classification 240 

The previous section showed two examples of events: (a) one with a rather complex 241 
local environment, where the central discontinuity was flanked by two weaker events (Fig. 242 
2e); and (b) a clean discontinuity, clearly separated from other structures or fluctuations (Fig. 243 
2f). Greco et al. (2016) used a similar reasoning to classify their set of event as “connected” 244 
and “isolated”. Inspired by this, and also by results from Fig. 2, these two discontinuities are 245 
chosen as representatives for our pre-classification scheme: events resembling that in Fig 2e 246 
will be called “complex”, and events resembling that in Fig. 2f, will be called “simple”. 247 

With almost 10000 events in our database, a visual-based classification is clearly not 248 
possible. An automated classification algorithm was designed to distinguish between the two 249 
classes. The current version of the discontinuity detector uses a number of 𝑛𝑠 = 64 scales. 250 
For each scale, local peaks in 𝐿𝐷𝑀(𝑡) (defined in Equation 2) are found using the MATLAB 251 
built-in function called “findpeaks” 252 
(https://www.mathworks.com/help/signal/ref/findpeaks.html). The result is 𝑛𝑝(𝜏), the 253 
number of peaks per scale. A “complexity index” CI is defined as: 254 

𝐶𝐼 = 1
hi
∑ 𝑛𝑝(𝜏)B ,          (3) 255 

 As a rule of thumb, if CI has a high value, then the discontinuity is classified as 256 
complex; if it has a small value, then it is classified as simple. By trial and error, a threshold 257 
value of CI=1.1 was found to provide good results. Although this choice seems arbitrary, it is 258 
confirmed by our extensive validation tests presented in Section 5. 259 

The preliminary classification procedure is illustrated in Figure 3, which shows the 260 
number of peaks per scale, 𝑛𝑝(𝜏), and the complexity index CI, for the set of 11 events 261 
identified in Fig. 2b. Fig 3a shows that events nos. 3, 6, 10 and 11, have one peak per scale, 262 
meaning that they are ideal simple events. Events nos. 1, 2, 4, 5, and 7 are complex, because 263 
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multiple peaks per scale are found. The complexity index depicted in Fig. 3b confirms our 264 
interpretation based on the values of 𝑛𝑝(𝜏). 265 

 266 

Figure 3. Illustration of the preliminary classification procedure. Shown are the 11 events 267 
identified in interval no. 1 of orbit no. 5 in 2008. Panel a): number of peaks 𝑛𝑝(𝜏), color 268 
coded, versus scale (on the y-axis) and event number (on the x-axis); blue corresponds to 269 
𝑛𝑝 = 1, green depicts 𝑛𝑝 = 2, and yellow signifies that 𝑛𝑝 ≥ 3. Panel b): complexity index 270 
CI versus event number; red line marks the boundary between simple and complex events, at 271 
𝐶𝐼 = 1. 272 

 273 

Figure 3b also shows that two events are very close to the (somewhat arbitrarily 274 
chosen) threshold between simple and complex: events nos. 8 and 9. Technically, event no. 8 275 
is pre-classified as complex and event no. 9 is pre-classified as simple, but, because they are 276 
so close to the threshold, they are referred to as “mixed” events. The next section discusses 277 
how this type of mixed events represent the main source for the differences between pattern 278 
recognition and pre-classification results. 279 

Figure 2 showed LDM images with the full range of angular changes, and we noted 280 
that discontinuities can vary in strength from 30° (weak events) to 180° (strong events). This 281 
introduces additional variability in the observed patterns. This adverse effect can be 282 
minimized by setting to 0 all angular changes below 30°, and to 1, all those above 30°. Thus, 283 
a new set of LDM “binary” images is generated, where all angular changes below 30° are 284 
depicted in black, and those above 30° are shown with white color. Examples from this re-285 
processed set of LDM images, which will be used to train the machine learning models, are 286 
shown in Figure 4, which depicts the 11 events identified in Fig. 2b, and pre-classified in Fig. 287 
3b. For most cases, a clear distinction is observed between events pre-classified as simple and 288 
those pre-classified as complex. Events nos. 3, 6, and 9, are correctly pre-classified as simple, 289 
because no other structures are observed outside of the central region. The diamond shape of 290 
event no. 3, for example, is what we ideally expect for a simple discontinuity. 291 

All pre-classified complex events in Fig. 4 have visible structures near or overlapping 292 
with the central region. Event no. 8 has a complexity index very close to the threshold value, 293 
but it is technically pre-classified as complex. In the next section we will show that the 294 
machine learning algorithm based on pattern recognition, predicts this event as simple. 295 

The preliminary classification procedure described above was applied to the 10 296 
intervals of orbit no. 5. The results are shown in Figure 5. As Cluster 1 spacecraft orbits 297 
around Earth, it will cross the solar wind (intervals 1 and 2), the magnetosheath (intervals 3 298 
and 4) and the magnetosphere (intervals 5 and 6) then back through the magnetosheath 299 
(intervals 7 and 8) and solar wind (intervals 9 and 10).  300 

a) b)
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 301 

Figure 4. LDM binary images for the 11 events from Fig. 3. Event number is in the top-left 302 
corner of each image, and color indicates the event class: blue is complex and red is simple. 303 

 304 

Fig. 5a shows the event occurrence rates, expressed in number of events per hour, and 305 
Fig. 5b shows the corresponding ratio between the numbers of simple and complex events, 306 
expressed in percentages. The illustration in Fig. 5a allows one to investigate the variation of 307 
event rate as a function of spacecraft location. Fig. 5a shows that the average occurrence rate 308 
is around 2 DDs/h in both the solar wind and the Earth’s magnetosheath region, and that 309 
virtually a number of 0 DDs/h are identified inside the magnetosphere. Although the total rate 310 
remains constant as we cross from the solar wind to the magnetosheath interval, the rates and 311 
the corresponding percentages of simple/complex events change considerably: intervals 3 and 312 
4 have a rate of occurrence of ~0.5 DDs/h for simple, and ~1.5 DDs/h for complex events. 313 
The corresponding percentages are 30/70 %, for simple/complex, respectively. 314 

The results for the second half of the orbit depicted in Fig. 5b look somewhat 315 
different compared to the first half. A higher than expected percentage of solar wind events 316 
are pre-classified as complex. Three possible sources of variability can affect our results: (a) 317 
large data gaps, (b) solar wind variability and (c) possible asymmetry between the left-sides 318 
and the right-sides of each orbit. A dedicated study of these effects is necessary, but it is 319 
outside the scope of this study. 320 
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 321 

Figure 5. Rate of occurence versus interval number, for orbit no. 5 in 2008. Panel a): rate of 322 
occurrence expressed in number of events per hour; total rate is in black, complex is in blue 323 
and the occurrence rate of simple events is in red. Panel b): percentages of simple and 324 
complex events, relative to the total number of events. 325 

 326 

All ~10000 events in our catalogue were pre-classified as described above. In 327 
January-April 2007, a number of 1806 events are pre-classified as simple and 2410 as 328 
complex. In January-April 2008, 1997 events are simple and 3197 are complex. LDM binary 329 
images are created for each event, and will be used in the next section to train neural 330 
networks for pattern recognition. 331 

 332 

4.2 Classification using supervised machine learning 333 

There are two main categories of machine learning models: supervised and 334 
unsupervised. Supervised learning uses labelled data, known as training data, to learn a 335 
specific pattern. On the other hand, unsupervised learning uses unlabeled data, and can reveal 336 
unanticipated patterns and relationships. Here, we adopt a supervised learning approach with 337 
the objective of creating models that provide accurate predictions of the pre-classified LDM 338 
images described in the previous section. 339 

We propose a hybrid convolutional neural network (CNN) and support vector 340 
machines (SVM) which uses the feature extraction capability of CNNs, and combines it with 341 
the powerful classification features of SVMs (Cortes and Vapnick, 1995) for a binary 342 
classification problem. We decided to train two CNN-SVM models. One model is trained on 343 
the 2007 dataset and is used to predict the events in 2008 and, vice-versa, the predictions for 344 
2007 are done using a model trained on 2008 events. Figure 6 illustrates our workflow. Some 345 
technical details are provided below; more details on network architectures can be found in 346 
Bishop (2006), or LeCun et al. (2019). 347 

The pre-classified LDM images constitute the labelled data used to train the neural 348 
networks. From all pre-classified images for each class, 70 % is the training set and 30% is 349 
the test set, separately for each year. The training set is considered ground-truth, and is used 350 
to update all the parameters in the training step. All images are first contracted to 64 x 64 351 
pixels in order to speed-up the processing time. 352 

