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Abstract

Hydrological variables of a catchment and their corresponding extreme characteristics have a possibility of switching regimes,

particularly when a catchment undergoes protracted dry periods. This can result in a catchment experiencing a flow anomaly

that is even more extreme than what was historically considered an extreme low flow event for the catchment. Catchments in

southeast Australia have been shown to exhibit multiple states of mean annual flows. Given this and studies that suggest that

extreme events may be changing with time, it is important to understand whether extremes in flows also have the potential

to exist in multiple states. To investigate this, we studied intensity, duration, and frequency (IDF) of low flows for 161

unregulated catchments in southeast Australia. A Hidden Markov Model-based approach was used to examine shifts in the low

flow characteristics. We found very strong evidence of low flow intensity exhibiting two distinct states for at least 34 (21%)

catchments in the region, providing convincing reasons to believe that extremes in low flows can and have undergone regime

changes. The second state of these catchments is often associated with higher values of low flow intensities. Simulation of the

duration and frequency of these events, however, needs improvement with the current approach and may be better studied by

accounting for climate indicators that may more suitably explain them. Impacts from a changing climate may enhance the

triggering of low flows into alternate states, which calls for water managers to plan for changing regimes of extremes.
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Key Points:12
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• Information from precipitation, though useful, may not be sufficient to explain the17

variability in low flow extremes.18
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Abstract19

Hydrological variables of a catchment and their corresponding extreme characteristics have20

a possibility of switching regimes, particularly when a catchment undergoes protracted dry21

periods. This can result in a catchment experiencing a flow anomaly that is even more22

extreme than what was historically considered an extreme low flow event for the catchment.23

Catchments in southeast Australia have been shown to exhibit multiple states of mean an-24

nual flows. Given this and studies that suggest that extreme events may be changing with25

time, it is important to understand whether extremes in flows also have the potential to26

exist in multiple states. To investigate this, we studied intensity, duration, and frequency27

(IDF) of low flows for 161 unregulated catchments in southeast Australia. A Hidden Markov28

Model-based approach was used to examine shifts in the low flow characteristics. We found29

very strong evidence of low flow intensity exhibiting two distinct states for at least 34 (21%)30

catchments in the region, providing convincing reasons to believe that extremes in low flows31

can and have undergone regime changes. The second state of these catchments is often as-32

sociated with higher values of low flow intensities. Simulation of the duration and frequency33

of these events, however, needs improvement with the current approach and may be better34

studied by accounting for climate indicators that may more suitably explain them. Impacts35

from a changing climate may enhance the triggering of low flows into alternate states, which36

calls for water managers to plan for changing regimes of extremes.37

38

Plain Language Summary39

Recent studies have shown that the mean hydrological behavior of catchments can un-40

dergo changes. The present study explores whether extreme events, such as low flow41

droughts, might also be undergoing regime-switching. The term ‘switching of states’ or42

‘regime-switching’ relates to a shift in the underlying probability distribution of a variable.43

With regards to streamflows, this may result in a catchment experiencing low flow droughts44

that are even more extreme than what was historically considered a drought event for the45

catchment. We found strong evidence of low flow intensity exhibiting two distinct states in46

catchments in southeast Australia, providing convincing reasons to believe that extremes47

in low flows can and have undergone state changes in the region. The second state of48

these catchments is often associated with higher values of low flow intensities. Ignoring49

such changes is likely to misrepresent low flow risks. This finding has profound importance50

in enabling hydrologists to understand the possible ways in which hydrological events can51

manifest themselves. Knowledge from these results supports the need to improve existing52

models to incorporate more dynamic realism within them, without which they might be53

blind to future hydrological shifts that could have a significant impact on water security.54

1 Introduction55

Water systems and hydrological regimes are known to be influenced by climatic perturba-56

tions, leading to irregularities in flow quantity and quality. Many studies have reported57

changes in rainfall-runoff relationships (Kiem & Verdon-Kidd, 2010; Van Dijk et al., 2013;58

Chiew et al., 2014; Miao et al., 2015; X. Liu et al., 2018). Drought flows are being observed59

to be drastically lower than expected for a given decline in precipitation (Alvarez-Garreton60

et al., 2021; Avanzi et al., 2020; Tian et al., 2020). The processes that generate runoff61

have been recently shown to change during (Saft et al., 2015) and after (Peterson et al.,62

2021) the occurrences of meteorological droughts. This results in less streamflow per unit63

of rainfall during and after the drought than that which occurred before the drought. Dis-64

turbances in catchments induced by changes in climate or from anthropogenic interventions65

have the potential to cause hydrological variables to undergo regime changes, also referred66

to as ‘switching of states’ or ‘state shifts’. ‘State shifts’ relates to a shift in the underlying67

probability distribution of the variable, implying non-stationarity. This means that a forcing68
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in the form of a disturbance can push a catchment past a fold point and into a new steady69

state and once the disturbance ends the catchment stays indefinitely in this new state until70

a disturbance pushes it back to the original state, as explained in Figure 1. In the context71

of regime-switching of extremes, a switching could result in a catchment experiencing a flow72

anomaly that is even more extreme than what was historically considered an extreme event.73

There is evidence suggesting that the mean behaviour of hydrologic variables can exhibit74

switching of states (Fowler et al., 2022; Peterson et al., 2021; Tauro, 2021; Zipper et al.,75

2022), i.e., they can exist in multiple states. The study by Peterson et al. (2021), for ex-76

ample, showed that catchments can not just exist in alternate states of streamflow regimes77

but can even continue to persist in such alternate states for extended periods. This suggests78

that low flows may also exhibit such behavior, thereby possessing far more complex form79

of non-stationarity than suggested by Goswami et al. (2022). However, to date, studies on80

extreme value analysis for streamflows have not examined this in detail. Many commonly81

existing streamflow models continue to discount that low flows can have temporal variability82

beyond their routine regime.83

Southeast Australia (SEA) is known to have a hydroclimate that is among the most variable84

in the world (Peel et al., 2004). The hydroclimatologial extremes that the region has under-85

gone in the past, including the Millennium Drought (Van Dijk et al., 2013), have been shown86

to influence the way streamflow responds (Saft et al., 2015). Many of these catchments have87

been shown to exhibit hydrologic non-stationarity in rainfall-runoff/climate-runoff relation-88

ships (Chiew et al., 2014), with streamflow droughts already shown to be increasing across89

the region (Wasko et al., 2021). Moreover, many existing studies assume catchments to90

have infinite resilience. Peterson et al. (2021), however, showed that annual and seasonal91

mean streamflow in many of these catchments exhibited switching in regimes following the92

Millennium Drought and that not all of them showed recovery when rainfall returned to93

normal. The work falsified the widely held assumption that catchments always have only94

a single steady state around which they fluctuate and showed that catchments could have95

finite resilience. The work, however, looked at mean flows, analyzed at the annual and sea-96

sonal timescales. It does not provide insights on regime-switching of extreme (low) flows, nor97

on the possibility of switching of such regimes at much finer (for eg., monthly) timescales.98

This brings forth the question of whether low flows can also undergo changes in state. With99

the region’s susceptibility to exhibit changes in the mean behavior of streamflows, the re-100

gion provides a good opportunity to study whether the behavior of extreme flows can also101

undergo changes in states.102

Limited studies exist on the understanding and evaluation of shifts in streamflows, and103

none examine low flows or state change in particular. With regards to techniques for under-104

standing changes in hydrologic extremes in general, the few most widely applied statistical105

approaches are the non-parametric Mann-Kendall trend analysis (Mann, 1945; Kendall,106

1975), change point analysis, and the Generalized Extreme Value (GEV) theory (Coles et107

al., 2001). Previous studies have used the Mann-Kendall trend analysis to understand shifts108

in hydrologic extremes (X. Zhang et al., 2001; Miller & Piechota, 2008; Burn et al., 2010;109

Sagarika et al., 2014; Bennett et al., 2015). This technique, however, is not adequately110

tailored for the analysis of extremes per se and therefore does not offer a way to determine111

changes in flow magnitudes (Solander et al., 2017). The other common approach of using112

the GEV theory-based analysis has been used to study the extreme streamflow data in113

a non-stationary framework through time-dependent parameters in the GEV distribution114

(Katz, 2013), allowing trend (and thus regime change) detection in extremes. However,115

limited approaches exist that allow a comprehensive assessment of state change, entailing116

aspects such as time series simulation of extreme data, classification of the extreme data117

into different states (if they exist), and identification of the timing of state shifts.118

One such technique that offers the capability to detect state-changes and breaks in persis-119

tence in a time series is the hidden Markov modeling approach. Being a doubly embedded120

stochastic process model, it makes for a good modeling choice for simulating data governed121
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by complicated nonlinear hydrological phenomena. HMMs are statistical Markov mod-122

els consisting of a hidden or unobservable ‘parameter process’ which satisfies the Markov123

property, and a ‘state-dependent process’, whose behavior depends on the underlying state124

(Zucchini & MacDonald, 2009). The approach provides a highly flexible modeling frame-125

work that can detect the existence of different ‘states’ in a variable of interest by quantifying126

the probability of the variable being in a given state over time. HMMs were developed dur-127

ing the late 1960s and early 1970s (Baum & Petrie, 1966) for speech recognition, and have128

since been successfully implemented in several applications, including climate and hydro-129

logic modeling (Thyer & Kuczera, 2003; Robertson et al., 2003, 2004). Mallya et al. (2013)130

applied HMM to develop a drought index for probabilistic assessment of drought charac-131

teristics. Turner and Galelli (2016) applied HMM to examine the impact of regime-like132

behavior in streamflows on the performance of reservoir operating policy. Thyer and Kucz-133

era (2000) used the hidden state Markov (HSM) model to simulate annual rainfall series134

in Australia. Rolim and de Souza Filho (2020) used it to identify shifts in low-frequency135

variability of streamflows. Bracken et al. (2014) used HMM along with climate indices to136

simulate multidecadal streamflows. More recently, Peterson et al. (2021) developed Hid-137

den Markov Models (HMM) to statistically identify if, and when, streamflow recovers from138

meteorological droughts, and in doing so provide empirical evidence that catchments often139

have multiple hydrological states. Overall, HMMs are a useful tool for identifying state140

changes in a time series based on the dictating underlying process. By virtue of being a141

mixture model, HMM provides an unsupervised classification technique that can be applied142

to capture persistence and hence breaks in persistence in a time series, including low flows.143

The present study aims to falsify the assumption that a single state is adequate to represent144

low flow events. This includes falsifying the commonly held notion that including rainfall145

variability is sufficient to account for non-stationarity in low flows and that low flows do not146

undergo long-term changes. To investigate this, the metrics used to characterize low flow147

events, namely, their intensity, duration, and frequency (IDF) were studied to test whether148

these can exist in more than one state, focusing on catchments in SEA. The study aims to149

provide an investigation of low flow extreme shifts along with finding when these changes are150

occurring for these catchments. To do this, we used the Hidden Markov modeling approach151

to identify state changes in the IDF of low flows. Although HMMs have been applied to152

investigate changes in flows and precipitation in previous studies as discussed above, these153

have not been specifically used to model low flow characteristics for investigating state154

changes in regimes of low flows. This study thus also presents a relatively less explored155

application of HMMs in investigating state changes in the extreme characteristics of low156

flows. The methodology adopted here also presents an alternative approach for examining157

hydrologic non-stationarity observed in the low flow IDF by examining if state-dependent158

distributions are required to explain the variability in the observed data.159

2 Data and Methods160

2.1 Study Region and Data161

For the present work, 161 unimpaired catchments in southeast Australia (SEA) were studied162

using their monthly streamflow as flow depth (mm) and precipitation data (mm), both163

aggregated from daily values. The streamflow data of these catchments was sourced from164

Peterson et al. (2021) and pre-processed as described in Goswami et al. (2022) following the165

quality control of Peterson et al. (2021). The catchments were chosen based on their gauge166

record quality while also ensuring that all these catchments had flow records at least for167

15, 7, and 5 years before, during, and after the Millennium Drought, respectively. All the168

catchments had at least 35 years of flow and precipitation data (Text S1 and Table S1 in169

Supporting Information S1). More information on the data can be found in Goswami et al.170

(2022). Importantly, this data provided an opportunity to investigate changes in extremes171

occurring in natural systems due to a changing climate and not through reservoir operations172

or land use practices. The 161 catchments and their corresponding gauging stations are173
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Figure 1: Illustration of regime-switching of a system (for eg., a hydrologic variable of
interest) from State 1 to State 2 under the influence of a forcing (hydrologic disturbance).
(Adopted from Peterson & Western, 2014.)

shown in Figure 2a, with the colored circles denoting the mean annual streamflow depth.174

Figure 2b shows the mean annual precipitation for the respective gauges. While this study175

is focused on the SEA region, the analysis and the understanding from it are relevant to all176

catchments where hydrological droughts are likely to become more extreme.177

2.2 Deriving IDF of Low Flows178

In this study, low flows were defined as representative of streamflow droughts describing a179

catchment’s condition when streamflows are anomalously low relative to long-term monthly180

means. The term ‘low flow’ as used in this work can be understood as a type of hydrological181

drought. By common definition, a hydrological drought denotes a deficit in surface water182

and groundwater (Wilhite & Glantz, 1985). Thus, often the term hydrological drought takes183

on a broader hydrological definition and can refer to situations of low flows, low snowmelt,184

low spring flow, low groundwater levels, etc., relative to normal conditions. However, the185

present study focuses primarily on conditions where streamflows are anomalously low relative186

to their expected normal flow conditions. The study here thus uses the term ‘low flows’ (or187

‘low flow droughts’) for the sake of being specific to the domain being investigated.188

For identifying low flow spells and deriving their associated characteristics, an approach189

similar to that used in Goswami et al. (2022) was applied here. First, the monthly flow190

depths at any given catchment (Figure 3a) were transformed by applying a Box-Cox (BC)191

power transformation (Box & Cox, 1964), using catchment-specific lambda values, to reduce192

the skew and for better identification of flow values which were very low (Text S2 and Figure193

S1 in Supporting Information S1). The transformed flows were then standardized using the194

mean and standard deviation of the transformed flow series at that catchment. The sign195

of the obtained series was then reversed such that values above zero pointed to below-196

average streamflows. The resultant series was termed as the Streamflow Drought Index197

(SDI) (Figure 3b).198

From the SDI series, monthly low flows were defined by using a threshold following the199

Peak-Over-Threshold (POT) approach (Coles et al., 2001). In the identification of low flow200
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Figure 2: (a) Location of the study region and the 161 catchments (boundary shown in
gray) along with their corresponding gauging stations (colored circles). The color of the
gauge stations in (a) and (b) shows the mean annual flow depth and the mean annual
precipitation, respectively.

periods, the choice of a low flow threshold is often subjective (Pushpalatha et al., 2012).201

For the current work, the threshold for defining the low flows was chosen to be the 65th202

percentile value of the SDI series. This ensured that most of the catchments had at least203

more than 40 values of intensity of low flows required for the model to perform satisfactory204

simulations. Higher thresholds corresponding to the 75th, 85th, and 95th percentiles resulted205

in significantly reduced sample sizes (Figure S2 in Supporting Information S1). This is a206

significant aspect as the capability of a Markovian model to simulate data improves when207

more data is available. Further, it was found that for the number of points lying above the208

threshold of 65th percentile, more than half of these lied above the 85th percentile for most209

of these catchments.210
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For this work, we focus on three important characteristics of low flows, namely, their inten-211

sity, duration, and annual frequency. These were derived from the SDI time series following212

their respective definitions in Goswami et al. (2022), as shown in Figure 3c. The duration213

of a low flow event was defined as the number of months for which the monthly SDI series214

remained above the threshold. The peak value that the SDI takes over the low flow spell215

was regarded as the intensity of the event. The more positive the peak value in a spell, the216

more intense the low flow event. The total number of such low flow events occurring in a217

streamflow water year was regarded as the annual frequency of the low flow events. The218

water year for computing frequency was taken from March of the current year, running for219

12 months until February of the next year, following the definition as in X. S. Zhang et220

al. (2016). The March-February water year is typical in parts of SE Australia (particularly221

Victoria), where minimum flows are usually observed at the end of the Boreal summer.222

2.3 Modeling IDF Using Hidden Markov Models (HMMs)223

2.3.1 Hidden Markov Models for Low Flow IDF224

HMM is a statistical Markov model consisting of two parts: an unobservable (or hidden)225

‘parameter process’, C, which satisfies the Markov property, and a ‘state-dependent process’,226

X, in such a way that when C(t) is known, the distribution of X depends only on the present227

state of C and not on the previous states or observations (Zucchini & MacDonald, 2009).228

HMM assumes that the behavior of the process X depends on C. A simple HMM can be229

summarized by the following two equations:230

Pr (C(t) | C(t−1)) = Pr (C(t) | C(t−1)) t = 2, 3, ... (1)231

232

Pr (X(t) | X(t−1),C(t)) = Pr (X(t) | C(t)) t ∈ N (2)233

where, C(t) represents the value of C at a given time t, C(t) is the Markov chain of proba-234

bilities and denotes the vector [C1, C2, C3, ..., Ct]. X
(t) represents the value of X at a given235

time t, and X(t) denotes the vector [X1, X2, X3, ..., Xt]. If the Markov chain C(t) has m236

states, the HMM of X is called an m-state HMM, where each state has a different distri-237

bution. The model provides a Markov chain, i.e. the probability of X being in each state238

over time which involves maximization of the following probability (Zucchini & MacDonald,239

2009):240

Pr (C(T ) = c(T ) | X(T ) = obsxt
(T )) (3)241

In the above expression, c is a sequence of possible states over the time steps and x is the242

vector of observed data. For an m-state HMM there are mT possible sequences, T being243

the length of the time series.244

Using this background of HMMs, we built temporal HMMs were built for each of the three245

low flow characteristics (i.e. low flow IDF) that examined for one and two states in these.246

The hidden states were the states of the existing climatic conditions. The model learnt247

about the state of extremes (C) by observing the low flow characteristic being modeled (x).248

Since the actual number of hydrological states for a given low flow characteristic is unknown,249

it was assumed that the low flow characteristics of a catchment can cycle through two states.250

A given low flow characteristic was thus simulated as being in one of the two distinct states.251

At each time point, t, the observed low flow characteristic was considered a random variable252

defined by a parametric distribution for each state. The state distribution at any time t253

depended upon the Markov chain of states at the preceding time step. For state, i, and at254

time, t, the conditional mean for the distribution of the given low flow characteristic under255

consideration was simulated as:256

t̂xi = a0,i + a1.(sAPIt) : for intensity and duration (4a)257

t̂xi = a0,i + a1.(mean annual sAPIt) : for frequency (4b)258
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Figure 3: Deriving the intensity, duration, and frequency of low flows. (a) Flow depth (mm)
time series for Station ID 407230. (b) Times series of the de-seasonalized (and reversed in
sign) flow, termed as the Streamflow Drought Index (SDI), derived from the flow values for
the catchment. The threshold is shown by the brown horizontal line at SDI = 0.51 which
represents the 65th percentile of the SDI time series for this catchment. Values of SDI lying
above the threshold represent low flows. (c) A zoomed window of the SDI series for the
years 2010–2013 to illustrate how the IDF are derived from the SDI time series.

