On the existence of multiple states of low flows in catchments in southeast Australia

Pallavi Goswami¹, Timothy Peterson², Arpita Mondal³, and Christoph Rüdiger⁴

¹IIT Bombay Monash Research Academy ²Monash University ³Indian Institute of Technology Bombay ⁴Bureau of Meteorology

April 4, 2023

Abstract

Hydrological variables of a catchment and their corresponding extreme characteristics have a possibility of switching regimes, particularly when a catchment undergoes protracted dry periods. This can result in a catchment experiencing a flow anomaly that is even more extreme than what was historically considered an extreme low flow event for the catchment. Catchments in southeast Australia have been shown to exhibit multiple states of mean annual flows. Given this and studies that suggest that extreme events may be changing with time, it is important to understand whether extremes in flows also have the potential to exist in multiple states. To investigate this, we studied intensity, duration, and frequency (IDF) of low flows for 161 unregulated catchments in southeast Australia. A Hidden Markov Model-based approach was used to examine shifts in the low flow characteristics. We found very strong evidence of low flow intensity exhibiting two distinct states for at least 34 (21%) catchments in the region, providing convincing reasons to believe that extremes in low flows can and have undergone regime changes. The second state of these catchments is often associated with higher values of low flow intensities. Simulation of the duration and frequency of these events, however, needs improvement with the current approach and may be better studied by accounting for climate indicators that may more suitably explain them. Impacts from a changing climate may enhance the triggering of low flows into alternate states, which calls for water managers to plan for changing regimes of extremes.

On the existence of multiple states of low flows in catchments in southeast Australia

³ Pallavi Goswami¹, Tim J. Peterson^{2,3}, Arpita Mondal^{4,5}, Christoph Rüdiger^{2,6}

 ⁴ ¹IITB-Monash Research Academy, IIT Bombay, Mumbai, India
 ⁵ ²Department of Civil Engineering, Monash University, Clayton, Victoria, Australia
 ⁶ ³Department of Infrastructure Engineering, University of Melbourne, Parkville, Victoria, Australia
 ⁷ ⁴Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India
 ⁹ ⁵Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai, India
 ¹⁰ ⁶Bureau of Meteorology, Melbourne, Victoria, Australia

12 Key Points:

1

2

13	•	Low flow regimes can switch states which may lead to intensification of low flow
14		events.
15	•	Existence of sustained warm and dry atmospheric conditions can cause the switching
16		of catchments into an intensified low flow state.
17	•	Information from precipitation, though useful, may not be sufficient to explain the
18		variability in low flow extremes.

 $Corresponding \ author: \ Pallavi \ Goswami, \ {\tt pallavi.goswami@monash.edu}$

19 Abstract

Hydrological variables of a catchment and their corresponding extreme characteristics have 20 a possibility of switching regimes, particularly when a catchment undergoes protracted dry 21 periods. This can result in a catchment experiencing a flow anomaly that is even more 22 extreme than what was historically considered an extreme low flow event for the catchment. 23 Catchments in southeast Australia have been shown to exhibit multiple states of mean an-24 nual flows. Given this and studies that suggest that extreme events may be changing with 25 time, it is important to understand whether extremes in flows also have the potential to 26 exist in multiple states. To investigate this, we studied intensity, duration, and frequency 27 (IDF) of low flows for 161 unregulated catchments in southeast Australia. A Hidden Markov 28 Model-based approach was used to examine shifts in the low flow characteristics. We found 29 very strong evidence of low flow intensity exhibiting two distinct states for at least 34 (21%) 30 catchments in the region, providing convincing reasons to believe that extremes in low flows 31 can and have undergone regime changes. The second state of these catchments is often as-32 sociated with higher values of low flow intensities. Simulation of the duration and frequency 33 of these events, however, needs improvement with the current approach and may be better 34 studied by accounting for climate indicators that may more suitably explain them. Impacts 35 from a changing climate may enhance the triggering of low flows into alternate states, which 36 calls for water managers to plan for changing regimes of extremes. 37

38

³⁹ Plain Language Summary

Recent studies have shown that the mean hydrological behavior of catchments can un-40 dergo changes. The present study explores whether extreme events, such as low flow 41 droughts, might also be undergoing regime-switching. The term 'switching of states' or 42 'regime-switching' relates to a shift in the underlying probability distribution of a variable. 43 With regards to streamflows, this may result in a catchment experiencing low flow droughts 44 that are even more extreme than what was historically considered a drought event for the 45 catchment. We found strong evidence of low flow intensity exhibiting two distinct states in 46 catchments in southeast Australia, providing convincing reasons to believe that extremes 47 in low flows can and have undergone state changes in the region. The second state of 48 these catchments is often associated with higher values of low flow intensities. Ignoring 49 such changes is likely to misrepresent low flow risks. This finding has profound importance 50 in enabling hydrologists to understand the possible ways in which hydrological events can 51 manifest themselves. Knowledge from these results supports the need to improve existing 52 models to incorporate more dynamic realism within them, without which they might be 53 blind to future hydrological shifts that could have a significant impact on water security. 54

55 1 Introduction

Water systems and hydrological regimes are known to be influenced by climatic perturba-56 tions, leading to irregularities in flow quantity and quality. Many studies have reported 57 changes in rainfall-runoff relationships (Kiem & Verdon-Kidd, 2010; Van Dijk et al., 2013; 58 Chiew et al., 2014; Miao et al., 2015; X. Liu et al., 2018). Drought flows are being observed 59 to be drastically lower than expected for a given decline in precipitation (Alvarez-Garreton 60 et al., 2021; Avanzi et al., 2020; Tian et al., 2020). The processes that generate runoff 61 have been recently shown to change during (Saft et al., 2015) and after (Peterson et al., 62 2021) the occurrences of meteorological droughts. This results in less streamflow per unit 63 of rainfall during and after the drought than that which occurred before the drought. Dis-64 turbances in catchments induced by changes in climate or from anthropogenic interventions 65 have the potential to cause hydrological variables to undergo regime changes, also referred 66 to as 'switching of states' or 'state shifts'. 'State shifts' relates to a shift in the underlying 67 probability distribution of the variable, implying non-stationarity. This means that a forcing 68

in the form of a disturbance can push a catchment past a fold point and into a new steady 69 state and once the disturbance ends the catchment stays indefinitely in this new state until 70 a disturbance pushes it back to the original state, as explained in Figure 1. In the context 71 of regime-switching of extremes, a switching could result in a catchment experiencing a flow 72 anomaly that is even more extreme than what was historically considered an extreme event. 73 There is evidence suggesting that the mean behaviour of hydrologic variables can exhibit 74 switching of states (Fowler et al., 2022; Peterson et al., 2021; Tauro, 2021; Zipper et al., 75 2022), i.e., they can exist in multiple states. The study by Peterson et al. (2021), for ex-76 ample, showed that catchments can not just exist in alternate states of streamflow regimes 77 but can even continue to persist in such alternate states for extended periods. This suggests 78 that low flows may also exhibit such behavior, thereby possessing far more complex form 79 of non-stationarity than suggested by Goswami et al. (2022). However, to date, studies on 80 extreme value analysis for streamflows have not examined this in detail. Many commonly 81 existing streamflow models continue to discount that low flows can have temporal variability 82 beyond their routine regime. 83

Southeast Australia (SEA) is known to have a hydroclimate that is among the most variable 84 in the world (Peel et al., 2004). The hydroclimatologial extremes that the region has under-85 gone in the past, including the Millennium Drought (Van Dijk et al., 2013), have been shown 86 to influence the way streamflow responds (Saft et al., 2015). Many of these catchments have 87 been shown to exhibit hydrologic non-stationarity in rainfall-runoff/climate-runoff relation-88 ships (Chiew et al., 2014), with streamflow droughts already shown to be increasing across 89 the region (Wasko et al., 2021). Moreover, many existing studies assume catchments to 90 have infinite resilience. Peterson et al. (2021), however, showed that annual and seasonal 91 mean streamflow in many of these catchments exhibited switching in regimes following the 92 Millennium Drought and that not all of them showed recovery when rainfall returned to 93 normal. The work falsified the widely held assumption that catchments always have only 94 a single steady state around which they fluctuate and showed that catchments could have 95 finite resilience. The work, however, looked at mean flows, analyzed at the annual and sea-96 sonal timescales. It does not provide insights on regime-switching of extreme (low) flows, nor 97 on the possibility of switching of such regimes at much finer (for eg., monthly) timescales. 98 This brings forth the question of whether low flows can also undergo changes in state. With 99 the region's susceptibility to exhibit changes in the mean behavior of streamflows, the re-100 gion provides a good opportunity to study whether the behavior of extreme flows can also 101 undergo changes in states. 102

Limited studies exist on the understanding and evaluation of shifts in streamflows, and 103 none examine low flows or state change in particular. With regards to techniques for under-104 standing changes in hydrologic extremes in general, the few most widely applied statistical 105 approaches are the non-parametric Mann-Kendall trend analysis (Mann, 1945; Kendall, 106 1975), change point analysis, and the Generalized Extreme Value (GEV) theory (Coles et 107 al., 2001). Previous studies have used the Mann-Kendall trend analysis to understand shifts 108 in hydrologic extremes (X. Zhang et al., 2001; Miller & Piechota, 2008; Burn et al., 2010; 109 Sagarika et al., 2014; Bennett et al., 2015). This technique, however, is not adequately 110 tailored for the analysis of extremes per se and therefore does not offer a way to determine 111 changes in flow magnitudes (Solander et al., 2017). The other common approach of using 112 the GEV theory-based analysis has been used to study the extreme streamflow data in 113 a non-stationary framework through time-dependent parameters in the GEV distribution 114 (Katz, 2013), allowing trend (and thus regime change) detection in extremes. However, 115 limited approaches exist that allow a comprehensive assessment of state change, entailing 116 aspects such as time series simulation of extreme data, classification of the extreme data 117 into different states (if they exist), and identification of the timing of state shifts. 118

One such technique that offers the capability to detect state-changes and breaks in persistence in a time series is the hidden Markov modeling approach. Being a doubly embedded stochastic process model, it makes for a good modeling choice for simulating data governed

by complicated nonlinear hydrological phenomena. HMMs are statistical Markov mod-122 els consisting of a hidden or unobservable 'parameter process' which satisfies the Markov 123 property, and a 'state-dependent process', whose behavior depends on the underlying state 124 (Zucchini & MacDonald, 2009). The approach provides a highly flexible modeling frame-125 work that can detect the existence of different 'states' in a variable of interest by quantifying 126 the probability of the variable being in a given state over time. HMMs were developed dur-127 ing the late 1960s and early 1970s (Baum & Petrie, 1966) for speech recognition, and have 128 since been successfully implemented in several applications, including climate and hydro-129 logic modeling (Thyer & Kuczera, 2003; Robertson et al., 2003, 2004). Mallya et al. (2013) 130 applied HMM to develop a drought index for probabilistic assessment of drought charac-131 teristics. Turner and Galelli (2016) applied HMM to examine the impact of regime-like 132 behavior in streamflows on the performance of reservoir operating policy. They and Kucz-133 era (2000) used the hidden state Markov (HSM) model to simulate annual rainfall series 134 in Australia. Rolim and de Souza Filho (2020) used it to identify shifts in low-frequency 135 variability of streamflows. Bracken et al. (2014) used HMM along with climate indices to 136 simulate multidecadal streamflows. More recently, Peterson et al. (2021) developed Hid-137 den Markov Models (HMM) to statistically identify if, and when, streamflow recovers from 138 meteorological droughts, and in doing so provide empirical evidence that catchments often 139 have multiple hydrological states. Overall, HMMs are a useful tool for identifying state 140 changes in a time series based on the dictating underlying process. By virtue of being a 141 mixture model, HMM provides an unsupervised classification technique that can be applied 142 to capture persistence and hence breaks in persistence in a time series, including low flows. 143

The present study aims to falsify the assumption that a single state is adequate to represent 144 low flow events. This includes falsifying the commonly held notion that including rainfall 145 variability is sufficient to account for non-stationarity in low flows and that low flows do not 146 undergo long-term changes. To investigate this, the metrics used to characterize low flow 147 events, namely, their intensity, duration, and frequency (IDF) were studied to test whether 148 these can exist in more than one state, focusing on catchments in SEA. The study aims to 149 provide an investigation of low flow extreme shifts along with finding when these changes are 150 occurring for these catchments. To do this, we used the Hidden Markov modeling approach 151 to identify state changes in the IDF of low flows. Although HMMs have been applied to 152 investigate changes in flows and precipitation in previous studies as discussed above, these 153 have not been specifically used to model low flow characteristics for investigating state 154 changes in regimes of low flows. This study thus also presents a relatively less explored 155 application of HMMs in investigating state changes in the extreme characteristics of low 156 flows. The methodology adopted here also presents an alternative approach for examining 157 hydrologic non-stationarity observed in the low flow IDF by examining if state-dependent 158 distributions are required to explain the variability in the observed data. 159

¹⁶⁰ 2 Data and Methods

¹⁶¹ 2.1 Study Region and Data

For the present work, 161 unimpaired catchments in southeast Australia (SEA) were studied 162 using their monthly streamflow as flow depth (mm) and precipitation data (mm), both 163 aggregated from daily values. The streamflow data of these catchments was sourced from 164 Peterson et al. (2021) and pre-processed as described in Goswami et al. (2022) following the 165 quality control of Peterson et al. (2021). The catchments were chosen based on their gauge 166 record quality while also ensuring that all these catchments had flow records at least for 167 15, 7, and 5 years before, during, and after the Millennium Drought, respectively. All the 168 catchments had at least 35 years of flow and precipitation data (Text S1 and Table S1 in 169 Supporting Information S1). More information on the data can be found in Goswami et al. 170 (2022). Importantly, this data provided an opportunity to investigate changes in extremes 171 occurring in natural systems due to a changing climate and not through reservoir operations 172 or land use practices. The 161 catchments and their corresponding gauging stations are 173

Figure 1: Illustration of regime-switching of a system (for eg., a hydrologic variable of interest) from State 1 to State 2 under the influence of a forcing (hydrologic disturbance). (Adopted from Peterson & Western, 2014.)

shown in Figure 2a, with the colored circles denoting the mean annual streamflow depth.
Figure 2b shows the mean annual precipitation for the respective gauges. While this study
is focused on the SEA region, the analysis and the understanding from it are relevant to all
catchments where hydrological droughts are likely to become more extreme.

178 2.2 Deriving IDF of Low Flows

In this study, low flows were defined as representative of streamflow droughts describing a 179 catchment's condition when streamflows are anomalously low relative to long-term monthly 180 means. The term 'low flow' as used in this work can be understood as a type of hydrological 181 drought. By common definition, a hydrological drought denotes a deficit in surface water 182 and groundwater (Wilhite & Glantz, 1985). Thus, often the term hydrological drought takes 183 on a broader hydrological definition and can refer to situations of low flows, low snowmelt, 184 low spring flow, low groundwater levels, etc., relative to normal conditions. However, the 185 present study focuses primarily on conditions where streamflows are anomalously low relative 186 to their expected normal flow conditions. The study here thus uses the term 'low flows' (or 187 'low flow droughts') for the sake of being specific to the domain being investigated. 188

For identifying low flow spells and deriving their associated characteristics, an approach 189 similar to that used in Goswami et al. (2022) was applied here. First, the monthly flow 190 depths at any given catchment (Figure 3a) were transformed by applying a Box-Cox (BC) 191 power transformation (Box & Cox, 1964), using catchment-specific lambda values, to reduce 192 the skew and for better identification of flow values which were very low (Text S2 and Figure 193 S1 in Supporting Information S1). The transformed flows were then standardized using the 194 mean and standard deviation of the transformed flow series at that catchment. The sign 195 of the obtained series was then reversed such that values above zero pointed to below-196 average streamflows. The resultant series was termed as the Streamflow Drought Index 197 (SDI) (Figure 3b). 198

From the SDI series, monthly low flows were defined by using a threshold following the Peak-Over-Threshold (POT) approach (Coles et al., 2001). In the identification of low flow

Figure 2: (a) Location of the study region and the 161 catchments (boundary shown in gray) along with their corresponding gauging stations (colored circles). The color of the gauge stations in (a) and (b) shows the mean annual flow depth and the mean annual precipitation, respectively.

periods, the choice of a low flow threshold is often subjective (Pushpalatha et al., 2012). 201 For the current work, the threshold for defining the low flows was chosen to be the 65th 202 percentile value of the SDI series. This ensured that most of the catchments had at least 203 more than 40 values of intensity of low flows required for the model to perform satisfactory 204 simulations. Higher thresholds corresponding to the 75th, 85th, and 95th percentiles resulted 205 in significantly reduced sample sizes (Figure S2 in Supporting Information S1). This is a 206 significant aspect as the capability of a Markovian model to simulate data improves when 207 more data is available. Further, it was found that for the number of points lying above the 208 threshold of 65th percentile, more than half of these lied above the 85th percentile for most 209 of these catchments. 210

For this work, we focus on three important characteristics of low flows, namely, their inten-211 sity, duration, and annual frequency. These were derived from the SDI time series following 212 their respective definitions in Goswami et al. (2022), as shown in Figure 3c. The duration 213 of a low flow event was defined as the number of months for which the monthly SDI series 214 remained above the threshold. The peak value that the SDI takes over the low flow spell 215 was regarded as the intensity of the event. The more positive the peak value in a spell, the 216 more intense the low flow event. The total number of such low flow events occurring in a 217 streamflow water year was regarded as the annual frequency of the low flow events. The 218 water year for computing frequency was taken from March of the current year, running for 219 12 months until February of the next year, following the definition as in X. S. Zhang et 220 al. (2016). The March-February water year is typical in parts of SE Australia (particularly 221 Victoria), where minimum flows are usually observed at the end of the Boreal summer. 222

223 2.3 Modeling IDF Using Hidden Markov Models (HMMs)

224 2.3.1 Hidden Markov Models for Low Flow IDF

HMM is a statistical Markov model consisting of two parts: an unobservable (or hidden) 'parameter process', C, which satisfies the Markov property, and a 'state-dependent process', X, in such a way that when $C^{(t)}$ is known, the distribution of X depends only on the present state of C and not on the previous states or observations (Zucchini & MacDonald, 2009). HMM assumes that the behavior of the process X depends on C. A simple HMM can be summarized by the following two equations:

$$Pr(C^{(t)} \mid C^{(t-1)}) = Pr(C^{(t)} \mid C^{(t-1)}) \quad t = 2, 3, \dots$$
(1)

241

$$Pr(X^{(t)} \mid \boldsymbol{X}^{(t-1)}, \boldsymbol{C}^{(t)}) = Pr(X^{(t)} \mid C^{(t)}) \quad t \in \mathbb{N}$$
(2)

where, $C^{(t)}$ represents the value of C at a given time t, $C^{(t)}$ is the Markov chain of probabilities and denotes the vector $[C_1, C_2, C_3, ..., C_t]$. $X^{(t)}$ represents the value of X at a given time t, and $X^{(t)}$ denotes the vector $[X_1, X_2, X_3, ..., X_t]$. If the Markov chain $C^{(t)}$ has mstates, the HMM of X is called an m-state HMM, where each state has a different distribution. The model provides a Markov chain, i.e. the probability of X being in each state over time which involves maximization of the following probability (Zucchini & MacDonald, 2009):

$$Pr\left(\boldsymbol{C}^{(T)} = \boldsymbol{c}^{(T)} \mid \boldsymbol{X}^{(T)} = {}_{obs}\boldsymbol{x}_{t}^{(T)}\right)$$
(3)

In the above expression, c is a sequence of possible states over the time steps and x is the vector of observed data. For an *m*-state HMM there are m^T possible sequences, T being the length of the time series.