CNNs are traditionally used for pattern recognition due to their ability to extract 353 
features with a high degree of abstraction. Our models follow a typical CNN architecture 354 
consisting of two convolutional modules and a fully connected layer, that are stacked on top 355 
of each other. Each module includes a convolutional layer followed by a pooling layer; a 356 

a) b)
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ReLU activation function was used after each stage. The convolutional layer acts as feature 357 
extractor, and in our models consists of 32 filters, extracting 3 × 3 pixel subregions. The 358 
Pooling layer is applied after the convolutional layer in order to reduce the spatial resolution; 359 
a max-pooling method was used, with 𝑠𝑖𝑧𝑒 = 2 and 𝑠𝑡𝑟𝑖𝑑𝑒 = 1. The feature map obtained 360 
from the convolutional operations is flattened in a 1-D vector and feeds the last layer 361 
composed of 128 neurons fully connected. The cost function we choose to minimize is the 362 
hinge-loss, which is used for “maximum-margin” classification in SVM. In order to avoid 363 
overfitting, an L2 regularization or Ridge regression was implemented in the training process. 364 

 365 

 366 

Figure 6. Supervised machine learning workflow. From magnetic field data we identify 367 
discontinuities and create the LDM binary images which are then used as input for CNN. The 368 
SVM classifier predicts the class of each event. 369 

 370 

In the training process, the pre-classified LDM images are considered as ground-truth 371 
labels which will update all the network’s parameters, and the loss function is calculated. The 372 
process is repeated for a given number of epochs until the loss function reaches a minimum, 373 
and, if it does not improve, the network training is halted. An Adam optimization algorithm 374 
was selected to update model parameters. The training and testing of our models was done in 375 
Python 3.9 with TensorFlow libraries on a standard PC, on a single NVIDIA Quadro 5000 376 
graphics card. 377 

 378 

5. Validation 379 

5.1 Confusion matrices and derived model performance metrics 380 

We use confusion matrices to evaluate the performance of our models and to 381 
visualize classification results. For a binary classification, the confusion matrix is a 2 × 2 382 
contingency table. Figure 7 shows the confusion matrices for 2007 and 2008. In each case, 383 
the main diagonal shows the number of correctly predicted events: true positive (TP; top 384 
left), which, for our case, is this the number of pre-classified simple events that are predicted 385 
correctly; true negative (TN; bottom right), is the number of pre-classified complex events 386 
that are predicted correctly. The off-diagonals of each matrix shows the number of 387 
incorrectly predicted events: false negative (FN; top right), also known are type I error, is the 388 
number of pre-classified simple events that are incorrectly predicted as complex; false 389 
positive (FP; bottom left), also known as type II errors, is the number of pre-classified 390 
complex events that are incorrectly predicted as simple. The sum TP+FN is the total number 391 
of pre-classified simple events, and TN+FP is the total number of pre-classified complex 392 
events. 393 

t

Magnetic field data  

Discontinuity  
identification and  
pre-classification SV

M
 C

la
ss

ifi
er

Simple

Complex



Classifying Interplanetary Discontinuities. 20230330. To be submitted to Earth and Space Science (ESS). 

 12 

 394 
Figure 7. Confusion matrices for 2007 (left-side) and 2008 (right-side), using traditional 395 
notations in a binary contingency table. The number of events predicted for each class are 396 
shown in each cell. 397 

 398 

Figure 7a shows the confusion matrix for 2007. From a number of 1806 pre-399 
classified simple events, the model predicts only a number of TP=1700 events as simple and 400 
the rest are predicted as complex (FN=106). On the complex side, from 2410 pre-classified 401 
complex events, the model predicts only a number of TN=2200 events as complex, and the 402 
rest are predicted as simple (FP=210). Figure 7b shows the corresponding results for 2008. 403 
From a number of 1997 pre-classified simple events, the model predicts only a number of 404 
TP=1753 events as simple and the rest are predicted as complex (FN=244). From 3197 pre-405 
classified complex events, the model predicts that only a number of TN=3075 events are 406 
complex, and the rest are predicted to be simple (FP=122). 407 

 408 

Table 1. Common metrics used to evaluate a model’s performance. 409 

Metric 
name 

Definition Results for 
2007 dataset 

Results for 
2008 dataset 

Accuracy 
(Acc) 

𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 0.925 0.929 

Precision 
(Pre) 

𝑇𝑃
𝑇𝑃 + 𝐹𝑃 0.890 0.935 

Recall 
(Rec) 

𝑇𝑃
𝑇𝑃 + 𝐹𝑁 0.941 0.877 

F1 score 2 ×
𝑃𝑟𝑒 × 𝑅𝑒𝑐
𝑃𝑟𝑒 + 𝑅𝑒𝑐 

0.914 0.905 

MCC (𝑇𝑃 ⋅ 𝑇𝑁) − (𝐹𝑃 ⋅ 𝐹𝑁)
w(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

 
0.849 0.850 

 410 

The information contained in a confusion matrix can be used to derive some of the 411 
most common metrics used to evaluate a model’s performance. Table 1 gives the definitions 412 
for some of these metrics, using the standard notations from a 2 × 2 confusion matrix. 413 
Acuraccy is the ratio between the number of correct predictions and the total number of 414 
predictions. Precision is the ratio of the correctly predicted simple and the total number of 415 
predicted simple. Recall is the ratio of correctly predicted simple divided by the number of 416 
pre-classified simple events. If we optimize for Recall, it will decrease FN (incorrectly 417 
predicted complex events) and increase TP with the cost of increasing FP (the number of 418 
incorrectly predicted simple events). Due to their nature, Precision and Recall are always in a 419 
mutual trade-off relationship. The F1 score quantifies the model's ability to predict both 420 

b)a)
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classes correctly, based on the harmonic mean of Precision and Recall. Hence, if either 421 
Precision or Recall has a low value, the F1 score suffers significantly (Powers, 2020). 422 

One of the most popular choices for estimating a model’s performance is the 423 
Matthews Correlation Coefficient (MCC). This measure is more informative than the F1 424 
score because it takes into account the balance ratios of all four confusion matrix cells 425 
(Chicco and Jurman, 2020). MCC can have a minimum value equal to -1, indicating a 426 
complete disagreement between pre-classification and prediction, and a maximum value of 427 
1, indicating a perfect prediction accuracy. 428 

Table 1 also shows the values for the different metrics. Almost all values are close to 429 
0.9, meaning that the model predictions are accurate. The values for MCC are slightly below 430 
0.9, but this does not necessarily mean that the predictions are not accurate. Our preliminary 431 
criteria to distinguish between simple and complex are somewhat arbitrary. In Section 4.1 432 
we mentioned that some events are “mixed”, and we argue that these are the main cause for 433 
the differences between preliminary classification and machine learning prediction. Thus, 434 
even though the values for MCC might suggest that the prediction is not perfect, some of the 435 
events predicted “incorrectly” by the ML models might in fact be better classified than the 436 
preliminary classification. This statement is supported by the machine learning predictions 437 
for the images depicted in Fig. 4. ML prediction is in agreement with the pre-classification 438 
for almost all events, except for event nos. 8 and 11. Event no. 11, for example, was pre-439 
classified as simple, but the ML model classified it as complex. Comparing the LDM pattern 440 
observed for event no. 11 with that for event no. 3, it is rather obvious that event 11 is better 441 
classified as complex. 442 

We showed above that the differences between machine learning predictions and pre-443 
classification results are rather small. Thus, in the following, we use only the machine 444 
learning predictions to investigate the rate of occurrence of interplanetary discontinuities as a 445 
function of spacecraft location. 446 

 447 

5.2. Rate of occurrence of interplanetary discontinuities 448 

Figure 5 showed that the total rate of occurrence for the events in orbit no. 5 remained 449 
approximately constant, at about 2 DDs/h, as the spacecraft crossed from the solar wind into 450 
the magnetosheath; inside the Earth’s magnetosphere the total occurrence rate was close to 451 
zero. Figure 5 also showed that the percentages of simple/complex events was close to 50/50 452 
% in the solar wind, but, in the magnetosheath, the number of complex events increased 453 
significantly, reaching a value of 70 % from the total number of events. Figure 8 shows the 454 
results for the entire set of orbits. Same as before, 2007 and 2008 are investigated separately, 455 
and then compared to each other. 456 

Let us first consider the variability of the total rate of occurrence for the two data sets 457 
(Figs. 8a and 8b). The upper envelope varies between 4 and 5 DDs/h, for both years. The 458 
lower envelope is 0 DDs/h; most likely, this is the result of data gaps, but, since their number 459 
is relatively small, their effect is correspondingly small. The variability of the total rate of 460 
occurrence is related to the variability of the solar wind itself. For example, it is well known 461 
that fast solar wind contains more discontinuities than the slow solar wind (see, e.g., Section 462 
4.1 in the paper by Borovsky et al., 2010). 463 

Let us now consider the variability of the rate of occurrence for each class separately. 464 
The upper envelope for the complex events in 2007 (Fig. 8c), starts at 2.5 DDs/h in the solar 465 
wind, increases to about 5 DDs/h, and then decreases towards 0 for intervals 5 and 6. A 466 
similar variation can be seen for the second part of the orbit. In 2008 (Fig. 8d), the upper 467 
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envelope for the rate of occurrence of complex events follows closely that for the total rate, 468 
implying that most of the variability of the total rate in 2008 comes from complex events. 469 
The upper envelope for simple events (Figs. 8e and 8f) is around 2 DDs/h for all solar wind 470 
and magnetosheath intervals, in both years, confirming that the variability of the total rate of 471 
occurrence is dominated by that of complex events. 472 