where a0,i was a state-dependent parameter allowing for a shift in the catchment’s hydro-259

logical response, a1 was a state-independent parameter that links a suitable model covariate260

to x. In this study, the standardized antecedent precipitation index, sAPI (or the mean261

annual sAPI for modeling frequency) was used as the covariate responsible for the observed262

variability in the low flow characteristic (sAPI is discussed in detail in Section 2.3.2). In263

Equations 4a and 4b, the sAPIt (or mean annual sAPIt) was taken at the corresponding264
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time instance when the low flow characteristic was observed. The error in this model was265

defined as a time-invariant state-dependent variance, σi
2.266

The Markov state C(t) at time t was simulated as:267

C(t) = Markov (Γ) (5)268

where Γ is the transition matrix. Since the number of extreme states was assumed as two,269

we, therefore, investigated one- (Γ1) and two- (Γ2) state Markov models. The transitioning270

between any two consecutive states is explained using the schematic in Figure 4a. The271

two-state matrix Γ2 can be written as:272

Γ2 =

∣∣∣∣p11 p12
p21 p22

∣∣∣∣ = ∣∣∣∣ p11 1− p11
1− p22 p22

∣∣∣∣ (6)273

Here, pij (terms shown in Figure 4a), denotes the probability of the state at t transitioning274

from C
(t−1)
i to C

(t)
j (where i, j ≤ 2), i.e.,:275

pij = Pr(Cj
(t) | Ci

(t−1)) (7)276

Further assuming the HMM is homogeneous (i.e. transition probabilities are time-invariant),277

Γ1 and Γ2 required the estimation of zero and two transition probabilities, respectively.278

Additionally, the initial probability of being in each state was defined as follows:279

δ1 = 1δ2 =

∣∣∣∣δ1δ2
∣∣∣∣ = ∣∣∣∣ δ1

1− δ1

∣∣∣∣ (8)280

where δ1 and δ2 were the initial probabilities of being in states 1 and 2, respectively.281

The probability density in the error model of the HMM was derived using a two-parameter282

gamma distribution, a log-normal distribution, and a Poisson distribution for the intensity,283

duration, and frequency of low flows, respectively (Table 1). This was done after testing the284

capabilities of these respective distributions to satisfactorily represent these characteristics.285

The gamma distribution, fGam, as used for building the HMM for modeling intensity, can286

be represented as:287

fGam

(
x = obsxt; k = txi

2

σi
2
, θ =

σi
2

txi

)
=

xk−1e−
x
θ

θkG(k)
for x, θ, k > 0 (9)288

where θ is the scale parameter, k is the shape parameter and G(k) is the gamma function on289

k. The parameters k and θ were derived to ensure that the mean of the gamma distribution290

was as defined by Equation 4a, and were obtained by rearrangement of the Markov Mean,291

E[x] = kθ = txi and the Markov V ariance, V ar[x] = kθ2 = σi
2. In simple form,292

k =
(Markov Mean)2

Markov V ariance
(10)293

294

θ =
Markov V ariance

Markov Mean
(11)295

The log-normal distribution, fLogNorm, as used for modeling duration can be represented296

as:297

fLogNorm

(
x = obsxt;µ = log txi

2√
σi

2 + txi
2
;σ =

√
log

{
σi

2

txi
2
+ 1

} )
=298

1

xσ
√
2π

exp
−(log x− µ)2

2σ2
, for x > 0 (12)299

300
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where µ and σ are the mean and standard deviation of logarithmic values of x and were301

related to the Markov Mean, E[x], and Markov V ariance, V ar[x], as:302

µ = log
(Markov Mean)2√

Markov V ariance+ (Markov Mean)2
(13)303

σ =

√
log

{
Markov V ariance

(Markov Mean)2
+ 1

}
(14)304

The Poisson distribution, fPois, as used for modeling frequency can be represented as305

fPois

(
x = obsxt; λ = σ2

i

)
=

λxe−λ

x!
for x ≥ 0 and λ > 0 (15)306

where λ, the mean parameter of the Poisson distribution, was arrived at using307

λ = Markov Mean (16)308

The parameters of the HMM were arrived at using a constrained maximum likelihood es-309

timation. The details of the calibration process are presented in Text S3 in Supporting310

Information S1. To arrive at the most probable sequence of states from all possible com-311

binations of sequences for the given observation sequence of intensity/duration/frequency312

(I/D/F), an efficient dynamic programming method, called the Viterbi algorithm (Forney,313

1973; Zucchini & MacDonald, 2009) was used. This algorithm identifies the most probable314

sequence of states from the Markov Chain of probabilities. The states of I/D/F obtained315

through this were also referred to as the Viterbi states (named after the algorithm). The316

algorithm was applied over the entire observation record to identify the most probable se-317

quence of I/D/F states, thereby also identifying any switching, if at all, in the states of the318

I/D/F.319

2.3.2 Covariate Used in the IDF HMMs320

For this study, the HMMs of IDF were built using a linear relationship between these low321

flow characteristics and the available water through precipitation. To represent the available322

water through precipitation at a catchment, a form of the Antecedent Precipitation Index323

(API) was used. This serves as a covariate in the HMMs. Similar to the Standardized324

Precipitation Index (SPI), the API is an empirical index for indirectly estimating how much325

water is available in the catchment (soil) from precipitation. While SPI is calculated based326

on a fitted distribution of a moving average of the precipitation time series, API provides327

a current precipitation water availability indicator employing a constant rate of water de-328

pletion from the soil. API estimates the current water available in the soil by multiplying329

API at the previous time step by a depletion factor and adding the previous time step’s330

precipitation. The definition of API as used in the present work is partly adapted from331

studies like Kohler and Linsley (1951); Crow et al. (2005); Y. Y. Liu et al. (2011); Holmes332

et al. (2017), where this index has been used for determining drought conditions and for333

other watershed analysis. API is a simplified water balance model built on the assumption334

that the amount of available water in a catchment is related to its antecedent precipitation335

conditions.336

We computed the API at monthly time steps, multiplying the index from the previous month337

by the depletion rate (γ) and adding the current monthly precipitation as shown below:338

APIt = min

(
γnAPIt−1 + 0.75Pt, APImax,n

)
(17)339

with the API at the first time step calculated as:340

API(t=1) = 0.75P(t=1) (18)341
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APIt and API(t−1) are the current and previous month’s API, with γ modulating APIt−1,342

and Pt is the current month’s precipitation depth. The multiplicative factor of 0.75 to Pt343

was used to account for the loss of precipitation water while reaching the soil (interception).344

Since API is representative of the amount of available water in the soil, it was capped to a345

maximum value (APImax,n) to indicate full saturation (Dharssi et al., 2017; Holmes et al.,346

2017) at a given catchment n. The value of APImax,n was varied in proportion to the mean347

of all monthly precipitation values at that catchment, Pn, as shown in Equation 19. The348

value of the multiplicative factor ϕn in Equation 19 indicates the proportion of maximum349

monthly water that the soil can hold to the average precipitation at the station.350

APImax,n = ϕn.Pn ϕn ∈ [4, 10] (19)351

The parameters γ and ϕ as used in Equations 17 and 19, respectively, are meant to simplify352

the complex mechanisms controlling water availability from precipitation at a catchment.353

They incorporate the dynamic range and variability of the actual daily API values that get354

reflected as monthly aggregated values. The values of ϕ and that of γ at a given catchment355

were chosen by running a simple optimization experiment for each catchment individually356

instead of assuming a single constant value for them uniformly across the study region.357

This was done as these parameters have a considerably large spatial variation due to several358

factors, including soil type, soil density, vegetation, exposure, hill slope, etc.359

The optimization was aimed at yielding such values of these parameters that maximized360

the correlation between the low flow intensities at a catchment and the standardized time361

series of the catchment’s API (sAPI). This allowed a maximum transfer of information in362

form of linear dependence from precipitation (through sAPI) to low flow intensity, assuming363

the latter was a response of the former. The range of the multiplicative factor ϕ was set364

to vary from 4 to 10 with increments of 1 while that of γ was varied from 0 to 0.99 with365

increments of 0.01. Since API as defined above is a measure of dryness or wetness of the soil366

in response to the monthly precipitation totals, the API is the soil water memory and is a367

proxy for the amount of water available from precipitation to contribute to flows. It takes368

into consideration the concurrent and lagged transfer of information from precipitation to369

flows (as represented by Equation 17). Further, it was also found that API as used here370

yielded a more direct relationship with low flow intensities than precipitation or SPI did371

with low flow intensities (Figure S3, Supporting Information S1). Since the API time series372

was derived with an inherent assumption that API = 0 at t = 0, the first twelve values of373

monthly sAPI were discarded considering those months to be the warming-up period of the374

API series. In the HMM models of intensity and duration, sAPI was used as a covariate,375

while for the annual frequency HMM, the mean of annual sAPI was used as the model376

covariate to be consistent with the timescales. Figure S5a shows the sAPI as obtained for377

a sample station through the process explained above. Figure S5b shows the established378

(inverse) relation between SDI and sAPI over time for a sample station. The sAPI closely379

mimics the SDI, thus supporting the use of sAPI as a predictor in the HMM.380

2.3.3 Configurations of One-state and Two-state IDF Models381

For modeling low flow intensity, a monthly HMM was built with gamma distribution as the382

error distribution model. The intensity data at a catchment was modeled using the corre-383

sponding value of the sAPI occurring at the same point in time. For any given catchment,384

two models were built — a one-state model and a two-state model. The mean and standard385

deviation of the two-state model were allowed to vary as shown in Table 1. While the mean386

was a function of the covariate as well as the state, the variance was varied only with the387

state and not with time. Similarly, for modeling duration, a monthly HMM was built with a388

log-normal distribution as the error distribution model. The duration data at a catchment389

was modeled using the corresponding value of the sAPI occurring at the same point of time390

as the intensity (peak) of the low flow spell. For modeling low flow frequency, the total391
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count of all low flow events that took place in a streamflow water year was used. Annual392

HMMs were built with Poisson distribution as the error distribution model and the mean393

annual sAPI was used as a covariate.394

Table 1 shows the model configurations for the one-state and two-state HMMs of the IDF. By395

employing such a framework, the cumulative probability of IDF was time-varying because396

of the non-stationary mean and standard deviation. Note that in the interests of parsimony,397

HMMs built here did not consider state changes for the parameter a1 (Equations 4a and398

4b).399

Table 1: Configurations of the IDF HMMs

Low flow Covariate Error distribution
Model configuration

characteristic used model (ε)

Intensity (I) sAPI Gamma t̂Ii = a0,i + a1.(sAPI)t

tIi ∼ Gam(t̂Ii, σi
2 | i)

Duration (D) sAPI Log-normal t̂Di = a0,i + a1.(sAPI)t

tDi ∼ LogNorm(t̂Di, σi
2 | i)

Frequency (F) Mean Annual sAPI Poisson t̂Fi = a0,i + a1.(Mean Annual sAPI)t

tFi ∼ Pois(t̂Fi, σi
2 | i)

Ranges: a0 ∈ [−50, 50]; a1 ∈ [−5, 5]; σ ∈ [1e− 7, 35]

The subscript i denotes the state index and can take values 1 or 2.

σi denotes the standard deviation of the error model in state i

2.3.4 Assigning of Viterbi States400

Figure 4 depicts the possible Markov state transitions considered for the analysis here. As401

mentioned before in Section 2.3.1, it was assumed that the maximum number of states a402

given low flow characteristic’s time series can take are only two, viz., normal and non-normal403

(Figure 4a). For illustration, Figure 4b shows the possible model outcomes of applying the404

framework on the intensities of low flows, where the three panels represent the time sequence405

of the Viterbi states taken under each of the outcomes. It may be noted that since we are406

modeling extreme characteristics of low flows, both states represent regimes of extremes.407

Thus, the normal state of the regime of an extreme implies a state when values of I/D/F of408

low flow droughts given the history of the region may be considered usual or not unexpected.409

In simple words, the normal state of low flow I/D/F as defined in the study here corresponds410

to low flow droughts that could be an outcome of a seasonal fluctuation resulting in flow411

conditions that, while still considered extreme, are within the statistical likelihood of an412

expected low flow drought condition for the region. The non-normal state, on the other413

hand, can either be less extreme than normal low flows or more extreme than normal low414

flows. However, both cannot co-occur for the time series of I/D/F for a given catchment,415

following the assumption that the maximum number of states allowed is 2. While modeling416

each of the IDF, we assigned states by assuming that the time stamp that had the value of417

the covariate (sAPI for intensity and duration; mean annual sAPI for frequency) closest to418

the median value of the covariate for a catchment was the time when the given I/D/F value419

was in a normal state. A two-state model of HMM would have either ‘high’ and ‘normal’420

states or ‘low’ and ‘normal’ states (Figure 4a). The HMM built here classified an observation421

to be in a high state if the 50th percentile of the Viterbi I/D/F value simulated at a given422

point in time was more/higher than the 50th percentile of the normal state I/D/F value.423

An observation was classified to be in a low state if the 50th percentile of the Viterbi I/D/F424
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value simulated at a given point in time was less than the 50th percentile of the normal425

state I/D/F value.426

State 1:

Normal IDF 

Pr(State 1 | State 2)

Pr(State 2 | State 1)

Pr(State 2 | State 2)Pr(State 1 | State 1)

(a)

(b)

Time

In
te

n
s
it

y

State 1: Normal Intensity

State 2: High Intensity

State 1: Normal Intensity

State 1: Normal Intensity

State 2: Low Intensity

A catchment having 

only one state for low 

flow intensity, namely, 

the 'Normal' state 

A catchment having 

two states for low 

flow intensity, namely, 

the 'Normal' and the 

'High' state 

Possible

catchment

classifications

A catchment having 

two states for low 

flow intensity, namely, 

the 'Normal' and the 

'Low' state 

p11

p12

p21

p22

Figure 4: (a) Depiction of Markov state transitions in the applied HMM framework. Each
state can either continue to sustain or switch to the other state. (b) The three possible
outcomes from applying the proposed HMM to a low flow characteristic. For illustration,
the time series of the intensity of low flows is used to demonstrate the possible results
from applying the model. The top panel shows a catchment where the intensity only has
one state. The middle panel shows a catchment where the intensity has two states, with
the second state (the high state) representing more intense low flows. The bottom panel
shows a catchment where the intensity has two states, with the second state (the low state)
representing less intense low flows.
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2.4 Identifying Catchments With Two States in IDF427

The flowchart in Figure 5 summarizes the overall flow of the methodology pertaining to the428

analysis carried out. Following the steps as laid out in Figure 5, to decide the best model429

for a given characteristic at a catchment, the Akaike Information Criterion (AIC) was used.430

This is expressed as431

AIC = −2ln(L ) + 2N (20)432

where N is the number of model parameters being estimated and L is the maximized433

likelihood of the model (expressed in Equation 3 in Supporting Information S1). Among434

the two models tested, i.e., the best one-state and the best two-state model, the one that435

had the lowest AIC was chosen for the catchment. Following the use of the AIC criterion, a436

catchment was identified as having two states in I/D/F if the best model at the catchment437

had: (a) observations belonging to a normal state and some to a low I/D/F state or (b)438

observations belonging to a normal state and some to a high I/D/F state as depicted in439

Figure 4b and as stated in the steps in Figure 5. In the present context of low flows, higher440

values of a low flow characteristic indicate a more extreme low flow event.441

At catchments where, for a given low flow characteristic, the two-state model was the better442

model, the strength of simulation of the two-state model over the one-state model was443

established using the evidence ratio (ER) (Burnham & Anderson, 2002). The evidence ratio444

offers a way to quantify the strength of the evidence that the selected model (the two-state445

HMM in this case) is convincingly superior to the alternative model (the one-state HMM).446

It was computed by comparing the Akaike weights, w, of the two competing models, namely,447

the two-state model (2SM) and the one-state model (1SM), as expressed below:448

ER =
w2SM

w1SM
(21)449

Here w1SM and w2SM are the Akaike weights for the one-state and two-state models, re-450

spectively, and are defined as:451

452

w2SM =
1

1 + exp(− 1
2∆)

(22)453

w1SM =
exp(− 1

2∆)

1 + exp(− 1
2∆)

(23)454

where ∆ in this case is the AIC difference between the best one-state model and the best455

two-state model:456

∆ = AIC1SM −AIC2SM (24)457

The ER value serves to establish confidence in the two-state model relative to the one-state458

model, and hence the strength of evidence for the existence of two states. Any ER value459

> 10 suggests that the observations are more likely to be explained by the two-state model460

than the one-state model. The higher this value, the stronger the evidence. For the current461

work, we considered ER values greater than 10 (or its logarithmic values greater than 1)462

as denoting sufficient evidence to believe that a two-state model is convincingly better in463

performance over the one-state model, following Burnham and Anderson (2002); Goswami464

et al. (2022). The ER, however, only denotes how good the two-state model is relative465

to the one-state model and does not provide sufficient information on how qualified the466

two-state model is to represent the low flow characteristic being modeled. To address the467

later aspect, the model residuals were tested for their normality using the Shapiro-Wilk’s468

test (alpha = 0.05) (Shapiro & Wilk, 1965) and were retained for further analysis only if469

their Shapiro-Wilk’s test p-value was greater than 0.05. In addition, the aim was also to470

have a 2SM with at least a predefined minimum number of I/D/F values in each state to471

ensure that a meaningful state does indeed exists. For this, catchments that had less than472

five I/D/F data points in any state were removed for further analysis. To make sure the473
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BC: Box-Cox; SDI: Streamflow Drought Index; I/D/F: Intensity/ Duration/ Frequency; POT: Peak Over Threshold; SW: Shapiro Wilk; 

sAPI: Standardized Antecedent Precipitation Index; HMMs: Hidden Markov Models; AIC: Akaike Information Criterion; ER: Evidence Ratio

2nd state is a high 

I/D/F state

Figure 5: Flowchart illustrating the main steps followed to identify if a catchment has two
states in low flow I/D/F.

best model performed adequately, we also inspected the number of significant lags in the474

Auto-Correlation Function (ACF) of the normal pseudo-residuals, the histogram, and the475

Q-Q plot of the normal pseudo-residuals (Zucchini & MacDonald, 2009). The ACF serves as476

a visual check to confirm whether the model residuals are serially correlated or not. Serially477

correlated errors indicate that the model is not adequately built and there is loss of some478

information, thereby indicating that the model could be improved further.479

3 Results and Discussion480

3.1 States of Low Flow IDF481

Figure 6 shows the low flow intensity Viterbi states over time for an example catchment, with482

Figure 6a showing the variation of the model covariate, i.e., sAPI. The results in Figure 6b483
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shows that two states were identified, whereby the catchment was in a normal state until484

1999, after which it switched to and persisted in a high intensity state. Furthermore, the485

conditional state probabilities (in Figure 6c) show that there is a very high probability of the486

aforementioned states. Practically, this indicates that low flow periods become more intense487

(i.e. drier) after 1999. This is illustrated in Figure 6b by the estimated normal values of488

intensity (points in lime green). These are the model-estimated values that indicate what489

would have been the intensity had the catchment been in the normal state at that epoch.490

These are the model-estimated values that indicate what would have been the intensity had491

the catchment been in the normal state at that epoch. These are determined using the492

relationship of intensity with the covariate as in the normal state (Equation 4a, with i = 1).493