Using this background of HMMs, we built temporal HMMs were built for each of the three 245 low flow characteristics (i.e. low flow IDF) that examined for one and two states in these. 246 The hidden states were the states of the existing climatic conditions. The model learnt 247 about the state of extremes (C) by observing the low flow characteristic being modeled (x). 248 Since the actual number of hydrological states for a given low flow characteristic is unknown, 249 it was assumed that the low flow characteristics of a catchment can cycle through two states. 250 A given low flow characteristic was thus simulated as being in one of the two distinct states. 251 At each time point, t, the observed low flow characteristic was considered a random variable 252 defined by a parametric distribution for each state. The state distribution at any time t253 depended upon the Markov chain of states at the preceding time step. For state, i, and at 254 255 time, t, the conditional mean for the distribution of the given low flow characteristic under consideration was simulated as: 256

$$_{257} \qquad \qquad \widehat{tx_i} = a_{0,i} + a_1.(sAPI_t) \qquad \qquad : for intensity and duration \qquad (4a)$$

$$_{258} \qquad \qquad \widehat{tx_i} = a_{0,i} + a_1.(mean \ annual \ sAPI_t) \qquad \qquad : for \ frequency \qquad (4b)$$

Figure 3: Deriving the intensity, duration, and frequency of low flows. (a) Flow depth (mm) time series for Station ID 407230. (b) Times series of the de-seasonalized (and reversed in sign) flow, termed as the Streamflow Drought Index (SDI), derived from the flow values for the catchment. The threshold is shown by the brown horizontal line at SDI = 0.51 which represents the 65th percentile of the SDI time series for this catchment. Values of SDI lying above the threshold represent low flows. (c) A zoomed window of the SDI series for the years 2010–2013 to illustrate how the IDF are derived from the SDI time series.

where $a_{0,i}$ was a state-dependent parameter allowing for a shift in the catchment's hydrological response, a_1 was a state-independent parameter that links a suitable model covariate to x. In this study, the standardized antecedent precipitation index, sAPI (or the mean annual sAPI for modeling frequency) was used as the covariate responsible for the observed variability in the low flow characteristic (sAPI is discussed in detail in Section 2.3.2). In

Equations 4a and 4b, the $sAPI_t$ (or mean annual $sAPI_t$) was taken at the corresponding

time instance when the low flow characteristic was observed. The error in this model was defined as a time-invariant state-dependent variance, σ_i^2 .

The Markov state $C^{(t)}$ at time t was simulated as:

268

276

280

288

$$C^{(t)} = Markov (\mathbf{\Gamma}) \tag{5}$$

where Γ is the transition matrix. Since the number of extreme states was assumed as two, we, therefore, investigated one- (Γ_1) and two- (Γ_2) state Markov models. The transitioning between any two consecutive states is explained using the schematic in Figure 4a. The two-state matrix Γ_2 can be written as:

$$\Gamma_2 = \begin{vmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{vmatrix} = \begin{vmatrix} p_{11} & 1 - p_{11} \\ 1 - p_{22} & p_{22} \end{vmatrix}$$
(6)

Here, p_{ij} (terms shown in Figure 4a), denotes the probability of the state at t transitioning from $C_i^{(t-1)}$ to $C_j^{(t)}$ (where $i, j \leq 2$), i.e.,:

$$p_{ij} = Pr(C_j^{(t)} \mid C_i^{(t-1)}) \tag{7}$$

Further assuming the HMM is homogeneous (i.e. transition probabilities are time-invariant),

 Γ_1 and Γ_2 required the estimation of zero and two transition probabilities, respectively. Additionally, the initial probability of being in each state was defined as follows:

$$\boldsymbol{\delta}_1 = 1\boldsymbol{\delta}_2 = \begin{vmatrix} \boldsymbol{\delta}_1 \\ \boldsymbol{\delta}_2 \end{vmatrix} = \begin{vmatrix} \boldsymbol{\delta}_1 \\ 1 - \boldsymbol{\delta}_1 \end{vmatrix}$$
(8)

where δ_1 and δ_2 were the initial probabilities of being in states 1 and 2, respectively.

The probability density in the error model of the HMM was derived using a two-parameter gamma distribution, a log-normal distribution, and a Poisson distribution for the intensity, duration, and frequency of low flows, respectively (Table 1). This was done after testing the capabilities of these respective distributions to satisfactorily represent these characteristics.

The gamma distribution, f_{Gam} , as used for building the HMM for modeling intensity, can be represented as:

$$f_{Gam}\left(x = {}_{obs}x_t; \ k = \frac{t^2 x_i^2}{\sigma_i^2}, \ \theta = \frac{\sigma_i^2}{t^2 x_i}\right) = \frac{x^{k-1} e^{-\frac{x}{\theta}}}{\theta^k G(k)} \qquad for \ x, \theta, k > 0$$
(9)

where θ is the scale parameter, k is the shape parameter and G(k) is the gamma function on k. The parameters k and θ were derived to ensure that the mean of the gamma distribution was as defined by Equation 4a, and were obtained by rearrangement of the Markov Mean, $E[x] = k\theta = {}_{t}x_{i}$ and the Markov Variance, $Var[x] = k\theta^{2} = \sigma_{i}^{2}$. In simple form,

$$k = \frac{(Markov \ Mean)^2}{Markov \ Variance} \tag{10}$$

$$\theta = \frac{Markov \ V \ driance}{Markov \ Mean} \tag{11}$$

The log-normal distribution, $f_{LogNorm}$, as used for modeling duration can be represented as:

$$f_{LogNorm}\left(x = {}_{obs}x_t; \mu = log \frac{t^{x_i^2}}{\sqrt{\sigma_i^2 + t^{x_i^2}}}; \sigma = \sqrt{log\left\{\frac{\sigma_i^2}{t^{x_i^2}} + 1\right\}}\right) =$$

$$\frac{1}{x\sigma\sqrt{2\pi}}exp\frac{-(\log x-\mu)^2}{2\sigma^2}, \quad for \ x>0$$
(12)

where μ and σ are the mean and standard deviation of logarithmic values of x and were related to the *Markov Mean*, E[x], and *Markov Variance*, Var[x], as:

$$\mu = \log \frac{(Markov \ Mean)^2}{\sqrt{Markov \ Variance + (Markov \ Mean)^2}}$$
(13)

$$\sigma = \sqrt{\log\left\{\frac{Markov\ Variance}{(Markov\ Mean)^2} + 1\right\}}$$
(14)

The Poisson distribution, f_{Pois} , as used for modeling frequency can be represented as

$$f_{Pois}\left(x = {}_{obs}x_t; \ \lambda = \sigma_i^2\right) = \frac{\lambda^x e^{-\lambda}}{x!} \quad for \ x \ge 0 \ and \ \lambda > 0 \tag{15}$$

where λ , the mean parameter of the Poisson distribution, was arrived at using

$$\lambda = Markov \ Mean \tag{16}$$

The parameters of the HMM were arrived at using a constrained maximum likelihood es-309 timation. The details of the calibration process are presented in Text S3 in Supporting 310 Information S1. To arrive at the most probable sequence of states from all possible com-311 binations of sequences for the given observation sequence of intensity/duration/frequency 312 (I/D/F), an efficient dynamic programming method, called the Viterbi algorithm (Forney, 313 1973; Zucchini & MacDonald, 2009) was used. This algorithm identifies the most probable 314 sequence of states from the Markov Chain of probabilities. The states of I/D/F obtained 315 through this were also referred to as the Viterbi states (named after the algorithm). The 316 algorithm was applied over the entire observation record to identify the most probable se-317 quence of I/D/F states, thereby also identifying any switching, if at all, in the states of the 318 I/D/F. 319

320 2.3.2 Covariate Used in the IDF HMMs

308

٦

341

For this study, the HMMs of IDF were built using a linear relationship between these low 321 flow characteristics and the available water through precipitation. To represent the available 322 water through precipitation at a catchment, a form of the Antecedent Precipitation Index 323 (API) was used. This serves as a covariate in the HMMs. Similar to the Standardized 324 Precipitation Index (SPI), the API is an empirical index for indirectly estimating how much 325 water is available in the catchment (soil) from precipitation. While SPI is calculated based 326 on a fitted distribution of a moving average of the precipitation time series, API provides 327 a current precipitation water availability indicator employing a constant rate of water de-328 pletion from the soil. API estimates the current water available in the soil by multiplying 329 API at the previous time step by a depletion factor and adding the previous time step's 330 precipitation. The definition of API as used in the present work is partly adapted from 331 studies like Kohler and Linsley (1951); Crow et al. (2005); Y. Y. Liu et al. (2011); Holmes 332 et al. (2017), where this index has been used for determining drought conditions and for 333 other watershed analysis. API is a simplified water balance model built on the assumption 334 that the amount of available water in a catchment is related to its antecedent precipitation 335 conditions. 336

We computed the API at monthly time steps, multiplying the index from the previous month by the depletion rate (γ) and adding the current monthly precipitation as shown below:

$$API_t = min\left(\gamma_n API_{t-1} + 0.75P_t, \ API_{max,n}\right)$$
(17)

with the API at the first time step calculated as:

$$API_{(t=1)} = 0.75P_{(t=1)} \tag{18}$$

 API_t and $API_{(t-1)}$ are the current and previous month's API, with γ modulating API_{t-1} , 342 and P_t is the current month's precipitation depth. The multiplicative factor of 0.75 to P_t 343 was used to account for the loss of precipitation water while reaching the soil (interception). 344 Since API is representative of the amount of available water in the soil, it was capped to a 345 maximum value $(API_{max,n})$ to indicate full saturation (Dharssi et al., 2017; Holmes et al., 346 2017) at a given catchment n. The value of $API_{max,n}$ was varied in proportion to the mean 347 of all monthly precipitation values at that catchment, $\overline{P_n}$, as shown in Equation 19. The 348 value of the multiplicative factor ϕ_n in Equation 19 indicates the proportion of maximum 349 monthly water that the soil can hold to the average precipitation at the station. 350

$$API_{max,n} = \phi_n \cdot \overline{P_n} \qquad \phi_n \in [4, 10] \tag{19}$$

The parameters γ and ϕ as used in Equations 17 and 19, respectively, are meant to simplify 352 the complex mechanisms controlling water availability from precipitation at a catchment. 353 They incorporate the dynamic range and variability of the actual daily API values that get 354 reflected as monthly aggregated values. The values of ϕ and that of γ at a given catchment 355 were chosen by running a simple optimization experiment for each catchment individually 356 instead of assuming a single constant value for them uniformly across the study region. 357 This was done as these parameters have a considerably large spatial variation due to several 358 factors, including soil type, soil density, vegetation, exposure, hill slope, etc. 359

351

The optimization was aimed at yielding such values of these parameters that maximized 360 the correlation between the low flow intensities at a catchment and the standardized time 361 series of the catchment's API (sAPI). This allowed a maximum transfer of information in 362 form of linear dependence from precipitation (through sAPI) to low flow intensity, assuming 363 the latter was a response of the former. The range of the multiplicative factor ϕ was set 364 to vary from 4 to 10 with increments of 1 while that of γ was varied from 0 to 0.99 with 365 increments of 0.01. Since API as defined above is a measure of dryness or wetness of the soil 366 in response to the monthly precipitation totals, the API is the soil water memory and is a 367 proxy for the amount of water available from precipitation to contribute to flows. It takes 368 into consideration the concurrent and lagged transfer of information from precipitation to 369 flows (as represented by Equation 17). Further, it was also found that API as used here 370 yielded a more direct relationship with low flow intensities than precipitation or SPI did 371 with low flow intensities (Figure S3, Supporting Information S1). Since the API time series 372 was derived with an inherent assumption that API = 0 at t = 0, the first twelve values of 373 monthly sAPI were discarded considering those months to be the warming-up period of the 374 API series. In the HMM models of intensity and duration, sAPI was used as a covariate, 375 while for the annual frequency HMM, the mean of annual sAPI was used as the model 376 covariate to be consistent with the timescales. Figure S5a shows the sAPI as obtained for 377 a sample station through the process explained above. Figure S5b shows the established 378 (inverse) relation between SDI and sAPI over time for a sample station. The sAPI closely 379 mimics the SDI, thus supporting the use of sAPI as a predictor in the HMM. 380

2.3.3 Configurations of One-state and Two-state IDF Models

For modeling low flow intensity, a monthly HMM was built with gamma distribution as the 382 error distribution model. The intensity data at a catchment was modeled using the corre-383 sponding value of the sAPI occurring at the same point in time. For any given catchment, 384 two models were built — a one-state model and a two-state model. The mean and standard 385 deviation of the two-state model were allowed to vary as shown in Table 1. While the mean 386 was a function of the covariate as well as the state, the variance was varied only with the 387 state and not with time. Similarly, for modeling duration, a monthly HMM was built with a 388 log-normal distribution as the error distribution model. The duration data at a catchment 389 was modeled using the corresponding value of the sAPI occurring at the same point of time 390 as the intensity (peak) of the low flow spell. For modeling low flow frequency, the total 391

count of all low flow events that took place in a streamflow water year was used. Annual
 HMMs were built with Poisson distribution as the error distribution model and the mean
 annual sAPI was used as a covariate.

Table 1 shows the model configurations for the one-state and two-state HMMs of the IDF. By employing such a framework, the cumulative probability of IDF was time-varying because of the non-stationary mean and standard deviation. Note that in the interests of parsimony, HMMs built here did not consider state changes for the parameter a_1 (Equations 4a and 4b).

Low flow characteristic	Covariate used	$\left \begin{array}{c} \textbf{Error distribution}\\ \textbf{model} \ (\varepsilon) \end{array}\right.$	Model configuration
Intensity (I)	sAPI	Gamma	$\begin{vmatrix} \widehat{tI_i} = a_{0,i} + a_1 . (sAPI)_t \\ {}_tI_i \sim Gam(\widehat{tI_i}, \sigma_i^2 \mid i) \end{vmatrix}$
Duration (D)	sAPI	Log-normal	$ \begin{vmatrix} \widehat{tD_i} = a_{0,i} + a_1.(sAPI)_t \\ {}_tD_i \sim LogNorm(\widehat{tD_i}, \sigma_i^2 \mid i) \end{vmatrix} $
Frequency (F)	Mean Annual sAPI	Poisson	$ \begin{vmatrix} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$

Table 1: Configurations of the IDF HMMs

Ranges: $a_0 \in [-50, 50]; a_1 \in [-5, 5]; \sigma \in [1e - 7, 35]$

The subscript i denotes the state index and can take values 1 or 2.

 σ_i denotes the standard deviation of the error model in state i

400 2.3.4 Assigning of Viterbi States

Figure 4 depicts the possible Markov state transitions considered for the analysis here. As 401 mentioned before in Section 2.3.1, it was assumed that the maximum number of states a 402 given low flow characteristic's time series can take are only two, viz., normal and non-normal 403 (Figure 4a). For illustration, Figure 4b shows the possible model outcomes of applying the 404 framework on the intensities of low flows, where the three panels represent the time sequence 405 of the Viterbi states taken under each of the outcomes. It may be noted that since we are 406 modeling extreme characteristics of low flows, both states represent regimes of extremes. 407 Thus, the normal state of the regime of an extreme implies a state when values of I/D/F of 408 low flow droughts given the history of the region may be considered usual or not unexpected. 409 In simple words, the normal state of low flow I/D/F as defined in the study here corresponds 410 to low flow droughts that could be an outcome of a seasonal fluctuation resulting in flow 411 conditions that, while still considered extreme, are within the statistical likelihood of an 412 expected low flow drought condition for the region. The non-normal state, on the other 413 hand, can either be less extreme than normal low flows or more extreme than normal low 414 flows. However, both cannot co-occur for the time series of I/D/F for a given catchment, 415 following the assumption that the maximum number of states allowed is 2. While modeling 416 each of the IDF, we assigned states by assuming that the time stamp that had the value of 417 the covariate (sAPI for intensity and duration; mean annual sAPI for frequency) closest to 418 the median value of the covariate for a catchment was the time when the given I/D/F value 419 was in a normal state. A two-state model of HMM would have either 'high' and 'normal' 420 states or 'low' and 'normal' states (Figure 4a). The HMM built here classified an observation 421 to be in a high state if the 50th percentile of the Viterbi I/D/F value simulated at a given 422 point in time was more/higher than the 50th percentile of the normal state I/D/F value. 423 An observation was classified to be in a low state if the 50th percentile of the Viterbi I/D/F424

425 426

value simulated at a given point in time was less than the 50th percentile of the normal state I/D/F value.

Figure 4: (a) Depiction of Markov state transitions in the applied HMM framework. Each state can either continue to sustain or switch to the other state. (b) The three possible outcomes from applying the proposed HMM to a low flow characteristic. For illustration, the time series of the intensity of low flows is used to demonstrate the possible results from applying the model. The top panel shows a catchment where the intensity only has one state. The middle panel shows a catchment where the intensity has two states, with the second state (the high state) representing more intense low flows. The bottom panel shows a catchment where the intensity has two states) representing less intense low flows.