 473 

Figure 8. Rate of occurrence expressed as number of events per hour, versus interval number. 474 
Left-column: results for the set of 50 orbits of C1 spacecraft in January-April 2007. Right-475 
column: corresponding results in 2008. Top: total rate of occurrence; middle: the rate for 476 
complex events; bottom: the rate of occurrence for simple events. In each panel: grey circles 477 
mark each orbit; grey diamonds mark the upper envelope for each interval; and thick lines 478 
depict mean values in each set. 479 

 480 

Figure 8 also shows the mean values for each set. The mean value for the total rate is 481 
around 2 DDs/h for all solar wind and magnetosheath intervals, in both years. This implies 482 
that the total number of events does not change significantly as the spacecraft crosses from 483 
the solar wind into the magnetosheath. In other words, most solar discontinuities pass through 484 
the Earth’s bow shock. The mean rate of occurrence for the complex events in 2007 increases 485 
from ~1 DDs/h in the solar wind to 1.5 DDs/h in the magnetosheath, it is 0 DDs/h inside the 486 
magnetosphere, and then the pattern reverses for intervals from 7 to 10 (Fig. 8c). A similar 487 
result is also observed in 2008 (Fig. 8d). Since the total mean rate remains approximately 488 
constant, but the mean rate for complex events increases inside the magnetosheath, we expect 489 
the mean rate for simple events to decrease inside the magnetosheath. This is exactly what we 490 
observe in Figs. 8e and 8f. The mean rate of simple events is around 1 DDs/h in the solar 491 
wind, decreases to around 0.5 DDs/h in the magnetosheath, is 0 inside the magnetosphere, 492 
and, as expected, the pattern reverses for intervals from 7 to 10. 493 
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 494 

Figure 9. Mean percentages of predicted events for each class, relative to the total number of 495 
events, for 2007 (left-side) and 2008 (right-side). As before, complex events are shown in 496 
blue, and simple in red. 497 

 498 

Figure 9 depicts the mean percentages of simple/complex events. In 2007 (Fig. 9a), 499 
interval 1 has 40/60 % mean percentages for simple/complex events, and the mean 500 
percentages are exactly 50/50 % for interval 2. The percentage of complex events increases in 501 
the magnetosheath to 70 % of the total, while the percentage of simple events 502 
correspondingly decreases to 30 %. In 2008 (Fig. 9b), the percentage of complex events 503 
increases monotonically, from ~50 % in interval 1, to almost 80 % in interval 4. For the 504 
second part of the orbit, a similar pattern is observed, but somewhat distorted. This is most 505 
probably an orbital effect. Further investigation of this orbital asymmetry is outside the scope 506 
of our study. 507 

To our knowledge, Greco et al. (2016) is the only study that classified solar wind 508 
discontinuities using criteria similar to ours: they describe “connected” events, resembling 509 
our complex ones, and “isolated” events, resembling our simple ones. From the analysis of a 510 
2 h interval of high resolution data from Cluster 4 spacecraft on 20 January 2007, they 511 
identified 1245 small-scale solar wind discontinuities, and determined a percentage of about 512 
50 % between connected and isolated events. As discussed above, this is an almost identical 513 
percentage to that determined by us. This is a clear confirmation of our approach, at least for 514 
the solar wind intervals, and deserves further exploration. 515 

The results obtained by us for the magnetosheath intervals can be compared to those 516 
from Webster et al. (2021). They showed that discontinuties change as they cross from the 517 
solar wind into the magnetosheath, becoming narrower and at the same time surrounded by 518 
larger amplitude fluctuation. This is consistent with our results, because narrower 519 
discontinuties surrounded by large amplitude fluctuations resemble complex events. The 520 
result from Webster et al. (2021) implies that an initially simple event in the solar wind will 521 
be classified as complex after its passage in the magnetosheath. 522 

 523 

6. Summary and Conclusions 524 

We designed and implemented a novel identification algorithm for interplanetary 525 
directional discontinuities. We used magnetic field observations from the Cluster 1 (C1) 526 
spacecraft in orbit around Earth, to test and validate our results. The detection algorithm is 527 
based on identifying abrupt changes of the direction of the magnetic field, referred to as 528 
directional discontinuities (DDs). Using a sliding window approach, angular changes for each 529 
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data point are computed; we repeat with successively increasing window lengths, and the 530 
result is a matrix of angular changes. Next, mean angular changes are computed, by 531 
averaging over the set of scales. Finally, discontinuities are identified as localized peaks of 532 
the series of mean angular changes. This algorithm was applied to magnetic field data from 533 
C1 in January-April 2007 and January-April 2008. A number of 4216 events were indentified 534 
in 2007, and 5194 in 2008. 535 

Our main goal was the development of supervised machine learning models able to 536 
classify the events. For this, we first had to design a pre-classification algorithm capable of 537 
creating the labeled data necessary to train the machine learning models. Our pre-538 
classification approach is based on counting the number of local maxima of the matrix of 539 
angular changes, and then inspecting the average number of peaks per scale. By trial and 540 
error, we determined a specific threshold value for the average number of peaks, and: all 541 
events below threshold were pre-classified as simple, and those above threshold as complex. 542 
In 2007, 1806 events were pre-classified as simple and 2410 as complex. In 2008, 1997 543 
events are simple and 3197 are complex. 544 

Supervised machine learning is based on a pattern recognition approach, thus, it needs 545 
images as input. We generated time-scale images for each event, depicting with color the 546 
matrix of angular changes. A further step was necessary at this point: the full-color 547 
representation of LDM matrices introduces details that can distort the pattern recognition 548 
algorithm. Thus, for the final set of images, we used “binary” representations with simple 549 
black and white patterns, with black regions denoting angular changes below 30°, and white 550 
regions denoting angular changes above 30°. A machine learning tool was implemented from 551 
convolutional neural networks with the help of a support vector machines classifier. The pre-552 
classified images were used to train the machine learning models. We created two ML 553 
models: one using the images from 2007, and a second one for 2008. The model trained using 554 
the images in 2007 was then used to classify the images in 2008; and vice-versa for 2008. We 555 
showed confusion matrices for the two years separately, and demonstrated that the 556 
differences between ML classification and pre-classification are rather small. 557 

We validated our classification results by investigating the occurrence rate of events 558 
as a function of spacecraft locations. For this, we divided our data into individual obits 559 
centered on perigee. We extracted 100 orbits, distributed equally among the two years. Each 560 
orbit was further divided into a number of 10 equal intervals. This allowed us to investigate 561 
the dependence of our results on the plasma region traversed by the spacecraft: around 562 
apogee (interval nos. 1, 2, 9 and 10), we assume that the spacecraft is in the upstream solar 563 
wind; interval nos. 3, 4, 7 and 8 correspond to the magnetosheath; and during interval nos. 5 564 
and 6 the spacecraft is inside the magnetosphere. By averaging results for each set of 50 565 
orbits, we showed that the total rate of occurrence is rather constant, at about 2 DDs/h, for 566 
both solar wind and magnetosheath regions, in both 2007 and 2008. 567 

We also showed that complex and simple events start with roughly equal occurrence 568 
rates in the solar wind, but, interestingly, the rate of complex events increases significantly in 569 
the magnetosheath. Since the total rate is constant, this means that part of the simple events in 570 
the solar wind are transforming into complex events into the magnetosheath. We quantified 571 
the difference by investigating their relative percentages. We showed that the percentage of 572 
complex events increases monotonically from a solar wind value of 50 % to almost 80 % in 573 
the magnetosheath. As expected, the number of simple events follows a reverse trend, that is, 574 
it decreases from 50 % in the solar wind to 20 % in the magnetosheath. 575 

We demonstrate that our classification scheme can provide meaningful geophysical 576 
insights, and thus be relevant for future studies of interplanetary discontinuities. In future, we 577 
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plan to design more advanced classification schemes, using, for example, unsupervised 578 
machine learning algorithms. 579 
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Open Research 587 

We used spin resolution magnetic field measurements from the FGM instrument on-588 
board Cluster 1 spacecraft (Balogh et al., 2001), available from: 589 
https://cdaweb.gsfc.nasa.gov/cgi-590 
bin/eval2.cgi?dataset=C1_CP_FGM_SPIN&index=sp_phys. Some of our results were 591 
obtained using MATLAB; part of our computer codes were adapted from INA, a software 592 
application freely available from: http://www.storm-fp7.eu/index.php/data-analysis-tools. 593 
The training and testing of our machine learning models was done in Python 3.9 with scikit-594 
learn (https://scikit-learn.org/stable/modules/classes.html) and TensorFlow 595 
(https://www.tensorflow.org) as main libraries, on a standard PC with a single NVIDIA 596 
Quadro 5000 graphics card. The catalogue of about 10000 LDM binary images generated by 597 
this research are available from: https://github.com/ISS-psm/ldm. 598 
 599 
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Key Points: 10 

• In-situ magnetic field observations from Cluster 1 spacecraft are used to compile a 11 
database of events 12 

• Localized time-scale images are created for each event, and supervised machine 13 
learning is used to classify them 14 

• An investigation of average occurrence rates versus spacecraft location, demonstrates 15 
the validity of our results 16 