For the epochs when the catchment is found to have switched into the second state, the494

results from Figure 6 suggest that the intensity for a given value of covariate is much higher495

than what it would have been expected had the catchment been in the normal state. Here496

the intensity HMM not only distinguishes the two states of low flow intensity but also informs497

the timing of the shifts in its states. Importantly, Figure 6 demonstrates that despite the498

inclusion of a covariate, the observed low flow intensity is best explained using more than499

one distribution. That is, the catchment not only displays non-stationarity arising from500

the precipitation (Figure 6a) but also from the state shifting. This provides preliminary501

evidence toward falsifying that one state is sufficient to explain low flow intensities.502

Figure 6c shows the conditional probability of being in a given state at any given time for503

the catchment. It reflects the switching of the catchment between the two states. The504

catchment is believed to have switched to the other state when the state probability of the505

other state becomes greater than that of the state in which the catchment is currently in.506

Such a behavior as shown in Figure 6 suggests that hydrological droughts are becoming more507

extreme in the catchment, with the catchment continuing to be in an amplified extreme state508

until the end of the observation period. The two states as seen in Figure 6b are defined by two509

different distributions, supporting the notion of the need for state-dependent distributions.510

Thus, the observed intensity can lie in two states, shown by the green and pink color points.511

The second state represents more extreme low flow intensity than those represented by the512

normal low flow state. It must be noted here that the data represented by both states513

are extreme values, i.e. values pertaining to low flow droughts. The second state here514

refers to a more intensified extreme state, suggesting an amplification of extremes (low flow515

events here) in such catchments. The existence of mixture distribution as emerging from the516

outcomes in Figure 6 could mean that the observations in the two states are generated from517

separate flow processes or flow dynamics unique to the states and which are not explained518

by the variability in water availability from precipitation alone. These dynamics may be519

arising from real physical attributes, such as changes in baseflow. It is thus likely that the520

more intense low flows may be caused by less baseflow during such periods. Another factor521

that could be in play is systematic changes in groundwater levels. However, all these need522

further investigation.523

For intensity data, it was found that the model satisfactorily simulates the values except524

for only a few instances in time where it misses estimating very high values of intensity525

accurately. However, most of the observations lie within the 95% confidence interval of526

the model. Considering this and the fact that modeling extreme values adequately is a527

challenge for any modeling framework, for the primary question being addressed in this528

work, the HMM framework proved to be a suitable technique for investigating changing529

regimes of extremes. Corresponding to Figure 6, Figure S4 in Supporting Information S1530

provides an assessment of the model performance for the intensity HMM of the catchment in531

terms of the distribution of the normal pseudo-residuals and their autocorrelation. With the532

present ability of the HMM, the framework performs well in simulating low flow intensity533

data. The model residuals were found to be normally distributed along with the Shapiro-534

Wilk p-value being more than 0.05. This implies that the model residuals have very little535

information contained in them and they can be considered to be nearly random, suggesting536

a good match between the modeled values and the observations. A model having Shapiro-537
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Figure 6: Viterbi states taken by the low flow intensity over time for station ID 238223.
(a) The catchment’s monthly variation of the sAPI, which is used as a covariate in the
intensity model. (b) Time series of low flow intensity of the catchment. The green-colored
circles indicate modeled values that belong to the normal state. Pink-colored circles indicate
values belonging to the second state (more extreme than normal state). The lime green stars
occurring in the same vertical spaces as that of the pink circles indicate the model-established
value of intensity in the normal state at that time step. At any given time, the colored circles
(or stars) represent the median value of the intensity. The colored vertical lines associated
with each of these represent the error bar covering the 5th to the 95th percentile of the
estimates. The gray-colored circles denote the observed intensities. (c) Variation of state
conditional probability depicting the probability of intensity being in a given state at any
given time. Clearly, a single state is not sufficient to describe the intensity data at this
catchment.

Wilk’s p-value greater than 0.05 suggests A similar inference holds for the ACF plot where538

there are not many lags that are significant, indicating that the model errors have very low539

predictive power.540

Figure 7 shows the low flow duration results for a different example catchment. Although541

the outcomes from AIC showed that the duration data was better described by a 2SM than a542

1SM, Figure 7b suggests that the duration modeling as undertaken in the current framework543

has a scope for improvement. As can be seen in Figure 7b, the median duration in a given544

state at each time point shows very little variability, which casts doubt on sAPI being an545

appropriate covariate for duration. Figure 8 shows the model simulation of annual frequency546
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for a sample catchment. Figure 8a shows the corresponding time series of mean annual sAPI,547

which is the covariate to the frequency model. For the sample catchment, all the values lie548

in a single state (the normal state) as can be seen from Figure 8b. Hence a single state549

does a better job of explaining the frequency data than two states in this case. However,550

the simulated frequency values following the modeling as done here resulted in large error551

bars associated with the modeled values, implying that the frequency model too, like the552

duration model, may be further improved. Figures S5 and S6 in Supporting Information S1553

provide assessments of model residual behavior corresponding to the duration and frequency554

HMM results discussed in Figures 7 and 8, respectively.555
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Figure 7: Viterbi states taken by the low flow duration over time for station ID 227211.
See Figure 6 for a description of the figure elements.

As pointed out above, the current approach for modeling duration and frequency in the556

HMM framework needs improvement. Time series simulation of duration and frequency557

thus remains a challenge. The IDF HMMs as used here are built upon the linear dependence558

between sAPI and the low flow characteristic being modeled (Equation 4a and 4b). Thus,559

the results suggest that the sAPI’s relation with duration and frequency is either non-linear,560

or an alternate covariate should be sought. For example, sAPI at a fortnightly or daily scale561
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Figure 8: Variation of low flow annual frequency values with time for station ID 227237.
(a) Catchment’s mean annual sAPI which is used as a covariate in the frequency model. (b)
Time series of the observed and simulated frequency. Only a single state was sufficient to
describe the frequency data at this catchment.

than monthly may be a better predictor for duration, and seasonal mean sAPI instead of562

annual mean sAPI may work better for modeling low flow frequency. Another possibility563

could be understanding and establishing which physical covariate, if not sAPI, governs the564

variability in these characteristics and may potentially replace sAPI in these models.565

For the reasons stated above, following this section, we focus primarily on presenting and566

discussing the results for low flow intensities, with only a brief discussion about duration567

and frequency.568

3.2 Catchments with Two States in IDF569

As depicted in the steps in Figure 5 and as discussed under Section 2.4, the candidate models570

at a catchment were screened for AIC and ER. Figure 9a shows the spatial distribution of571

catchments obtained after screening for AIC of 2SM < AIC of 1SM, and log(ER) > 1 for572

the intensity model over the study region. A total of 115 (71%) catchments (purple-colored)573

showed strong evidence of the existence of two states in the intensity of low flows. This574

suggests that low flow intensity extremes are a mixed process and hence warrant a mixture575

of distributions to represent them. Such results provide formal strength of evidence for the576

hypotheses that extremes can quantitatively shift to different states if perturbed and hence577

a single state cannot adequately explain them.578

The 115 catchments as identified in Figure 9a were further screened for model performance579

based on the Shapiro-Wilk p-value for normality of the residuals. The number of catchments580
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Figure 9: Spatial distribution of catchments having two states in low flow intensities.
Figures a–d show the two-state catchments retained on subsequent steps of filtering. (a)
The 115 catchments (colored in purple) having AIC of 2SM < AIC of 1SM and log(ER)>1
for 2SM over 1SM. (b) The 101 catchments (colored in purple) having Shapiro-Wilk p-
value>0.05. (c) The 34 catchments (colored in purple) which had at least 5 intensity data
points in each state (and hence at least 5 unique low flow spells in each regime). (d) Of
the 34 catchments, the 21 catchments that have normal and high intensity states shown in
a shade of red. For these catchments, the second state is a high intensity state. Of the 34
catchments, the 13 catchments that have normal and low intensity states shown in blue.
The second state for these 13 catchments is a low intensity state.

that indicate high evidence for 2SM over 1SM provides provides support for the hypothesis581

that low flow extremes might switch states. 101 of these 115 satisfied the condition of582

Shapiro-Wilk p-value>0.05. These are shown further in Figure 9b (colored in purple).583

Further, to ensure a meaningful state exists, these 101 catchments were also checked for584

having the number of data points in each state more than or equal to 5. This condition585

ensured that such a catchment will have at least 5 unique low flow spells in both, normal586

and non-normal, regimes. Figure 9c shows the final 34 catchments meeting these criteria.587

Of these 34 catchments, there were catchments where the second state (the non-normal588

state) pointed to a low intensity state (shown in blue in Figure 9d) and catchments where589

the second state was a high intensity state (shown in a shade of red in Figure 9d).590

The high spatial variability shown in Figure 9d is unexpected. It may be due to catchment-591

specific biophysical factors (combination of one or more of the slope, mean elevation, soil592

types, climate, vegetation, etc.) and hydrologic response to extremes emerging from the593

complex interactions of vegetation and soil hydraulics, making low flows, at least in the594

case of the SEA region, somewhat heterogeneous in space. The tendency to switch or to595

exhibit resilience against switching may thus possibly be controlled by a combination of596
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topography, climatic factors, soils, and vegetation. Catchments having the second state as597

high state are likely to switch from a normal low flow state to a more extreme low flow state598

characterized by higher than usual values of low flow intensities, entailing a magnification of599

low flows. Further, since proxy information from precipitation and soil moisture was already600

provided in the form of sAPI for modeling the low flow intensities, the emergence of a two-601

state model with very high evidence and model reliability at as many as 34 catchments602

(Figure 9) suggests that not all observations can be explained by the precipitation data.603

Thus, extremes in low flows may not be sufficiently explained by changes in precipitation.604

Figure 10 follows a similar basis as Figure 9, showing the catchments retained at every stage605

of filtering. Using AIC and ER values as the filtering criteria, a total of 112 (Figure 10a)606

out of 161 catchments showed a 2SM to be superior to 1SM in modeling low flow duration607

data. The 5 red shaded catchments in Figure 10d represent catchments as obtained after608

all the steps of performance filtering. For these, the second state of low flow duration was609

associated with higher values of duration. There is a good overlap of catchments having610

high evidence for exhibiting two states in intensity as well as in duration as can be seen611

from Figures 9a and 10a. The spatial differences, however, grow as one moves from subplots612

a–d in these figures. As per the AIC and ER criteria, of the 161 catchments, the number613

of catchments having two states in (1) only intensity (but not duration) were 30, (2) only614

duration (but not intensity) were 27, and (3) both intensity and duration were 85.615

Unlike intensity and duration, annual frequency of the low flow events, on the other hand,616

did not exhibit switching of states for the way the framework models this characteristic.617

Of the catchments studied, only one catchment emerged where the 2SM was better than618

1SM. Since for frequency of low flows, the number of catchments satisfying the AIC and619

ER criteria was not sufficient, the figure for the spatial distribution of 2SM catchments of620

frequency is not included here.621

For several of the SEA catchments, the existence of multiple states of extremes is a recent622

phenomenon. The exact reasons that drive the switching of states of low flows still need623

to be explored. The answer may come with improved knowledge of the underlying sys-624

temic processes governing these and their complex feedbacks to one another. The results625

here provide evidence for low flow state transitions in these catchments and the changing626

regimes of hydrological extremes (low flow droughts). The intensities in the ‘high’ state627

represent unusual low flow droughts induced possibly from a hydrological disturbance which628

sets a positive feedback for the catchment’s extreme characteristics to slip into the second629

state, as has been concluded to be the case for total flows by Peterson et al. (2021). Such a630

hydrological disturbance could be from catchment-wide changes, which control the runoff,631

changing the partitioning of the incoming precipitation at the surface between infiltration632

and surface runoff. This disturbance may be brought about by prolonged meteorological633

droughts and natural factors. Studies have also suggested groundwater storage (Fowler et634

al., 2020; Hughes et al., 2012; Kinal & Stoneman, 2012) and plant water use (Peterson et635

al., 2021; Ukkola et al., 2016) as causal factors, with the latter producing a positive feed-636

back and hence persistent alternate states. Long hydrological memory linked with stored637

groundwater may also be an important facet (Alvarez-Garreton et al., 2021), which makes638

the current flow volumes to be governed more strongly by antecedent conditions. In such639

cases, the subsurface storages carried forward in time are often capable of equalizing the640

deficiencies in precipitation during the onset of a drought (Avanzi et al., 2020). Anoma-641

lously low streamflows have also been implicated in changes in the seasonality of climate642

conditions (both atmospheric and precipitation demands) (Williams et al., 2022). However,643

all this demands further research to draw more detailed conclusions around the drivers for644

the switch, including how feedbacks from the catchment’s biophysical components may be645

affecting water partitioning (e.g., Peterson, Western, & Argent, 2014) and the triggers from646

global climate shifts.647

Apart from natural controls on flows, low flows can vary as a response to human controls648

on flows as well (Gebremicael et al., 2013; Guzha et al., 2018). Studies have shown that649
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Figure 10: Same as Figure 9 but for duration of low flows. Figures a–d show the two-state
catchments retained on subsequent steps of filtering. (a) The 112 catchments (colored in
purple) having AIC of 2SM < AIC of 1SM and log(ER)>1 for 2SM over 1SM. (b) The 63
catchments (colored in purple) having Shapiro-Wilk p-value>0.05. (c) The 34 catchments
(colored in purple) which had at least 5 duration data points in each state. (d) Of the 8
catchments, the 5 catchments that have normal and high duration states shown in a shade of
red. For these catchments, the second state is a high duration state. Of the 34 catchments,
the 3 catchments that have normal and low duration states shown in blue. The second state
for these 3 catchments is a low duration state.

human activities such as water abstraction interventions and land use/cover change, such as650

fire/non-fire induced vegetation changes, can modify low flows in a catchment (Li et al., 2007;651

Chang et al., 2016; Gebremicael et al., 2020) as these activities may change the partitioning652

of the incoming precipitation on the land surface (Gates et al., 2011). In the case of the653

present study, the 161 SEA catchments were unregulated and had water extractions <10%654

of the mean annual runoff. Effects from land use change may be a driver responsible for655

switching of states of extremes. However, for these catchments, Peterson et al. (2021) (in656

their Supplementary Material) show that land use change (1985-2019) did not explain the657

observed runoff state shifts. The switching of states of low flows as found in this study is658

thus more likely an outcome of changes in the hydroclimate of the region or the response of659

a catchment to these or both.660

3.3 Low Flow Intensity State Changes and Atmospheric Conditions661

Extreme dry and warm conditions of the atmosphere may be one of the drivers of low flow662

switching. To examine this, a timeline of the 21 catchments identified to be switching be-663

tween a normal intensity state and a high intensity state was studied. Figure 11a shows664
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the number of catchments, of the 21 catchments, existing in their second state of low flow665

intensity for the time period 1950–2016. The height of the vertical black-colored bars indi-666

cates the number of catchments experiencing a low flow intensity lying in the second state667

at a given time. The gaps in between the bars represent a time instance when either none668

of those catchments had a low flow intensity (peak) occurrence or when there is a low flow669

intensity (peak) occurrence, but it belongs to the normal state. The height of the yellow bar670

at each month depicts the number of catchments that had gauge flow data available. The671

recent meteorological drought periods in the state of Victoria (Australian Bureau of Statis-672

tics, Year Book Australia 1998) were: (i) 1967–1968, (ii) 1972–1973, and (iii) 1982–1983.673

Combined with the Millennium Drought (1997-2009), these 4 periods denote abnormally dry674

periods over SEA on record. These are shown as gray-colored vertical strips in Figure 11a.675

These periods appear to coincide with peaks in the number of catchments in the second676

state of low flow intensity.677

Also shown in Figure 11 are the periods of abnormally high sea surface temperature anoma-678

lies of the Niño3.4 region, characteristic of an El Niño event (orange vertical bars). These679

were derived from the Ocean Niño Index (ONI) obtained from the United States Na-680

tional Oceanic and Atmospheric Administration (NOAA) Climate Prediction Centre (CPC)681

(www.cpc.ncep.noaa.gov) (Refer Text S5 and Table S3 in Supporting Information S1 for682

details). It was also seen that many catchments switched to the second state during the683

warm episodes of the El Niño Southern Oscillation. However, the number of these catch-684

ments is comparable to those belonging to neither the meteorological drought nor the El685

Niño periods for the present study (Figure 11b and c). Figure 11 suggests that warm and686

dry atmospheric conditions such as those prevailing during sustained meteorological drought687

spells may create conditions conducive for catchments to switch states of low flows.688

The boxplots in the lower panel of Figure 11 show the number of catchments in the second689

state for various periods, namely, periods of meteorological droughts (b), periods of warm690

ENSO (c), and periods that were neither meteorological droughts nor warm ENSO periods691

(d). The figure suggests that meteorological droughts have the potential to change low692

flow spells, adding to the existing literature on how severe and protracted meteorological693

droughts can potentially destabilize the hydrological behavior and resilience of catchments.694

With the projected increase (Xu et al., 2019) and changes in future meteorological droughts695

and the complex interactions between meteorological and hydrological droughts, low flow696

regimes are more likely to be dynamic and subject to modifications. Importantly, Figure 11697

highlights the changing regimes of hydrological extremes in a changing climate. The results698

in the figure also suggest that the phenomenon of switching of low flow regimes can neither699

be considered exceptional nor rare any longer. With low flow droughts exhibiting regime-700

switching, the risks associated with them are also expected to vary in time. As the risk701

changes, water managers will have to understand how resilient are the catchments to changes702

in extremes.703

4 Conclusions704

Catchments can undergo complex changes in their behavior which can change how low flows705

respond to such changes. The study here examined whether low flow characteristics can exist706

in more than one state. This was done using HMMs with antecedent precipitation index as a707

covariate, applied to examine low flow IDF in 161 catchments in SEA. It was found that for708

the majority of the catchments (≈ 70%), a two-state model explained the low flow intensity709

and duration data better than a one-state model, thereby suggesting that low flows exhibit710

multiple states. Very strong evidence of low flow intensity exhibiting two distinct states711

was found for at least 34 (21%) catchments in the region. For most catchments exhibiting712

switching of states of low flow intensity, the second state entailed an intensification of low713

flows. The regime-switching behavior can cause low flows to manifest in very different ways714

at two different epochs for the same catchment. Such a temporal behavior also points to715

changing risks associated with hydrological droughts. The two states are possibly governed716
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Figure 11: (a) Timeline (1950–2016) of the switching of states of low flow intensity for the
21 catchments. The height of the black-colored bars represents the number of catchments
in the second state at a given time. The height of the yellow-colored bars at each month
represents how many of these 21 catchments had flow data available for that month. The
four gray-colored vertical strips shown in the background represent the four recent severe
meteorological drought spells for the Victoria region, which are (i) 1967–1968, (ii) 1972–1973,
(iii) 1982–1983, and (iv) 1997-2009, respectively, from left to right. The red-colored vertical
strips represent time instances when the ONI indicates the occurrence of a warm ENSO
episode. The three boxplots shown in the lower panel depict the number of catchments in
the second state during (b) meteorological drought periods, (c) warm ENSO periods, (d)
periods that were neither b nor c.

by unique processes generating the observations in the two states. Importantly this indicates717

that the use of one distribution is inadequate to explain the observed data, as is widely done.718