427 2.4 Identifying Catchments With Two States in IDF

The flowchart in Figure 5 summarizes the overall flow of the methodology pertaining to the analysis carried out. Following the steps as laid out in Figure 5, to decide the best model for a given characteristic at a catchment, the Akaike Information Criterion (AIC) was used. This is expressed as

$$AIC = -2ln(\mathscr{L}) + 2N \tag{20}$$

where N is the number of model parameters being estimated and \mathscr{L} is the maximized 433 likelihood of the model (expressed in Equation 3 in Supporting Information S1). Among 434 the two models tested, i.e., the best one-state and the best two-state model, the one that 435 had the lowest AIC was chosen for the catchment. Following the use of the AIC criterion, a 436 catchment was identified as having two states in I/D/F if the best model at the catchment 437 had: (a) observations belonging to a normal state and some to a low I/D/F state or (b) 438 observations belonging to a normal state and some to a high I/D/F state as depicted in 439 Figure 4b and as stated in the steps in Figure 5. In the present context of low flows, higher 440 values of a low flow characteristic indicate a more extreme low flow event. 441

At catchments where, for a given low flow characteristic, the two-state model was the better model, the strength of simulation of the two-state model over the one-state model was established using the evidence ratio (ER) (Burnham & Anderson, 2002). The evidence ratio offers a way to quantify the strength of the evidence that the selected model (the two-state HMM in this case) is convincingly superior to the alternative model (the one-state HMM). It was computed by comparing the Akaike weights, w, of the two competing models, namely, the two-state model (2SM) and the one-state model (1SM), as expressed below:

$$ER = \frac{w_{2SM}}{w_{1SM}} \tag{21}$$

Here w_{1SM} and w_{2SM} are the Akaike weights for the one-state and two-state models, respectively, and are defined as:

$$w_{2SM} = \frac{1}{1 + exp(-\frac{1}{2}\Delta)} \tag{22}$$

457

44

452

453

432

$$w_{1SM} = \frac{exp(-\frac{1}{2}\Delta)}{1 + exp(-\frac{1}{2}\Delta)}$$
(23)

(24)

where Δ in this case is the AIC difference between the best one-state model and the best two-state model:

```
\Delta = AIC_{1SM} - AIC_{2SM}
```

The ER value serves to establish confidence in the two-state model relative to the one-state 458 model, and hence the strength of evidence for the existence of two states. Any ER value 459 > 10 suggests that the observations are more likely to be explained by the two-state model 460 than the one-state model. The higher this value, the stronger the evidence. For the current 461 work, we considered ER values greater than 10 (or its logarithmic values greater than 1) 462 as denoting sufficient evidence to believe that a two-state model is convincingly better in 463 performance over the one-state model, following Burnham and Anderson (2002); Goswami 464 et al. (2022). The ER, however, only denotes how good the two-state model is relative 465 to the one-state model and does not provide sufficient information on how qualified the 466 two-state model is to represent the low flow characteristic being modeled. To address the 467 later aspect, the model residuals were tested for their normality using the Shapiro-Wilk's 468 test (alpha = 0.05) (Shapiro & Wilk, 1965) and were retained for further analysis only if 469 their Shapiro-Wilk's test p-value was greater than 0.05. In addition, the aim was also to 470 have a 2SM with at least a predefined minimum number of I/D/F values in each state to 471 ensure that a meaningful state does indeed exists. For this, catchments that had less than 472 five I/D/F data points in any state were removed for further analysis. To make sure the 473

BC: Box-Cox; SDI: Streamflow Drought Index; I/D/F: Intensity/ Duration/ Frequency; POT: Peak Over Threshold; SW: Shapiro Wilk; sAPI: Standardized Antecedent Precipitation Index; HMMs: Hidden Markov Models; AIC: Akaike Information Criterion; ER: Evidence Ratio

Figure 5: Flowchart illustrating the main steps followed to identify if a catchment has two states in low flow I/D/F.

best model performed adequately, we also inspected the number of significant lags in the
Auto-Correlation Function (ACF) of the normal pseudo-residuals, the histogram, and the
Q-Q plot of the normal pseudo-residuals (Zucchini & MacDonald, 2009). The ACF serves as
a visual check to confirm whether the model residuals are serially correlated or not. Serially
correlated errors indicate that the model is not adequately built and there is loss of some
information, thereby indicating that the model could be improved further.

480 **3** Results and Discussion

481 3.1 States of Low Flow IDF

Figure 6 shows the low flow intensity Viterbi states over time for an example catchment, with
Figure 6a showing the variation of the model covariate, i.e., sAPI. The results in Figure 6b

shows that two states were identified, whereby the catchment was in a normal state until 484 1999, after which it switched to and persisted in a high intensity state. Furthermore, the 485 conditional state probabilities (in Figure 6c) show that there is a very high probability of the 486 aforementioned states. Practically, this indicates that low flow periods become more intense 487 (i.e. drier) after 1999. This is illustrated in Figure 6b by the estimated normal values of 488 intensity (points in lime green). These are the model-estimated values that indicate what 489 would have been the intensity had the catchment been in the normal state at that epoch. 490 These are the model-estimated values that indicate what would have been the intensity had 491 the catchment been in the normal state at that epoch. These are determined using the 492 relationship of intensity with the covariate as in the normal state (Equation 4a, with i = 1). 493 For the epochs when the catchment is found to have switched into the second state, the 101 results from Figure 6 suggest that the intensity for a given value of covariate is much higher 495 than what it would have been expected had the catchment been in the normal state. Here 496 the intensity HMM not only distinguishes the two states of low flow intensity but also informs 497 the timing of the shifts in its states. Importantly, Figure 6 demonstrates that despite the 498 inclusion of a covariate, the observed low flow intensity is best explained using more than 499 one distribution. That is, the catchment not only displays non-stationarity arising from 500 the precipitation (Figure 6a) but also from the state shifting. This provides preliminary 501 evidence toward falsifying that one state is sufficient to explain low flow intensities. 502

Figure 6c shows the conditional probability of being in a given state at any given time for 503 the catchment. It reflects the switching of the catchment between the two states. The 504 catchment is believed to have switched to the other state when the state probability of the 505 other state becomes greater than that of the state in which the catchment is currently in. 506 Such a behavior as shown in Figure 6 suggests that hydrological droughts are becoming more 507 extreme in the catchment, with the catchment continuing to be in an amplified extreme state 508 until the end of the observation period. The two states as seen in Figure 6b are defined by two 509 different distributions, supporting the notion of the need for state-dependent distributions. 510 Thus, the observed intensity can lie in two states, shown by the green and pink color points. 511 The second state represents more extreme low flow intensity than those represented by the 512 normal low flow state. It must be noted here that the data represented by both states 513 are extreme values, i.e. values pertaining to low flow droughts. The second state here 514 refers to a more intensified extreme state, suggesting an amplification of extremes (low flow 515 events here) in such catchments. The existence of mixture distribution as emerging from the 516 outcomes in Figure 6 could mean that the observations in the two states are generated from 517 separate flow processes or flow dynamics unique to the states and which are not explained 518 by the variability in water availability from precipitation alone. These dynamics may be 519 arising from real physical attributes, such as changes in baseflow. It is thus likely that the 520 more intense low flows may be caused by less baseflow during such periods. Another factor 521 that could be in play is systematic changes in groundwater levels. However, all these need 522 523 further investigation.

For intensity data, it was found that the model satisfactorily simulates the values except 524 for only a few instances in time where it misses estimating very high values of intensity 525 accurately. However, most of the observations lie within the 95% confidence interval of 526 the model. Considering this and the fact that modeling extreme values adequately is a 527 challenge for any modeling framework, for the primary question being addressed in this 528 work, the HMM framework proved to be a suitable technique for investigating changing 529 regimes of extremes. Corresponding to Figure 6, Figure S4 in Supporting Information S1 530 provides an assessment of the model performance for the intensity HMM of the catchment in 531 terms of the distribution of the normal pseudo-residuals and their autocorrelation. With the 532 present ability of the HMM, the framework performs well in simulating low flow intensity 533 data. The model residuals were found to be normally distributed along with the Shapiro-534 Wilk p-value being more than 0.05. This implies that the model residuals have very little 535 information contained in them and they can be considered to be nearly random, suggesting 536 a good match between the modeled values and the observations. A model having Shapiro-537

Figure 6: Viterbi states taken by the low flow intensity over time for station ID 238223. (a) The catchment's monthly variation of the sAPI, which is used as a covariate in the intensity model. (b) Time series of low flow intensity of the catchment. The green-colored circles indicate modeled values that belong to the normal state. Pink-colored circles indicate values belonging to the second state (more extreme than normal state). The lime green stars occurring in the same vertical spaces as that of the pink circles indicate the model-established value of intensity in the normal state at that time step. At any given time, the colored circles (or stars) represent the median value of the intensity. The colored vertical lines associated with each of these represent the error bar covering the 5th to the 95th percentile of the estimates. The gray-colored circles denote the observed intensities. (c) Variation of state conditional probability depicting the probability of intensity being in a given state at any given time. Clearly, a single state is not sufficient to describe the intensity data at this catchment.

Wilk's p-value greater than 0.05 suggests A similar inference holds for the ACF plot where there are not many lags that are significant, indicating that the model errors have very low predictive power.

Figure 7 shows the low flow duration results for a different example catchment. Although the outcomes from AIC showed that the duration data was better described by a 2SM than a 1SM, Figure 7b suggests that the duration modeling as undertaken in the current framework has a scope for improvement. As can be seen in Figure 7b, the median duration in a given state at each time point shows very little variability, which casts doubt on sAPI being an

state at each time point shows very little variability, which casts doubt on sAPI being an
 appropriate covariate for duration. Figure 8 shows the model simulation of annual frequency

for a sample catchment. Figure 8a shows the corresponding time series of mean annual sAPI, 547 which is the covariate to the frequency model. For the sample catchment, all the values lie 548 in a single state (the normal state) as can be seen from Figure 8b. Hence a single state 549 does a better job of explaining the frequency data than two states in this case. However, 550 the simulated frequency values following the modeling as done here resulted in large error 551 bars associated with the modeled values, implying that the frequency model too, like the 552 duration model, may be further improved. Figures S5 and S6 in Supporting Information S1 553 provide assessments of model residual behavior corresponding to the duration and frequency 554 HMM results discussed in Figures 7 and 8, respectively. 555

Figure 7: Viterbi states taken by the low flow duration over time for station ID 227211. See Figure 6 for a description of the figure elements.

As pointed out above, the current approach for modeling duration and frequency in the HMM framework needs improvement. Time series simulation of duration and frequency thus remains a challenge. The IDF HMMs as used here are built upon the linear dependence between sAPI and the low flow characteristic being modeled (Equation 4a and 4b). Thus, the results suggest that the sAPI's relation with duration and frequency is either non-linear, or an alternate covariate should be sought. For example, sAPI at a fortnightly or daily scale

Figure 8: Variation of low flow annual frequency values with time for station ID 227237. (a) Catchment's mean annual sAPI which is used as a covariate in the frequency model. (b) Time series of the observed and simulated frequency. Only a single state was sufficient to describe the frequency data at this catchment.

than monthly may be a better predictor for duration, and seasonal mean sAPI instead of annual mean sAPI may work better for modeling low flow frequency. Another possibility could be understanding and establishing which physical covariate, if not sAPI, governs the variability in these characteristics and may potentially replace sAPI in these models.

For the reasons stated above, following this section, we focus primarily on presenting and discussing the results for low flow intensities, with only a brief discussion about duration and frequency.

⁵⁶⁹ 3.2 Catchments with Two States in IDF

As depicted in the steps in Figure 5 and as discussed under Section 2.4, the candidate models 570 at a catchment were screened for AIC and ER. Figure 9a shows the spatial distribution of 571 catchments obtained after screening for AIC of 2SM < AIC of 1SM, and log(ER) > 1 for 572 the intensity model over the study region. A total of 115 (71%) catchments (purple-colored) 573 showed strong evidence of the existence of two states in the intensity of low flows. This 574 suggests that low flow intensity extremes are a mixed process and hence warrant a mixture 575 of distributions to represent them. Such results provide formal strength of evidence for the 576 hypotheses that extremes can quantitatively shift to different states if perturbed and hence 577 a single state cannot adequately explain them. 578

The 115 catchments as identified in Figure 9a were further screened for model performance based on the Shapiro-Wilk p-value for normality of the residuals. The number of catchments

Figure 9: Spatial distribution of catchments having two states in low flow intensities. Figures a–d show the two-state catchments retained on subsequent steps of filtering. (a) The 115 catchments (colored in purple) having AIC of 2SM < AIC of 1SM and $\log(ER) > 1$ for 2SM over 1SM. (b) The 101 catchments (colored in purple) having Shapiro-Wilk p-value>0.05. (c) The 34 catchments (colored in purple) which had at least 5 intensity data points in each state (and hence at least 5 unique low flow spells in each regime). (d) Of the 34 catchments, the 21 catchments that have normal and high intensity states shown in a shade of red. For these catchments, the second state is a high intensity states shown in blue. The second state for these 13 catchments is a low intensity state.

that indicate high evidence for 2SM over 1SM provides provides support for the hypothesis 581 that low flow extremes might switch states. 101 of these 115 satisfied the condition of 582 Shapiro-Wilk p-value>0.05. These are shown further in Figure 9b (colored in purple). 583 Further, to ensure a meaningful state exists, these 101 catchments were also checked for 584 having the number of data points in each state more than or equal to 5. This condition 585 ensured that such a catchment will have at least 5 unique low flow spells in both, normal 586 and non-normal, regimes. Figure 9c shows the final 34 catchments meeting these criteria. 587 Of these 34 catchments, there were catchments where the second state (the non-normal state) pointed to a low intensity state (shown in blue in Figure 9d) and catchments where 589 the second state was a high intensity state (shown in a shade of red in Figure 9d). 590

The high spatial variability shown in Figure 9d is unexpected. It may be due to catchmentspecific biophysical factors (combination of one or more of the slope, mean elevation, soil types, climate, vegetation, etc.) and hydrologic response to extremes emerging from the complex interactions of vegetation and soil hydraulics, making low flows, at least in the case of the SEA region, somewhat heterogeneous in space. The tendency to switch or to exhibit resilience against switching may thus possibly be controlled by a combination of

topography, climatic factors, soils, and vegetation. Catchments having the second state as 597 high state are likely to switch from a normal low flow state to a more extreme low flow state 598 characterized by higher than usual values of low flow intensities, entailing a magnification of 599 low flows. Further, since proxy information from precipitation and soil moisture was already 600 provided in the form of sAPI for modeling the low flow intensities, the emergence of a two-601 state model with very high evidence and model reliability at as many as 34 catchments 602 (Figure 9) suggests that not all observations can be explained by the precipitation data. 603 Thus, extremes in low flows may not be sufficiently explained by changes in precipitation. 604

605 Figure 10 follows a similar basis as Figure 9, showing the catchments retained at every stage of filtering. Using AIC and ER values as the filtering criteria, a total of 112 (Figure 10a) 606 out of 161 catchments showed a 2SM to be superior to 1SM in modeling low flow duration 607 data. The 5 red shaded catchments in Figure 10d represent catchments as obtained after 608 all the steps of performance filtering. For these, the second state of low flow duration was 609 associated with higher values of duration. There is a good overlap of catchments having 610 high evidence for exhibiting two states in intensity as well as in duration as can be seen 611 from Figures 9a and 10a. The spatial differences, however, grow as one moves from subplots 612 a-d in these figures. As per the AIC and ER criteria, of the 161 catchments, the number 613 of catchments having two states in (1) only intensity (but not duration) were 30, (2) only 614 duration (but not intensity) were 27, and (3) both intensity and duration were 85. 615

Unlike intensity and duration, annual frequency of the low flow events, on the other hand, did not exhibit switching of states for the way the framework models this characteristic. Of the catchments studied, only one catchment emerged where the 2SM was better than ISM. Since for frequency of low flows, the number of catchments satisfying the AIC and ER criteria was not sufficient, the figure for the spatial distribution of 2SM catchments of frequency is not included here.