 17 

Abstract 18 

Directional discontinuities (DDs) are defined as abrupt changes of the magnetic field 19 
orientation. We use observations from ESA’s Cluster mission to compile a database of 20 
events: 4216 events are identified in January-April 2007, and 5194 in January-April 2008. 21 
Localized time-scale images depicting angular changes are created for each event, and a 22 
preliminary classification algorithm is designed to distinguish between: simple - isolated 23 
events, and complex - multiple overlapping events. In 2007, 1806 events are pre-classified as 24 
simple, and 2410 as complex; in 2008, 1997 events are simple, and 3197 are complex. A 25 
supervised machine learning approach is used to recognize and predict these events. Two 26 
models are trained: one for 2007, which is used to predict the results in 2008, and vice-versa 27 
for 2008. To validate our results, we investigate the discontinuity occurrence rate as a 28 
function of spacecraft location. When the spacecraft is in the solar wind, we find an 29 
occurrence rate of ~2 DDs per hour and a 50/50 % ratio of simple/complex events. When the 30 
spacecraft is in the Earth’s magnetosheath, we find that the total occurrence rate remains 31 
around 2 DDs/h, but the ratio of simple/complex events changes to ~25/75 %. This implies 32 
that about half of the simple events observed in the solar wind are classified as complex when 33 
observed in the magnetosheath. This demonstrates that our classification scheme can provide 34 
meaningful insights, and thus be relevant for future studies on interplanetary discontinuities. 35 

 36 
  37 
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1. Introduction 38 

Abrupt changes in the orientation of the interplanetary magnetic field (IMF), referred 39 
to as directional discontinuities (DDs), are ubiquitous structures in the solar wind. With an 40 
average occurrence rate at Earth of about two DDs per hour (e.g., Newman et al., 2020), 41 
these structures represent an omnipresent source of variability for the interplanetary plasma 42 
environment. DDs are known to trigger geomagnetic storms and magnetospheric substorms, 43 
with significant impact on ground-based and spaceborne technologies (e.g., Tsurutani et al., 44 
2011). They can be used, for example, to estimate the solar wind propagation time from an 45 
upstream solar wind monitor to a downstream target (e.g., Mailyan et al., 2008; Haaland et 46 
al., 2010; Munteanu et al., 2013). 47 

The term “directional discontinuity” was originally introduced by Burlaga (1969) to 48 
denote a variation of IMF direction larger than 30 degrees in less than 30 seconds. Many 49 
previous studies used the limit of 30° to distinguish between the population of turbulent 50 
fluctuations (characterized by directional changes below the limit) and the population of 51 
discontinuities (above the limit; see, e.g., Borovsky et al., 2008). This definition was the 52 
starting point for multiple detection algorithms. Li (2008), for example, describe a rather 53 
complex algorithm to identify discontinuities based on directional changes. Borovsky (2010) 54 
used a similar approach to identify solar wind DDs, and then studied their effects on the 55 
power spectrum. Chian & Muñoz (2011) used the Li (2008) detection method, and 56 
investigated the relation between discontinuities, turbulence, and magnetic reconnection at 57 
the leading edge of an interplanetary coronal mass ejection. The detection algorithm of Li 58 
(2008) was further developed by Miao et al. (2011), who introduced a way of automatically 59 
estimating the discontinuity thickness. 60 

There are other ways of identifying magnetic field discontinuities. Vasquez et al. 61 
(2007), for example, developed a detection algorithm which is independent of directional 62 
changes, and instead relies on changes of the amplitude of magnetic field components. They 63 
used their algorithm to identify a large number of events, and found that the occurrence rate 64 
of solar wind discontinuities from their algorithm is comparable with that from algorithms 65 
based on directional changes. Tsurutani and Smith (1979) were among the first to develop a 66 
detection method based on changes of the amplitude of field components, and showed that it 67 
provides similar results to directional change-based methods. Burkholder and Otto (2019) 68 
introduced yet another detection algorithm based on amplitude changes. A notable 69 
contribution is the method called partial variance of increments (PVI; Greco et al., 2008; 70 
Greco & Perry, 2014; Greco et al., 2016; Greco et al., 2018). Greco et al. (2008) compared 71 
the results from PVI with those obtained using the Tsurutani and Smith (1979) method, and 72 
found that the two sets of results are remarkably similar, suggesting that most of the events 73 
identified by the two methods are the same. 74 

Due to various computational difficulties encountered when implementing automated 75 
detection algorithms, even recent studies still use visual inspection to identify discontinuities 76 
(Mailyan et al., 2008; Munteanu et al., 2013; Artemyev et al., 2018, 2019a, 2019b). Note that 77 
even the (partially) automated detection algorithm of Burkholder and Otto (2019) still uses 78 
visual inspection to eliminate events that are not clearly isolated from other structures in the 79 
time series. For relatively small datasets, detection by visual inspection can be acceptable, 80 
but, for large-scale studies, visual inspection is certainly not suitable. 81 

Magnetohydrodynamics defines two idealized classes of discontinuities: (a) stationary 82 
structures, i.e. discontinuities that do not propagate with respect to the ambient plasma 83 
(tangential (TDs) and contact discontinuities), and (b) propagating discontinuities (rotational 84 
discontinuities (RDs) and shocks). The most frequent small-scale discontinuities in 85 
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interplanetary space are the abrupt changes in the direction of the magnetic field, 86 
predominantly expected for TDs and RDs (e.g., Paschmann et al., 2013). Discontinuity 87 
detection is not very difficult, especially using algorithms based on angular changes. In 88 
contrast, distinguishing between classical TDs and RDs is difficult. Recent studies have 89 
approached discontinuity classification from a rather different perspective. Greco et al. 90 
(2016), for example, classified discontinuities in terms of their internal structure: (a) those 91 
with simple transitions from one side to the other are referred to as isolated events, and (b) 92 
those associated with complex networks of multiple small-scale interconnected 93 
discontinuities, are referred to as connected events. 94 

Interplanetary discontinuities arrive at 1 AU and interact with the Earth’s bow shock. 95 
Karlson et al. (2022) showed how some DDs can pass through the bowshock almost 96 
unchanged, while Kropotina et al. (2021) argued that the interaction with the Earth’s bow 97 
shock can significantly alter discontinuity structure and stability. Webster et al. (2021) 98 
studied the interaction between solar wind discontinuities and the Earth’s bow shock, and 99 
showed that discontinuities become thinner and that their current density (a measure of their 100 
strength) increases in the magnetosheath. 101 

The complex nature of the solar-terrestrial system imposes more advanced tools to be 102 
used in computational space physics. In recent years, there has been a clear growth of 103 
published articles on applied machine learning techniques in space plasmas, such as  solar 104 
wind characterization and prediction (Li et al., 2020; Upendran et al., 2020), space whether 105 
research (Camporeale et al., 2018; Camporeale, 2019), forecasting radiation belt dynamics 106 
(Bernoux et al., 2021), and geomagnetic storm prediction (Cristoforetti et al., 2022). Machine 107 
learning (ML) algorithms can be used to build models based on a training data set, and then 108 
try to make predictions without being explicitly programmed how to do so. In this study we 109 
use a hybrid method, based on convolutional neural networks (CNN) and support vector 110 
machines (SVM), for a binary classification of interplanetary discontinuities. 111 

Munteanu et al. (2022) describe a hardware, field programmable gate-array (FPGA), 112 
implementation of a discontinuity detector, designed for use on-board a satellite to 113 
continuously monitor local magnetic field rotation angles. A software implementation of that 114 
discontinuity detector is included in the freely-distributed software analysis tool called 115 
Integrated Nonlinear Analysis (INA; Munteanu et al., 2023; see also the PhD thesis 116 
Munteanu, 2017). In this study we further develop this discontinuity detector by designing 117 
and implementing a novel multiscale detection and classification algorithm for 118 
discontinuities. This improved algorithm can automatically detect and classify 119 
discontinuities, based on classification criteria similar to those in Greco et al. (2016). 120 
Localized time-scale images depicting angular changes for each event are created, and then 121 
used as input for supervised machine learning classification schemes. In-situ magnetic field 122 
observations in 2007 and 2008 from ESA’s Cluster mission are used to test and validate our 123 
detection and classification approach. 124 

The paper is structured as follows. Section 2 presents the in-situ magnetic field 125 
observations used in our study. Section 3 describes the discontinuity identification algorithm, 126 
and presents the catalogue of events. Section 4 introduces the preliminary classification 127 
scheme, and presents the supervised machine learning models. Section 5 shows the results 128 
and discusses the accuracy of the CNN-SVM classifier. Our investigation of the occurrence 129 
rate of interplanetary discontinuities as a function of spacecraft location, is also included in 130 
this section. We give our conclusions in Section 6. 131 