The work demonstrates the capability and reliability of HMMs to simulate extreme low flow719

intensities as well as the capability to capture temporal shifts in states.720
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Further, since the information from the catchment’s antecedent conditions and precipitation721

was intrinsic to the model, the emergence of a two-state model at a catchment implies that722

information from precipitation, though useful in simulating low flow behavior, may not723

be sufficient to explain changes in low flow extremes. Low flow intensities in the second724

state are not explained by the corresponding variability in precipitation. The duration and725

frequency HMM have a scope for improvement in the current framework. For frequency of726

low flows, the current capability of the model framework was not satisfactory for establishing727

the strength of the 2SM over 1SM. These models may be improved by either incorporating728

non-linear relation with sAPI or by using covariates (for eg., climate indices) that may729

explain the variability in them better.730

Switching of catchments into an intensified low flow state may be strongly influenced by sus-731

tained dry atmospheric conditions such as those during protracted meteorological droughts732

as well as the changes in them. The study also helps to understand how future extreme hy-733

drological characteristics may behave in response to such meteo-climatological disturbances734

triggered naturally or due to climate change. This points to possible changes that catch-735

ments can undergo during and after a meteorological drought and how that impacts extreme736

hydrological behavior and response. As dry conditions and meteorological droughts change737

and become more frequent in a changing climate, their impact on hydrological cycle and on738

extreme flows can be very significant.739

More research needs to be undertaken to understand the underlying physical processes740

and the driving mechanisms in play to explain the existence of more than one low flow741

regime, thereby reducing uncertainty about future low flow dynamics in watersheds. The742

results here demonstrate the potential of catchments to exhibit shifts in regimes of low743

flow extremes. A crucial aspect of enhancing future water security lies in understanding744

how these shifts might translate into impacts on streamflow services and how to manage745

these periods. Identification of shifts may enable system planners to consider solutions746

such as supply augmentation, demand management, inter-basin water transfers, managed747

groundwater aquifer recharge, conjunctive use, etc., thereby augmenting system resilience748

during low flow shifts in the future.749
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Abstract19

Hydrological variables of a catchment and their corresponding extreme characteristics have20

a possibility of switching regimes, particularly when a catchment undergoes protracted dry21

periods. This can result in a catchment experiencing a flow anomaly that is even more22

extreme than what was historically considered an extreme low flow event for the catchment.23

Catchments in southeast Australia have been shown to exhibit multiple states of mean an-24

nual flows. Given this and studies that suggest that extreme events may be changing with25

time, it is important to understand whether extremes in flows also have the potential to26

exist in multiple states. To investigate this, we studied intensity, duration, and frequency27

(IDF) of low flows for 161 unregulated catchments in southeast Australia. A Hidden Markov28

Model-based approach was used to examine shifts in the low flow characteristics. We found29

very strong evidence of low flow intensity exhibiting two distinct states for at least 34 (21%)30

catchments in the region, providing convincing reasons to believe that extremes in low flows31

can and have undergone regime changes. The second state of these catchments is often as-32

sociated with higher values of low flow intensities. Simulation of the duration and frequency33

of these events, however, needs improvement with the current approach and may be better34

studied by accounting for climate indicators that may more suitably explain them. Impacts35

from a changing climate may enhance the triggering of low flows into alternate states, which36

calls for water managers to plan for changing regimes of extremes.37

38

Plain Language Summary39

Recent studies have shown that the mean hydrological behavior of catchments can un-40

dergo changes. The present study explores whether extreme events, such as low flow41

droughts, might also be undergoing regime-switching. The term ‘switching of states’ or42

‘regime-switching’ relates to a shift in the underlying probability distribution of a variable.43

With regards to streamflows, this may result in a catchment experiencing low flow droughts44

that are even more extreme than what was historically considered a drought event for the45

catchment. We found strong evidence of low flow intensity exhibiting two distinct states in46

catchments in southeast Australia, providing convincing reasons to believe that extremes47

in low flows can and have undergone state changes in the region. The second state of48

these catchments is often associated with higher values of low flow intensities. Ignoring49

such changes is likely to misrepresent low flow risks. This finding has profound importance50

in enabling hydrologists to understand the possible ways in which hydrological events can51

manifest themselves. Knowledge from these results supports the need to improve existing52

models to incorporate more dynamic realism within them, without which they might be53

blind to future hydrological shifts that could have a significant impact on water security.54

1 Introduction55

Water systems and hydrological regimes are known to be influenced by climatic perturba-56

tions, leading to irregularities in flow quantity and quality. Many studies have reported57

changes in rainfall-runoff relationships (Kiem & Verdon-Kidd, 2010; Van Dijk et al., 2013;58

Chiew et al., 2014; Miao et al., 2015; X. Liu et al., 2018). Drought flows are being observed59

to be drastically lower than expected for a given decline in precipitation (Alvarez-Garreton60

et al., 2021; Avanzi et al., 2020; Tian et al., 2020). The processes that generate runoff61

have been recently shown to change during (Saft et al., 2015) and after (Peterson et al.,62

2021) the occurrences of meteorological droughts. This results in less streamflow per unit63

of rainfall during and after the drought than that which occurred before the drought. Dis-64

turbances in catchments induced by changes in climate or from anthropogenic interventions65

have the potential to cause hydrological variables to undergo regime changes, also referred66

to as ‘switching of states’ or ‘state shifts’. ‘State shifts’ relates to a shift in the underlying67

probability distribution of the variable, implying non-stationarity. This means that a forcing68
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in the form of a disturbance can push a catchment past a fold point and into a new steady69

state and once the disturbance ends the catchment stays indefinitely in this new state until70

a disturbance pushes it back to the original state, as explained in Figure 1. In the context71

of regime-switching of extremes, a switching could result in a catchment experiencing a flow72

anomaly that is even more extreme than what was historically considered an extreme event.73

There is evidence suggesting that the mean behaviour of hydrologic variables can exhibit74

switching of states (Fowler et al., 2022; Peterson et al., 2021; Tauro, 2021; Zipper et al.,75

2022), i.e., they can exist in multiple states. The study by Peterson et al. (2021), for ex-76

ample, showed that catchments can not just exist in alternate states of streamflow regimes77

but can even continue to persist in such alternate states for extended periods. This suggests78

that low flows may also exhibit such behavior, thereby possessing far more complex form79

of non-stationarity than suggested by Goswami et al. (2022). However, to date, studies on80

extreme value analysis for streamflows have not examined this in detail. Many commonly81

existing streamflow models continue to discount that low flows can have temporal variability82

beyond their routine regime.83

Southeast Australia (SEA) is known to have a hydroclimate that is among the most variable84

in the world (Peel et al., 2004). The hydroclimatologial extremes that the region has under-85

gone in the past, including the Millennium Drought (Van Dijk et al., 2013), have been shown86

to influence the way streamflow responds (Saft et al., 2015). Many of these catchments have87

been shown to exhibit hydrologic non-stationarity in rainfall-runoff/climate-runoff relation-88

ships (Chiew et al., 2014), with streamflow droughts already shown to be increasing across89

the region (Wasko et al., 2021). Moreover, many existing studies assume catchments to90

have infinite resilience. Peterson et al. (2021), however, showed that annual and seasonal91

mean streamflow in many of these catchments exhibited switching in regimes following the92

Millennium Drought and that not all of them showed recovery when rainfall returned to93

normal. The work falsified the widely held assumption that catchments always have only94

a single steady state around which they fluctuate and showed that catchments could have95

finite resilience. The work, however, looked at mean flows, analyzed at the annual and sea-96

sonal timescales. It does not provide insights on regime-switching of extreme (low) flows, nor97

on the possibility of switching of such regimes at much finer (for eg., monthly) timescales.98

This brings forth the question of whether low flows can also undergo changes in state. With99

the region’s susceptibility to exhibit changes in the mean behavior of streamflows, the re-100

gion provides a good opportunity to study whether the behavior of extreme flows can also101

undergo changes in states.102

Limited studies exist on the understanding and evaluation of shifts in streamflows, and103

none examine low flows or state change in particular. With regards to techniques for under-104

standing changes in hydrologic extremes in general, the few most widely applied statistical105

approaches are the non-parametric Mann-Kendall trend analysis (Mann, 1945; Kendall,106

1975), change point analysis, and the Generalized Extreme Value (GEV) theory (Coles et107

al., 2001). Previous studies have used the Mann-Kendall trend analysis to understand shifts108

in hydrologic extremes (X. Zhang et al., 2001; Miller & Piechota, 2008; Burn et al., 2010;109

Sagarika et al., 2014; Bennett et al., 2015). This technique, however, is not adequately110

tailored for the analysis of extremes per se and therefore does not offer a way to determine111

changes in flow magnitudes (Solander et al., 2017). The other common approach of using112

the GEV theory-based analysis has been used to study the extreme streamflow data in113

a non-stationary framework through time-dependent parameters in the GEV distribution114

(Katz, 2013), allowing trend (and thus regime change) detection in extremes. However,115

limited approaches exist that allow a comprehensive assessment of state change, entailing116

aspects such as time series simulation of extreme data, classification of the extreme data117

into different states (if they exist), and identification of the timing of state shifts.118

One such technique that offers the capability to detect state-changes and breaks in persis-119

tence in a time series is the hidden Markov modeling approach. Being a doubly embedded120

stochastic process model, it makes for a good modeling choice for simulating data governed121
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by complicated nonlinear hydrological phenomena. HMMs are statistical Markov mod-122

els consisting of a hidden or unobservable ‘parameter process’ which satisfies the Markov123

property, and a ‘state-dependent process’, whose behavior depends on the underlying state124

(Zucchini & MacDonald, 2009). The approach provides a highly flexible modeling frame-125

work that can detect the existence of different ‘states’ in a variable of interest by quantifying126

the probability of the variable being in a given state over time. HMMs were developed dur-127

ing the late 1960s and early 1970s (Baum & Petrie, 1966) for speech recognition, and have128

since been successfully implemented in several applications, including climate and hydro-129

logic modeling (Thyer & Kuczera, 2003; Robertson et al., 2003, 2004). Mallya et al. (2013)130

applied HMM to develop a drought index for probabilistic assessment of drought charac-131

teristics. Turner and Galelli (2016) applied HMM to examine the impact of regime-like132

behavior in streamflows on the performance of reservoir operating policy. Thyer and Kucz-133

era (2000) used the hidden state Markov (HSM) model to simulate annual rainfall series134

in Australia. Rolim and de Souza Filho (2020) used it to identify shifts in low-frequency135

variability of streamflows. Bracken et al. (2014) used HMM along with climate indices to136

simulate multidecadal streamflows. More recently, Peterson et al. (2021) developed Hid-137

den Markov Models (HMM) to statistically identify if, and when, streamflow recovers from138

meteorological droughts, and in doing so provide empirical evidence that catchments often139

have multiple hydrological states. Overall, HMMs are a useful tool for identifying state140

changes in a time series based on the dictating underlying process. By virtue of being a141

mixture model, HMM provides an unsupervised classification technique that can be applied142

to capture persistence and hence breaks in persistence in a time series, including low flows.143

The present study aims to falsify the assumption that a single state is adequate to represent144

low flow events. This includes falsifying the commonly held notion that including rainfall145

variability is sufficient to account for non-stationarity in low flows and that low flows do not146

undergo long-term changes. To investigate this, the metrics used to characterize low flow147

events, namely, their intensity, duration, and frequency (IDF) were studied to test whether148

these can exist in more than one state, focusing on catchments in SEA. The study aims to149

provide an investigation of low flow extreme shifts along with finding when these changes are150

occurring for these catchments. To do this, we used the Hidden Markov modeling approach151

to identify state changes in the IDF of low flows. Although HMMs have been applied to152

investigate changes in flows and precipitation in previous studies as discussed above, these153

have not been specifically used to model low flow characteristics for investigating state154

changes in regimes of low flows. This study thus also presents a relatively less explored155

application of HMMs in investigating state changes in the extreme characteristics of low156

flows. The methodology adopted here also presents an alternative approach for examining157

hydrologic non-stationarity observed in the low flow IDF by examining if state-dependent158

distributions are required to explain the variability in the observed data.159

2 Data and Methods160

2.1 Study Region and Data161

For the present work, 161 unimpaired catchments in southeast Australia (SEA) were studied162

using their monthly streamflow as flow depth (mm) and precipitation data (mm), both163

aggregated from daily values. The streamflow data of these catchments was sourced from164

Peterson et al. (2021) and pre-processed as described in Goswami et al. (2022) following the165

quality control of Peterson et al. (2021). The catchments were chosen based on their gauge166

record quality while also ensuring that all these catchments had flow records at least for167

15, 7, and 5 years before, during, and after the Millennium Drought, respectively. All the168

catchments had at least 35 years of flow and precipitation data (Text S1 and Table S1 in169

Supporting Information S1). More information on the data can be found in Goswami et al.170

(2022). Importantly, this data provided an opportunity to investigate changes in extremes171

occurring in natural systems due to a changing climate and not through reservoir operations172

or land use practices. The 161 catchments and their corresponding gauging stations are173
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Figure 1: Illustration of regime-switching of a system (for eg., a hydrologic variable of
interest) from State 1 to State 2 under the influence of a forcing (hydrologic disturbance).
(Adopted from Peterson & Western, 2014.)

shown in Figure 2a, with the colored circles denoting the mean annual streamflow depth.174

Figure 2b shows the mean annual precipitation for the respective gauges. While this study175

is focused on the SEA region, the analysis and the understanding from it are relevant to all176

catchments where hydrological droughts are likely to become more extreme.177

2.2 Deriving IDF of Low Flows178

In this study, low flows were defined as representative of streamflow droughts describing a179

catchment’s condition when streamflows are anomalously low relative to long-term monthly180

means. The term ‘low flow’ as used in this work can be understood as a type of hydrological181

drought. By common definition, a hydrological drought denotes a deficit in surface water182

and groundwater (Wilhite & Glantz, 1985). Thus, often the term hydrological drought takes183

on a broader hydrological definition and can refer to situations of low flows, low snowmelt,184

low spring flow, low groundwater levels, etc., relative to normal conditions. However, the185

present study focuses primarily on conditions where streamflows are anomalously low relative186

to their expected normal flow conditions. The study here thus uses the term ‘low flows’ (or187

‘low flow droughts’) for the sake of being specific to the domain being investigated.188

For identifying low flow spells and deriving their associated characteristics, an approach189

similar to that used in Goswami et al. (2022) was applied here. First, the monthly flow190

depths at any given catchment (Figure 3a) were transformed by applying a Box-Cox (BC)191

power transformation (Box & Cox, 1964), using catchment-specific lambda values, to reduce192

the skew and for better identification of flow values which were very low (Text S2 and Figure193

S1 in Supporting Information S1). The transformed flows were then standardized using the194

mean and standard deviation of the transformed flow series at that catchment. The sign195

of the obtained series was then reversed such that values above zero pointed to below-196

average streamflows. The resultant series was termed as the Streamflow Drought Index197

(SDI) (Figure 3b).198

From the SDI series, monthly low flows were defined by using a threshold following the199

Peak-Over-Threshold (POT) approach (Coles et al., 2001). In the identification of low flow200
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Figure 2: (a) Location of the study region and the 161 catchments (boundary shown in
gray) along with their corresponding gauging stations (colored circles). The color of the
gauge stations in (a) and (b) shows the mean annual flow depth and the mean annual
precipitation, respectively.

periods, the choice of a low flow threshold is often subjective (Pushpalatha et al., 2012).201

For the current work, the threshold for defining the low flows was chosen to be the 65th202

percentile value of the SDI series. This ensured that most of the catchments had at least203

more than 40 values of intensity of low flows required for the model to perform satisfactory204

simulations. Higher thresholds corresponding to the 75th, 85th, and 95th percentiles resulted205

in significantly reduced sample sizes (Figure S2 in Supporting Information S1). This is a206

significant aspect as the capability of a Markovian model to simulate data improves when207

more data is available. Further, it was found that for the number of points lying above the208

threshold of 65th percentile, more than half of these lied above the 85th percentile for most209

of these catchments.210
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For this work, we focus on three important characteristics of low flows, namely, their inten-211

sity, duration, and annual frequency. These were derived from the SDI time series following212

their respective definitions in Goswami et al. (2022), as shown in Figure 3c. The duration213

of a low flow event was defined as the number of months for which the monthly SDI series214

remained above the threshold. The peak value that the SDI takes over the low flow spell215

was regarded as the intensity of the event. The more positive the peak value in a spell, the216

more intense the low flow event. The total number of such low flow events occurring in a217

streamflow water year was regarded as the annual frequency of the low flow events. The218

water year for computing frequency was taken from March of the current year, running for219

12 months until February of the next year, following the definition as in X. S. Zhang et220

al. (2016). The March-February water year is typical in parts of SE Australia (particularly221

Victoria), where minimum flows are usually observed at the end of the Boreal summer.222

2.3 Modeling IDF Using Hidden Markov Models (HMMs)223

2.3.1 Hidden Markov Models for Low Flow IDF224

HMM is a statistical Markov model consisting of two parts: an unobservable (or hidden)225

‘parameter process’, C, which satisfies the Markov property, and a ‘state-dependent process’,226

X, in such a way that when C(t) is known, the distribution of X depends only on the present227

state of C and not on the previous states or observations (Zucchini & MacDonald, 2009).228

HMM assumes that the behavior of the process X depends on C. A simple HMM can be229

summarized by the following two equations:230

Pr (C(t) | C(t−1)) = Pr (C(t) | C(t−1)) t = 2, 3, ... (1)231

232

Pr (X(t) | X(t−1),C(t)) = Pr (X(t) | C(t)) t ∈ N (2)233

where, C(t) represents the value of C at a given time t, C(t) is the Markov chain of proba-234

bilities and denotes the vector [C1, C2, C3, ..., Ct]. X
(t) represents the value of X at a given235

time t, and X(t) denotes the vector [X1, X2, X3, ..., Xt]. If the Markov chain C(t) has m236

states, the HMM of X is called an m-state HMM, where each state has a different distri-237

bution. The model provides a Markov chain, i.e. the probability of X being in each state238

over time which involves maximization of the following probability (Zucchini & MacDonald,239

2009):240

Pr (C(T ) = c(T ) | X(T ) = obsxt
(T )) (3)241

In the above expression, c is a sequence of possible states over the time steps and x is the242

vector of observed data. For an m-state HMM there are mT possible sequences, T being243

the length of the time series.244

Using this background of HMMs, we built temporal HMMs were built for each of the three245

low flow characteristics (i.e. low flow IDF) that examined for one and two states in these.246

The hidden states were the states of the existing climatic conditions. The model learnt247

about the state of extremes (C) by observing the low flow characteristic being modeled (x).248

Since the actual number of hydrological states for a given low flow characteristic is unknown,249

it was assumed that the low flow characteristics of a catchment can cycle through two states.250

A given low flow characteristic was thus simulated as being in one of the two distinct states.251

At each time point, t, the observed low flow characteristic was considered a random variable252

defined by a parametric distribution for each state. The state distribution at any time t253

depended upon the Markov chain of states at the preceding time step. For state, i, and at254

time, t, the conditional mean for the distribution of the given low flow characteristic under255

consideration was simulated as:256

t̂xi = a0,i + a1.(sAPIt) : for intensity and duration (4a)257

t̂xi = a0,i + a1.(mean annual sAPIt) : for frequency (4b)258
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Figure 3: Deriving the intensity, duration, and frequency of low flows. (a) Flow depth (mm)
time series for Station ID 407230. (b) Times series of the de-seasonalized (and reversed in
sign) flow, termed as the Streamflow Drought Index (SDI), derived from the flow values for
the catchment. The threshold is shown by the brown horizontal line at SDI = 0.51 which
represents the 65th percentile of the SDI time series for this catchment. Values of SDI lying
above the threshold represent low flows. (c) A zoomed window of the SDI series for the
years 2010–2013 to illustrate how the IDF are derived from the SDI time series.