For several of the SEA catchments, the existence of multiple states of extremes is a recent 622 phenomenon. The exact reasons that drive the switching of states of low flows still need 623 to be explored. The answer may come with improved knowledge of the underlying sys-624 temic processes governing these and their complex feedbacks to one another. The results 625 here provide evidence for low flow state transitions in these catchments and the changing 626 regimes of hydrological extremes (low flow droughts). The intensities in the 'high' state 627 represent unusual low flow droughts induced possibly from a hydrological disturbance which 628 sets a positive feedback for the catchment's extreme characteristics to slip into the second 629 state, as has been concluded to be the case for total flows by Peterson et al. (2021). Such a 630 hydrological disturbance could be from catchment-wide changes, which control the runoff, 631 changing the partitioning of the incoming precipitation at the surface between infiltration 632 and surface runoff. This disturbance may be brought about by prolonged meteorological 633 droughts and natural factors. Studies have also suggested groundwater storage (Fowler et 634 al., 2020; Hughes et al., 2012; Kinal & Stoneman, 2012) and plant water use (Peterson et 635 al., 2021; Ukkola et al., 2016) as causal factors, with the latter producing a positive feed-636 back and hence persistent alternate states. Long hydrological memory linked with stored 637 groundwater may also be an important facet (Alvarez-Garreton et al., 2021), which makes 638 the current flow volumes to be governed more strongly by antecedent conditions. In such 639 cases, the subsurface storages carried forward in time are often capable of equalizing the 640 deficiencies in precipitation during the onset of a drought (Avanzi et al., 2020). Anoma-641 lously low streamflows have also been implicated in changes in the seasonality of climate 642 conditions (both atmospheric and precipitation demands) (Williams et al., 2022). However, 643 all this demands further research to draw more detailed conclusions around the drivers for 644 the switch, including how feedbacks from the catchment's biophysical components may be 645 affecting water partitioning (e.g., Peterson, Western, & Argent, 2014) and the triggers from 646 global climate shifts. 647

⁶⁴⁸ Apart from natural controls on flows, low flows can vary as a response to human controls ⁶⁴⁹ on flows as well (Gebremicael et al., 2013; Guzha et al., 2018). Studies have shown that

Figure 10: Same as Figure 9 but for duration of low flows. Figures a–d show the two-state catchments retained on subsequent steps of filtering. (a) The 112 catchments (colored in purple) having AIC of 2SM < AIC of 1SM and log(ER)>1 for 2SM over 1SM. (b) The 63 catchments (colored in purple) having Shapiro-Wilk p-value>0.05. (c) The 34 catchments (colored in purple) which had at least 5 duration data points in each state. (d) Of the 8 catchments, the 5 catchments that have normal and high duration states shown in a shade of red. For these catchments, the second state is a high duration state. Of the 34 catchments, the 3 catchments that have normal and low duration states shown in blue. The second state for these 3 catchments is a low duration state.

human activities such as water abstraction interventions and land use/cover change, such as 650 fire/non-fire induced vegetation changes, can modify low flows in a catchment (Li et al., 2007; 651 Chang et al., 2016; Gebremicael et al., 2020) as these activities may change the partitioning 652 of the incoming precipitation on the land surface (Gates et al., 2011). In the case of the 653 present study, the 161 SEA catchments were unregulated and had water extractions <10%654 of the mean annual runoff. Effects from land use change may be a driver responsible for 655 switching of states of extremes. However, for these catchments, Peterson et al. (2021) (in 656 their Supplementary Material) show that land use change (1985-2019) did not explain the 657 observed runoff state shifts. The switching of states of low flows as found in this study is 658 thus more likely an outcome of changes in the hydroclimate of the region or the response of 659 a catchment to these or both. 660

3.3 Low Flow Intensity State Changes and Atmospheric Conditions

Extreme dry and warm conditions of the atmosphere may be one of the drivers of low flow switching. To examine this, a timeline of the 21 catchments identified to be switching between a normal intensity state and a high intensity state was studied. Figure 11a shows

the number of catchments, of the 21 catchments, existing in their second state of low flow 665 intensity for the time period 1950–2016. The height of the vertical black-colored bars indi-666 cates the number of catchments experiencing a low flow intensity lying in the second state 667 at a given time. The gaps in between the bars represent a time instance when either none of those catchments had a low flow intensity (peak) occurrence or when there is a low flow 669 intensity (peak) occurrence, but it belongs to the normal state. The height of the yellow bar 670 at each month depicts the number of catchments that had gauge flow data available. The 671 recent meteorological drought periods in the state of Victoria (Australian Bureau of Statis-672 tics, Year Book Australia 1998) were: (i) 1967–1968, (ii) 1972–1973, and (iii) 1982–1983. 673 Combined with the Millennium Drought (1997-2009), these 4 periods denote abnormally dry 674 periods over SEA on record. These are shown as gray-colored vertical strips in Figure 11a. 675 These periods appear to coincide with peaks in the number of catchments in the second 676 state of low flow intensity. 677

Also shown in Figure 11 are the periods of abnormally high sea surface temperature anoma-678 lies of the Niño3.4 region, characteristic of an El Niño event (orange vertical bars). These 679 were derived from the Ocean Niño Index (ONI) obtained from the United States Na-680 tional Oceanic and Atmospheric Administration (NOAA) Climate Prediction Centre (CPC) 681 (www.cpc.ncep.noaa.gov) (Refer Text S5 and Table S3 in Supporting Information S1 for 682 details). It was also seen that many catchments switched to the second state during the 683 warm episodes of the El Niño Southern Oscillation. However, the number of these catch-684 ments is comparable to those belonging to neither the meteorological drought nor the El 685 Niño periods for the present study (Figure 11b and c). Figure 11 suggests that warm and 686 dry atmospheric conditions such as those prevailing during sustained meteorological drought 687 spells may create conditions conducive for catchments to switch states of low flows. 688

The boxplots in the lower panel of Figure 11 show the number of catchments in the second 689 state for various periods, namely, periods of meteorological droughts (b), periods of warm 690 ENSO (c), and periods that were neither meteorological droughts nor warm ENSO periods 691 (d). The figure suggests that meteorological droughts have the potential to change low 692 flow spells, adding to the existing literature on how severe and protracted meteorological 693 droughts can potentially destabilize the hydrological behavior and resilience of catchments. 694 With the projected increase (Xu et al., 2019) and changes in future meteorological droughts 695 and the complex interactions between meteorological and hydrological droughts, low flow 696 regimes are more likely to be dynamic and subject to modifications. Importantly, Figure 11 697 highlights the changing regimes of hydrological extremes in a changing climate. The results 698 in the figure also suggest that the phenomenon of switching of low flow regimes can neither 699 be considered exceptional nor rare any longer. With low flow droughts exhibiting regime-700 switching, the risks associated with them are also expected to vary in time. As the risk 701 changes, water managers will have to understand how resilient are the catchments to changes 702 in extremes. 703

704 4 Conclusions

Catchments can undergo complex changes in their behavior which can change how low flows 705 respond to such changes. The study here examined whether low flow characteristics can exist 706 in more than one state. This was done using HMMs with antecedent precipitation index as a 707 covariate, applied to examine low flow IDF in 161 catchments in SEA. It was found that for 708 the majority of the catchments ($\approx 70\%$), a two-state model explained the low flow intensity 709 and duration data better than a one-state model, thereby suggesting that low flows exhibit 710 multiple states. Very strong evidence of low flow intensity exhibiting two distinct states 711 was found for at least 34 (21%) catchments in the region. For most catchments exhibiting 712 switching of states of low flow intensity, the second state entailed an intensification of low 713 flows. The regime-switching behavior can cause low flows to manifest in very different ways 714 at two different epochs for the same catchment. Such a temporal behavior also points to 715 changing risks associated with hydrological droughts. The two states are possibly governed 716

Figure 11: (a) Timeline (1950–2016) of the switching of states of low flow intensity for the 21 catchments. The height of the black-colored bars represents the number of catchments in the second state at a given time. The height of the yellow-colored bars at each month represents how many of these 21 catchments had flow data available for that month. The four gray-colored vertical strips shown in the background represent the four recent severe meteorological drought spells for the Victoria region, which are (i) 1967–1968, (ii) 1972–1973, (iii) 1982–1983, and (iv) 1997-2009, respectively, from left to right. The red-colored vertical strips represent time instances when the ONI indicates the occurrence of a warm ENSO episode. The three boxplots shown in the lower panel depict the number of catchments in the second state during (b) meteorological drought periods, (c) warm ENSO periods, (d) periods that were neither b nor c.

by unique processes generating the observations in the two states. Importantly this indicates

that the use of one distribution is inadequate to explain the observed data, as is widely done.

The work demonstrates the capability and reliability of HMMs to simulate extreme low flow intensities as well as the capability to contume temporal shifts in states.

⁷²⁰ intensities as well as the capability to capture temporal shifts in states.

Further, since the information from the catchment's antecedent conditions and precipitation 721 was intrinsic to the model, the emergence of a two-state model at a catchment implies that 722 information from precipitation, though useful in simulating low flow behavior, may not 723 be sufficient to explain changes in low flow extremes. Low flow intensities in the second state are not explained by the corresponding variability in precipitation. The duration and 725 frequency HMM have a scope for improvement in the current framework. For frequency of 726 low flows, the current capability of the model framework was not satisfactory for establishing 727 the strength of the 2SM over 1SM. These models may be improved by either incorporating 728 non-linear relation with sAPI or by using covariates (for eg., climate indices) that may 729 explain the variability in them better. 730

Switching of catchments into an intensified low flow state may be strongly influenced by sus-731 tained dry atmospheric conditions such as those during protracted meteorological droughts 732 as well as the changes in them. The study also helps to understand how future extreme hy-733 drological characteristics may behave in response to such meteo-climatological disturbances 734 triggered naturally or due to climate change. This points to possible changes that catch-735 ments can undergo during and after a meteorological drought and how that impacts extreme 736 hydrological behavior and response. As dry conditions and meteorological droughts change 737 and become more frequent in a changing climate, their impact on hydrological cycle and on 738 extreme flows can be very significant. 739

More research needs to be undertaken to understand the underlying physical processes 740 and the driving mechanisms in play to explain the existence of more than one low flow 741 regime, thereby reducing uncertainty about future low flow dynamics in watersheds. The 742 results here demonstrate the potential of catchments to exhibit shifts in regimes of low 743 flow extremes. A crucial aspect of enhancing future water security lies in understanding 744 how these shifts might translate into impacts on streamflow services and how to manage 745 these periods. Identification of shifts may enable system planners to consider solutions 746 such as supply augmentation, demand management, inter-basin water transfers, managed 747 groundwater aquifer recharge, conjunctive use, etc., thereby augmenting system resilience 748 during low flow shifts in the future. 749

750 Conflict of Interest

The authors declare no conflicts of interest relevant to this study.

752 Acknowledgments

The authors acknowledge the IITB-Monash Research Academy for funding P. Goswami with a PhD scholarship to support this research. The authors are thankful to Christopher Pickett-Heaps from the Bureau of Meteorology, Australia, for his constructive comments on the manuscript, adding to its improvement. The authors also thank and acknowledge the developers and contributors of all the R packages that were used for this analysis.

758 Data Availability Statement

The implementation of the Hidden Markov modeling was carried out in the software envi-759 ronment R (R Core Team, 2021) using the R package "HydroState" available at https:// 760 github.com/peterson-tim-j/HydroState. The streamflow and precipitation data used for 761 this study are available at https://doi.org/10.5281/zenodo.6412694. The ONI data was 762 sourced from https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ 763 ONI_v5.php. To aid in the analysis of the current work, R packages such as DEoptim, MASS, 764 extRemes, ggplot2, ggpattern, ggpubr, zoo, dplyr, rgdal, sf, RColorBrewer, ggsn, cowplot, 765 and ggspatial were also used. Developers and contributors of all these packages are acknowl-766

767	edged.
-----	--------

768

779

780

786

787

788

789

790

791

792

805

806

807

769 **References**

- Alvarez-Garreton, C., Boisier, J. P., Garreaud, R., Seibert, J., & Vis, M. (2021). Progressive
 water deficits during multiyear droughts in basins with long hydrological memory in
 Chile. Hydrology and Earth System Sciences, 25(1), 429–446.
- Australian Bureau of Statistics. (Year Book Australia 1998). Canberra, Australia: Australian Government Publishing Service, 1998. Australia.
- Avanzi, F., Rungee, J., Maurer, T., Bales, R., Ma, Q., Glaser, S., & Conklin, M. (2020).
 Climate elasticity of evapotranspiration shifts the water balance of Mediterranean climates during multi-year droughts. *Hydrology and Earth System Sciences*, 24(9), 4317–4337.
 - Baum, L. E., & Petrie, T. (1966). Statistical inference for probabilistic functions of finite state Markov chains. The annals of mathematical statistics, 37(6), 1554–1563.
- Bennett, K. E., Cannon, A. J., & Hinzman, L. (2015). Historical trends and extremes in
 boreal Alaska river basins. *Journal of Hydrology*, 527, 590–607.
- Box, G. E. P., & Cox, D. R. (1964). An Analysis of Transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211–243. doi: 10.1111/ j.2517-6161.1964.tb00553.x
 - Bracken, C., Rajagopalan, B., & Zagona, E. (2014). A hidden Markov model combined with climate indices for multidecadal streamflow simulation. *Water Resources Research*, 50(10), 7836–7846.
 - Burn, D. H., Sharif, M., & Zhang, K. (2010). Detection of trends in hydrological extremes for Canadian watersheds. *Hydrological Processes*, 24 (13), 1781–1790.
 - Burnham, K. P., & Anderson, D. R. (2002). A practical information-theoretic approach (Vol. 2). Springer New York.
- Chang, J., Zhang, H., Wang, Y., & Zhu, Y. (2016). Assessing the impact of climate
 variability and human activities on streamflow variation. *Hydrology and Earth System Sciences*, 20(4), 1547–1560.
- Chiew, F. H. S., Potter, N., Vaze, J., Petheram, C., Zhang, L., Teng, J., & Post, D. (2014).
 Observed hydrologic non-stationarity in far south-eastern Australia: implications for
 modelling and prediction. *Stochastic Environmental Research and Risk Assessment*,
 28(1), 3–15.
- Coles, S., Bawa, J., Trenner, L., & Dorazio, P. (2001). An introduction to statistical modeling
 of extreme values (Vol. 208). Springer.
- Crow, W. T., Bindlish, R., & Jackson, T. J. (2005). The added value of spaceborne
 passive microwave soil moisture retrievals for forecasting rainfall-runoff partitioning.
 Geophysical Research Letters, 32(18).
 - Dharssi, I., Bally, J., Steinle, P., McJannet, D., & Walker, J. (2017). Comparison of soil wetness from multiple models over Australia with observations. *Water Resources Research*, 53(1), 633–646.
- Forney, G. D. (1973). The viterbi algorithm. *Proceedings of the IEEE*, 61(3), 268–278.
- Fowler, K., Knoben, W., Peel, M., Peterson, T. J., Ryu, D., Saft, M., ... Western, A. (2020).
 Many commonly used rainfall-runoff models lack long, slow dynamics: Implications for runoff projections. *Water Resources Research*, e2019WR025286.
- Fowler, K., Peel, M., Saft, M., Nathan, R., Horne, A., Wilby, R., ... Peterson, T. (2022). Hydrological shifts threaten water resources. *Water Resources Research*, e2021WR031210.
- Gates, J. B., Scanlon, B. R., Mu, X., & Zhang, L. (2011). Impacts of soil conservation on groundwater recharge in the semi-arid Loess Plateau, China. *Hydrogeology Journal*, 19(4), 865–875.
- Gebremicael, T. G., Mohamed, Y., Betrie, G., Van der Zaag, P., & Teferi, E. (2013). Trend
 analysis of runoff and sediment fluxes in the Upper Blue Nile basin: A combined

820	analysis of statistical tests, physically-based models and landuse maps. Journal of
821	$Hydrology, \ 482, \ 57-68.$
822	Gebremicael, T. G., Mohamed, Y. A., van der Zaag, P., Hassaballah, K., & Hagos, E. Y.
823	(2020). Change in low flows due to catchment management dynamics—Application of
824	a comparative modelling approach. <i>Hydrological Processes</i> , $34(9)$, 2101–2116.
825	Goswami, P., Peterson, T. J., Mondal, A., & Rüdiger, C. (2022). Non-stationary Influences
826	of Large-scale Climate Drivers on Low Flow Extremes in Southeast Australia. Water
827	Resources Research, $e2021WR031508$.
828	Guzha, A., Rufino, M. C., Okoth, S., Jacobs, S., & Nóbrega, R. (2018). Impacts of land
829	use and land cover change on surface runoff, discharge and low flows: Evidence from
830	East Africa. Journal of Hydrology: Regional Studies, 15, 49–67.
831	Holmes, A., Rüdiger, C., Mueller, B., Hirschi, M., & Tapper, N. (2017). Variability of soil
832	moisture proxies and hot days across the climate regimes of Australia. Geophysical
833	Research Letters, $44(14)$, 7265–7275.
834	Hughes, J., Petrone, K., & Silberstein, R. (2012). Drought, groundwater storage and stream
835	flow decline in southwestern Australia. Geophysical Research Letters, $39(3)$.
836	Katz, R. W. (2013). Statistical methods for nonstationary extremes. In Extremes in a
837	changing climate (pp. 15–37). Springer.
838	Kendall, M. G. (1975). Rank correlation methods. (4th ed. 2d impression). Griffin.
839	Kiem, A. S., & Verdon-Kidd, D. C. (2010). Towards understanding hydroclimatic change
840	in Victoria, Australia-preliminary insights into the "Big Dry". Hydrology and Earth
841	System Sciences, $14(3)$, $433-445$. doi: $10.5194/hess-14-433-2010$
842	Kinal, J., & Stoneman, G. (2012). Disconnection of groundwater from surface water causes a
843	fundamental change in hydrology in a forested catchment in south-western Australia.
844	Journal of Hydrology, 472, 14–24.
845	Kohler, M. A., & Linsley, R. K. (1951). Predicting the runoff from storm rainfall (Vol. 30).
846	US Department of Commerce, Weather Bureau.
847	Li, LJ., Zhang, L., Wang, H., Wang, J., Yang, JW., Jiang, DJ., Qin, DY. (2007).
848	Assessing the impact of climate variability and human activities on streamflow from
849	the Wuding River basin in China. Hydrological Processes: An International Journal,
850	21(25), 3485 - 3491.
851	Liu, X., Liu, C., & Brutsaert, W. (2018). Investigation of a generalized nonlinear form
852	of the complementary principle for evaporation estimation. Journal of Geophysical
853	Research: Atmospheres, $123(8)$, $3933-3942$.
854	Liu, Y. Y., Parinussa, R., Dorigo, W. A., De Jeu, R. A., Wagner, W., Van Dijk, A.,
855	Evans, J. (2011). Developing an improved soil moisture dataset by blending passive
856	and active microwave satellite-based retrievals. Hydrology and Earth System Sciences,
857	15(2), 425-436.
858	Mallya, G., Tripathi, S., Kirshner, S., & Govindaraju, R. S. (2013). Probabilistic Assess-
859	ment of Drought Characteristics Using Hidden Markov Model. Journal of Hydrologic
860	Engineering, $18(7)$, $834-845$. doi: $10.1061/(asce)he.1943-5584.0000699$
861	Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the
862	econometric society, 245–259.
863	Miao, C., Ashouri, H., Hsu, KL., Sorooshian, S., & Duan, Q. (2015). Evaluation of
864	the PERSIANN-CDR daily rainfall estimates in capturing the behavior of extreme
865	precipitation events over China. Journal of Hydrometeorology, 1b(3), 1387–1396.
866	Miller, W. P., & Piechota, T. C. (2008). Regional analysis of trend and step changes
867	observed in hydroclimatic variables around the Colorado River Basin. Journal of U_{1}
868	Hyarometeorology, 9(5), 1020-1054.
869	Peel, M. C., McMahon, T. A., & Finlayson, B. L. (2004). Continental differences in the
870	variability of annual runon-update and reassessment. Journal of Hydrology, 295(1-4),
871	100-19 . Determore T. I. Coft M. Dool M. C. P. Lehr, A. (2001) W. (1, 1, 1,, C.
872	Peterson, I. J., Sait, M., Peel, M. U., & Jonn, A. (2021). Watersheds may not recover from
873	urought. Science, $5/2$ (0545), (49–(49. doi: 10.1120/SCIEnce.abd50085) Deterson T. I. fr Wootorn A. (2014) Multiple hydrological attractors under the heating
874	reterson, r. J., & western, A. (2014). Multiple hydrological attractors under stochastic

daily forcing: 1. Can multiple attractors exist? Water Resources Research, 50(4), 2993–3009.

Peterson, T. J., Western, A., & Argent, R. (2014). Multiple hydrological attractors under stochastic daily forcing: 2. Can multiple attractors emerge? *Water Resources Research*, 50(4), 3010–3029.