 132 
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2. Data 133 

We use in-situ observations from ESA’s Cluster mission in 2007 and 2008, a multi-134 
spacecraft mission with nearly 90° inclination elliptical polar orbit, perigee at about 4 RE and 135 
apogee at about 20 RE geocentric distance (1 RE = 6371 km), and an orbital period of 136 
approximately 57 h (Escoubet et al, 2001). Cluster enters the upstream solar wind during 137 
apogee in January-April every year, therefore we focus only on these intervals. We use spin 138 
resolution (4 s) magnetic field measurements from the fluxgate magnetometer on-board 139 
Cluster 1 (C1) spacecraft (Balogh et al., 2001; https://cdaweb.gsfc.nasa.gov/cgi-140 
bin/eval2.cgi?dataset=C1_CP_FGM_SPIN&index=sp_phys). 141 

Individual orbits centered on perigee are extracted. An example is depicted in Figure 142 
1, which shows orbit no. 5 of the 2008 data set. The C1 spacecraft is in the solar wind around 143 
apogee at 9:05 UT on January 12. Typical solar wind observations are characterized by 144 
relatively small-amplitude magnetic field fluctuations and an average field magnitude below 145 
~10 nT. As the spacecraft approaches Earth, it will cross the bow shock and enter into the 146 
magnetosheath, which is characterized by larger-amplitude fluctuations. As the spacecraft 147 
moves even closer to Earth, it will cross the magnetopause and enter the magnetosphere. At 148 
orbit perigee the magnetic field magnitude attains a maximum value of ~1500 nT, and then 149 
decreases as the spacecraft moves away from the Earth, again encountering the 150 
magnetosheath and the solar wind. 151 

 152 

Figure 1. Illustration of data selection methodology. Individual orbits centered on perigee, are 153 
exctracted; shown is orbit no. 5 in 2008. Top panel: GSE magnetic field from Cluster 1 (C1) 154 
spacecraft; Bx, By, Bz, and magnitude Bm, are depicted using red, green, blue and black, 155 
respectively. Bottom panel: GSE position of C1. Numbers from 1 to 10 mark sub-intervals 156 
(see text for details). 157 

 158 

Each individual orbit is further divided into 10 smaller intervals, of about 5.7 h each, 159 
labeled in Fig. 1 using numbers from 1 to 10. Based on Fig. 1, we assume that intervals 160 
labeled 1, 2, 9 and 10, correspond to unperturbed solar wind regions; intervals labeled 3, 4, 7 161 
and 8, contain magnetosheath observations; and during intervals 5 and 6, the spacecraft is 162 

a)

b)
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inside the Earth’s magnetosphere. The division into orbits and intervals is designed to: (a) 163 
manage the computation time and computer resources required to generate the results, and (b) 164 
obtain a way of estimating the discontinuity occurrence rate as a function of spacecraft 165 
location. 166 

Following the example in Fig. 1, each data set is divided into individual orbits. The 167 
result is a total number of 100 orbits distributed equally among the two years, that is, a set 50 168 
orbits for January-April 2007 and another set of 50 orbits for January-April 2008. 169 

 170 

3. Identification 171 

Let us consider the magnetic field vector 𝑩(𝒕) = [𝐵(	𝐵*	𝐵+], in an arbitrary reference 172 
system. Magnetic field directional discontinuities are characterized by sharp changes in the 173 
direction of this vector, computed as: 174 

𝜑(𝑡/) = 0123
4
5	cos91 0 𝑩𝟏∙𝑩𝟐

|𝑩𝟏|∙|𝑩𝟐|
5      (1) 175 

where 𝜑, in degrees, is computed at time 𝑡/; 𝑩𝟏 = 〈?𝐵(	𝐵*	𝐵+@〉BC and 𝑩𝟐 = 〈?𝐵(	𝐵*	𝐵+@〉BD, 176 
with the symbol 〈∙〉B denoting time averaging. We define a window 𝑊 centered on time 𝑡/: 177 
𝑊 = [𝑡/9B F⁄ , 𝑡/IB F⁄ ], with 𝜏 denoting the length of this window. Relative to 𝑡/,	the intervals 178 
𝜏1 and 𝜏F are defined as: 𝜏1 = [𝑡/9B F⁄ , 𝑡/] and 𝜏F = [𝑡/, 𝑡/IB F⁄ ]. Clearly, 𝜏1 and 𝜏F contain 179 
the same number of data samples (𝜏1 = 𝜏F = 𝜏/2); in the following, we will refer to 𝜏 as the 180 
analysis scale. According to Equation (1), 𝜑 takes values between 0° (parallel orientation 181 
between 𝑩𝟏 and 𝑩𝟐) and 180° (antiparallel orientation). 182 

For the analysis of a signal continuously sampled in-situ, we developed a sliding-183 
window algorithm which computes the angular changes 𝜑 for windows 𝑊 centered at each 184 
time instance 𝑡/ . In the case of an isolated discontinuity, a specific variation of angular 185 
changes is artificially created by this sliding window algorithm. Due to the relative position 186 
of the sliding window with respect to the center of the discontinuity, an increasing 187 
(decreasing) trend in angular changes results, as the window moves closer to (away from) the 188 
discontinuity center; 𝜑 attains a maximum value at the center of an isolated discontinuity. 189 

The discontinuity detection algorithm is based on a critical value of the angular 190 
change. This value, denoted as 𝜑Q, is set here to 30°. We define a local discontinuity measure 191 
(LDM), and use it as a quantitative measure for the presence of directional discontinuities. 192 
LDM is defined to be equal to 𝜑, when 𝜑 ≥ 𝜑Q, and zero otherwise: 193 

𝐿𝐷𝑀(𝑡/) = W𝜑(𝑡/), 𝑖𝑓	𝜑(𝑡/) ≥ 𝜑Q
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       (2) 194 

Described above is the discontinuity detector as it was implemented by Munteanu et 195 
al. (2022), and included in the software tool INA (Munteanu et al., 2023). In this study we 196 
further develop this algorithm, by computing a matrix 𝐿𝐷𝑀(𝑡, 𝜏), defined for a series of 197 
scales 𝜏. As a quantitative measure for the presence of discontinuities, in this updated version 198 
of the discontinuity detector we inspect the values of 𝐿𝐷𝑀`(𝑡), defined as the average value 199 
of 𝐿𝐷𝑀(𝑡/) over a range of scales 𝜏. The averaging procedure is designed to minimize the 200 
effect random fluctuations, and enable the identification of only the dominant discontinuities. 201 

Figure 2 illustrates our new identification procedure, applied to interval labeled 1 in 202 
Fig. 1. Figure 2a shows the magnetic field observations during this interval. Multiple abrupt 203 
changes in the filed component amplitudes are observed, as, for example, the jump in the Bz 204 
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component from -2 nT to +2 nT, observed around sample number 1100. Figure 2b depicts the 205 
measure 𝐿𝐷𝑀`(𝑡/) for this interval, and it is clear that most of the abrupt amplitude changes 206 
observed in Fig 2a correspond to values of 𝐿𝐷𝑀` > 30°, thus, they are catalogued as events. 207 

 208 

Figure 2. Illustration of directional discontinuity (DD) identification procedure. Shown is 209 
interval no. 1 of orbit no. 5 in 2008. Panel a): magnetic field versus sample number. Panel b): 210 
blue line shows 𝐿𝐷𝑀` versus sample number; red line marks the threshold 𝜑Q = 30°. Panels 211 
c) and e): magnetic field for 128 samples centered on event no. 2, and the corresponding 212 
color representation of the matrix 𝐿𝐷𝑀(𝑡, 𝜏). Panels d) and f): similar to c) and e), but for 213 
event no. 3. 214 

 215 

A number of 11 directional discontinuities are identified within this interval, with 216 
corresponding angular changes ranging from 30° (weak events) to 130° (strong events), see 217 
Fig. 2b. We note that the discontinuities identified here are not equally distributed in time, 218 
that is, periods with almost no discontinuities are followed by periods with multiple 219 
discontinuities. This is a well-known results; Burlaga (1969) was among the first to show that 220 

a)

b)

c) d)

e) f)



Classifying Interplanetary Discontinuities. 20230330. To be submitted to Earth and Space Science (ESS). 