where a0,i was a state-dependent parameter allowing for a shift in the catchment’s hydro-259

logical response, a1 was a state-independent parameter that links a suitable model covariate260

to x. In this study, the standardized antecedent precipitation index, sAPI (or the mean261

annual sAPI for modeling frequency) was used as the covariate responsible for the observed262

variability in the low flow characteristic (sAPI is discussed in detail in Section 2.3.2). In263

Equations 4a and 4b, the sAPIt (or mean annual sAPIt) was taken at the corresponding264
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time instance when the low flow characteristic was observed. The error in this model was265

defined as a time-invariant state-dependent variance, σi
2.266

The Markov state C(t) at time t was simulated as:267

C(t) = Markov (Γ) (5)268

where Γ is the transition matrix. Since the number of extreme states was assumed as two,269

we, therefore, investigated one- (Γ1) and two- (Γ2) state Markov models. The transitioning270

between any two consecutive states is explained using the schematic in Figure 4a. The271

two-state matrix Γ2 can be written as:272

Γ2 =

∣∣∣∣p11 p12
p21 p22

∣∣∣∣ = ∣∣∣∣ p11 1− p11
1− p22 p22

∣∣∣∣ (6)273

Here, pij (terms shown in Figure 4a), denotes the probability of the state at t transitioning274

from C
(t−1)
i to C

(t)
j (where i, j ≤ 2), i.e.,:275

pij = Pr(Cj
(t) | Ci

(t−1)) (7)276

Further assuming the HMM is homogeneous (i.e. transition probabilities are time-invariant),277

Γ1 and Γ2 required the estimation of zero and two transition probabilities, respectively.278

Additionally, the initial probability of being in each state was defined as follows:279

δ1 = 1δ2 =

∣∣∣∣δ1δ2
∣∣∣∣ = ∣∣∣∣ δ1

1− δ1

∣∣∣∣ (8)280

where δ1 and δ2 were the initial probabilities of being in states 1 and 2, respectively.281

The probability density in the error model of the HMM was derived using a two-parameter282

gamma distribution, a log-normal distribution, and a Poisson distribution for the intensity,283

duration, and frequency of low flows, respectively (Table 1). This was done after testing the284

capabilities of these respective distributions to satisfactorily represent these characteristics.285

The gamma distribution, fGam, as used for building the HMM for modeling intensity, can286

be represented as:287

fGam

(
x = obsxt; k = txi

2

σi
2
, θ =

σi
2

txi

)
=

xk−1e−
x
θ

θkG(k)
for x, θ, k > 0 (9)288

where θ is the scale parameter, k is the shape parameter and G(k) is the gamma function on289

k. The parameters k and θ were derived to ensure that the mean of the gamma distribution290

was as defined by Equation 4a, and were obtained by rearrangement of the Markov Mean,291

E[x] = kθ = txi and the Markov V ariance, V ar[x] = kθ2 = σi
2. In simple form,292

k =
(Markov Mean)2

Markov V ariance
(10)293

294

θ =
Markov V ariance

Markov Mean
(11)295

The log-normal distribution, fLogNorm, as used for modeling duration can be represented296

as:297

fLogNorm

(
x = obsxt;µ = log txi

2√
σi

2 + txi
2
;σ =

√
log

{
σi

2

txi
2
+ 1

} )
=298

1

xσ
√
2π

exp
−(log x− µ)2

2σ2
, for x > 0 (12)299

300
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where µ and σ are the mean and standard deviation of logarithmic values of x and were301

related to the Markov Mean, E[x], and Markov V ariance, V ar[x], as:302

µ = log
(Markov Mean)2√

Markov V ariance+ (Markov Mean)2
(13)303

σ =

√
log

{
Markov V ariance

(Markov Mean)2
+ 1

}
(14)304

The Poisson distribution, fPois, as used for modeling frequency can be represented as305

fPois

(
x = obsxt; λ = σ2

i

)
=

λxe−λ

x!
for x ≥ 0 and λ > 0 (15)306

where λ, the mean parameter of the Poisson distribution, was arrived at using307

λ = Markov Mean (16)308

The parameters of the HMM were arrived at using a constrained maximum likelihood es-309

timation. The details of the calibration process are presented in Text S3 in Supporting310

Information S1. To arrive at the most probable sequence of states from all possible com-311

binations of sequences for the given observation sequence of intensity/duration/frequency312

(I/D/F), an efficient dynamic programming method, called the Viterbi algorithm (Forney,313

1973; Zucchini & MacDonald, 2009) was used. This algorithm identifies the most probable314

sequence of states from the Markov Chain of probabilities. The states of I/D/F obtained315

through this were also referred to as the Viterbi states (named after the algorithm). The316

algorithm was applied over the entire observation record to identify the most probable se-317

quence of I/D/F states, thereby also identifying any switching, if at all, in the states of the318

I/D/F.319

2.3.2 Covariate Used in the IDF HMMs320

For this study, the HMMs of IDF were built using a linear relationship between these low321

flow characteristics and the available water through precipitation. To represent the available322

water through precipitation at a catchment, a form of the Antecedent Precipitation Index323

(API) was used. This serves as a covariate in the HMMs. Similar to the Standardized324

Precipitation Index (SPI), the API is an empirical index for indirectly estimating how much325

water is available in the catchment (soil) from precipitation. While SPI is calculated based326

on a fitted distribution of a moving average of the precipitation time series, API provides327

a current precipitation water availability indicator employing a constant rate of water de-328

pletion from the soil. API estimates the current water available in the soil by multiplying329

API at the previous time step by a depletion factor and adding the previous time step’s330

precipitation. The definition of API as used in the present work is partly adapted from331

studies like Kohler and Linsley (1951); Crow et al. (2005); Y. Y. Liu et al. (2011); Holmes332

et al. (2017), where this index has been used for determining drought conditions and for333

other watershed analysis. API is a simplified water balance model built on the assumption334

that the amount of available water in a catchment is related to its antecedent precipitation335

conditions.336

We computed the API at monthly time steps, multiplying the index from the previous month337

by the depletion rate (γ) and adding the current monthly precipitation as shown below:338

APIt = min

(
γnAPIt−1 + 0.75Pt, APImax,n

)
(17)339

with the API at the first time step calculated as:340

API(t=1) = 0.75P(t=1) (18)341
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APIt and API(t−1) are the current and previous month’s API, with γ modulating APIt−1,342

and Pt is the current month’s precipitation depth. The multiplicative factor of 0.75 to Pt343

was used to account for the loss of precipitation water while reaching the soil (interception).344

Since API is representative of the amount of available water in the soil, it was capped to a345

maximum value (APImax,n) to indicate full saturation (Dharssi et al., 2017; Holmes et al.,346

2017) at a given catchment n. The value of APImax,n was varied in proportion to the mean347

of all monthly precipitation values at that catchment, Pn, as shown in Equation 19. The348

value of the multiplicative factor ϕn in Equation 19 indicates the proportion of maximum349

monthly water that the soil can hold to the average precipitation at the station.350

APImax,n = ϕn.Pn ϕn ∈ [4, 10] (19)351

The parameters γ and ϕ as used in Equations 17 and 19, respectively, are meant to simplify352

the complex mechanisms controlling water availability from precipitation at a catchment.353

They incorporate the dynamic range and variability of the actual daily API values that get354

reflected as monthly aggregated values. The values of ϕ and that of γ at a given catchment355

were chosen by running a simple optimization experiment for each catchment individually356

instead of assuming a single constant value for them uniformly across the study region.357

This was done as these parameters have a considerably large spatial variation due to several358

factors, including soil type, soil density, vegetation, exposure, hill slope, etc.359

The optimization was aimed at yielding such values of these parameters that maximized360

the correlation between the low flow intensities at a catchment and the standardized time361

series of the catchment’s API (sAPI). This allowed a maximum transfer of information in362

form of linear dependence from precipitation (through sAPI) to low flow intensity, assuming363

the latter was a response of the former. The range of the multiplicative factor ϕ was set364

to vary from 4 to 10 with increments of 1 while that of γ was varied from 0 to 0.99 with365

increments of 0.01. Since API as defined above is a measure of dryness or wetness of the soil366

in response to the monthly precipitation totals, the API is the soil water memory and is a367

proxy for the amount of water available from precipitation to contribute to flows. It takes368

into consideration the concurrent and lagged transfer of information from precipitation to369

flows (as represented by Equation 17). Further, it was also found that API as used here370

yielded a more direct relationship with low flow intensities than precipitation or SPI did371

with low flow intensities (Figure S3, Supporting Information S1). Since the API time series372

was derived with an inherent assumption that API = 0 at t = 0, the first twelve values of373

monthly sAPI were discarded considering those months to be the warming-up period of the374

API series. In the HMM models of intensity and duration, sAPI was used as a covariate,375

while for the annual frequency HMM, the mean of annual sAPI was used as the model376

covariate to be consistent with the timescales. Figure S5a shows the sAPI as obtained for377

a sample station through the process explained above. Figure S5b shows the established378

(inverse) relation between SDI and sAPI over time for a sample station. The sAPI closely379

mimics the SDI, thus supporting the use of sAPI as a predictor in the HMM.380

2.3.3 Configurations of One-state and Two-state IDF Models381

For modeling low flow intensity, a monthly HMM was built with gamma distribution as the382

error distribution model. The intensity data at a catchment was modeled using the corre-383

sponding value of the sAPI occurring at the same point in time. For any given catchment,384

two models were built — a one-state model and a two-state model. The mean and standard385

deviation of the two-state model were allowed to vary as shown in Table 1. While the mean386

was a function of the covariate as well as the state, the variance was varied only with the387

state and not with time. Similarly, for modeling duration, a monthly HMM was built with a388

log-normal distribution as the error distribution model. The duration data at a catchment389

was modeled using the corresponding value of the sAPI occurring at the same point of time390

as the intensity (peak) of the low flow spell. For modeling low flow frequency, the total391
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count of all low flow events that took place in a streamflow water year was used. Annual392

HMMs were built with Poisson distribution as the error distribution model and the mean393

annual sAPI was used as a covariate.394

Table 1 shows the model configurations for the one-state and two-state HMMs of the IDF. By395

employing such a framework, the cumulative probability of IDF was time-varying because396

of the non-stationary mean and standard deviation. Note that in the interests of parsimony,397

HMMs built here did not consider state changes for the parameter a1 (Equations 4a and398

4b).399

Table 1: Configurations of the IDF HMMs

Low flow Covariate Error distribution
Model configuration

characteristic used model (ε)

Intensity (I) sAPI Gamma t̂Ii = a0,i + a1.(sAPI)t

tIi ∼ Gam(t̂Ii, σi
2 | i)

Duration (D) sAPI Log-normal t̂Di = a0,i + a1.(sAPI)t

tDi ∼ LogNorm(t̂Di, σi
2 | i)

Frequency (F) Mean Annual sAPI Poisson t̂Fi = a0,i + a1.(Mean Annual sAPI)t

tFi ∼ Pois(t̂Fi, σi
2 | i)

Ranges: a0 ∈ [−50, 50]; a1 ∈ [−5, 5]; σ ∈ [1e− 7, 35]

The subscript i denotes the state index and can take values 1 or 2.

σi denotes the standard deviation of the error model in state i

2.3.4 Assigning of Viterbi States400

Figure 4 depicts the possible Markov state transitions considered for the analysis here. As401

mentioned before in Section 2.3.1, it was assumed that the maximum number of states a402

given low flow characteristic’s time series can take are only two, viz., normal and non-normal403

(Figure 4a). For illustration, Figure 4b shows the possible model outcomes of applying the404

framework on the intensities of low flows, where the three panels represent the time sequence405

of the Viterbi states taken under each of the outcomes. It may be noted that since we are406

modeling extreme characteristics of low flows, both states represent regimes of extremes.407

Thus, the normal state of the regime of an extreme implies a state when values of I/D/F of408

low flow droughts given the history of the region may be considered usual or not unexpected.409

In simple words, the normal state of low flow I/D/F as defined in the study here corresponds410

to low flow droughts that could be an outcome of a seasonal fluctuation resulting in flow411

conditions that, while still considered extreme, are within the statistical likelihood of an412

expected low flow drought condition for the region. The non-normal state, on the other413

hand, can either be less extreme than normal low flows or more extreme than normal low414

flows. However, both cannot co-occur for the time series of I/D/F for a given catchment,415

following the assumption that the maximum number of states allowed is 2. While modeling416

each of the IDF, we assigned states by assuming that the time stamp that had the value of417

the covariate (sAPI for intensity and duration; mean annual sAPI for frequency) closest to418

the median value of the covariate for a catchment was the time when the given I/D/F value419

was in a normal state. A two-state model of HMM would have either ‘high’ and ‘normal’420

states or ‘low’ and ‘normal’ states (Figure 4a). The HMM built here classified an observation421

to be in a high state if the 50th percentile of the Viterbi I/D/F value simulated at a given422

point in time was more/higher than the 50th percentile of the normal state I/D/F value.423

An observation was classified to be in a low state if the 50th percentile of the Viterbi I/D/F424
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value simulated at a given point in time was less than the 50th percentile of the normal425

state I/D/F value.426

State 1:

Normal IDF 

Pr(State 1 | State 2)

Pr(State 2 | State 1)

Pr(State 2 | State 2)Pr(State 1 | State 1)

(a)

(b)

Time

In
te

n
s
it

y

State 1: Normal Intensity

State 2: High Intensity

State 1: Normal Intensity

State 1: Normal Intensity

State 2: Low Intensity

A catchment having 

only one state for low 

flow intensity, namely, 

the 'Normal' state 

A catchment having 

two states for low 

flow intensity, namely, 

the 'Normal' and the 

'High' state 

Possible

catchment

classifications

A catchment having 

two states for low 

flow intensity, namely, 

the 'Normal' and the 

'Low' state 

p11

p12

p21

p22

Figure 4: (a) Depiction of Markov state transitions in the applied HMM framework. Each
state can either continue to sustain or switch to the other state. (b) The three possible
outcomes from applying the proposed HMM to a low flow characteristic. For illustration,
the time series of the intensity of low flows is used to demonstrate the possible results
from applying the model. The top panel shows a catchment where the intensity only has
one state. The middle panel shows a catchment where the intensity has two states, with
the second state (the high state) representing more intense low flows. The bottom panel
shows a catchment where the intensity has two states, with the second state (the low state)
representing less intense low flows.
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2.4 Identifying Catchments With Two States in IDF427

The flowchart in Figure 5 summarizes the overall flow of the methodology pertaining to the428

analysis carried out. Following the steps as laid out in Figure 5, to decide the best model429

for a given characteristic at a catchment, the Akaike Information Criterion (AIC) was used.430

This is expressed as431

AIC = −2ln(L ) + 2N (20)432

where N is the number of model parameters being estimated and L is the maximized433

likelihood of the model (expressed in Equation 3 in Supporting Information S1). Among434

the two models tested, i.e., the best one-state and the best two-state model, the one that435

had the lowest AIC was chosen for the catchment. Following the use of the AIC criterion, a436

catchment was identified as having two states in I/D/F if the best model at the catchment437

had: (a) observations belonging to a normal state and some to a low I/D/F state or (b)438

observations belonging to a normal state and some to a high I/D/F state as depicted in439

Figure 4b and as stated in the steps in Figure 5. In the present context of low flows, higher440

values of a low flow characteristic indicate a more extreme low flow event.441

At catchments where, for a given low flow characteristic, the two-state model was the better442

model, the strength of simulation of the two-state model over the one-state model was443

established using the evidence ratio (ER) (Burnham & Anderson, 2002). The evidence ratio444

offers a way to quantify the strength of the evidence that the selected model (the two-state445

HMM in this case) is convincingly superior to the alternative model (the one-state HMM).446

It was computed by comparing the Akaike weights, w, of the two competing models, namely,447

the two-state model (2SM) and the one-state model (1SM), as expressed below:448

ER =
w2SM

w1SM
(21)449

Here w1SM and w2SM are the Akaike weights for the one-state and two-state models, re-450

spectively, and are defined as:451

452

w2SM =
1

1 + exp(− 1
2∆)

(22)453

w1SM =
exp(− 1

2∆)

1 + exp(− 1
2∆)

(23)454

where ∆ in this case is the AIC difference between the best one-state model and the best455

two-state model:456

∆ = AIC1SM −AIC2SM (24)457

The ER value serves to establish confidence in the two-state model relative to the one-state458

model, and hence the strength of evidence for the existence of two states. Any ER value459

> 10 suggests that the observations are more likely to be explained by the two-state model460

than the one-state model. The higher this value, the stronger the evidence. For the current461

work, we considered ER values greater than 10 (or its logarithmic values greater than 1)462

as denoting sufficient evidence to believe that a two-state model is convincingly better in463

performance over the one-state model, following Burnham and Anderson (2002); Goswami464

et al. (2022). The ER, however, only denotes how good the two-state model is relative465

to the one-state model and does not provide sufficient information on how qualified the466

two-state model is to represent the low flow characteristic being modeled. To address the467

later aspect, the model residuals were tested for their normality using the Shapiro-Wilk’s468

test (alpha = 0.05) (Shapiro & Wilk, 1965) and were retained for further analysis only if469

their Shapiro-Wilk’s test p-value was greater than 0.05. In addition, the aim was also to470

have a 2SM with at least a predefined minimum number of I/D/F values in each state to471

ensure that a meaningful state does indeed exists. For this, catchments that had less than472

five I/D/F data points in any state were removed for further analysis. To make sure the473
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BC: Box-Cox; SDI: Streamflow Drought Index; I/D/F: Intensity/ Duration/ Frequency; POT: Peak Over Threshold; SW: Shapiro Wilk; 

sAPI: Standardized Antecedent Precipitation Index; HMMs: Hidden Markov Models; AIC: Akaike Information Criterion; ER: Evidence Ratio

2nd state is a high 

I/D/F state

Figure 5: Flowchart illustrating the main steps followed to identify if a catchment has two
states in low flow I/D/F.

best model performed adequately, we also inspected the number of significant lags in the474

Auto-Correlation Function (ACF) of the normal pseudo-residuals, the histogram, and the475

Q-Q plot of the normal pseudo-residuals (Zucchini & MacDonald, 2009). The ACF serves as476

a visual check to confirm whether the model residuals are serially correlated or not. Serially477

correlated errors indicate that the model is not adequately built and there is loss of some478

information, thereby indicating that the model could be improved further.479

3 Results and Discussion480

3.1 States of Low Flow IDF481

Figure 6 shows the low flow intensity Viterbi states over time for an example catchment, with482

Figure 6a showing the variation of the model covariate, i.e., sAPI. The results in Figure 6b483
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shows that two states were identified, whereby the catchment was in a normal state until484

1999, after which it switched to and persisted in a high intensity state. Furthermore, the485

conditional state probabilities (in Figure 6c) show that there is a very high probability of the486

aforementioned states. Practically, this indicates that low flow periods become more intense487

(i.e. drier) after 1999. This is illustrated in Figure 6b by the estimated normal values of488

intensity (points in lime green). These are the model-estimated values that indicate what489

would have been the intensity had the catchment been in the normal state at that epoch.490