875

876

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

910

911

912

913

914

915

918

919

920

- Pushpalatha, R., Perrin, C., Le Moine, N., & Andréassian, V. (2012). A review of efficiency
 criteria suitable for evaluating low-flow simulations. *Journal of Hydrology*, 420, 171–182.
- R Core Team. (2021). R: A Language and Environment for Statistical Computing [Computer software manual]. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org/
 - Robertson, A. W., Kirshner, S., & Smyth, P. (2003). Hidden Markov models for modeling daily rainfall occurrence over Brazil. *Information and Computer Science*, University of California.
 - Robertson, A. W., Kirshner, S., & Smyth, P. (2004). Downscaling of daily rainfall occurrence over northeast Brazil using a hidden Markov model. *Journal of climate*, 17(22), 4407– 4424.
 - Rolim, L. Z. R., & de Souza Filho, F. d. A. (2020). Shift detection in hydrological regimes and pluriannual low-frequency streamflow forecasting using the hidden markov model. *Water*, 12(7), 2058.
 - Saft, M., Western, A. W., Zhang, L., Peel, M. C., & Potter, N. J. (2015). The influence of multiyear drought on the annual rainfall-runoff relationship: An Australian perspective. Water Resources Research, 51(4), 2444–2463. doi: 10.1002/2014WR015348
 - Sagarika, S., Kalra, A., & Ahmad, S. (2014). Evaluating the effect of persistence on long-term trends and analyzing step changes in streamflows of the continental United States. *Journal of Hydrology*, 517, 36–53.
 - Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). *Biometrika*, 52(3/4), 591–611.
- Solander, K. C., Bennett, K. E., & Middleton, R. S. (2017). Shifts in historical streamflow
 extremes in the Colorado River Basin. Journal of Hydrology: Regional Studies, 12, 363–377.
- Tauro, F. (2021). River basins on the edge of change. Science, 372(6543), 680-681.
- Thyer, M., & Kuczera, G. (2000). Modeling long-term persistence in hydroclimatic time series using a hidden state Markov model. *Water resources research*, 36(11), 3301– 3310.
 - Thyer, M., & Kuczera, G. (2003). A hidden Markov model for modelling long-term persistence in multi-site rainfall time series 1. Model calibration using a Bayesian approach. *Journal of Hydrology*, 275(1-2), 12–26.
 - Tian, W., Bai, P., Wang, K., Liang, K., & Liu, C. (2020). Simulating the change of precipitation-runoff relationship during drought years in the eastern monsoon region of China. Science of the Total Environment, 723, 138172.
- Turner, S., & Galelli, S. (2016). Regime-shifting streamflow processes: Implications for
 water supply reservoir operations. Water Resources Research, 52(5), 3984–4002.
 - Ukkola, A. M., Prentice, I. C., Keenan, T. F., Van Dijk, A. I., Viney, N. R., Myneni, R. B., & Bi, J. (2016). Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. *Nature Climate Change*, 6(1), 75–78.
- Van Dijk, A. I., Beck, H. E., Crosbie, R. S., De Jeu, R. A., Liu, Y. Y., Podger, G. M., ...
 Viney, N. R. (2013). The Millennium Drought in southeast Australia (2001-2009):
 Natural and human causes and implications for water resources, ecosystems, economy,
 and society. Water Resources Research, 49(2), 1040–1057. doi: 10.1002/wrcr.20123
- Wasko, C., Shao, Y., Vogel, E., Wilson, L., Wang, Q. J., Frost, A., & Donnelly, C. (2021).
 Understanding trends in hydrologic extremes across Australia. *Journal of Hydrology*, 593, 125877. doi: 10.1016/j.jhydrol.2020.125877
- Wilhite, D. A., & Glantz, M. H. (1985). Understanding: the drought phenomenon: the role
 of definitions. Water international, 10(3), 111–120.

930	Williams, A. P., Cook, B. I., & Smerdon, J. E. (2022). Rapid intensification of the emerging
931	southwestern North American megadrought in 2020–2021. Nature Climate Change,
932	12(3), 232-234.
933	Xu, L., Chen, N., & Zhang, X. (2019). Global drought trends under 1.5 and 2 C warming.
934	International Journal of Climatology, 39(4), 2375–2385. doi: 10.1002/joc.5958
935	Zhang, X., Harvey, K. D., Hogg, W., & Yuzyk, T. R. (2001). Trends in Canadian streamflow.
936	Water Resources Research, 37(4), 987–998.
937	Zhang, X. S., Amirthanathan, G. E., Bari, M. A., Laugesen, R. M., Shin, D., Kent, D. M.,
938	Tuteja, N. K. (2016). How streamflow has changed across Australia since the
939	1950s: evidence from the network of hydrologic reference stations. Hydrology and
940	Earth System Sciences, $20(9)$, $3947-3965$.
941	Zipper, S., Popescu, I., Compare, K., Zhang, C., & Seybold, E. C. (2022). Alternative
942	stable states and hydrological regime shifts in a large intermittent river. Environmental
943	Research Letters, $17(7)$, 074005 .
944	Zucchini, W., & MacDonald, I. L. (2009). Hidden Markov models for time series: an
945	introduction using R . Chapman and Hall/CRC.

On the existence of multiple states of low flows in catchments in southeast Australia

³ Pallavi Goswami¹, Tim J. Peterson^{2,3}, Arpita Mondal^{4,5}, Christoph Rüdiger^{2,6}

 ⁴ ¹IITB-Monash Research Academy, IIT Bombay, Mumbai, India
 ⁵ ²Department of Civil Engineering, Monash University, Clayton, Victoria, Australia
 ⁶ ³Department of Infrastructure Engineering, University of Melbourne, Parkville, Victoria, Australia
 ⁷ ⁴Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India
 ⁹ ⁵Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai, India
 ¹⁰ ⁶Bureau of Meteorology, Melbourne, Victoria, Australia

12 Key Points:

1

2

13	•	Low flow regimes can switch states which may lead to intensification of low flow
14		events.
15	•	Existence of sustained warm and dry atmospheric conditions can cause the switching
16		of catchments into an intensified low flow state.
17	•	Information from precipitation, though useful, may not be sufficient to explain the
18		variability in low flow extremes.

 $Corresponding \ author: \ Pallavi \ Goswami, \ {\tt pallavi.goswami@monash.edu}$

19 Abstract

Hydrological variables of a catchment and their corresponding extreme characteristics have 20 a possibility of switching regimes, particularly when a catchment undergoes protracted dry 21 periods. This can result in a catchment experiencing a flow anomaly that is even more 22 extreme than what was historically considered an extreme low flow event for the catchment. 23 Catchments in southeast Australia have been shown to exhibit multiple states of mean an-24 nual flows. Given this and studies that suggest that extreme events may be changing with 25 time, it is important to understand whether extremes in flows also have the potential to 26 exist in multiple states. To investigate this, we studied intensity, duration, and frequency 27 (IDF) of low flows for 161 unregulated catchments in southeast Australia. A Hidden Markov 28 Model-based approach was used to examine shifts in the low flow characteristics. We found 29 very strong evidence of low flow intensity exhibiting two distinct states for at least 34 (21%) 30 catchments in the region, providing convincing reasons to believe that extremes in low flows 31 can and have undergone regime changes. The second state of these catchments is often as-32 sociated with higher values of low flow intensities. Simulation of the duration and frequency 33 of these events, however, needs improvement with the current approach and may be better 34 studied by accounting for climate indicators that may more suitably explain them. Impacts 35 from a changing climate may enhance the triggering of low flows into alternate states, which 36 calls for water managers to plan for changing regimes of extremes. 37

38

³⁹ Plain Language Summary

Recent studies have shown that the mean hydrological behavior of catchments can un-40 dergo changes. The present study explores whether extreme events, such as low flow 41 droughts, might also be undergoing regime-switching. The term 'switching of states' or 42 'regime-switching' relates to a shift in the underlying probability distribution of a variable. 43 With regards to streamflows, this may result in a catchment experiencing low flow droughts 44 that are even more extreme than what was historically considered a drought event for the 45 catchment. We found strong evidence of low flow intensity exhibiting two distinct states in 46 catchments in southeast Australia, providing convincing reasons to believe that extremes 47 in low flows can and have undergone state changes in the region. The second state of 48 these catchments is often associated with higher values of low flow intensities. Ignoring 49 such changes is likely to misrepresent low flow risks. This finding has profound importance 50 in enabling hydrologists to understand the possible ways in which hydrological events can 51 manifest themselves. Knowledge from these results supports the need to improve existing 52 models to incorporate more dynamic realism within them, without which they might be 53 blind to future hydrological shifts that could have a significant impact on water security. 54

55 1 Introduction

Water systems and hydrological regimes are known to be influenced by climatic perturba-56 tions, leading to irregularities in flow quantity and quality. Many studies have reported 57 changes in rainfall-runoff relationships (Kiem & Verdon-Kidd, 2010; Van Dijk et al., 2013; 58 Chiew et al., 2014; Miao et al., 2015; X. Liu et al., 2018). Drought flows are being observed 59 to be drastically lower than expected for a given decline in precipitation (Alvarez-Garreton 60 et al., 2021; Avanzi et al., 2020; Tian et al., 2020). The processes that generate runoff 61 have been recently shown to change during (Saft et al., 2015) and after (Peterson et al., 62 2021) the occurrences of meteorological droughts. This results in less streamflow per unit 63 of rainfall during and after the drought than that which occurred before the drought. Dis-64 turbances in catchments induced by changes in climate or from anthropogenic interventions 65 have the potential to cause hydrological variables to undergo regime changes, also referred 66 to as 'switching of states' or 'state shifts'. 'State shifts' relates to a shift in the underlying 67 probability distribution of the variable, implying non-stationarity. This means that a forcing 68

in the form of a disturbance can push a catchment past a fold point and into a new steady 69 state and once the disturbance ends the catchment stays indefinitely in this new state until 70 a disturbance pushes it back to the original state, as explained in Figure 1. In the context 71 of regime-switching of extremes, a switching could result in a catchment experiencing a flow 72 anomaly that is even more extreme than what was historically considered an extreme event. 73 There is evidence suggesting that the mean behaviour of hydrologic variables can exhibit 74 switching of states (Fowler et al., 2022; Peterson et al., 2021; Tauro, 2021; Zipper et al., 75 2022), i.e., they can exist in multiple states. The study by Peterson et al. (2021), for ex-76 ample, showed that catchments can not just exist in alternate states of streamflow regimes 77 but can even continue to persist in such alternate states for extended periods. This suggests 78 that low flows may also exhibit such behavior, thereby possessing far more complex form 79 of non-stationarity than suggested by Goswami et al. (2022). However, to date, studies on 80 extreme value analysis for streamflows have not examined this in detail. Many commonly 81 existing streamflow models continue to discount that low flows can have temporal variability 82 beyond their routine regime. 83

Southeast Australia (SEA) is known to have a hydroclimate that is among the most variable 84 in the world (Peel et al., 2004). The hydroclimatologial extremes that the region has under-85 gone in the past, including the Millennium Drought (Van Dijk et al., 2013), have been shown 86 to influence the way streamflow responds (Saft et al., 2015). Many of these catchments have 87 been shown to exhibit hydrologic non-stationarity in rainfall-runoff/climate-runoff relation-88 ships (Chiew et al., 2014), with streamflow droughts already shown to be increasing across 89 the region (Wasko et al., 2021). Moreover, many existing studies assume catchments to 90 have infinite resilience. Peterson et al. (2021), however, showed that annual and seasonal 91 mean streamflow in many of these catchments exhibited switching in regimes following the 92 Millennium Drought and that not all of them showed recovery when rainfall returned to 93 normal. The work falsified the widely held assumption that catchments always have only 94 a single steady state around which they fluctuate and showed that catchments could have 95 finite resilience. The work, however, looked at mean flows, analyzed at the annual and sea-96 sonal timescales. It does not provide insights on regime-switching of extreme (low) flows, nor 97 on the possibility of switching of such regimes at much finer (for eg., monthly) timescales. 98 This brings forth the question of whether low flows can also undergo changes in state. With 99 the region's susceptibility to exhibit changes in the mean behavior of streamflows, the re-100 gion provides a good opportunity to study whether the behavior of extreme flows can also 101 undergo changes in states. 102

Limited studies exist on the understanding and evaluation of shifts in streamflows, and 103 none examine low flows or state change in particular. With regards to techniques for under-104 standing changes in hydrologic extremes in general, the few most widely applied statistical 105 approaches are the non-parametric Mann-Kendall trend analysis (Mann, 1945; Kendall, 106 1975), change point analysis, and the Generalized Extreme Value (GEV) theory (Coles et 107 al., 2001). Previous studies have used the Mann-Kendall trend analysis to understand shifts 108 in hydrologic extremes (X. Zhang et al., 2001; Miller & Piechota, 2008; Burn et al., 2010; 109 Sagarika et al., 2014; Bennett et al., 2015). This technique, however, is not adequately 110 tailored for the analysis of extremes per se and therefore does not offer a way to determine 111 changes in flow magnitudes (Solander et al., 2017). The other common approach of using 112 the GEV theory-based analysis has been used to study the extreme streamflow data in 113 a non-stationary framework through time-dependent parameters in the GEV distribution 114 (Katz, 2013), allowing trend (and thus regime change) detection in extremes. However, 115 limited approaches exist that allow a comprehensive assessment of state change, entailing 116 aspects such as time series simulation of extreme data, classification of the extreme data 117 into different states (if they exist), and identification of the timing of state shifts. 118

One such technique that offers the capability to detect state-changes and breaks in persistence in a time series is the hidden Markov modeling approach. Being a doubly embedded stochastic process model, it makes for a good modeling choice for simulating data governed

by complicated nonlinear hydrological phenomena. HMMs are statistical Markov mod-122 els consisting of a hidden or unobservable 'parameter process' which satisfies the Markov 123 property, and a 'state-dependent process', whose behavior depends on the underlying state 124 (Zucchini & MacDonald, 2009). The approach provides a highly flexible modeling frame-125 work that can detect the existence of different 'states' in a variable of interest by quantifying 126 the probability of the variable being in a given state over time. HMMs were developed dur-127 ing the late 1960s and early 1970s (Baum & Petrie, 1966) for speech recognition, and have 128 since been successfully implemented in several applications, including climate and hydro-129 logic modeling (Thyer & Kuczera, 2003; Robertson et al., 2003, 2004). Mallya et al. (2013) 130 applied HMM to develop a drought index for probabilistic assessment of drought charac-131 teristics. Turner and Galelli (2016) applied HMM to examine the impact of regime-like 132 behavior in streamflows on the performance of reservoir operating policy. They and Kucz-133 era (2000) used the hidden state Markov (HSM) model to simulate annual rainfall series 134 in Australia. Rolim and de Souza Filho (2020) used it to identify shifts in low-frequency 135 variability of streamflows. Bracken et al. (2014) used HMM along with climate indices to 136 simulate multidecadal streamflows. More recently, Peterson et al. (2021) developed Hid-137 den Markov Models (HMM) to statistically identify if, and when, streamflow recovers from 138 meteorological droughts, and in doing so provide empirical evidence that catchments often 139 have multiple hydrological states. Overall, HMMs are a useful tool for identifying state 140 changes in a time series based on the dictating underlying process. By virtue of being a 141 mixture model, HMM provides an unsupervised classification technique that can be applied 142 to capture persistence and hence breaks in persistence in a time series, including low flows. 143

The present study aims to falsify the assumption that a single state is adequate to represent 144 low flow events. This includes falsifying the commonly held notion that including rainfall 145 variability is sufficient to account for non-stationarity in low flows and that low flows do not 146 undergo long-term changes. To investigate this, the metrics used to characterize low flow 147 events, namely, their intensity, duration, and frequency (IDF) were studied to test whether 148 these can exist in more than one state, focusing on catchments in SEA. The study aims to 149 provide an investigation of low flow extreme shifts along with finding when these changes are 150 occurring for these catchments. To do this, we used the Hidden Markov modeling approach 151 to identify state changes in the IDF of low flows. Although HMMs have been applied to 152 investigate changes in flows and precipitation in previous studies as discussed above, these 153 have not been specifically used to model low flow characteristics for investigating state 154 changes in regimes of low flows. This study thus also presents a relatively less explored 155 application of HMMs in investigating state changes in the extreme characteristics of low 156 flows. The methodology adopted here also presents an alternative approach for examining 157 hydrologic non-stationarity observed in the low flow IDF by examining if state-dependent 158 distributions are required to explain the variability in the observed data. 159

¹⁶⁰ 2 Data and Methods

¹⁶¹ 2.1 Study Region and Data

For the present work, 161 unimpaired catchments in southeast Australia (SEA) were studied 162 using their monthly streamflow as flow depth (mm) and precipitation data (mm), both 163 aggregated from daily values. The streamflow data of these catchments was sourced from 164 Peterson et al. (2021) and pre-processed as described in Goswami et al. (2022) following the 165 quality control of Peterson et al. (2021). The catchments were chosen based on their gauge 166 record quality while also ensuring that all these catchments had flow records at least for 167 15, 7, and 5 years before, during, and after the Millennium Drought, respectively. All the 168 catchments had at least 35 years of flow and precipitation data (Text S1 and Table S1 in 169 Supporting Information S1). More information on the data can be found in Goswami et al. 170 (2022). Importantly, this data provided an opportunity to investigate changes in extremes 171 occurring in natural systems due to a changing climate and not through reservoir operations 172 or land use practices. The 161 catchments and their corresponding gauging stations are 173

Figure 1: Illustration of regime-switching of a system (for eg., a hydrologic variable of interest) from State 1 to State 2 under the influence of a forcing (hydrologic disturbance). (Adopted from Peterson & Western, 2014.)

shown in Figure 2a, with the colored circles denoting the mean annual streamflow depth.
Figure 2b shows the mean annual precipitation for the respective gauges. While this study
is focused on the SEA region, the analysis and the understanding from it are relevant to all
catchments where hydrological droughts are likely to become more extreme.