 7 

there is a tendency for discontinuities to cluster together. Since then, many other studies have 221 
revealed this property (see, e. g., the review by Tsurutani et al., 1999). 222 

Figures 2c and 2d depict the magnetic field observations in a window of 128 samples 223 
centered on events no. 2 and 3, respectively. Corresponding time-scale, color representations 224 
of 𝐿𝐷𝑀(𝑡, 𝜏) for the two events are depicted in Figs. 2e and 2f, respectively. Figure 2b 225 
showed that the maximum value of 𝐿𝐷𝑀` is around 90° for event no. 2, and around 50° for 226 
event no. 3; from this, we can state that event no. 2 is stronger than event no. 3. In Fig. 2e, 227 
two weak discontinuities can be observed on each side of the central event: one around 228 
sample no. 1341 and the second one around sample no. 1401; their strength decreases rapidly 229 
as we go to larger scales. Since our algorithm is designed to select only the strongest 230 
discontinuity within the analyzed window, only the central DD is automatically identified and 231 
catalogued by our code. In contrast, DD no. 3 is clearly isolated from other structures (see 232 
Fig. 2f). This discussion is relevant for discontinuity classification, as shown in the next 233 
section. 234 

The identification procedure illustrated in Figure 2 is applied to our data set of 100 235 
orbits in 2007 and 2008. The final catalogue consists in 4215 events in 2007 and 5194 in 236 
2008. 237 

 238 

4. Classification 239 

4.1. Preliminary Classification 240 

The previous section showed two examples of events: (a) one with a rather complex 241 
local environment, where the central discontinuity was flanked by two weaker events (Fig. 242 
2e); and (b) a clean discontinuity, clearly separated from other structures or fluctuations (Fig. 243 
2f). Greco et al. (2016) used a similar reasoning to classify their set of event as “connected” 244 
and “isolated”. Inspired by this, and also by results from Fig. 2, these two discontinuities are 245 
chosen as representatives for our pre-classification scheme: events resembling that in Fig 2e 246 
will be called “complex”, and events resembling that in Fig. 2f, will be called “simple”. 247 

With almost 10000 events in our database, a visual-based classification is clearly not 248 
possible. An automated classification algorithm was designed to distinguish between the two 249 
classes. The current version of the discontinuity detector uses a number of 𝑛𝑠 = 64 scales. 250 
For each scale, local peaks in 𝐿𝐷𝑀(𝑡) (defined in Equation 2) are found using the MATLAB 251 
built-in function called “findpeaks” 252 
(https://www.mathworks.com/help/signal/ref/findpeaks.html). The result is 𝑛𝑝(𝜏), the 253 
number of peaks per scale. A “complexity index” CI is defined as: 254 

𝐶𝐼 = 1
hi
∑ 𝑛𝑝(𝜏)B ,          (3) 255 

 As a rule of thumb, if CI has a high value, then the discontinuity is classified as 256 
complex; if it has a small value, then it is classified as simple. By trial and error, a threshold 257 
value of CI=1.1 was found to provide good results. Although this choice seems arbitrary, it is 258 
confirmed by our extensive validation tests presented in Section 5. 259 

The preliminary classification procedure is illustrated in Figure 3, which shows the 260 
number of peaks per scale, 𝑛𝑝(𝜏), and the complexity index CI, for the set of 11 events 261 
identified in Fig. 2b. Fig 3a shows that events nos. 3, 6, 10 and 11, have one peak per scale, 262 
meaning that they are ideal simple events. Events nos. 1, 2, 4, 5, and 7 are complex, because 263 
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multiple peaks per scale are found. The complexity index depicted in Fig. 3b confirms our 264 
interpretation based on the values of 𝑛𝑝(𝜏). 265 

 266 

Figure 3. Illustration of the preliminary classification procedure. Shown are the 11 events 267 
identified in interval no. 1 of orbit no. 5 in 2008. Panel a): number of peaks 𝑛𝑝(𝜏), color 268 
coded, versus scale (on the y-axis) and event number (on the x-axis); blue corresponds to 269 
𝑛𝑝 = 1, green depicts 𝑛𝑝 = 2, and yellow signifies that 𝑛𝑝 ≥ 3. Panel b): complexity index 270 
CI versus event number; red line marks the boundary between simple and complex events, at 271 
𝐶𝐼 = 1. 272 

 273 

Figure 3b also shows that two events are very close to the (somewhat arbitrarily 274 
chosen) threshold between simple and complex: events nos. 8 and 9. Technically, event no. 8 275 
is pre-classified as complex and event no. 9 is pre-classified as simple, but, because they are 276 
so close to the threshold, they are referred to as “mixed” events. The next section discusses 277 
how this type of mixed events represent the main source for the differences between pattern 278 
recognition and pre-classification results. 279 

Figure 2 showed LDM images with the full range of angular changes, and we noted 280 
that discontinuities can vary in strength from 30° (weak events) to 180° (strong events). This 281 
introduces additional variability in the observed patterns. This adverse effect can be 282 
minimized by setting to 0 all angular changes below 30°, and to 1, all those above 30°. Thus, 283 
a new set of LDM “binary” images is generated, where all angular changes below 30° are 284 
depicted in black, and those above 30° are shown with white color. Examples from this re-285 
processed set of LDM images, which will be used to train the machine learning models, are 286 
shown in Figure 4, which depicts the 11 events identified in Fig. 2b, and pre-classified in Fig. 287 
3b. For most cases, a clear distinction is observed between events pre-classified as simple and 288 
those pre-classified as complex. Events nos. 3, 6, and 9, are correctly pre-classified as simple, 289 
because no other structures are observed outside of the central region. The diamond shape of 290 
event no. 3, for example, is what we ideally expect for a simple discontinuity. 291 

All pre-classified complex events in Fig. 4 have visible structures near or overlapping 292 
with the central region. Event no. 8 has a complexity index very close to the threshold value, 293 
but it is technically pre-classified as complex. In the next section we will show that the 294 
machine learning algorithm based on pattern recognition, predicts this event as simple. 295 

The preliminary classification procedure described above was applied to the 10 296 
intervals of orbit no. 5. The results are shown in Figure 5. As Cluster 1 spacecraft orbits 297 
around Earth, it will cross the solar wind (intervals 1 and 2), the magnetosheath (intervals 3 298 
and 4) and the magnetosphere (intervals 5 and 6) then back through the magnetosheath 299 
(intervals 7 and 8) and solar wind (intervals 9 and 10).  300 

a) b)
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 301 

Figure 4. LDM binary images for the 11 events from Fig. 3. Event number is in the top-left 302 
corner of each image, and color indicates the event class: blue is complex and red is simple. 303 

 304 

Fig. 5a shows the event occurrence rates, expressed in number of events per hour, and 305 
Fig. 5b shows the corresponding ratio between the numbers of simple and complex events, 306 
expressed in percentages. The illustration in Fig. 5a allows one to investigate the variation of 307 
event rate as a function of spacecraft location. Fig. 5a shows that the average occurrence rate 308 
is around 2 DDs/h in both the solar wind and the Earth’s magnetosheath region, and that 309 
virtually a number of 0 DDs/h are identified inside the magnetosphere. Although the total rate 310 
remains constant as we cross from the solar wind to the magnetosheath interval, the rates and 311 
the corresponding percentages of simple/complex events change considerably: intervals 3 and 312 
4 have a rate of occurrence of ~0.5 DDs/h for simple, and ~1.5 DDs/h for complex events. 313 
The corresponding percentages are 30/70 %, for simple/complex, respectively. 314 

The results for the second half of the orbit depicted in Fig. 5b look somewhat 315 
different compared to the first half. A higher than expected percentage of solar wind events 316 
are pre-classified as complex. Three possible sources of variability can affect our results: (a) 317 
large data gaps, (b) solar wind variability and (c) possible asymmetry between the left-sides 318 
and the right-sides of each orbit. A dedicated study of these effects is necessary, but it is 319 
outside the scope of this study. 320 
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 321 

Figure 5. Rate of occurence versus interval number, for orbit no. 5 in 2008. Panel a): rate of 322 
occurrence expressed in number of events per hour; total rate is in black, complex is in blue 323 
and the occurrence rate of simple events is in red. Panel b): percentages of simple and 324 
complex events, relative to the total number of events. 325 

 326 

All ~10000 events in our catalogue were pre-classified as described above. In 327 
January-April 2007, a number of 1806 events are pre-classified as simple and 2410 as 328 
complex. In January-April 2008, 1997 events are simple and 3197 are complex. LDM binary 329 
images are created for each event, and will be used in the next section to train neural 330 
networks for pattern recognition. 331 

 332 

4.2 Classification using supervised machine learning 333 

There are two main categories of machine learning models: supervised and 334 
unsupervised. Supervised learning uses labelled data, known as training data, to learn a 335 
specific pattern. On the other hand, unsupervised learning uses unlabeled data, and can reveal 336 
unanticipated patterns and relationships. Here, we adopt a supervised learning approach with 337 
the objective of creating models that provide accurate predictions of the pre-classified LDM 338 
images described in the previous section. 339 

We propose a hybrid convolutional neural network (CNN) and support vector 340 
machines (SVM) which uses the feature extraction capability of CNNs, and combines it with 341 
the powerful classification features of SVMs (Cortes and Vapnick, 1995) for a binary 342 
classification problem. We decided to train two CNN-SVM models. One model is trained on 343 
the 2007 dataset and is used to predict the events in 2008 and, vice-versa, the predictions for 344 
2007 are done using a model trained on 2008 events. Figure 6 illustrates our workflow. Some 345 
technical details are provided below; more details on network architectures can be found in 346 
Bishop (2006), or LeCun et al. (2019). 347 

The pre-classified LDM images constitute the labelled data used to train the neural 348 
networks. From all pre-classified images for each class, 70 % is the training set and 30% is 349 
the test set, separately for each year. The training set is considered ground-truth, and is used 350 
to update all the parameters in the training step. All images are first contracted to 64 x 64 351 
pixels in order to speed-up the processing time. 352 