These are the model-estimated values that indicate what would have been the intensity had491

the catchment been in the normal state at that epoch. These are determined using the492

relationship of intensity with the covariate as in the normal state (Equation 4a, with i = 1).493

For the epochs when the catchment is found to have switched into the second state, the494

results from Figure 6 suggest that the intensity for a given value of covariate is much higher495

than what it would have been expected had the catchment been in the normal state. Here496

the intensity HMM not only distinguishes the two states of low flow intensity but also informs497

the timing of the shifts in its states. Importantly, Figure 6 demonstrates that despite the498

inclusion of a covariate, the observed low flow intensity is best explained using more than499

one distribution. That is, the catchment not only displays non-stationarity arising from500

the precipitation (Figure 6a) but also from the state shifting. This provides preliminary501

evidence toward falsifying that one state is sufficient to explain low flow intensities.502

Figure 6c shows the conditional probability of being in a given state at any given time for503

the catchment. It reflects the switching of the catchment between the two states. The504

catchment is believed to have switched to the other state when the state probability of the505

other state becomes greater than that of the state in which the catchment is currently in.506

Such a behavior as shown in Figure 6 suggests that hydrological droughts are becoming more507

extreme in the catchment, with the catchment continuing to be in an amplified extreme state508

until the end of the observation period. The two states as seen in Figure 6b are defined by two509

different distributions, supporting the notion of the need for state-dependent distributions.510

Thus, the observed intensity can lie in two states, shown by the green and pink color points.511

The second state represents more extreme low flow intensity than those represented by the512

normal low flow state. It must be noted here that the data represented by both states513

are extreme values, i.e. values pertaining to low flow droughts. The second state here514

refers to a more intensified extreme state, suggesting an amplification of extremes (low flow515

events here) in such catchments. The existence of mixture distribution as emerging from the516

outcomes in Figure 6 could mean that the observations in the two states are generated from517

separate flow processes or flow dynamics unique to the states and which are not explained518

by the variability in water availability from precipitation alone. These dynamics may be519

arising from real physical attributes, such as changes in baseflow. It is thus likely that the520

more intense low flows may be caused by less baseflow during such periods. Another factor521

that could be in play is systematic changes in groundwater levels. However, all these need522

further investigation.523

For intensity data, it was found that the model satisfactorily simulates the values except524

for only a few instances in time where it misses estimating very high values of intensity525

accurately. However, most of the observations lie within the 95% confidence interval of526

the model. Considering this and the fact that modeling extreme values adequately is a527

challenge for any modeling framework, for the primary question being addressed in this528

work, the HMM framework proved to be a suitable technique for investigating changing529

regimes of extremes. Corresponding to Figure 6, Figure S4 in Supporting Information S1530

provides an assessment of the model performance for the intensity HMM of the catchment in531

terms of the distribution of the normal pseudo-residuals and their autocorrelation. With the532

present ability of the HMM, the framework performs well in simulating low flow intensity533

data. The model residuals were found to be normally distributed along with the Shapiro-534

Wilk p-value being more than 0.05. This implies that the model residuals have very little535

information contained in them and they can be considered to be nearly random, suggesting536

a good match between the modeled values and the observations. A model having Shapiro-537
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Figure 6: Viterbi states taken by the low flow intensity over time for station ID 238223.
(a) The catchment’s monthly variation of the sAPI, which is used as a covariate in the
intensity model. (b) Time series of low flow intensity of the catchment. The green-colored
circles indicate modeled values that belong to the normal state. Pink-colored circles indicate
values belonging to the second state (more extreme than normal state). The lime green stars
occurring in the same vertical spaces as that of the pink circles indicate the model-established
value of intensity in the normal state at that time step. At any given time, the colored circles
(or stars) represent the median value of the intensity. The colored vertical lines associated
with each of these represent the error bar covering the 5th to the 95th percentile of the
estimates. The gray-colored circles denote the observed intensities. (c) Variation of state
conditional probability depicting the probability of intensity being in a given state at any
given time. Clearly, a single state is not sufficient to describe the intensity data at this
catchment.

Wilk’s p-value greater than 0.05 suggests A similar inference holds for the ACF plot where538

there are not many lags that are significant, indicating that the model errors have very low539

predictive power.540

Figure 7 shows the low flow duration results for a different example catchment. Although541

the outcomes from AIC showed that the duration data was better described by a 2SM than a542

1SM, Figure 7b suggests that the duration modeling as undertaken in the current framework543

has a scope for improvement. As can be seen in Figure 7b, the median duration in a given544

state at each time point shows very little variability, which casts doubt on sAPI being an545

appropriate covariate for duration. Figure 8 shows the model simulation of annual frequency546
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for a sample catchment. Figure 8a shows the corresponding time series of mean annual sAPI,547

which is the covariate to the frequency model. For the sample catchment, all the values lie548

in a single state (the normal state) as can be seen from Figure 8b. Hence a single state549

does a better job of explaining the frequency data than two states in this case. However,550

the simulated frequency values following the modeling as done here resulted in large error551

bars associated with the modeled values, implying that the frequency model too, like the552

duration model, may be further improved. Figures S5 and S6 in Supporting Information S1553

provide assessments of model residual behavior corresponding to the duration and frequency554

HMM results discussed in Figures 7 and 8, respectively.555
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Figure 7: Viterbi states taken by the low flow duration over time for station ID 227211.
See Figure 6 for a description of the figure elements.

As pointed out above, the current approach for modeling duration and frequency in the556

HMM framework needs improvement. Time series simulation of duration and frequency557

thus remains a challenge. The IDF HMMs as used here are built upon the linear dependence558

between sAPI and the low flow characteristic being modeled (Equation 4a and 4b). Thus,559

the results suggest that the sAPI’s relation with duration and frequency is either non-linear,560

or an alternate covariate should be sought. For example, sAPI at a fortnightly or daily scale561
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Figure 8: Variation of low flow annual frequency values with time for station ID 227237.
(a) Catchment’s mean annual sAPI which is used as a covariate in the frequency model. (b)
Time series of the observed and simulated frequency. Only a single state was sufficient to
describe the frequency data at this catchment.

than monthly may be a better predictor for duration, and seasonal mean sAPI instead of562

annual mean sAPI may work better for modeling low flow frequency. Another possibility563

could be understanding and establishing which physical covariate, if not sAPI, governs the564

variability in these characteristics and may potentially replace sAPI in these models.565

For the reasons stated above, following this section, we focus primarily on presenting and566

discussing the results for low flow intensities, with only a brief discussion about duration567

and frequency.568

3.2 Catchments with Two States in IDF569

As depicted in the steps in Figure 5 and as discussed under Section 2.4, the candidate models570

at a catchment were screened for AIC and ER. Figure 9a shows the spatial distribution of571

catchments obtained after screening for AIC of 2SM < AIC of 1SM, and log(ER) > 1 for572

the intensity model over the study region. A total of 115 (71%) catchments (purple-colored)573

showed strong evidence of the existence of two states in the intensity of low flows. This574

suggests that low flow intensity extremes are a mixed process and hence warrant a mixture575

of distributions to represent them. Such results provide formal strength of evidence for the576

hypotheses that extremes can quantitatively shift to different states if perturbed and hence577

a single state cannot adequately explain them.578

The 115 catchments as identified in Figure 9a were further screened for model performance579

based on the Shapiro-Wilk p-value for normality of the residuals. The number of catchments580
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Figure 9: Spatial distribution of catchments having two states in low flow intensities.
Figures a–d show the two-state catchments retained on subsequent steps of filtering. (a)
The 115 catchments (colored in purple) having AIC of 2SM < AIC of 1SM and log(ER)>1
for 2SM over 1SM. (b) The 101 catchments (colored in purple) having Shapiro-Wilk p-
value>0.05. (c) The 34 catchments (colored in purple) which had at least 5 intensity data
points in each state (and hence at least 5 unique low flow spells in each regime). (d) Of
the 34 catchments, the 21 catchments that have normal and high intensity states shown in
a shade of red. For these catchments, the second state is a high intensity state. Of the 34
catchments, the 13 catchments that have normal and low intensity states shown in blue.
The second state for these 13 catchments is a low intensity state.

that indicate high evidence for 2SM over 1SM provides provides support for the hypothesis581

that low flow extremes might switch states. 101 of these 115 satisfied the condition of582

Shapiro-Wilk p-value>0.05. These are shown further in Figure 9b (colored in purple).583

Further, to ensure a meaningful state exists, these 101 catchments were also checked for584

having the number of data points in each state more than or equal to 5. This condition585

ensured that such a catchment will have at least 5 unique low flow spells in both, normal586

and non-normal, regimes. Figure 9c shows the final 34 catchments meeting these criteria.587

Of these 34 catchments, there were catchments where the second state (the non-normal588

state) pointed to a low intensity state (shown in blue in Figure 9d) and catchments where589

the second state was a high intensity state (shown in a shade of red in Figure 9d).590

The high spatial variability shown in Figure 9d is unexpected. It may be due to catchment-591

specific biophysical factors (combination of one or more of the slope, mean elevation, soil592

types, climate, vegetation, etc.) and hydrologic response to extremes emerging from the593

complex interactions of vegetation and soil hydraulics, making low flows, at least in the594

case of the SEA region, somewhat heterogeneous in space. The tendency to switch or to595

exhibit resilience against switching may thus possibly be controlled by a combination of596
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topography, climatic factors, soils, and vegetation. Catchments having the second state as597

high state are likely to switch from a normal low flow state to a more extreme low flow state598

characterized by higher than usual values of low flow intensities, entailing a magnification of599

low flows. Further, since proxy information from precipitation and soil moisture was already600

provided in the form of sAPI for modeling the low flow intensities, the emergence of a two-601

state model with very high evidence and model reliability at as many as 34 catchments602

(Figure 9) suggests that not all observations can be explained by the precipitation data.603

Thus, extremes in low flows may not be sufficiently explained by changes in precipitation.604

Figure 10 follows a similar basis as Figure 9, showing the catchments retained at every stage605

of filtering. Using AIC and ER values as the filtering criteria, a total of 112 (Figure 10a)606

out of 161 catchments showed a 2SM to be superior to 1SM in modeling low flow duration607

data. The 5 red shaded catchments in Figure 10d represent catchments as obtained after608

all the steps of performance filtering. For these, the second state of low flow duration was609

associated with higher values of duration. There is a good overlap of catchments having610

high evidence for exhibiting two states in intensity as well as in duration as can be seen611

from Figures 9a and 10a. The spatial differences, however, grow as one moves from subplots612

a–d in these figures. As per the AIC and ER criteria, of the 161 catchments, the number613

of catchments having two states in (1) only intensity (but not duration) were 30, (2) only614

duration (but not intensity) were 27, and (3) both intensity and duration were 85.615

Unlike intensity and duration, annual frequency of the low flow events, on the other hand,616

did not exhibit switching of states for the way the framework models this characteristic.617

Of the catchments studied, only one catchment emerged where the 2SM was better than618

1SM. Since for frequency of low flows, the number of catchments satisfying the AIC and619

ER criteria was not sufficient, the figure for the spatial distribution of 2SM catchments of620

frequency is not included here.621

For several of the SEA catchments, the existence of multiple states of extremes is a recent622

phenomenon. The exact reasons that drive the switching of states of low flows still need623

to be explored. The answer may come with improved knowledge of the underlying sys-624

temic processes governing these and their complex feedbacks to one another. The results625

here provide evidence for low flow state transitions in these catchments and the changing626

regimes of hydrological extremes (low flow droughts). The intensities in the ‘high’ state627

represent unusual low flow droughts induced possibly from a hydrological disturbance which628

sets a positive feedback for the catchment’s extreme characteristics to slip into the second629

state, as has been concluded to be the case for total flows by Peterson et al. (2021). Such a630

hydrological disturbance could be from catchment-wide changes, which control the runoff,631

changing the partitioning of the incoming precipitation at the surface between infiltration632

and surface runoff. This disturbance may be brought about by prolonged meteorological633

droughts and natural factors. Studies have also suggested groundwater storage (Fowler et634

al., 2020; Hughes et al., 2012; Kinal & Stoneman, 2012) and plant water use (Peterson et635

al., 2021; Ukkola et al., 2016) as causal factors, with the latter producing a positive feed-636

back and hence persistent alternate states. Long hydrological memory linked with stored637

groundwater may also be an important facet (Alvarez-Garreton et al., 2021), which makes638

the current flow volumes to be governed more strongly by antecedent conditions. In such639

cases, the subsurface storages carried forward in time are often capable of equalizing the640

deficiencies in precipitation during the onset of a drought (Avanzi et al., 2020). Anoma-641

lously low streamflows have also been implicated in changes in the seasonality of climate642

conditions (both atmospheric and precipitation demands) (Williams et al., 2022). However,643

all this demands further research to draw more detailed conclusions around the drivers for644

the switch, including how feedbacks from the catchment’s biophysical components may be645

affecting water partitioning (e.g., Peterson, Western, & Argent, 2014) and the triggers from646

global climate shifts.647

Apart from natural controls on flows, low flows can vary as a response to human controls648

on flows as well (Gebremicael et al., 2013; Guzha et al., 2018). Studies have shown that649

–21–



manuscript submitted to Water Resources Research

Figure 10: Same as Figure 9 but for duration of low flows. Figures a–d show the two-state
catchments retained on subsequent steps of filtering. (a) The 112 catchments (colored in
purple) having AIC of 2SM < AIC of 1SM and log(ER)>1 for 2SM over 1SM. (b) The 63
catchments (colored in purple) having Shapiro-Wilk p-value>0.05. (c) The 34 catchments
(colored in purple) which had at least 5 duration data points in each state. (d) Of the 8
catchments, the 5 catchments that have normal and high duration states shown in a shade of
red. For these catchments, the second state is a high duration state. Of the 34 catchments,
the 3 catchments that have normal and low duration states shown in blue. The second state
for these 3 catchments is a low duration state.

human activities such as water abstraction interventions and land use/cover change, such as650

fire/non-fire induced vegetation changes, can modify low flows in a catchment (Li et al., 2007;651

Chang et al., 2016; Gebremicael et al., 2020) as these activities may change the partitioning652

of the incoming precipitation on the land surface (Gates et al., 2011). In the case of the653

present study, the 161 SEA catchments were unregulated and had water extractions <10%654

of the mean annual runoff. Effects from land use change may be a driver responsible for655

switching of states of extremes. However, for these catchments, Peterson et al. (2021) (in656

their Supplementary Material) show that land use change (1985-2019) did not explain the657

observed runoff state shifts. The switching of states of low flows as found in this study is658

thus more likely an outcome of changes in the hydroclimate of the region or the response of659

a catchment to these or both.660

3.3 Low Flow Intensity State Changes and Atmospheric Conditions661

Extreme dry and warm conditions of the atmosphere may be one of the drivers of low flow662

switching. To examine this, a timeline of the 21 catchments identified to be switching be-663

tween a normal intensity state and a high intensity state was studied. Figure 11a shows664
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the number of catchments, of the 21 catchments, existing in their second state of low flow665

intensity for the time period 1950–2016. The height of the vertical black-colored bars indi-666

cates the number of catchments experiencing a low flow intensity lying in the second state667

at a given time. The gaps in between the bars represent a time instance when either none668

of those catchments had a low flow intensity (peak) occurrence or when there is a low flow669

intensity (peak) occurrence, but it belongs to the normal state. The height of the yellow bar670

at each month depicts the number of catchments that had gauge flow data available. The671

recent meteorological drought periods in the state of Victoria (Australian Bureau of Statis-672

tics, Year Book Australia 1998) were: (i) 1967–1968, (ii) 1972–1973, and (iii) 1982–1983.673

Combined with the Millennium Drought (1997-2009), these 4 periods denote abnormally dry674

periods over SEA on record. These are shown as gray-colored vertical strips in Figure 11a.675

These periods appear to coincide with peaks in the number of catchments in the second676

state of low flow intensity.677

Also shown in Figure 11 are the periods of abnormally high sea surface temperature anoma-678

lies of the Niño3.4 region, characteristic of an El Niño event (orange vertical bars). These679

were derived from the Ocean Niño Index (ONI) obtained from the United States Na-680

tional Oceanic and Atmospheric Administration (NOAA) Climate Prediction Centre (CPC)681

(www.cpc.ncep.noaa.gov) (Refer Text S5 and Table S3 in Supporting Information S1 for682

details). It was also seen that many catchments switched to the second state during the683

warm episodes of the El Niño Southern Oscillation. However, the number of these catch-684

ments is comparable to those belonging to neither the meteorological drought nor the El685

Niño periods for the present study (Figure 11b and c). Figure 11 suggests that warm and686

dry atmospheric conditions such as those prevailing during sustained meteorological drought687

spells may create conditions conducive for catchments to switch states of low flows.688

The boxplots in the lower panel of Figure 11 show the number of catchments in the second689

state for various periods, namely, periods of meteorological droughts (b), periods of warm690

ENSO (c), and periods that were neither meteorological droughts nor warm ENSO periods691

(d). The figure suggests that meteorological droughts have the potential to change low692

flow spells, adding to the existing literature on how severe and protracted meteorological693

droughts can potentially destabilize the hydrological behavior and resilience of catchments.694

With the projected increase (Xu et al., 2019) and changes in future meteorological droughts695

and the complex interactions between meteorological and hydrological droughts, low flow696

regimes are more likely to be dynamic and subject to modifications. Importantly, Figure 11697

highlights the changing regimes of hydrological extremes in a changing climate. The results698

in the figure also suggest that the phenomenon of switching of low flow regimes can neither699

be considered exceptional nor rare any longer. With low flow droughts exhibiting regime-700

switching, the risks associated with them are also expected to vary in time. As the risk701

changes, water managers will have to understand how resilient are the catchments to changes702

in extremes.703

4 Conclusions704

Catchments can undergo complex changes in their behavior which can change how low flows705

respond to such changes. The study here examined whether low flow characteristics can exist706

in more than one state. This was done using HMMs with antecedent precipitation index as a707

covariate, applied to examine low flow IDF in 161 catchments in SEA. It was found that for708

the majority of the catchments (≈ 70%), a two-state model explained the low flow intensity709

and duration data better than a one-state model, thereby suggesting that low flows exhibit710

multiple states. Very strong evidence of low flow intensity exhibiting two distinct states711

was found for at least 34 (21%) catchments in the region. For most catchments exhibiting712

switching of states of low flow intensity, the second state entailed an intensification of low713

flows. The regime-switching behavior can cause low flows to manifest in very different ways714

at two different epochs for the same catchment. Such a temporal behavior also points to715

changing risks associated with hydrological droughts. The two states are possibly governed716
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Figure 11: (a) Timeline (1950–2016) of the switching of states of low flow intensity for the
21 catchments. The height of the black-colored bars represents the number of catchments
in the second state at a given time. The height of the yellow-colored bars at each month
represents how many of these 21 catchments had flow data available for that month. The
four gray-colored vertical strips shown in the background represent the four recent severe
meteorological drought spells for the Victoria region, which are (i) 1967–1968, (ii) 1972–1973,
(iii) 1982–1983, and (iv) 1997-2009, respectively, from left to right. The red-colored vertical
strips represent time instances when the ONI indicates the occurrence of a warm ENSO
episode. The three boxplots shown in the lower panel depict the number of catchments in
the second state during (b) meteorological drought periods, (c) warm ENSO periods, (d)
periods that were neither b nor c.

by unique processes generating the observations in the two states. Importantly this indicates717

that the use of one distribution is inadequate to explain the observed data, as is widely done.718

The work demonstrates the capability and reliability of HMMs to simulate extreme low flow719

intensities as well as the capability to capture temporal shifts in states.720
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Further, since the information from the catchment’s antecedent conditions and precipitation721

was intrinsic to the model, the emergence of a two-state model at a catchment implies that722

information from precipitation, though useful in simulating low flow behavior, may not723

be sufficient to explain changes in low flow extremes. Low flow intensities in the second724

state are not explained by the corresponding variability in precipitation. The duration and725

frequency HMM have a scope for improvement in the current framework. For frequency of726

low flows, the current capability of the model framework was not satisfactory for establishing727

the strength of the 2SM over 1SM. These models may be improved by either incorporating728

non-linear relation with sAPI or by using covariates (for eg., climate indices) that may729

explain the variability in them better.730

Switching of catchments into an intensified low flow state may be strongly influenced by sus-731

tained dry atmospheric conditions such as those during protracted meteorological droughts732

as well as the changes in them. The study also helps to understand how future extreme hy-733

drological characteristics may behave in response to such meteo-climatological disturbances734

triggered naturally or due to climate change. This points to possible changes that catch-735

ments can undergo during and after a meteorological drought and how that impacts extreme736

hydrological behavior and response. As dry conditions and meteorological droughts change737

and become more frequent in a changing climate, their impact on hydrological cycle and on738

extreme flows can be very significant.739

More research needs to be undertaken to understand the underlying physical processes740

and the driving mechanisms in play to explain the existence of more than one low flow741

regime, thereby reducing uncertainty about future low flow dynamics in watersheds. The742

results here demonstrate the potential of catchments to exhibit shifts in regimes of low743

flow extremes. A crucial aspect of enhancing future water security lies in understanding744

how these shifts might translate into impacts on streamflow services and how to manage745

these periods. Identification of shifts may enable system planners to consider solutions746

such as supply augmentation, demand management, inter-basin water transfers, managed747

groundwater aquifer recharge, conjunctive use, etc., thereby augmenting system resilience748

during low flow shifts in the future.749
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Text S1. Details of the streamflow gauge stations

Table S1, adopted from Supplementary Information of Goswami et al. (2022), details infor-

mation on the gauges used for the study. The streamflow data was taken from Peterson et al.