178 2.2 Deriving IDF of Low Flows

In this study, low flows were defined as representative of streamflow droughts describing a 179 catchment's condition when streamflows are anomalously low relative to long-term monthly 180 means. The term 'low flow' as used in this work can be understood as a type of hydrological 181 drought. By common definition, a hydrological drought denotes a deficit in surface water 182 and groundwater (Wilhite & Glantz, 1985). Thus, often the term hydrological drought takes 183 on a broader hydrological definition and can refer to situations of low flows, low snowmelt, 184 low spring flow, low groundwater levels, etc., relative to normal conditions. However, the 185 present study focuses primarily on conditions where streamflows are anomalously low relative 186 to their expected normal flow conditions. The study here thus uses the term 'low flows' (or 187 'low flow droughts') for the sake of being specific to the domain being investigated. 188

For identifying low flow spells and deriving their associated characteristics, an approach 189 similar to that used in Goswami et al. (2022) was applied here. First, the monthly flow 190 depths at any given catchment (Figure 3a) were transformed by applying a Box-Cox (BC) 191 power transformation (Box & Cox, 1964), using catchment-specific lambda values, to reduce 192 the skew and for better identification of flow values which were very low (Text S2 and Figure 193 S1 in Supporting Information S1). The transformed flows were then standardized using the 194 mean and standard deviation of the transformed flow series at that catchment. The sign 195 of the obtained series was then reversed such that values above zero pointed to below-196 average streamflows. The resultant series was termed as the Streamflow Drought Index 197 (SDI) (Figure 3b). 198

From the SDI series, monthly low flows were defined by using a threshold following the Peak-Over-Threshold (POT) approach (Coles et al., 2001). In the identification of low flow

Figure 2: (a) Location of the study region and the 161 catchments (boundary shown in gray) along with their corresponding gauging stations (colored circles). The color of the gauge stations in (a) and (b) shows the mean annual flow depth and the mean annual precipitation, respectively.

periods, the choice of a low flow threshold is often subjective (Pushpalatha et al., 2012). 201 For the current work, the threshold for defining the low flows was chosen to be the 65th 202 percentile value of the SDI series. This ensured that most of the catchments had at least 203 more than 40 values of intensity of low flows required for the model to perform satisfactory 204 simulations. Higher thresholds corresponding to the 75th, 85th, and 95th percentiles resulted 205 in significantly reduced sample sizes (Figure S2 in Supporting Information S1). This is a 206 significant aspect as the capability of a Markovian model to simulate data improves when 207 more data is available. Further, it was found that for the number of points lying above the 208 threshold of 65th percentile, more than half of these lied above the 85th percentile for most 209 of these catchments. 210
For this work, we focus on three important characteristics of low flows, namely, their inten-211 sity, duration, and annual frequency. These were derived from the SDI time series following 212 their respective definitions in Goswami et al. (2022), as shown in Figure 3c. The duration 213 of a low flow event was defined as the number of months for which the monthly SDI series 214 remained above the threshold. The peak value that the SDI takes over the low flow spell 215 was regarded as the intensity of the event. The more positive the peak value in a spell, the 216 more intense the low flow event. The total number of such low flow events occurring in a 217 streamflow water year was regarded as the annual frequency of the low flow events. The 218 water year for computing frequency was taken from March of the current year, running for 219 12 months until February of the next year, following the definition as in X. S. Zhang et 220 al. (2016). The March-February water year is typical in parts of SE Australia (particularly 221 Victoria), where minimum flows are usually observed at the end of the Boreal summer. 222

223 2.3 Modeling IDF Using Hidden Markov Models (HMMs)

224 2.3.1 Hidden Markov Models for Low Flow IDF

HMM is a statistical Markov model consisting of two parts: an unobservable (or hidden) 'parameter process', C, which satisfies the Markov property, and a 'state-dependent process', X, in such a way that when $C^{(t)}$ is known, the distribution of X depends only on the present state of C and not on the previous states or observations (Zucchini & MacDonald, 2009). HMM assumes that the behavior of the process X depends on C. A simple HMM can be summarized by the following two equations:

$$Pr(C^{(t)} \mid C^{(t-1)}) = Pr(C^{(t)} \mid C^{(t-1)}) \quad t = 2, 3, \dots$$
(1)

241

$$Pr(X^{(t)} \mid \boldsymbol{X}^{(t-1)}, \boldsymbol{C}^{(t)}) = Pr(X^{(t)} \mid C^{(t)}) \quad t \in \mathbb{N}$$
(2)

where, $C^{(t)}$ represents the value of C at a given time t, $C^{(t)}$ is the Markov chain of probabilities and denotes the vector $[C_1, C_2, C_3, ..., C_t]$. $X^{(t)}$ represents the value of X at a given time t, and $X^{(t)}$ denotes the vector $[X_1, X_2, X_3, ..., X_t]$. If the Markov chain $C^{(t)}$ has mstates, the HMM of X is called an m-state HMM, where each state has a different distribution. The model provides a Markov chain, i.e. the probability of X being in each state over time which involves maximization of the following probability (Zucchini & MacDonald, 2009):

$$Pr\left(\boldsymbol{C}^{(T)} = \boldsymbol{c}^{(T)} \mid \boldsymbol{X}^{(T)} = {}_{obs}\boldsymbol{x}_{t}^{(T)}\right)$$
(3)

In the above expression, c is a sequence of possible states over the time steps and x is the vector of observed data. For an *m*-state HMM there are m^T possible sequences, T being the length of the time series.

Using this background of HMMs, we built temporal HMMs were built for each of the three 245 low flow characteristics (i.e. low flow IDF) that examined for one and two states in these. 246 The hidden states were the states of the existing climatic conditions. The model learnt 247 about the state of extremes (C) by observing the low flow characteristic being modeled (x). 248 Since the actual number of hydrological states for a given low flow characteristic is unknown, 249 it was assumed that the low flow characteristics of a catchment can cycle through two states. 250 A given low flow characteristic was thus simulated as being in one of the two distinct states. 251 At each time point, t, the observed low flow characteristic was considered a random variable 252 defined by a parametric distribution for each state. The state distribution at any time t253 depended upon the Markov chain of states at the preceding time step. For state, i, and at 254 255 time, t, the conditional mean for the distribution of the given low flow characteristic under consideration was simulated as: 256

$$_{257} \qquad \qquad \widehat{tx_i} = a_{0,i} + a_1.(sAPI_t) \qquad \qquad : for intensity and duration \qquad (4a)$$

$$_{258} \qquad \qquad \widehat{tx_i} = a_{0,i} + a_1.(mean \ annual \ sAPI_t) \qquad \qquad : for \ frequency \qquad (4b)$$

Figure 3: Deriving the intensity, duration, and frequency of low flows. (a) Flow depth (mm) time series for Station ID 407230. (b) Times series of the de-seasonalized (and reversed in sign) flow, termed as the Streamflow Drought Index (SDI), derived from the flow values for the catchment. The threshold is shown by the brown horizontal line at SDI = 0.51 which represents the 65th percentile of the SDI time series for this catchment. Values of SDI lying above the threshold represent low flows. (c) A zoomed window of the SDI series for the years 2010–2013 to illustrate how the IDF are derived from the SDI time series.

where $a_{0,i}$ was a state-dependent parameter allowing for a shift in the catchment's hydrological response, a_1 was a state-independent parameter that links a suitable model covariate to x. In this study, the standardized antecedent precipitation index, sAPI (or the mean annual sAPI for modeling frequency) was used as the covariate responsible for the observed variability in the low flow characteristic (sAPI is discussed in detail in Section 2.3.2). In

Equations 4a and 4b, the $sAPI_t$ (or mean annual $sAPI_t$) was taken at the corresponding

time instance when the low flow characteristic was observed. The error in this model was defined as a time-invariant state-dependent variance, σ_i^2 .

The Markov state $C^{(t)}$ at time t was simulated as:

268

276

280

288

$$C^{(t)} = Markov (\mathbf{\Gamma}) \tag{5}$$

where Γ is the transition matrix. Since the number of extreme states was assumed as two, we, therefore, investigated one- (Γ_1) and two- (Γ_2) state Markov models. The transitioning between any two consecutive states is explained using the schematic in Figure 4a. The two-state matrix Γ_2 can be written as:

$$\Gamma_2 = \begin{vmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{vmatrix} = \begin{vmatrix} p_{11} & 1 - p_{11} \\ 1 - p_{22} & p_{22} \end{vmatrix}$$
(6)

Here, p_{ij} (terms shown in Figure 4a), denotes the probability of the state at t transitioning from $C_i^{(t-1)}$ to $C_j^{(t)}$ (where $i, j \leq 2$), i.e.,:

$$p_{ij} = Pr(C_j^{(t)} \mid C_i^{(t-1)}) \tag{7}$$

Further assuming the HMM is homogeneous (i.e. transition probabilities are time-invariant),

 Γ_1 and Γ_2 required the estimation of zero and two transition probabilities, respectively. Additionally, the initial probability of being in each state was defined as follows:

$$\boldsymbol{\delta}_1 = 1\boldsymbol{\delta}_2 = \begin{vmatrix} \boldsymbol{\delta}_1 \\ \boldsymbol{\delta}_2 \end{vmatrix} = \begin{vmatrix} \boldsymbol{\delta}_1 \\ 1 - \boldsymbol{\delta}_1 \end{vmatrix}$$
(8)

where δ_1 and δ_2 were the initial probabilities of being in states 1 and 2, respectively.

The probability density in the error model of the HMM was derived using a two-parameter gamma distribution, a log-normal distribution, and a Poisson distribution for the intensity, duration, and frequency of low flows, respectively (Table 1). This was done after testing the capabilities of these respective distributions to satisfactorily represent these characteristics.

The gamma distribution, f_{Gam} , as used for building the HMM for modeling intensity, can be represented as:

$$f_{Gam}\left(x = {}_{obs}x_t; \ k = \frac{t^2 x_i^2}{\sigma_i^2}, \ \theta = \frac{\sigma_i^2}{t^2 x_i}\right) = \frac{x^{k-1} e^{-\frac{x}{\theta}}}{\theta^k G(k)} \qquad for \ x, \theta, k > 0$$
(9)

where θ is the scale parameter, k is the shape parameter and G(k) is the gamma function on k. The parameters k and θ were derived to ensure that the mean of the gamma distribution was as defined by Equation 4a, and were obtained by rearrangement of the Markov Mean, $E[x] = k\theta = {}_{t}x_{i}$ and the Markov Variance, $Var[x] = k\theta^{2} = \sigma_{i}^{2}$. In simple form,

$$k = \frac{(Markov \ Mean)^2}{Markov \ Variance} \tag{10}$$

$$\theta = \frac{Markov \ V \ driance}{Markov \ Mean} \tag{11}$$

The log-normal distribution, $f_{LogNorm}$, as used for modeling duration can be represented as:

$$f_{LogNorm}\left(x = {}_{obs}x_t; \mu = log \frac{t^{x_i^2}}{\sqrt{\sigma_i^2 + t^{x_i^2}}}; \sigma = \sqrt{log\left\{\frac{\sigma_i^2}{t^{x_i^2}} + 1\right\}}\right) =$$

$$\frac{1}{x\sigma\sqrt{2\pi}}exp\frac{-(\log x-\mu)^2}{2\sigma^2}, \quad for \ x>0$$
(12)

where μ and σ are the mean and standard deviation of logarithmic values of x and were related to the *Markov Mean*, E[x], and *Markov Variance*, Var[x], as:

$$\mu = \log \frac{(Markov \ Mean)^2}{\sqrt{Markov \ Variance + (Markov \ Mean)^2}}$$
(13)

$$\sigma = \sqrt{\log\left\{\frac{Markov\ Variance}{(Markov\ Mean)^2} + 1\right\}}$$
(14)

The Poisson distribution, f_{Pois} , as used for modeling frequency can be represented as

$$f_{Pois}\left(x = {}_{obs}x_t; \ \lambda = \sigma_i^2\right) = \frac{\lambda^x e^{-\lambda}}{x!} \quad for \ x \ge 0 \ and \ \lambda > 0 \tag{15}$$

where λ , the mean parameter of the Poisson distribution, was arrived at using

$$\lambda = Markov \ Mean \tag{16}$$

The parameters of the HMM were arrived at using a constrained maximum likelihood es-309 timation. The details of the calibration process are presented in Text S3 in Supporting 310 Information S1. To arrive at the most probable sequence of states from all possible com-311 binations of sequences for the given observation sequence of intensity/duration/frequency 312 (I/D/F), an efficient dynamic programming method, called the Viterbi algorithm (Forney, 313 1973; Zucchini & MacDonald, 2009) was used. This algorithm identifies the most probable 314 sequence of states from the Markov Chain of probabilities. The states of I/D/F obtained 315 through this were also referred to as the Viterbi states (named after the algorithm). The 316 algorithm was applied over the entire observation record to identify the most probable se-317 quence of I/D/F states, thereby also identifying any switching, if at all, in the states of the 318 I/D/F. 319

320 2.3.2 Covariate Used in the IDF HMMs

308

٦

341

For this study, the HMMs of IDF were built using a linear relationship between these low 321 flow characteristics and the available water through precipitation. To represent the available 322 water through precipitation at a catchment, a form of the Antecedent Precipitation Index 323 (API) was used. This serves as a covariate in the HMMs. Similar to the Standardized 324 Precipitation Index (SPI), the API is an empirical index for indirectly estimating how much 325 water is available in the catchment (soil) from precipitation. While SPI is calculated based 326 on a fitted distribution of a moving average of the precipitation time series, API provides 327 a current precipitation water availability indicator employing a constant rate of water de-328 pletion from the soil. API estimates the current water available in the soil by multiplying 329 API at the previous time step by a depletion factor and adding the previous time step's 330 precipitation. The definition of API as used in the present work is partly adapted from 331 studies like Kohler and Linsley (1951); Crow et al. (2005); Y. Y. Liu et al. (2011); Holmes 332 et al. (2017), where this index has been used for determining drought conditions and for 333 other watershed analysis. API is a simplified water balance model built on the assumption 334 that the amount of available water in a catchment is related to its antecedent precipitation 335 conditions. 336

We computed the API at monthly time steps, multiplying the index from the previous month by the depletion rate (γ) and adding the current monthly precipitation as shown below:

$$API_t = min\left(\gamma_n API_{t-1} + 0.75P_t, \ API_{max,n}\right)$$
(17)

with the API at the first time step calculated as:

$$API_{(t=1)} = 0.75P_{(t=1)} \tag{18}$$

 API_t and $API_{(t-1)}$ are the current and previous month's API, with γ modulating API_{t-1} , 342 and P_t is the current month's precipitation depth. The multiplicative factor of 0.75 to P_t 343 was used to account for the loss of precipitation water while reaching the soil (interception). 344 Since API is representative of the amount of available water in the soil, it was capped to a 345 maximum value $(API_{max,n})$ to indicate full saturation (Dharssi et al., 2017; Holmes et al., 346 2017) at a given catchment n. The value of $API_{max,n}$ was varied in proportion to the mean 347 of all monthly precipitation values at that catchment, $\overline{P_n}$, as shown in Equation 19. The 348 value of the multiplicative factor ϕ_n in Equation 19 indicates the proportion of maximum 349 monthly water that the soil can hold to the average precipitation at the station. 350

$$API_{max,n} = \phi_n \cdot \overline{P_n} \qquad \phi_n \in [4, 10] \tag{19}$$

The parameters γ and ϕ as used in Equations 17 and 19, respectively, are meant to simplify 352 the complex mechanisms controlling water availability from precipitation at a catchment. 353 They incorporate the dynamic range and variability of the actual daily API values that get 354 reflected as monthly aggregated values. The values of ϕ and that of γ at a given catchment 355 were chosen by running a simple optimization experiment for each catchment individually 356 instead of assuming a single constant value for them uniformly across the study region. 357 This was done as these parameters have a considerably large spatial variation due to several 358 factors, including soil type, soil density, vegetation, exposure, hill slope, etc. 359

351

The optimization was aimed at yielding such values of these parameters that maximized 360 the correlation between the low flow intensities at a catchment and the standardized time 361 series of the catchment's API (sAPI). This allowed a maximum transfer of information in 362 form of linear dependence from precipitation (through sAPI) to low flow intensity, assuming 363 the latter was a response of the former. The range of the multiplicative factor ϕ was set 364 to vary from 4 to 10 with increments of 1 while that of γ was varied from 0 to 0.99 with 365 increments of 0.01. Since API as defined above is a measure of dryness or wetness of the soil 366 in response to the monthly precipitation totals, the API is the soil water memory and is a 367 proxy for the amount of water available from precipitation to contribute to flows. It takes 368 into consideration the concurrent and lagged transfer of information from precipitation to 369 flows (as represented by Equation 17). Further, it was also found that API as used here 370 yielded a more direct relationship with low flow intensities than precipitation or SPI did 371 with low flow intensities (Figure S3, Supporting Information S1). Since the API time series 372 was derived with an inherent assumption that API = 0 at t = 0, the first twelve values of 373 monthly sAPI were discarded considering those months to be the warming-up period of the 374 API series. In the HMM models of intensity and duration, sAPI was used as a covariate, 375 while for the annual frequency HMM, the mean of annual sAPI was used as the model 376 covariate to be consistent with the timescales. Figure S5a shows the sAPI as obtained for 377 a sample station through the process explained above. Figure S5b shows the established 378 (inverse) relation between SDI and sAPI over time for a sample station. The sAPI closely 379 mimics the SDI, thus supporting the use of sAPI as a predictor in the HMM. 380

2.3.3 Configurations of One-state and Two-state IDF Models

For modeling low flow intensity, a monthly HMM was built with gamma distribution as the 382 error distribution model. The intensity data at a catchment was modeled using the corre-383 sponding value of the sAPI occurring at the same point in time. For any given catchment, 384 two models were built — a one-state model and a two-state model. The mean and standard 385 deviation of the two-state model were allowed to vary as shown in Table 1. While the mean 386 was a function of the covariate as well as the state, the variance was varied only with the 387 state and not with time. Similarly, for modeling duration, a monthly HMM was built with a 388 log-normal distribution as the error distribution model. The duration data at a catchment 389 was modeled using the corresponding value of the sAPI occurring at the same point of time 390 as the intensity (peak) of the low flow spell. For modeling low flow frequency, the total 391

count of all low flow events that took place in a streamflow water year was used. Annual
 HMMs were built with Poisson distribution as the error distribution model and the mean
 annual sAPI was used as a covariate.

Table 1 shows the model configurations for the one-state and two-state HMMs of the IDF. By employing such a framework, the cumulative probability of IDF was time-varying because of the non-stationary mean and standard deviation. Note that in the interests of parsimony, HMMs built here did not consider state changes for the parameter a_1 (Equations 4a and 4b).