CNNs are traditionally used for pattern recognition due to their ability to extract 353 
features with a high degree of abstraction. Our models follow a typical CNN architecture 354 
consisting of two convolutional modules and a fully connected layer, that are stacked on top 355 
of each other. Each module includes a convolutional layer followed by a pooling layer; a 356 

a) b)
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ReLU activation function was used after each stage. The convolutional layer acts as feature 357 
extractor, and in our models consists of 32 filters, extracting 3 × 3 pixel subregions. The 358 
Pooling layer is applied after the convolutional layer in order to reduce the spatial resolution; 359 
a max-pooling method was used, with 𝑠𝑖𝑧𝑒 = 2 and 𝑠𝑡𝑟𝑖𝑑𝑒 = 1. The feature map obtained 360 
from the convolutional operations is flattened in a 1-D vector and feeds the last layer 361 
composed of 128 neurons fully connected. The cost function we choose to minimize is the 362 
hinge-loss, which is used for “maximum-margin” classification in SVM. In order to avoid 363 
overfitting, an L2 regularization or Ridge regression was implemented in the training process. 364 

 365 

 366 

Figure 6. Supervised machine learning workflow. From magnetic field data we identify 367 
discontinuities and create the LDM binary images which are then used as input for CNN. The 368 
SVM classifier predicts the class of each event. 369 

 370 

In the training process, the pre-classified LDM images are considered as ground-truth 371 
labels which will update all the network’s parameters, and the loss function is calculated. The 372 
process is repeated for a given number of epochs until the loss function reaches a minimum, 373 
and, if it does not improve, the network training is halted. An Adam optimization algorithm 374 
was selected to update model parameters. The training and testing of our models was done in 375 
Python 3.9 with TensorFlow libraries on a standard PC, on a single NVIDIA Quadro 5000 376 
graphics card. 377 

 378 

5. Validation 379 

5.1 Confusion matrices and derived model performance metrics 380 

We use confusion matrices to evaluate the performance of our models and to 381 
visualize classification results. For a binary classification, the confusion matrix is a 2 × 2 382 
contingency table. Figure 7 shows the confusion matrices for 2007 and 2008. In each case, 383 
the main diagonal shows the number of correctly predicted events: true positive (TP; top 384 
left), which, for our case, is this the number of pre-classified simple events that are predicted 385 
correctly; true negative (TN; bottom right), is the number of pre-classified complex events 386 
that are predicted correctly. The off-diagonals of each matrix shows the number of 387 
incorrectly predicted events: false negative (FN; top right), also known are type I error, is the 388 
number of pre-classified simple events that are incorrectly predicted as complex; false 389 
positive (FP; bottom left), also known as type II errors, is the number of pre-classified 390 
complex events that are incorrectly predicted as simple. The sum TP+FN is the total number 391 
of pre-classified simple events, and TN+FP is the total number of pre-classified complex 392 
events. 393 

t

Magnetic field data  

Discontinuity  
identification and  
pre-classification SV

M
 C

la
ss

ifi
er

Simple

Complex



Classifying Interplanetary Discontinuities. 20230330. To be submitted to Earth and Space Science (ESS). 

 12 

 394 
Figure 7. Confusion matrices for 2007 (left-side) and 2008 (right-side), using traditional 395 
notations in a binary contingency table. The number of events predicted for each class are 396 
shown in each cell. 397 

 398 

Figure 7a shows the confusion matrix for 2007. From a number of 1806 pre-399 
classified simple events, the model predicts only a number of TP=1700 events as simple and 400 
the rest are predicted as complex (FN=106). On the complex side, from 2410 pre-classified 401 
complex events, the model predicts only a number of TN=2200 events as complex, and the 402 
rest are predicted as simple (FP=210). Figure 7b shows the corresponding results for 2008. 403 
From a number of 1997 pre-classified simple events, the model predicts only a number of 404 
TP=1753 events as simple and the rest are predicted as complex (FN=244). From 3197 pre-405 
classified complex events, the model predicts that only a number of TN=3075 events are 406 
complex, and the rest are predicted to be simple (FP=122). 407 

 408 

Table 1. Common metrics used to evaluate a model’s performance. 409 

Metric 
name 

Definition Results for 
2007 dataset 

Results for 
2008 dataset 

Accuracy 
(Acc) 

𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 0.925 0.929 

Precision 
(Pre) 

𝑇𝑃
𝑇𝑃 + 𝐹𝑃 0.890 0.935 

Recall 
(Rec) 

𝑇𝑃
𝑇𝑃 + 𝐹𝑁 0.941 0.877 

F1 score 2 ×
𝑃𝑟𝑒 × 𝑅𝑒𝑐
𝑃𝑟𝑒 + 𝑅𝑒𝑐 

0.914 0.905 

MCC (𝑇𝑃 ⋅ 𝑇𝑁) − (𝐹𝑃 ⋅ 𝐹𝑁)
w(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

 
0.849 0.850 

 410 

The information contained in a confusion matrix can be used to derive some of the 411 
most common metrics used to evaluate a model’s performance. Table 1 gives the definitions 412 
for some of these metrics, using the standard notations from a 2 × 2 confusion matrix. 413 
Acuraccy is the ratio between the number of correct predictions and the total number of 414 
predictions. Precision is the ratio of the correctly predicted simple and the total number of 415 
predicted simple. Recall is the ratio of correctly predicted simple divided by the number of 416 
pre-classified simple events. If we optimize for Recall, it will decrease FN (incorrectly 417 
predicted complex events) and increase TP with the cost of increasing FP (the number of 418 
incorrectly predicted simple events). Due to their nature, Precision and Recall are always in a 419 
mutual trade-off relationship. The F1 score quantifies the model's ability to predict both 420 

b)a)
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classes correctly, based on the harmonic mean of Precision and Recall. Hence, if either 421 
Precision or Recall has a low value, the F1 score suffers significantly (Powers, 2020). 422 

One of the most popular choices for estimating a model’s performance is the 423 
Matthews Correlation Coefficient (MCC). This measure is more informative than the F1 424 
score because it takes into account the balance ratios of all four confusion matrix cells 425 
(Chicco and Jurman, 2020). MCC can have a minimum value equal to -1, indicating a 426 
complete disagreement between pre-classification and prediction, and a maximum value of 427 
1, indicating a perfect prediction accuracy. 428 

Table 1 also shows the values for the different metrics. Almost all values are close to 429 
0.9, meaning that the model predictions are accurate. The values for MCC are slightly below 430 
0.9, but this does not necessarily mean that the predictions are not accurate. Our preliminary 431 
criteria to distinguish between simple and complex are somewhat arbitrary. In Section 4.1 432 
we mentioned that some events are “mixed”, and we argue that these are the main cause for 433 
the differences between preliminary classification and machine learning prediction. Thus, 434 
even though the values for MCC might suggest that the prediction is not perfect, some of the 435 
events predicted “incorrectly” by the ML models might in fact be better classified than the 436 
preliminary classification. This statement is supported by the machine learning predictions 437 
for the images depicted in Fig. 4. ML prediction is in agreement with the pre-classification 438 
for almost all events, except for event nos. 8 and 11. Event no. 11, for example, was pre-439 
classified as simple, but the ML model classified it as complex. Comparing the LDM pattern 440 
observed for event no. 11 with that for event no. 3, it is rather obvious that event 11 is better 441 
classified as complex. 442 

We showed above that the differences between machine learning predictions and pre-443 
classification results are rather small. Thus, in the following, we use only the machine 444 
learning predictions to investigate the rate of occurrence of interplanetary discontinuities as a 445 
function of spacecraft location. 446 

 447 

5.2. Rate of occurrence of interplanetary discontinuities 448 

Figure 5 showed that the total rate of occurrence for the events in orbit no. 5 remained 449 
approximately constant, at about 2 DDs/h, as the spacecraft crossed from the solar wind into 450 
the magnetosheath; inside the Earth’s magnetosphere the total occurrence rate was close to 451 
zero. Figure 5 also showed that the percentages of simple/complex events was close to 50/50 452 
% in the solar wind, but, in the magnetosheath, the number of complex events increased 453 
significantly, reaching a value of 70 % from the total number of events. Figure 8 shows the 454 
results for the entire set of orbits. Same as before, 2007 and 2008 are investigated separately, 455 
and then compared to each other. 456 

Let us first consider the variability of the total rate of occurrence for the two data sets 457 
(Figs. 8a and 8b). The upper envelope varies between 4 and 5 DDs/h, for both years. The 458 
lower envelope is 0 DDs/h; most likely, this is the result of data gaps, but, since their number 459 
is relatively small, their effect is correspondingly small. The variability of the total rate of 460 
occurrence is related to the variability of the solar wind itself. For example, it is well known 461 
that fast solar wind contains more discontinuities than the slow solar wind (see, e.g., Section 462 
4.1 in the paper by Borovsky et al., 2010). 463 

Let us now consider the variability of the rate of occurrence for each class separately. 464 
The upper envelope for the complex events in 2007 (Fig. 8c), starts at 2.5 DDs/h in the solar 465 
wind, increases to about 5 DDs/h, and then decreases towards 0 for intervals 5 and 6. A 466 
similar variation can be seen for the second part of the orbit. In 2008 (Fig. 8d), the upper 467 
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envelope for the rate of occurrence of complex events follows closely that for the total rate, 468 
implying that most of the variability of the total rate in 2008 comes from complex events. 469 
The upper envelope for simple events (Figs. 8e and 8f) is around 2 DDs/h for all solar wind 470 
and magnetosheath intervals, in both years, confirming that the variability of the total rate of 471 
occurrence is dominated by that of complex events. 472 