(2021), wherein all the gauges used were quality controlled. Monthly streamflow data as flow

depth (in mm) are available for these catchments, obtained by aggregating daily data. The area

of these catchments ranges from 5.5 to 8463.6 km2, with a median catchment area of 295.6 km2.

For more details, the reader is referred to the Supplementary Material of Peterson et al. (2021).

The streamflow data used for this study, along with the catchment shapefiles, are available at

https://zenodo.org/record/6659706#.Y52tpHZBxdg. Table S1 is followed by Table S2, dis-

playing the overall mean and median values of flow depth for all these catchments taken together.

Table S1: Details of the streamflow gauge stations used in the study

Sr. Gauge ID Gauge name Catchment Latitude Longitude Data starting Data up to No. of months Years of
No. area (km2) (◦S ) (◦E ) from for which data available data

was unavailable
1 221201 CANN RIVER (WEST BRANCH) WEERAGUA 323.30 37.37 149.2 May 1922 Jul 2017 271 72.67
2 221207 ERRINUNDRA RIVER ERRINUNDRA 160.88 37.45 148.92 Apr 1968 Jul 2017 7 48.83
3 221208 WINGAN RIVER WINGAN INLET NATIONAL PARK 419.83 37.69 149.49 Sep 1979 Jul 2017 0 38.08
4 221209 CANN RIVER (EAST BRANCH) WEERAGUA 148.09 37.36 149.21 Feb 1973 Jul 2017 3 44.5
5 221210 GENOA RIVER THE GORGE 836.84 37.42 149.52 Jan 1973 Jul 2017 0 44.92
6 221211 COMBIENBAR RIVER COMBIENBAR 178.54 37.44 148.98 Feb 1975 Jul 2017 0 42.92
7 221212 BEMM RIVER PRINCES HIGHWAY 730.62 37.61 148.9 Nov 1975 Jul 2017 4 41.92
8 222202 BRODRIBB RIVER SARDINE CREEK 650.16 37.51 148.55 Dec 1922 Aug 2017 198 78.83
9 222206 BUCHAN RIVER BUCHAN 847.74 37.5 148.17 Dec 1926 Aug 2017 206 74.25
10 222210 DEDDICK RIVER DEDDICK (CASEYS) 847.70 37.09 148.42 Jan 1965 Aug 2017 47 49.5
11 222217 RODGER RIVER JACKSONS CROSSING 433.18 37.41 148.36 Apr 1977 Aug 2017 0 41.25
12 223202 TAMBO RIVER SWIFTS CREEK 896.08 37.27 147.73 May 1948 Jul 2017 1 70.08
13 223204 NICHOLSON RIVER DEPTFORD 289.37 37.59 147.7 Jun 1962 Jul 2017 7 55.58
14 223205 TAMBO RIVER D/S OF RAMROD CREEK 2676.68 37.67 147.87 Aug 1966 Jul 2017 0 52.08
15 224201 WONNANGATTA RIVER WATERFORD 1974.27 37.49 147.17 Jun 1923 Jul 2017 292 71
16 224203 MITCHELL RIVER GLENALADALE 3920.57 37.76 147.37 Dec 1938 Jul 2017 0 79.92
17 224206 WONNANGATTA RIVER CROOKED RIVER 1103.33 37.41 147.09 Oct 1954 Jul 2017 4 63.83
18 224213 DARGO RIVER LOWER DARGO ROAD 668.17 37.5 147.27 Nov 1974 Jul 2017 2 44
19 224214 WENTWORTH RIVER TABBERABBERA 440.75 37.5 147.39 Feb 1976 Jul 2017 3 42.75
20 225201 AVON RIVER STRATFORD 1467.28 37.97 147.08 Jul 1978 Jul 2017 0 40.67
21 225209 MACALISTER RIVER LICOLA 1237.60 37.63 146.62 Apr 1954 Jul 2017 9 64.25
22 225213 ABERFELDY RIVER BEARDMORE 312.39 37.85 146.43 Apr 1965 Aug 2017 1 54.08
23 225218 FREESTONE CREEK BRIAGALONG 304.99 37.81 147.1 Mar 1969 Aug 2017 0 50.33
24 225219 MACALISTER RIVER GLENCAIRN 572.36 37.52 146.57 Apr 1969 Jul 2017 2 50.08
25 225221 MACALISTER RIVER STRINGYBARK CREEK 1542.29 37.77 146.67 Apr 1970 Aug 2017 54 44.92
26 225223 VALENCIA CREEK GILLIO ROAD 203.19 37.74 146.99 Nov 1973 Aug 2017 19 44.33
27 225224 AVON RIVER THE CHANNEL 557.42 37.8 146.88 Oct 1974 Aug 2017 1 45
28 226023 TRARALGON CREEK TRARALGON 172.40 38.19 146.54 Feb 1963 Jul 2017 72 50.75
29 226204 LATROBE RIVER WILLOW GROVE 560.91 38.09 146.16 Mar 1927 Aug 2017 0 92.83
30 226205 LATROBE RIVER NOOJEE 295.57 37.91 146.02 Sep 1959 Jul 2017 3 60.08
31 226209 MOE RIVER DARNUM 230.59 38.21 146 Feb 1964 Aug 2017 0 56.08
32 226218 NARRACAN CREEK THORPDALE 65.73 38.27 146.19 Feb 1958 Aug 2017 0 62.17
33 226220 LOCH RIVER NOOJEE 106.01 37.87 146.01 Dec 1959 Jul 2017 37 57.25
34 226226 TANJIL RIVER TANJIL JUNCTION 297.73 37.98 146.19 Mar 1963 Aug 2017 1 57.17
35 226402 MOE DRAIN TRAFALGAR EAST 610.47 38.18 146.21 May 1960 Aug 2017 0 60.17
36 226407 MORWELL RIVER BOOLARRA 116.51 38.41 146.31 Oct 1961 Aug 2017 120 48.83
37 227200 TARRA RIVER YARRAM 217.08 38.54 146.67 Mar 1949 Jul 2017 18 69.92
38 227202 TARWIN RIVER MEENIYAN 1072.24 38.58 145.99 Aug 1958 Aug 2017 0 62.17
39 227205 MERRIMAN CREEK CALIGNEE SOUTH 39.48 38.35 146.65 Mar 1950 Aug 2017 189 54.92
40 227210 BRUTHEN CREEK CARRAJUNG LOWER 17.91 38.4 146.74 Dec 1955 Jul 2017 0 64.92
41 227211 AGNES RIVER TOORA 66.09 38.64 146.37 May 1956 Aug 2017 45 60.92
42 227213 JACK RIVER JACK RIVER 34.88 38.53 146.54 Mar 1964 Jul 2017 0 56.83
43 227219 BASS RIVER LOCH 53.31 38.36 145.73 Oct 1969 Jul 2017 2 51.17
44 227225 TARRA RIVER FISCHERS 19.00 38.47 146.56 Dec 1971 Jul 2017 2 49.08
45 227226 TARWIN RIVER EAST BRANCH DUMBALK NORTH 125.64 38.5 146.16 Jan 1974 Aug 2017 0 47.33
46 227227 WILKUR CREEK LEONGATHA 105.28 38.39 145.96 May 1974 Jul 2017 0 47
47 227236 POWLETT RIVER D/S FOSTER CREEK JUNCTION 233.33 38.56 145.71 Apr 1983 Jul 2017 1 38.08
48 227237 FRANKLIN RIVER TOORA 75.23 38.63 146.31 Jun 1983 Aug 2017 0 38.17
49 230205 DEEP CREEK BULLA (D/S OF EMU CREEK JUNCT.) 865.25 37.63 144.8 Jul 1959 Aug 2017 5 61.75
50 230209 BARRINGO CREEK BARRINGO (U/S OF DIVERSION) 5.53 37.41 144.63 Aug 1970 Aug 2017 1 51.08
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Sr. Gauge ID Gauge name Catchment Latitude Longitude Data starting Data up to No. of months Years of
No. area (km2) (◦S ) (◦E ) from for which data available data

was unavailable
51 230210 SALTWATER CREEK BULLENGAROOK 38.91 37.47 144.52 Aug 1972 Aug 2017 2 49.08
52 231225 WERRIBEE RIVER BALLAN (U/S OLD WESTERN HWY) 107.49 37.6 144.25 Sep 1977 Aug 2017 1 44.17
53 231231 TOOLERN CREEK MELTON SOUTH 94.53 37.73 144.58 Sep 1983 Dec 2015 0 36.67
54 232214 BLACK CREEK U/S OF BUNGAL DAM 12.78 37.63 144.06 Dec 1981 Aug 2017 2 40
55 232215 WOOLLEN CREEK U/S OF BUNGAL DAM 8.62 37.63 144.08 Jan 1982 Aug 2017 0 40.17
56 233211 BIRREGURRA CREEK RICKETTS MARSH 114.29 38.3 143.84 Feb 1958 Aug 2017 14 63
57 233214 BARWON RIVER EAST BRANCH FORREST 16.59 38.53 143.73 Feb 1960 Aug 2017 0 62.25
58 233223 WARRAMBINE CREEK WARRAMBINE 53.87 37.93 143.87 Mar 1975 Aug 2017 1 47.17
59 234200 WOADY YALOAK RIVER PITFIELD 315.32 37.81 143.59 Jun 1922 Aug 2017 355 70.5
60 234201 WOADY YALOAK RIVER CRESSY (YARIMA) 1155.17 38.01 143.64 May 1960 Aug 2017 7 61.67
61 234203 PIRRON YALLOCK CREEK PIRRON YALLOCK (ABOVE H’WY BR.) 169.11 38.35 143.42 May 1969 Jul 2017 0 53.25
62 234209 DEAN CREEK LAKE COLAC 53.12 38.34 143.56 Jan 1981 Aug 2017 0 41.75
63 235203 CURDIES RIVER CURDIE 781.68 38.44 142.96 Jan 1961 Jul 2017 3 61.5
64 235204 LITTLE AIRE CREEK BEECH FOREST 11.17 38.65 143.53 Aug 1960 Aug 2017 70 56.5
65 235209 AIRE RIVER BEECH FOREST 25.22 38.67 143.58 Aug 1969 Aug 2017 0 53.42
66 235210 LARDNER CREEK GELLIBRAND 51.74 38.53 143.54 Dec 1969 Aug 2017 4 52.83
67 235211 KENNEDYS CREEK KENNEDYS CREEK 269.42 38.59 143.26 Jan 1970 Aug 2017 7 52.58
68 235216 CUMBERLAND RIVER LORNE 38.19 38.57 143.95 Dec 1971 Aug 2017 0 51.33
69 235219 AIRE RIVER WYELANGTA 91.16 38.7 143.48 Dec 1972 Aug 2017 3 50.17
70 235227 GELLIBRAND RIVER BUNKERS HILL 313.65 38.52 143.48 Jan 1976 Aug 2017 8 46.75
71 235233 BARHAM RIVER EAST BRANCH APOLLO BAY PARADISE 43.45 38.76 143.62 Sep 1983 Aug 2017 1 39.75
72 235234 LOVE CREEK GELLIBRAND 76.66 38.48 143.57 Apr 1985 Aug 2017 0 38.33
73 236202 HOPKINS RIVER WICKLIFFE 1358.79 37.7 142.72 Jun 1970 Aug 2017 4 52.92
74 236203 MOUNT EMU CREEK SKIPTON 1230.00 37.69 143.36 Aug 1926 Aug 2017 142 85.33
75 236204 FIERY CREEK STREATHAM 1001.32 37.68 143.06 Sep 1926 Aug 2017 123 86.92
76 236205 MERRI RIVER WOODFORD 888.01 38.32 142.48 Nov 1954 Jul 2017 3 68.75
77 236209 HOPKINS RIVER HOPKINS FALLS 8463.59 38.34 142.63 Oct 1961 Jul 2017 3 61.92
78 236210 HOPKINS RIVER FRAMLINGHAM 5143.99 38.24 142.7 Dec 1961 Jul 2017 0 62.08
79 236212 BRUCKNELL CREEK CUDGEE 230.51 38.35 142.65 Jan 1972 Jul 2017 0 52.08
80 236213 MOUNT EMU CREEK MENA PARK 313.91 37.53 143.46 Aug 1973 Aug 2017 2 50.5
81 236216 MOUNT EMU CREEK TAROON (AYRFORD ROAD BRIDGE) 2946.43 38.31 142.88 Jul 1984 Jul 2017 5 39.33
82 237200 MOYNE RIVER TOOLONG 568.69 38.32 142.23 Mar 1955 Jul 2017 0 69.17
83 237202 FITZROY RIVER HEYWOOD 264.11 38.13 141.62 Jun 1955 Aug 2017 0 69.08
84 237205 DARLOT CREEK HOMERTON BRIDGE 748.34 38.15 141.77 Jan 1970 Aug 2017 0 54.58
85 237206 EUMERALLA RIVER CODRINGTON 458.01 38.26 141.94 Mar 1971 Aug 2017 0 53.5
86 237207 SURRY RIVER HEATHMERE 296.06 38.24 141.66 Jun 1977 Aug 2017 0 47.33
87 238208 JIMMY CREEK JIMMY CREEK 22.24 37.37 142.51 Apr 1957 Aug 2017 0 67.58
88 238219 GRANGE BURN MORGIANA 1110.91 37.71 141.83 Nov 1970 Jul 2017 55 49.42
89 238223 WANDO RIVER WANDO VALE 173.58 37.5 141.43 Sep 1971 Aug 2017 2 53.17
90 238229 CHETWYND RIVER CHETWYND 69.75 37.32 141.48 Sep 1974 Jun 2017 7 49.67
91 238230 STOKES RIVER TEAKETTLE 191.46 37.87 141.41 Jan 1974 Aug 2017 3 50.92
92 238235 CRAWFORD RIVER LOWER CRAWFORD 613.62 37.98 141.45 Jan 1978 Aug 2017 0 47.25
93 401203 MITTA MITTA RIVER HINNOMUNJIE 1531.39 36.95 147.61 Mar 1933 Jul 2017 2 91.92
94 401208 CUDGEWA CREEK BERRINGAMA 357.52 36.21 147.68 Feb 1961 Aug 2017 0 64.33
95 401210 SNOWY CREEK BELOW GRANITE FLAT 413.32 36.57 147.41 Sep 1940 Aug 2017 0 84.83
96 401212 NARIEL CREEK UPPER NARIEL 255.72 36.45 147.83 Apr 1962 Aug 2017 0 63.33
97 401215 MORASS CREEK UPLANDS 536.17 36.87 147.7 Nov 1937 Jul 2017 1 87.67
98 401216 BIG RIVER JOKERS CREEK 357.48 36.93 147.47 Oct 1942 Jul 2017 3 82.67
99 401217 GIBBO RIVER GIBBO PARK 389.34 36.76 147.71 Oct 1979 Jul 2017 0 46
100 401220 TALLANGATTA CREEK McCALLUMS 454.44 36.21 147.34 Nov 1985 Aug 2017 2 39.92
101 402204 YACKANDANDAH CREEK OSBORNES FLAT 275.16 36.3 146.91 Mar 1973 Aug 2017 3 52.58
102 402206 RUNNING CREEK RUNNING CREEK 127.52 36.54 147.04 Oct 1974 Aug 2017 5 50.92
103 402213 KINCHINGTON CREEK OSBORNES FLAT 120.28 36.32 146.89 Nov 1977 Jul 2017 8 47.58
104 403200 OVENS RIVER WANGARATTA 5119.74 36.35 146.32 Feb 1894 Aug 2017 14 131
105 403205 OVENS RIVERS BRIGHT 493.67 36.73 146.95 Sep 1933 Aug 2017 128 82
106 403209 REEDY CREEK WANGARATTA NORTH 389.38 36.33 146.34 Mar 1949 Aug 2017 1 77.17
107 403213 FIFTEEN MILE CREEK GRETA SOUTH 226.77 36.62 146.24 Nov 1967 Aug 2017 6 58.17
108 403214 HAPPY VALLEY CREEK ROSEWHITE 139.81 36.58 146.82 Jun 1970 Aug 2017 2 56
109 403217 ROSE RIVER MATONG NORTH 178.61 36.82 146.58 Sep 1971 Aug 2017 7 54.42
110 403221 REEDY CREEK WOOLSHED 211.47 36.31 146.6 Jan 1974 Aug 2017 2 52.58
111 403222 BUFFALO RIVER ABBEYARD 415.09 36.91 146.7 Sep 1974 Aug 2017 3 51.92
112 403223 KING RIVER DOCKER ROAD BRIDGE 1085.31 36.52 146.39 May 1975 Aug 2017 3 51.33
113 403224 HURDLE CREEK BOBINAWARRAH 156.03 36.51 146.45 Sep 1975 Aug 2017 0 51.33
114 403226 BOGGY CREEK ANGLESIDE 109.19 36.61 146.36 Aug 1976 Aug 2017 18 49
115 403230 OVENS RIVER ROCKY POINT 2970.15 36.53 146.67 Jan 1975 Aug 2017 4 51.83
116 403232 MORSES CREEK WANDILIGONG 126.02 36.75 146.98 Jul 1982 Aug 2017 10 43.92
117 403233 BUCKLAND RIVER HARRIS LANE 457.07 36.72 146.88 Feb 1982 Aug 2017 6 44.75
118 404204 BOOSEY CREEK TUNGAMAH 830.67 36.12 145.83 Sep 1976 Aug 2017 0 50.75
119 404207 HOLLAND CREEK KELFEERA 460.78 36.61 146.06 Apr 1970 Aug 2017 1 57.17
120 405205 MURRINDINDI RIVER MURRINDINDI ABOVE COLWELLS 107.70 37.41 145.56 Jun 1949 Jul 2017 3 77.83
121 405209 ACHERON RIVER TAGGERTY 626.25 37.32 145.71 Jan 1956 Jul 2017 1 71.5
122 405214 DELATITE RIVER TONGA BRIDGE 358.12 37.16 146.11 Apr 1957 Aug 2017 0 70.5
123 405215 HOWQUA RIVER GLAN ESK 368.65 37.23 146.21 May 1957 Aug 2017 224 51.83
124 405217 YEA RIVER DEVLINS BRIDGE 361.53 37.38 145.47 Jul 1964 Jul 2017 4 63
125 405218 JAMIESON RIVER GERRANG BRIDGE 367.23 37.29 146.19 Nov 1964 Aug 2017 0 63.17
126 405219 GOULBURN RIVER DOHERTYS 701.64 37.33 146.13 Feb 1965 Aug 2017 8 62.33
127 405226 PRANJIP CREEK MOORILIM 791.16 36.62 145.31 Jul 1968 Jul 2017 0 59.58
128 405227 BIG RIVER JAMIESON 626.51 37.37 146.06 Oct 1968 Aug 2017 0 59.5
129 405228 HUGHES CREEK TARCOMBE ROAD 483.80 36.94 145.29 Jun 1969 Jul 2017 1 58.75
130 405229 WANALTA CREEK WANALTA 106.16 36.63 144.87 Mar 1971 Aug 2017 1 57.17
131 405230 CORNELLA CREEK COLBINABBIN 253.08 36.6 144.8 Apr 1971 Aug 2017 4 56.92
132 405234 SEVEN CREEKS D/S OF POLLY MCQUINN WEIR 154.62 36.89 145.68 Jun 1976 Jul 2017 14 50.92
133 405237 SEVEN CREEKS EUROA TOWNSHIP 347.86 36.73 145.57 Jun 1974 Jul 2017 10 53.33
134 405238 MOLLISON CREEK PYALONG 163.47 37.12 144.86 Jul 1977 Sep 2016 6 49.83
135 405240 SUGARLOAF CREEK ASH BRIDGE 609.80 37.06 145.06 Mar 1984 Aug 2017 15 43.42
136 405245 FORD CREEK MANSFIELD 115.73 37.04 146.05 Sep 1981 Aug 2017 1 47.17
137 405246 CASTLE CREEK ARCADIA 202.72 36.59 145.35 Oct 1981 Jun 2017 32 44.42
138 405248 MAJOR CREEK GRAYTOWN 284.69 36.85 144.91 Oct 1982 Aug 2017 1 46.25
139 405251 BRANKEET CREEK ANCONA 118.78 36.97 145.79 Dec 1982 Aug 2017 2 46.08
140 405264 BIG RIVER D/S OF FRENCHMAN CREEK JUNCTION 331.66 37.52 146.08 Nov 1986 Jun 2017 0 42.25
141 405274 HOME CREEK YARCK 180.80 37.11 145.61 Mar 1989 Jul 2017 0 40.08
142 406208 CAMPASPE RIVER ASHBOURNE 39.05 37.39 144.45 Feb 1945 Aug 2017 0 84.33
143 406213 CAMPASPE RIVER REDESDALE 637.64 37.02 144.54 Sep 1965 Jul 2017 60 58.75
144 406214 AXE CREEK LONGLEA 235.63 36.77 144.43 Mar 1977 Jul 2017 0 52.33
145 406226 MOUNT IDA CREEK DERRINAL 175.63 36.88 144.65 Jul 1990 Jul 2017 2 38.92
146 406235 WILD DUCK CREEK U/S OF HEATHCOTE-MIA MIA ROAD 211.92 36.95 144.66 Jan 1993 Jul 2017 10 35.83
147 407211 BET BET CREEK BET BET 628.62 36.92 143.75 Dec 1955 Jul 2017 350 44.67
148 407214 CRESWICK CREEK CLUNES 310.46 37.3 143.79 Dec 1955 Aug 2017 0 74
149 407217 LODDON RIVER VAUGHAN D/S FRYERS CREEK 295.45 37.16 144.21 Oct 1959 Jul 2017 3 69.92
150 407221 JIM CROW CREEK YANDOIT 166.79 37.21 144.1 Dec 1966 Jul 2017 3 62.83
151 407230 JOYCES CREEK STRATHLEA 149.01 37.16 143.96 Dec 1975 Jul 2017 0 54.17
152 407239 MIDDLE CREEK RODBOROUGH 148.06 37.14 143.91 Jan 1983 Jul 2017 144 35.17
153 407246 BULLOCK CREEK MARONG 188.61 36.73 144.14 Nov 1985 Jul 2017 3 44.17
154 408202 AVOCA RIVER AMPHITHEATRE 76.54 37.18 143.41 Aug 1979 Aug 2017 7 50.25
155 415201 WIMMERA RIVER GLENORCHY WEIR TAIL GAUGE 1967.83 36.91 142.64 Nov 1962 Aug 2017 4 67.33
156 415206 WIMMERA RIVER GLYNWYLLN 1377.05 36.95 142.86 Sep 1915 Aug 2017 504 72.92
157 415207 WIMMERA RIVER EVERSLEY 305.00 37.19 143.18 Nov 1915 Aug 2017 708 55.83
158 415220 AVON RIVER WIMMERA HIGHWAY 519.88 36.64 142.98 Mar 1976 Aug 2017 22 52.75
159 415226 RICHARDSON RIVER CARRS PLAINS 129.91 36.74 142.79 Jul 1984 Aug 2017 7 45.75
160 415237 CONCONGELLA CREEK STAWELL 241.27 37.03 142.82 Apr 1990 Aug 2017 1 40.58
161 415238 WATTLE CREEK NAVARRE 138.75 36.9 143.11 Jul 1989 Aug 2017 11 40.58
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Table S2: Median and mean flow depths for the study region taking all catchments into account