Low flow characteristic	Covariate used	$\left \begin{array}{c} \textbf{Error distribution}\\ \textbf{model} \ (\varepsilon) \end{array}\right.$	Model configuration
Intensity (I)	sAPI	Gamma	$ \begin{aligned} &\widehat{tI_i} = a_{0,i} + a_1.(sAPI)_t \\ & {}_tI_i \sim Gam(\widehat{tI_i}, \sigma_i{}^2 \mid i) \end{aligned} $
Duration (D)	sAPI	Log-normal	$ \widehat{tD_i} = a_{0,i} + a_1.(sAPI)_t {}_tD_i \sim LogNorm(\widehat{tD_i}, \sigma_i^2 \mid i) $
Frequency (F)	Mean Annual sAPI	Poisson	$\begin{vmatrix} \widehat{F}_i = a_{0,i} + a_1.(Mean Annual \ sAPI)_t \\ {}_tF_i \sim Pois(\widehat{tF}_i, \sigma_i^2 \mid i) \end{vmatrix}$

Table 1: Configurations of the IDF HMMs

Ranges: $a_0 \in [-50, 50]; a_1 \in [-5, 5]; \sigma \in [1e - 7, 35]$

The subscript i denotes the state index and can take values 1 or 2.

 σ_i denotes the standard deviation of the error model in state i

400 2.3.4 Assigning of Viterbi States

Figure 4 depicts the possible Markov state transitions considered for the analysis here. As 401 mentioned before in Section 2.3.1, it was assumed that the maximum number of states a 402 given low flow characteristic's time series can take are only two, viz., normal and non-normal 403 (Figure 4a). For illustration, Figure 4b shows the possible model outcomes of applying the 404 framework on the intensities of low flows, where the three panels represent the time sequence 405 of the Viterbi states taken under each of the outcomes. It may be noted that since we are 406 modeling extreme characteristics of low flows, both states represent regimes of extremes. 407 Thus, the normal state of the regime of an extreme implies a state when values of I/D/F of 408 low flow droughts given the history of the region may be considered usual or not unexpected. 409 In simple words, the normal state of low flow I/D/F as defined in the study here corresponds 410 to low flow droughts that could be an outcome of a seasonal fluctuation resulting in flow 411 conditions that, while still considered extreme, are within the statistical likelihood of an 412 expected low flow drought condition for the region. The non-normal state, on the other 413 hand, can either be less extreme than normal low flows or more extreme than normal low 414 flows. However, both cannot co-occur for the time series of I/D/F for a given catchment, 415 following the assumption that the maximum number of states allowed is 2. While modeling 416 each of the IDF, we assigned states by assuming that the time stamp that had the value of 417 the covariate (sAPI for intensity and duration; mean annual sAPI for frequency) closest to 418 the median value of the covariate for a catchment was the time when the given I/D/F value 419 was in a normal state. A two-state model of HMM would have either 'high' and 'normal' 420 states or 'low' and 'normal' states (Figure 4a). The HMM built here classified an observation 421 to be in a high state if the 50th percentile of the Viterbi I/D/F value simulated at a given 422 point in time was more/higher than the 50th percentile of the normal state I/D/F value. 423 An observation was classified to be in a low state if the 50th percentile of the Viterbi I/D/F424

425 426

value simulated at a given point in time was less than the 50th percentile of the normal state I/D/F value.

Figure 4: (a) Depiction of Markov state transitions in the applied HMM framework. Each state can either continue to sustain or switch to the other state. (b) The three possible outcomes from applying the proposed HMM to a low flow characteristic. For illustration, the time series of the intensity of low flows is used to demonstrate the possible results from applying the model. The top panel shows a catchment where the intensity only has one state. The middle panel shows a catchment where the intensity has two states, with the second state (the high state) representing more intense low flows. The bottom panel shows a catchment where the intensity has two states) representing less intense low flows.

427 2.4 Identifying Catchments With Two States in IDF

The flowchart in Figure 5 summarizes the overall flow of the methodology pertaining to the analysis carried out. Following the steps as laid out in Figure 5, to decide the best model for a given characteristic at a catchment, the Akaike Information Criterion (AIC) was used. This is expressed as

$$AIC = -2ln(\mathscr{L}) + 2N \tag{20}$$

where N is the number of model parameters being estimated and \mathscr{L} is the maximized 433 likelihood of the model (expressed in Equation 3 in Supporting Information S1). Among 434 the two models tested, i.e., the best one-state and the best two-state model, the one that 435 had the lowest AIC was chosen for the catchment. Following the use of the AIC criterion, a 436 catchment was identified as having two states in I/D/F if the best model at the catchment 437 had: (a) observations belonging to a normal state and some to a low I/D/F state or (b) 438 observations belonging to a normal state and some to a high I/D/F state as depicted in 439 Figure 4b and as stated in the steps in Figure 5. In the present context of low flows, higher 440 values of a low flow characteristic indicate a more extreme low flow event. 441

At catchments where, for a given low flow characteristic, the two-state model was the better model, the strength of simulation of the two-state model over the one-state model was established using the evidence ratio (ER) (Burnham & Anderson, 2002). The evidence ratio offers a way to quantify the strength of the evidence that the selected model (the two-state HMM in this case) is convincingly superior to the alternative model (the one-state HMM). It was computed by comparing the Akaike weights, w, of the two competing models, namely, the two-state model (2SM) and the one-state model (1SM), as expressed below:

$$ER = \frac{w_{2SM}}{w_{1SM}} \tag{21}$$

Here w_{1SM} and w_{2SM} are the Akaike weights for the one-state and two-state models, respectively, and are defined as:

$$w_{2SM} = \frac{1}{1 + exp(-\frac{1}{2}\Delta)} \tag{22}$$

457

44

452

453

432

$$w_{1SM} = \frac{exp(-\frac{1}{2}\Delta)}{1 + exp(-\frac{1}{2}\Delta)}$$
(23)

(24)

where Δ in this case is the AIC difference between the best one-state model and the best two-state model:

```
\Delta = AIC_{1SM} - AIC_{2SM}
```

The ER value serves to establish confidence in the two-state model relative to the one-state 458 model, and hence the strength of evidence for the existence of two states. Any ER value 459 > 10 suggests that the observations are more likely to be explained by the two-state model 460 than the one-state model. The higher this value, the stronger the evidence. For the current 461 work, we considered ER values greater than 10 (or its logarithmic values greater than 1) 462 as denoting sufficient evidence to believe that a two-state model is convincingly better in 463 performance over the one-state model, following Burnham and Anderson (2002); Goswami 464 et al. (2022). The ER, however, only denotes how good the two-state model is relative 465 to the one-state model and does not provide sufficient information on how qualified the 466 two-state model is to represent the low flow characteristic being modeled. To address the 467 later aspect, the model residuals were tested for their normality using the Shapiro-Wilk's 468 test (alpha = 0.05) (Shapiro & Wilk, 1965) and were retained for further analysis only if 469 their Shapiro-Wilk's test p-value was greater than 0.05. In addition, the aim was also to 470 have a 2SM with at least a predefined minimum number of I/D/F values in each state to 471 ensure that a meaningful state does indeed exists. For this, catchments that had less than 472 five I/D/F data points in any state were removed for further analysis. To make sure the 473

BC: Box-Cox; SDI: Streamflow Drought Index; I/D/F: Intensity/ Duration/ Frequency; POT: Peak Over Threshold; SW: Shapiro Wilk; sAPI: Standardized Antecedent Precipitation Index; HMMs: Hidden Markov Models; AIC: Akaike Information Criterion; ER: Evidence Ratio

Figure 5: Flowchart illustrating the main steps followed to identify if a catchment has two states in low flow I/D/F.

best model performed adequately, we also inspected the number of significant lags in the
Auto-Correlation Function (ACF) of the normal pseudo-residuals, the histogram, and the
Q-Q plot of the normal pseudo-residuals (Zucchini & MacDonald, 2009). The ACF serves as
a visual check to confirm whether the model residuals are serially correlated or not. Serially
correlated errors indicate that the model is not adequately built and there is loss of some
information, thereby indicating that the model could be improved further.

480 **3** Results and Discussion

481 3.1 States of Low Flow IDF

Figure 6 shows the low flow intensity Viterbi states over time for an example catchment, with
Figure 6a showing the variation of the model covariate, i.e., sAPI. The results in Figure 6b

shows that two states were identified, whereby the catchment was in a normal state until 484 1999, after which it switched to and persisted in a high intensity state. Furthermore, the 485 conditional state probabilities (in Figure 6c) show that there is a very high probability of the 486 aforementioned states. Practically, this indicates that low flow periods become more intense 487 (i.e. drier) after 1999. This is illustrated in Figure 6b by the estimated normal values of 488 intensity (points in lime green). These are the model-estimated values that indicate what 489 would have been the intensity had the catchment been in the normal state at that epoch. 490 These are the model-estimated values that indicate what would have been the intensity had 491 the catchment been in the normal state at that epoch. These are determined using the 492 relationship of intensity with the covariate as in the normal state (Equation 4a, with i = 1). 493 For the epochs when the catchment is found to have switched into the second state, the 101 results from Figure 6 suggest that the intensity for a given value of covariate is much higher 495 than what it would have been expected had the catchment been in the normal state. Here 496 the intensity HMM not only distinguishes the two states of low flow intensity but also informs 497 the timing of the shifts in its states. Importantly, Figure 6 demonstrates that despite the 498 inclusion of a covariate, the observed low flow intensity is best explained using more than 499 one distribution. That is, the catchment not only displays non-stationarity arising from 500 the precipitation (Figure 6a) but also from the state shifting. This provides preliminary 501 evidence toward falsifying that one state is sufficient to explain low flow intensities. 502

Figure 6c shows the conditional probability of being in a given state at any given time for 503 the catchment. It reflects the switching of the catchment between the two states. The 504 catchment is believed to have switched to the other state when the state probability of the 505 other state becomes greater than that of the state in which the catchment is currently in. 506 Such a behavior as shown in Figure 6 suggests that hydrological droughts are becoming more 507 extreme in the catchment, with the catchment continuing to be in an amplified extreme state 508 until the end of the observation period. The two states as seen in Figure 6b are defined by two 509 different distributions, supporting the notion of the need for state-dependent distributions. 510 Thus, the observed intensity can lie in two states, shown by the green and pink color points. 511 The second state represents more extreme low flow intensity than those represented by the 512 normal low flow state. It must be noted here that the data represented by both states 513 are extreme values, i.e. values pertaining to low flow droughts. The second state here 514 refers to a more intensified extreme state, suggesting an amplification of extremes (low flow 515 events here) in such catchments. The existence of mixture distribution as emerging from the 516 outcomes in Figure 6 could mean that the observations in the two states are generated from 517 separate flow processes or flow dynamics unique to the states and which are not explained 518 by the variability in water availability from precipitation alone. These dynamics may be 519 arising from real physical attributes, such as changes in baseflow. It is thus likely that the 520 more intense low flows may be caused by less baseflow during such periods. Another factor 521 that could be in play is systematic changes in groundwater levels. However, all these need 522 523 further investigation.

For intensity data, it was found that the model satisfactorily simulates the values except 524 for only a few instances in time where it misses estimating very high values of intensity 525 accurately. However, most of the observations lie within the 95% confidence interval of 526 the model. Considering this and the fact that modeling extreme values adequately is a 527 challenge for any modeling framework, for the primary question being addressed in this 528 work, the HMM framework proved to be a suitable technique for investigating changing 529 regimes of extremes. Corresponding to Figure 6, Figure S4 in Supporting Information S1 530 provides an assessment of the model performance for the intensity HMM of the catchment in 531 terms of the distribution of the normal pseudo-residuals and their autocorrelation. With the 532 present ability of the HMM, the framework performs well in simulating low flow intensity 533 data. The model residuals were found to be normally distributed along with the Shapiro-534 Wilk p-value being more than 0.05. This implies that the model residuals have very little 535 information contained in them and they can be considered to be nearly random, suggesting 536 a good match between the modeled values and the observations. A model having Shapiro-537

Figure 6: Viterbi states taken by the low flow intensity over time for station ID 238223. (a) The catchment's monthly variation of the sAPI, which is used as a covariate in the intensity model. (b) Time series of low flow intensity of the catchment. The green-colored circles indicate modeled values that belong to the normal state. Pink-colored circles indicate values belonging to the second state (more extreme than normal state). The lime green stars occurring in the same vertical spaces as that of the pink circles indicate the model-established value of intensity in the normal state at that time step. At any given time, the colored circles (or stars) represent the median value of the intensity. The colored vertical lines associated with each of these represent the error bar covering the 5th to the 95th percentile of the estimates. The gray-colored circles denote the observed intensities. (c) Variation of state conditional probability depicting the probability of intensity being in a given state at any given time. Clearly, a single state is not sufficient to describe the intensity data at this catchment.

Wilk's p-value greater than 0.05 suggests A similar inference holds for the ACF plot where there are not many lags that are significant, indicating that the model errors have very low predictive power.

Figure 7 shows the low flow duration results for a different example catchment. Although the outcomes from AIC showed that the duration data was better described by a 2SM than a 1SM, Figure 7b suggests that the duration modeling as undertaken in the current framework has a scope for improvement. As can be seen in Figure 7b, the median duration in a given state at each time point shows very little variability, which casts doubt on sAPI being an

state at each time point shows very little variability, which casts doubt on sAPI being an
 appropriate covariate for duration. Figure 8 shows the model simulation of annual frequency

for a sample catchment. Figure 8a shows the corresponding time series of mean annual sAPI, 547 which is the covariate to the frequency model. For the sample catchment, all the values lie 548 in a single state (the normal state) as can be seen from Figure 8b. Hence a single state 549 does a better job of explaining the frequency data than two states in this case. However, 550 the simulated frequency values following the modeling as done here resulted in large error 551 bars associated with the modeled values, implying that the frequency model too, like the 552 duration model, may be further improved. Figures S5 and S6 in Supporting Information S1 553 provide assessments of model residual behavior corresponding to the duration and frequency 554 HMM results discussed in Figures 7 and 8, respectively. 555

Figure 7: Viterbi states taken by the low flow duration over time for station ID 227211. See Figure 6 for a description of the figure elements.

As pointed out above, the current approach for modeling duration and frequency in the HMM framework needs improvement. Time series simulation of duration and frequency thus remains a challenge. The IDF HMMs as used here are built upon the linear dependence between sAPI and the low flow characteristic being modeled (Equation 4a and 4b). Thus, the results suggest that the sAPI's relation with duration and frequency is either non-linear, or an alternate covariate should be sought. For example, sAPI at a fortnightly or daily scale

Figure 8: Variation of low flow annual frequency values with time for station ID 227237. (a) Catchment's mean annual sAPI which is used as a covariate in the frequency model. (b) Time series of the observed and simulated frequency. Only a single state was sufficient to describe the frequency data at this catchment.

than monthly may be a better predictor for duration, and seasonal mean sAPI instead of annual mean sAPI may work better for modeling low flow frequency. Another possibility could be understanding and establishing which physical covariate, if not sAPI, governs the variability in these characteristics and may potentially replace sAPI in these models.

For the reasons stated above, following this section, we focus primarily on presenting and discussing the results for low flow intensities, with only a brief discussion about duration and frequency.

⁵⁶⁹ 3.2 Catchments with Two States in IDF

As depicted in the steps in Figure 5 and as discussed under Section 2.4, the candidate models 570 at a catchment were screened for AIC and ER. Figure 9a shows the spatial distribution of 571 catchments obtained after screening for AIC of 2SM < AIC of 1SM, and log(ER) > 1 for 572 the intensity model over the study region. A total of 115 (71%) catchments (purple-colored) 573 showed strong evidence of the existence of two states in the intensity of low flows. This 574 suggests that low flow intensity extremes are a mixed process and hence warrant a mixture 575 of distributions to represent them. Such results provide formal strength of evidence for the 576 hypotheses that extremes can quantitatively shift to different states if perturbed and hence 577 a single state cannot adequately explain them. 578

The 115 catchments as identified in Figure 9a were further screened for model performance based on the Shapiro-Wilk p-value for normality of the residuals. The number of catchments

Figure 9: Spatial distribution of catchments having two states in low flow intensities. Figures a–d show the two-state catchments retained on subsequent steps of filtering. (a) The 115 catchments (colored in purple) having AIC of 2SM < AIC of 1SM and $\log(ER) > 1$ for 2SM over 1SM. (b) The 101 catchments (colored in purple) having Shapiro-Wilk p-value>0.05. (c) The 34 catchments (colored in purple) which had at least 5 intensity data points in each state (and hence at least 5 unique low flow spells in each regime). (d) Of the 34 catchments, the 21 catchments that have normal and high intensity states shown in a shade of red. For these catchments, the second state is a high intensity states shown in blue. The second state for these 13 catchments is a low intensity state.

that indicate high evidence for 2SM over 1SM provides provides support for the hypothesis 581 that low flow extremes might switch states. 101 of these 115 satisfied the condition of 582 Shapiro-Wilk p-value>0.05. These are shown further in Figure 9b (colored in purple). 583 Further, to ensure a meaningful state exists, these 101 catchments were also checked for 584 having the number of data points in each state more than or equal to 5. This condition 585 ensured that such a catchment will have at least 5 unique low flow spells in both, normal 586 and non-normal, regimes. Figure 9c shows the final 34 catchments meeting these criteria. 587 Of these 34 catchments, there were catchments where the second state (the non-normal state) pointed to a low intensity state (shown in blue in Figure 9d) and catchments where 589 the second state was a high intensity state (shown in a shade of red in Figure 9d). 590

The high spatial variability shown in Figure 9d is unexpected. It may be due to catchmentspecific biophysical factors (combination of one or more of the slope, mean elevation, soil types, climate, vegetation, etc.) and hydrologic response to extremes emerging from the complex interactions of vegetation and soil hydraulics, making low flows, at least in the case of the SEA region, somewhat heterogeneous in space. The tendency to switch or to exhibit resilience against switching may thus possibly be controlled by a combination of

topography, climatic factors, soils, and vegetation. Catchments having the second state as 597 high state are likely to switch from a normal low flow state to a more extreme low flow state 598 characterized by higher than usual values of low flow intensities, entailing a magnification of 599 low flows. Further, since proxy information from precipitation and soil moisture was already 600 provided in the form of sAPI for modeling the low flow intensities, the emergence of a two-601 state model with very high evidence and model reliability at as many as 34 catchments 602 (Figure 9) suggests that not all observations can be explained by the precipitation data. 603 Thus, extremes in low flows may not be sufficiently explained by changes in precipitation. 604

605 Figure 10 follows a similar basis as Figure 9, showing the catchments retained at every stage of filtering. Using AIC and ER values as the filtering criteria, a total of 112 (Figure 10a) 606 out of 161 catchments showed a 2SM to be superior to 1SM in modeling low flow duration 607 data. The 5 red shaded catchments in Figure 10d represent catchments as obtained after 608 all the steps of performance filtering. For these, the second state of low flow duration was 609 associated with higher values of duration. There is a good overlap of catchments having 610 high evidence for exhibiting two states in intensity as well as in duration as can be seen 611 from Figures 9a and 10a. The spatial differences, however, grow as one moves from subplots 612 a-d in these figures. As per the AIC and ER criteria, of the 161 catchments, the number 613 of catchments having two states in (1) only intensity (but not duration) were 30, (2) only 614 duration (but not intensity) were 27, and (3) both intensity and duration were 85. 615

Unlike intensity and duration, annual frequency of the low flow events, on the other hand, did not exhibit switching of states for the way the framework models this characteristic. Of the catchments studied, only one catchment emerged where the 2SM was better than ISM. Since for frequency of low flows, the number of catchments satisfying the AIC and ER criteria was not sufficient, the figure for the spatial distribution of 2SM catchments of frequency is not included here.