 473 

Figure 8. Rate of occurrence expressed as number of events per hour, versus interval number. 474 
Left-column: results for the set of 50 orbits of C1 spacecraft in January-April 2007. Right-475 
column: corresponding results in 2008. Top: total rate of occurrence; middle: the rate for 476 
complex events; bottom: the rate of occurrence for simple events. In each panel: grey circles 477 
mark each orbit; grey diamonds mark the upper envelope for each interval; and thick lines 478 
depict mean values in each set. 479 

 480 

Figure 8 also shows the mean values for each set. The mean value for the total rate is 481 
around 2 DDs/h for all solar wind and magnetosheath intervals, in both years. This implies 482 
that the total number of events does not change significantly as the spacecraft crosses from 483 
the solar wind into the magnetosheath. In other words, most solar discontinuities pass through 484 
the Earth’s bow shock. The mean rate of occurrence for the complex events in 2007 increases 485 
from ~1 DDs/h in the solar wind to 1.5 DDs/h in the magnetosheath, it is 0 DDs/h inside the 486 
magnetosphere, and then the pattern reverses for intervals from 7 to 10 (Fig. 8c). A similar 487 
result is also observed in 2008 (Fig. 8d). Since the total mean rate remains approximately 488 
constant, but the mean rate for complex events increases inside the magnetosheath, we expect 489 
the mean rate for simple events to decrease inside the magnetosheath. This is exactly what we 490 
observe in Figs. 8e and 8f. The mean rate of simple events is around 1 DDs/h in the solar 491 
wind, decreases to around 0.5 DDs/h in the magnetosheath, is 0 inside the magnetosphere, 492 
and, as expected, the pattern reverses for intervals from 7 to 10. 493 
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 494 

Figure 9. Mean percentages of predicted events for each class, relative to the total number of 495 
events, for 2007 (left-side) and 2008 (right-side). As before, complex events are shown in 496 
blue, and simple in red. 497 

 498 

Figure 9 depicts the mean percentages of simple/complex events. In 2007 (Fig. 9a), 499 
interval 1 has 40/60 % mean percentages for simple/complex events, and the mean 500 
percentages are exactly 50/50 % for interval 2. The percentage of complex events increases in 501 
the magnetosheath to 70 % of the total, while the percentage of simple events 502 
correspondingly decreases to 30 %. In 2008 (Fig. 9b), the percentage of complex events 503 
increases monotonically, from ~50 % in interval 1, to almost 80 % in interval 4. For the 504 
second part of the orbit, a similar pattern is observed, but somewhat distorted. This is most 505 
probably an orbital effect. Further investigation of this orbital asymmetry is outside the scope 506 
of our study. 507 

To our knowledge, Greco et al. (2016) is the only study that classified solar wind 508 
discontinuities using criteria similar to ours: they describe “connected” events, resembling 509 
our complex ones, and “isolated” events, resembling our simple ones. From the analysis of a 510 
2 h interval of high resolution data from Cluster 4 spacecraft on 20 January 2007, they 511 
identified 1245 small-scale solar wind discontinuities, and determined a percentage of about 512 
50 % between connected and isolated events. As discussed above, this is an almost identical 513 
percentage to that determined by us. This is a clear confirmation of our approach, at least for 514 
the solar wind intervals, and deserves further exploration. 515 

The results obtained by us for the magnetosheath intervals can be compared to those 516 
from Webster et al. (2021). They showed that discontinuties change as they cross from the 517 
solar wind into the magnetosheath, becoming narrower and at the same time surrounded by 518 
larger amplitude fluctuation. This is consistent with our results, because narrower 519 
discontinuties surrounded by large amplitude fluctuations resemble complex events. The 520 
result from Webster et al. (2021) implies that an initially simple event in the solar wind will 521 
be classified as complex after its passage in the magnetosheath. 522 

 523 

6. Summary and Conclusions 524 

We designed and implemented a novel identification algorithm for interplanetary 525 
directional discontinuities. We used magnetic field observations from the Cluster 1 (C1) 526 
spacecraft in orbit around Earth, to test and validate our results. The detection algorithm is 527 
based on identifying abrupt changes of the direction of the magnetic field, referred to as 528 
directional discontinuities (DDs). Using a sliding window approach, angular changes for each 529 

b)a)



Classifying Interplanetary Discontinuities. 20230330. To be submitted to Earth and Space Science (ESS). 

 16 

data point are computed; we repeat with successively increasing window lengths, and the 530 
result is a matrix of angular changes. Next, mean angular changes are computed, by 531 
averaging over the set of scales. Finally, discontinuities are identified as localized peaks of 532 
the series of mean angular changes. This algorithm was applied to magnetic field data from 533 
C1 in January-April 2007 and January-April 2008. A number of 4216 events were indentified 534 
in 2007, and 5194 in 2008. 535 

Our main goal was the development of supervised machine learning models able to 536 
classify the events. For this, we first had to design a pre-classification algorithm capable of 537 
creating the labeled data necessary to train the machine learning models. Our pre-538 
classification approach is based on counting the number of local maxima of the matrix of 539 
angular changes, and then inspecting the average number of peaks per scale. By trial and 540 
error, we determined a specific threshold value for the average number of peaks, and: all 541 
events below threshold were pre-classified as simple, and those above threshold as complex. 542 
In 2007, 1806 events were pre-classified as simple and 2410 as complex. In 2008, 1997 543 
events are simple and 3197 are complex. 544 

Supervised machine learning is based on a pattern recognition approach, thus, it needs 545 
images as input. We generated time-scale images for each event, depicting with color the 546 
matrix of angular changes. A further step was necessary at this point: the full-color 547 
representation of LDM matrices introduces details that can distort the pattern recognition 548 
algorithm. Thus, for the final set of images, we used “binary” representations with simple 549 
black and white patterns, with black regions denoting angular changes below 30°, and white 550 
regions denoting angular changes above 30°. A machine learning tool was implemented from 551 
convolutional neural networks with the help of a support vector machines classifier. The pre-552 
classified images were used to train the machine learning models. We created two ML 553 
models: one using the images from 2007, and a second one for 2008. The model trained using 554 
the images in 2007 was then used to classify the images in 2008; and vice-versa for 2008. We 555 
showed confusion matrices for the two years separately, and demonstrated that the 556 
differences between ML classification and pre-classification are rather small. 557 

We validated our classification results by investigating the occurrence rate of events 558 
as a function of spacecraft locations. For this, we divided our data into individual obits 559 
centered on perigee. We extracted 100 orbits, distributed equally among the two years. Each 560 
orbit was further divided into a number of 10 equal intervals. This allowed us to investigate 561 
the dependence of our results on the plasma region traversed by the spacecraft: around 562 
apogee (interval nos. 1, 2, 9 and 10), we assume that the spacecraft is in the upstream solar 563 
wind; interval nos. 3, 4, 7 and 8 correspond to the magnetosheath; and during interval nos. 5 564 
and 6 the spacecraft is inside the magnetosphere. By averaging results for each set of 50 565 
orbits, we showed that the total rate of occurrence is rather constant, at about 2 DDs/h, for 566 
both solar wind and magnetosheath regions, in both 2007 and 2008. 567 

We also showed that complex and simple events start with roughly equal occurrence 568 
rates in the solar wind, but, interestingly, the rate of complex events increases significantly in 569 
the magnetosheath. Since the total rate is constant, this means that part of the simple events in 570 
the solar wind are transforming into complex events into the magnetosheath. We quantified 571 
the difference by investigating their relative percentages. We showed that the percentage of 572 
complex events increases monotonically from a solar wind value of 50 % to almost 80 % in 573 
the magnetosheath. As expected, the number of simple events follows a reverse trend, that is, 574 
it decreases from 50 % in the solar wind to 20 % in the magnetosheath. 575 

We demonstrate that our classification scheme can provide meaningful geophysical 576 
insights, and thus be relevant for future studies of interplanetary discontinuities. In future, we 577 
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plan to design more advanced classification schemes, using, for example, unsupervised 578 
machine learning algorithms. 579 
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Open Research 587 

We used spin resolution magnetic field measurements from the FGM instrument on-588 
board Cluster 1 spacecraft (Balogh et al., 2001), available from: 589 
https://cdaweb.gsfc.nasa.gov/cgi-590 
bin/eval2.cgi?dataset=C1_CP_FGM_SPIN&index=sp_phys. Some of our results were 591 
obtained using MATLAB; part of our computer codes were adapted from INA, a software 592 
application freely available from: http://www.storm-fp7.eu/index.php/data-analysis-tools. 593 
The training and testing of our machine learning models was done in Python 3.9 with scikit-594 
learn (https://scikit-learn.org/stable/modules/classes.html) and TensorFlow 595 
(https://www.tensorflow.org) as main libraries, on a standard PC with a single NVIDIA 596 
Quadro 5000 graphics card. The catalogue of about 10000 LDM binary images generated by 597 
this research are available from: https://github.com/ISS-psm/ldm. 598 
 599 
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