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Median of flow depth (mm) 2.26 1.37 1.36 1.96 3.52 7.95 16.96 24.93 22.79 15.23 7.74 4.27
Mean of flow depth (mm) 6.55 4.90 4.83 6.70 10.77 20.36 32.11 40.24 37.35 29.93 17.86 11.35

Text S2. Box-Cox transformation of streamflows

The flow data for most of the studied catchments was highly skewed towards lower flow val-

ues. Since the analysis required deriving a standardized streamflow index, it is important that

the series of this standardized streamflow index is as close to a normal distribution as possible.

However, with skewed flow data, such an outcome could not be achieved. A Box-cox trans-

formation was thus used to normalize the flow data. The Box-Cox transformation is a power

transformation that eliminates non-linearity between variables, differing variances, and variable

asymmetry. It is commonly used to transform a series into a new series with an almost normal

distribution. Although it is not always possible for a power transformation to bring the distribu-

tion to exactly normal, the usual estimates of λ will lead to a distribution that satisfies certain

restrictions on the first 4 moments which thus will usually be symmetric. For the present study,

a one-parameter Box-Cox transformation of the original streamflow depth data (for Qi > 0) was

done, as expressed below.

Q̂i = (Qi + 1)λ − 1forλ ̸= 0 (1)

Q̂i = ln (Qi + 1)forλ = 0 (2)

In the above equation, a value of 1 was added to the original value of Qi to ensure that the

quantity being transformed was always greater than 1 for the transformation to be feasible.

Here, λ is the transformation parameter of the transformation and was estimated using the
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MASS package available in R, through maximum likelihood estimation. Figure S1 shows the

plot of log-likelihood vs lambda for station ID 235204 with the dotted lines indicating the 95%

confidence interval for the optimum lambda value. Initially, the optimum value of λ was arrived

at by trying values from the set (0.1, 5] at increments of 0.1. However, while using this range it

was later realized that allowing λ to take negative values improves the transformation for many

catchments. Additionally, positive values beyond 2 were hardly selected. The range was thus

revised to be [-2,2].

Figure S1: Log-likelihood vs λ for the identification of the optimum value of λ for station ID
235204. The optimization yields a value of λ = 0.18 as the optimum lambda for the BC transform
for this station. The vertical dotted lines around the vertical line at 0.18 indicate the 95%
confidence interval for the optimum lambda value.
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Text S3. Calibration of the HMMs

The parameters of the HMM were arrived at using a constrained maximum likelihood estima-

tion, where the likelihood function LT is expressed as:

LT = δP (x1)ΓP (x2)....ΓP (xT )1
′ (3)

Here δ is the initial state distribution (Equation 8 in the paper), Γ (as Γ1 or Γ2) is the transition

matrix for the relevant model and T is the number of time steps. P (x) is the m × m diagonal

emissions matrix of probabilities for anm-state HMM, obtained from the error distribution model

having the ith diagonal element equal to the probability of being in state i at a given point in

time (Equation 9,12, or 15 in the paper). The emission probabilities P were obtained from the

corresponding error distribution model used to model the variable x.

The likelihood was estimated recursively as LT = αT1
′, where

α1 = δP (x1) (4)

and

αt = αt−1ΓP (xt) for t = 2, 3, 4, ...T

Numerically, LT was maximized by rearrangement to a negative log-likelihood and minimized

using global optimization.

The optimization response surface of a multi-state HMM often tends to have multiple local

optima (Supplementary Material of Peterson et al., 2021). To reliably identify the global optima,

a Differential Evolution-based global optimization scheme (Storn & Price, 1997) was adopted.

This scheme involves transforming a set of parameter vectors, termed as population, into a new

parameter vector set at each generation of evolution. The evolution is brought about by per-
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turbing an old parameter vector with the scaled difference of two arbitrarily selected parameter

vectors. The new set members thus obtained are more likely to optimize the objective function.

To ensure a robust optimization, the population size per parameter was set as 10 as it has been

noted that convergence to the global optimum is facilitated if this value is 10 or greater (Price

et al., 2006). Higher values in this case incurred undesirably larger computational time without

significant improvement in the model fit. Further, the maximum number of generations was

set to 550 as nearly all the models were seen to converge at either far less than or near to 550

generations. Model calibration at each catchment was performed 10 times for each state model

for the given low flow characteristic. Each calibration was run with a different random seed and

a randomly selected differential evolution strategy. To arrive at the most probable sequence of

states from all possible combinations of sequences for the given observation sequence of inten-

sity/duration/frequency (I/D/F), an efficient dynamic programming method, called the Viterbi

algorithm (Forney, 1973; Zucchini & MacDonald, 2009) was used. This algorithm identifies the

most probable sequence of states from the Markov chain of probabilities. The states of I/D/F

obtained through this were also referred to as the Viterbi states (named after the algorithm). The

algorithm was applied over the entire observation record to identify the most probable sequence

of I/D/F states, thereby also identifying any switching, if at all, in the states of the I/D/F.
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Figure S3: (a) Time series of standardized Antecedent Precipitation Index (sAPI) obtained for
station ID 407230. (b) Variation of SDI and sAPI over time for the catchment. The sAPI mirrors
the variability in the SDI series of the catchment, making it a suitable choice for a predictor in
the HMMs of the low flow characteristics.

Text S4. Assessing model reliability of IDF HMMs through diagnostic plots of

residuals

The validity and reliability of the IDF HMMs emerging from the application as discussed in the

paper were assessed by inspecting whether the pseudo-residuals were normally distributed or not

(Zucchini & MacDonald, 2009). This was carried out by visual inspection of pseudo-residual plots

and through the Shapiro-Wilk test (alpha = 0.05) as discussed in the paper under Section 3.1. For

models to be accurate, the pseudo-residuals must be normally distributed. The autocorrelation

plots of the pseudo-residuals help determine if the model has performed sufficiently well. If
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minimal autocorrelation is seen to carry into subsequent time steps, it indicates that errors do

not accumulate over time and that no information is ‘leftover’ and not incorporated in the model.

The next three figures represent the assessment of the behavior of residuals of the HMMs

of the three low flow characteristic for selected sample stations. Figure S4 gives an example

of an acceptable model performance as per the pseudo-residual analysis where the residuals

may be considered to be very close to being normally distributed. The auto-correlation of the

pseudo-residuals is almost always within the acceptable bounds for many consecutive time steps,

indicating that significant information from the data has been included in the model. No or

minimal serial correlation of the pseudo-residuals implies that inaccuracies in the model at a

given time step have very little effect on future time steps. The Shapiro-Wilk p-value is greater

than 0.05 for the pseudo-residuals in Figure S4 which confirms that the residuals are normal and

that the model is performing adequately.
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Figure S4: Diagnostic plots of the model residuals corresponding to the intensity HMM output
as discussed in Figure 6 for station ID 238223. (a) Time series of the normal pseudo-residuals
corresponding to the low flow peaks occurring over time (red lines at 0, ±1.96, ±2.58). (b)
Auto-correlation of the normal pseudo-residuals, with the blue dotted lines indicating the 95th
percentile confidence intervals for uncorrelated series. (c) Histogram of the normal pseudo-
residuals, with the red dotted line indicating a standard normal distribution. (d) Quantile-
Quantile (Q-Q) plot of the normal pseudo-residuals in relation to the theoretical quantiles.
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Figure S5: Diagnostic plots of the model residuals corresponding to the duration HMM output
as discussed in Figure 7 for station ID 227211. (a) Time series of the normal pseudo-residuals
corresponding to the low flow peaks occurring over time (red lines at 0, ±1.96, ±2.58). (b)
Auto-correlation of the normal pseudo-residuals, with the blue dotted lines indicating the 95th
percentile confidence intervals for uncorrelated series. (c) Histogram of the normal pseudo-
residuals, with the red dotted line indicating a standard normal distribution. (d) Quantile-
Quantile (Q-Q) plot of the normal pseudo-residuals in relation to the theoretical quantiles.
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Figure S6: Diagnostics of the model residuals corresponding to the frequency HMM output as
discussed in Figure 8 for station ID 227237. Residual (a) Annual time series of the normal pseudo-
residuals (red lines at 0, ±1.96, ±2.58). (b) Auto-correlation of the normal pseudo-residuals, with
the blue dotted lines indicating the 95th percentile confidence intervals for uncorrelated series.
(c) Histogram of the normal pseudo-residuals, with the red dotted line indicating a standard
normal distribution. (d) Quantile-Quantile (Q-Q) plot of the normal pseudo-residuals in relation
to the theoretical quantiles.
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Text S5. Warm periods of ENSO as used in the study

The ONI value at a given month is obtained from a 3-month running mean of the sea surface

temperature anomalies of the Niño3.4 region (5◦N-5◦S, 120-170◦W) in the equatorial Pacific

Ocean that are above a threshold of 0.5◦C. Warm (positive) SST anomalies are associated with

El Niño events while La Niña events are typically associated with cold (negative) SST anomalies.

Any given value would be considered to be indicating the occurrence of a warm ENSO episode

when at least 5 consecutive values in the ONI series lie above the threshold of 0.5◦C. The warm

periods identified in this way are shown below and are displayed as red vertical strips in Figure

10 of the paper. These were sourced from the United States National Oceanic and Atmospheric

Administration (NOAA) Climate Prediction Centre (CPC) (www.cpc.ncep.noaa.gov).
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Table S3: List of the warm periods of the ONI as used in Figure 10 of the paper.

MJJ 1951 MJJ 1958 AMJ 1969 AMJ 1982 JAS 1991 SON 2002 MJJ 2015
JJA 1951 JJA 1958 JAS 1969 MJJ 1982 ASO 1991 OND 2002 JJA 2015
JAS 1951 OND 1958 ASO 1969 JJA 1982 SON 1991 NDJ 2002 JAS 2015
ASO 1951 NDJ 1958 SON 1969 JAS 1982 OND 1991 DJF 2003 ASO 2015
SON 1951 DJF 1959 OND 1969 ASO 1982 NDJ 1991 JFM 2003 SON 2015
OND 1951 JFM 1959 NDJ 1969 SON 1982 DJF 1992 JJA 2004 OND 2015
NDJ 1951 FMA 1959 DJF 1970 OND 1982 JFM 1992 JAS 2004 NDJ 2015
DJF 1952 MJJ 1963 AMJ 1972 NDJ 1982 FMA 1992 ASO 2004 DJF 2016
JFM 1953 JJA 1963 MJJ 1972 DJF 1983 MAM 1992 SON 2004 JFM 2016
FMA 1953 JAS 1963 JJA 1972 JFM 1983 AMJ 1992 OND 2004 FMA 2016
MAM 1953 ASO 1963 JAS 1972 FMA 1983 MJJ 1992 NDJ 2004 MAM 2016
AMJ 1953 SON 1963 ASO 1972 MAM 1983 ASO 1994 DJF 2005
MJJ 1953 OND 1963 SON 1972 AMJ 1983 SON 1994 JFM 2005
JJA 1953 NDJ 1963 OND 1972 MJJ 1983 OND 1994 ASO 2006
JAS 1953 DJF 1964 NDJ 1972 ASO 1986 NDJ 1994 SON 2006
ASO 1953 JFM 1964 DJF 1973 SON 1986 DJF 1995 OND 2006
SON 1953 AMJ 1965 JFM 1973 OND 1986 JFM 1995 NDJ 2006
OND 1953 MJJ 1965 FMA 1973 NDJ 1986 FMA 1995 DJF 2007
NDJ 1953 JJA 1965 ASO 1976 DJF 1987 AMJ 1997 JJA 2009
DJF 1954 JAS 1965 SON 1976 JFM 1987 MJJ 1997 JAS 2009
JFM 1954 ASO 1965 OND 1976 FMA 1987 JJA 1997 ASO 2009
MAM 1957 SON 1965 NDJ 1976 MAM 1987 JAS 1997 SON 2009
AMJ 1957 OND 1965 DJF 1977 AMJ 1987 ASO 1997 OND 2009
MJJ 1957 NDJ 1965 JFM 1977 MJJ 1987 SON 1997 NDJ 2009
JJA 1957 DJF 1966 ASO 1977 JJA 1987 OND 1997 DJF 2010
JAS 1957 JFM 1966 SON 1977 JAS 1987 NDJ 1997 JFM 2010
ASO 1957 FMA 1966 OND 1977 ASO 1987 DJF 1998 FMA 2010
SON 1957 MAM 1966 NDJ 1977 SON 1987 JFM 1998 SON 2014
OND 1957 SON 1968 DJF 1978 OND 1987 FMA 1998 OND 2014
NDJ 1957 OND 1968 SON 1979 NDJ 1987 MAM 1998 NDJ 2014
DJF 1958 NDJ 1968 OND 1979 DJF 1988 AMJ 1998 DJF 2015
JFM 1958 DJF 1969 NDJ 1979 JFM 1988 MJJ 2002 JFM 2015
FMA 1958 JFM 1969 DJF 1980 AMJ 1991 JJA 2002 FMA 2015
MAM 1958 FMA 1969 JFM 1980 MJJ 1991 JAS 2002 MAM 2015
AMJ 1958 MAM 1969 MAM 1982 JJA 1991 ASO 2002 AMJ 2015
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