For several of the SEA catchments, the existence of multiple states of extremes is a recent 622 phenomenon. The exact reasons that drive the switching of states of low flows still need 623 to be explored. The answer may come with improved knowledge of the underlying sys-624 temic processes governing these and their complex feedbacks to one another. The results 625 here provide evidence for low flow state transitions in these catchments and the changing 626 regimes of hydrological extremes (low flow droughts). The intensities in the 'high' state 627 represent unusual low flow droughts induced possibly from a hydrological disturbance which 628 sets a positive feedback for the catchment's extreme characteristics to slip into the second 629 state, as has been concluded to be the case for total flows by Peterson et al. (2021). Such a 630 hydrological disturbance could be from catchment-wide changes, which control the runoff, 631 changing the partitioning of the incoming precipitation at the surface between infiltration 632 and surface runoff. This disturbance may be brought about by prolonged meteorological 633 droughts and natural factors. Studies have also suggested groundwater storage (Fowler et 634 al., 2020; Hughes et al., 2012; Kinal & Stoneman, 2012) and plant water use (Peterson et 635 al., 2021; Ukkola et al., 2016) as causal factors, with the latter producing a positive feed-636 back and hence persistent alternate states. Long hydrological memory linked with stored 637 groundwater may also be an important facet (Alvarez-Garreton et al., 2021), which makes 638 the current flow volumes to be governed more strongly by antecedent conditions. In such 639 cases, the subsurface storages carried forward in time are often capable of equalizing the 640 deficiencies in precipitation during the onset of a drought (Avanzi et al., 2020). Anoma-641 lously low streamflows have also been implicated in changes in the seasonality of climate 642 conditions (both atmospheric and precipitation demands) (Williams et al., 2022). However, 643 all this demands further research to draw more detailed conclusions around the drivers for 644 the switch, including how feedbacks from the catchment's biophysical components may be 645 affecting water partitioning (e.g., Peterson, Western, & Argent, 2014) and the triggers from 646 global climate shifts. 647

⁶⁴⁸ Apart from natural controls on flows, low flows can vary as a response to human controls ⁶⁴⁹ on flows as well (Gebremicael et al., 2013; Guzha et al., 2018). Studies have shown that

Figure 10: Same as Figure 9 but for duration of low flows. Figures a–d show the two-state catchments retained on subsequent steps of filtering. (a) The 112 catchments (colored in purple) having AIC of 2SM < AIC of 1SM and log(ER)>1 for 2SM over 1SM. (b) The 63 catchments (colored in purple) having Shapiro-Wilk p-value>0.05. (c) The 34 catchments (colored in purple) which had at least 5 duration data points in each state. (d) Of the 8 catchments, the 5 catchments that have normal and high duration states shown in a shade of red. For these catchments, the second state is a high duration state. Of the 34 catchments, the 3 catchments that have normal and low duration states shown in blue. The second state for these 3 catchments is a low duration state.

human activities such as water abstraction interventions and land use/cover change, such as 650 fire/non-fire induced vegetation changes, can modify low flows in a catchment (Li et al., 2007; 651 Chang et al., 2016; Gebremicael et al., 2020) as these activities may change the partitioning 652 of the incoming precipitation on the land surface (Gates et al., 2011). In the case of the 653 present study, the 161 SEA catchments were unregulated and had water extractions <10%654 of the mean annual runoff. Effects from land use change may be a driver responsible for 655 switching of states of extremes. However, for these catchments, Peterson et al. (2021) (in 656 their Supplementary Material) show that land use change (1985-2019) did not explain the 657 observed runoff state shifts. The switching of states of low flows as found in this study is 658 thus more likely an outcome of changes in the hydroclimate of the region or the response of 659 a catchment to these or both. 660

3.3 Low Flow Intensity State Changes and Atmospheric Conditions

Extreme dry and warm conditions of the atmosphere may be one of the drivers of low flow switching. To examine this, a timeline of the 21 catchments identified to be switching between a normal intensity state and a high intensity state was studied. Figure 11a shows

the number of catchments, of the 21 catchments, existing in their second state of low flow 665 intensity for the time period 1950–2016. The height of the vertical black-colored bars indi-666 cates the number of catchments experiencing a low flow intensity lying in the second state 667 at a given time. The gaps in between the bars represent a time instance when either none of those catchments had a low flow intensity (peak) occurrence or when there is a low flow 669 intensity (peak) occurrence, but it belongs to the normal state. The height of the yellow bar 670 at each month depicts the number of catchments that had gauge flow data available. The 671 recent meteorological drought periods in the state of Victoria (Australian Bureau of Statis-672 tics, Year Book Australia 1998) were: (i) 1967–1968, (ii) 1972–1973, and (iii) 1982–1983. 673 Combined with the Millennium Drought (1997-2009), these 4 periods denote abnormally dry 674 periods over SEA on record. These are shown as gray-colored vertical strips in Figure 11a. 675 These periods appear to coincide with peaks in the number of catchments in the second 676 state of low flow intensity. 677

Also shown in Figure 11 are the periods of abnormally high sea surface temperature anoma-678 lies of the Niño3.4 region, characteristic of an El Niño event (orange vertical bars). These 679 were derived from the Ocean Niño Index (ONI) obtained from the United States Na-680 tional Oceanic and Atmospheric Administration (NOAA) Climate Prediction Centre (CPC) 681 (www.cpc.ncep.noaa.gov) (Refer Text S5 and Table S3 in Supporting Information S1 for 682 details). It was also seen that many catchments switched to the second state during the 683 warm episodes of the El Niño Southern Oscillation. However, the number of these catch-684 ments is comparable to those belonging to neither the meteorological drought nor the El 685 Niño periods for the present study (Figure 11b and c). Figure 11 suggests that warm and 686 dry atmospheric conditions such as those prevailing during sustained meteorological drought 687 spells may create conditions conducive for catchments to switch states of low flows. 688

The boxplots in the lower panel of Figure 11 show the number of catchments in the second 689 state for various periods, namely, periods of meteorological droughts (b), periods of warm 690 ENSO (c), and periods that were neither meteorological droughts nor warm ENSO periods 691 (d). The figure suggests that meteorological droughts have the potential to change low 692 flow spells, adding to the existing literature on how severe and protracted meteorological 693 droughts can potentially destabilize the hydrological behavior and resilience of catchments. 694 With the projected increase (Xu et al., 2019) and changes in future meteorological droughts 695 and the complex interactions between meteorological and hydrological droughts, low flow 696 regimes are more likely to be dynamic and subject to modifications. Importantly, Figure 11 697 highlights the changing regimes of hydrological extremes in a changing climate. The results 698 in the figure also suggest that the phenomenon of switching of low flow regimes can neither 699 be considered exceptional nor rare any longer. With low flow droughts exhibiting regime-700 switching, the risks associated with them are also expected to vary in time. As the risk 701 changes, water managers will have to understand how resilient are the catchments to changes 702 in extremes. 703

704 4 Conclusions

Catchments can undergo complex changes in their behavior which can change how low flows 705 respond to such changes. The study here examined whether low flow characteristics can exist 706 in more than one state. This was done using HMMs with antecedent precipitation index as a 707 covariate, applied to examine low flow IDF in 161 catchments in SEA. It was found that for 708 the majority of the catchments ($\approx 70\%$), a two-state model explained the low flow intensity 709 and duration data better than a one-state model, thereby suggesting that low flows exhibit 710 multiple states. Very strong evidence of low flow intensity exhibiting two distinct states 711 was found for at least 34 (21%) catchments in the region. For most catchments exhibiting 712 switching of states of low flow intensity, the second state entailed an intensification of low 713 flows. The regime-switching behavior can cause low flows to manifest in very different ways 714 at two different epochs for the same catchment. Such a temporal behavior also points to 715 changing risks associated with hydrological droughts. The two states are possibly governed 716

Figure 11: (a) Timeline (1950–2016) of the switching of states of low flow intensity for the 21 catchments. The height of the black-colored bars represents the number of catchments in the second state at a given time. The height of the yellow-colored bars at each month represents how many of these 21 catchments had flow data available for that month. The four gray-colored vertical strips shown in the background represent the four recent severe meteorological drought spells for the Victoria region, which are (i) 1967–1968, (ii) 1972–1973, (iii) 1982–1983, and (iv) 1997-2009, respectively, from left to right. The red-colored vertical strips represent time instances when the ONI indicates the occurrence of a warm ENSO episode. The three boxplots shown in the lower panel depict the number of catchments in the second state during (b) meteorological drought periods, (c) warm ENSO periods, (d) periods that were neither b nor c.

by unique processes generating the observations in the two states. Importantly this indicates

that the use of one distribution is inadequate to explain the observed data, as is widely done.

The work demonstrates the capability and reliability of HMMs to simulate extreme low flow intensities as well as the capability to contume temporal shifts in states.

⁷²⁰ intensities as well as the capability to capture temporal shifts in states.

Further, since the information from the catchment's antecedent conditions and precipitation 721 was intrinsic to the model, the emergence of a two-state model at a catchment implies that 722 information from precipitation, though useful in simulating low flow behavior, may not 723 be sufficient to explain changes in low flow extremes. Low flow intensities in the second state are not explained by the corresponding variability in precipitation. The duration and 725 frequency HMM have a scope for improvement in the current framework. For frequency of 726 low flows, the current capability of the model framework was not satisfactory for establishing 727 the strength of the 2SM over 1SM. These models may be improved by either incorporating 728 non-linear relation with sAPI or by using covariates (for eg., climate indices) that may 729 explain the variability in them better. 730

Switching of catchments into an intensified low flow state may be strongly influenced by sus-731 tained dry atmospheric conditions such as those during protracted meteorological droughts 732 as well as the changes in them. The study also helps to understand how future extreme hy-733 drological characteristics may behave in response to such meteo-climatological disturbances 734 triggered naturally or due to climate change. This points to possible changes that catch-735 ments can undergo during and after a meteorological drought and how that impacts extreme 736 hydrological behavior and response. As dry conditions and meteorological droughts change 737 and become more frequent in a changing climate, their impact on hydrological cycle and on 738 extreme flows can be very significant. 739

More research needs to be undertaken to understand the underlying physical processes 740 and the driving mechanisms in play to explain the existence of more than one low flow 741 regime, thereby reducing uncertainty about future low flow dynamics in watersheds. The 742 results here demonstrate the potential of catchments to exhibit shifts in regimes of low 743 flow extremes. A crucial aspect of enhancing future water security lies in understanding 744 how these shifts might translate into impacts on streamflow services and how to manage 745 these periods. Identification of shifts may enable system planners to consider solutions 746 such as supply augmentation, demand management, inter-basin water transfers, managed 747 groundwater aquifer recharge, conjunctive use, etc., thereby augmenting system resilience 748 during low flow shifts in the future. 749

750 Conflict of Interest

The authors declare no conflicts of interest relevant to this study.

752 Acknowledgments

The authors acknowledge the IITB-Monash Research Academy for funding P. Goswami with a PhD scholarship to support this research. The authors are thankful to Christopher Pickett-Heaps from the Bureau of Meteorology, Australia, for his constructive comments on the manuscript, adding to its improvement. The authors also thank and acknowledge the developers and contributors of all the R packages that were used for this analysis.

758 Data Availability Statement

The implementation of the Hidden Markov modeling was carried out in the software envi-759 ronment R (R Core Team, 2021) using the R package "HydroState" available at https:// 760 github.com/peterson-tim-j/HydroState. The streamflow and precipitation data used for 761 this study are available at https://doi.org/10.5281/zenodo.6412694. The ONI data was 762 sourced from https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ 763 ONI_v5.php. To aid in the analysis of the current work, R packages such as DEoptim, MASS, 764 extRemes, ggplot2, ggpattern, ggpubr, zoo, dplyr, rgdal, sf, RColorBrewer, ggsn, cowplot, 765 and ggspatial were also used. Developers and contributors of all these packages are acknowl-766

767	edged.
-----	--------

768

779

780

786

787

788

789

790

791

792

805

806

807

769 **References**

- Alvarez-Garreton, C., Boisier, J. P., Garreaud, R., Seibert, J., & Vis, M. (2021). Progressive
 water deficits during multiyear droughts in basins with long hydrological memory in
 Chile. Hydrology and Earth System Sciences, 25(1), 429–446.
- Australian Bureau of Statistics. (Year Book Australia 1998). Canberra, Australia: Australian Government Publishing Service, 1998. Australia.
- Avanzi, F., Rungee, J., Maurer, T., Bales, R., Ma, Q., Glaser, S., & Conklin, M. (2020).
 Climate elasticity of evapotranspiration shifts the water balance of Mediterranean climates during multi-year droughts. *Hydrology and Earth System Sciences*, 24(9), 4317–4337.
 - Baum, L. E., & Petrie, T. (1966). Statistical inference for probabilistic functions of finite state Markov chains. The annals of mathematical statistics, 37(6), 1554–1563.
- Bennett, K. E., Cannon, A. J., & Hinzman, L. (2015). Historical trends and extremes in
 boreal Alaska river basins. *Journal of Hydrology*, 527, 590–607.
- Box, G. E. P., & Cox, D. R. (1964). An Analysis of Transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211–243. doi: 10.1111/ j.2517-6161.1964.tb00553.x
 - Bracken, C., Rajagopalan, B., & Zagona, E. (2014). A hidden Markov model combined with climate indices for multidecadal streamflow simulation. *Water Resources Research*, 50(10), 7836–7846.
 - Burn, D. H., Sharif, M., & Zhang, K. (2010). Detection of trends in hydrological extremes for Canadian watersheds. *Hydrological Processes*, 24 (13), 1781–1790.
 - Burnham, K. P., & Anderson, D. R. (2002). A practical information-theoretic approach (Vol. 2). Springer New York.
- Chang, J., Zhang, H., Wang, Y., & Zhu, Y. (2016). Assessing the impact of climate variability and human activities on streamflow variation. *Hydrology and Earth System Sciences*, 20(4), 1547–1560.
- Chiew, F. H. S., Potter, N., Vaze, J., Petheram, C., Zhang, L., Teng, J., & Post, D. (2014).
 Observed hydrologic non-stationarity in far south-eastern Australia: implications for
 modelling and prediction. *Stochastic Environmental Research and Risk Assessment*,
 28(1), 3–15.
- Coles, S., Bawa, J., Trenner, L., & Dorazio, P. (2001). An introduction to statistical modeling
 of extreme values (Vol. 208). Springer.
- Crow, W. T., Bindlish, R., & Jackson, T. J. (2005). The added value of spaceborne
 passive microwave soil moisture retrievals for forecasting rainfall-runoff partitioning.
 Geophysical Research Letters, 32(18).
 - Dharssi, I., Bally, J., Steinle, P., McJannet, D., & Walker, J. (2017). Comparison of soil wetness from multiple models over Australia with observations. *Water Resources Research*, 53(1), 633–646.
- Forney, G. D. (1973). The viterbi algorithm. *Proceedings of the IEEE*, 61(3), 268–278.
- Fowler, K., Knoben, W., Peel, M., Peterson, T. J., Ryu, D., Saft, M., ... Western, A. (2020).
 Many commonly used rainfall-runoff models lack long, slow dynamics: Implications for runoff projections. *Water Resources Research*, e2019WR025286.
- Fowler, K., Peel, M., Saft, M., Nathan, R., Horne, A., Wilby, R., ... Peterson, T. (2022). Hydrological shifts threaten water resources. *Water Resources Research*, e2021WR031210.
- Gates, J. B., Scanlon, B. R., Mu, X., & Zhang, L. (2011). Impacts of soil conservation on groundwater recharge in the semi-arid Loess Plateau, China. *Hydrogeology Journal*, 19(4), 865–875.
- Gebremicael, T. G., Mohamed, Y., Betrie, G., Van der Zaag, P., & Teferi, E. (2013). Trend
 analysis of runoff and sediment fluxes in the Upper Blue Nile basin: A combined

820	analysis of statistical tests, physically-based models and landuse maps. Journal of
821	$Hydrology, \ 482, \ 57-68.$
822	Gebremicael, T. G., Mohamed, Y. A., van der Zaag, P., Hassaballah, K., & Hagos, E. Y.
823	(2020). Change in low flows due to catchment management dynamics—Application of
824	a comparative modelling approach. <i>Hydrological Processes</i> , $34(9)$, 2101–2116.
825	Goswami, P., Peterson, T. J., Mondal, A., & Rüdiger, C. (2022). Non-stationary Influences
826	of Large-scale Climate Drivers on Low Flow Extremes in Southeast Australia. Water
827	Resources Research, $e2021WR031508$.
828	Guzha, A., Rufino, M. C., Okoth, S., Jacobs, S., & Nóbrega, R. (2018). Impacts of land
829	use and land cover change on surface runoff, discharge and low flows: Evidence from
830	East Africa. Journal of Hydrology: Regional Studies, 15, 49–67.
831	Holmes, A., Rüdiger, C., Mueller, B., Hirschi, M., & Tapper, N. (2017). Variability of soil
832	moisture proxies and hot days across the climate regimes of Australia. Geophysical
833	Research Letters, $44(14)$, 7265–7275.
834	Hughes, J., Petrone, K., & Silberstein, R. (2012). Drought, groundwater storage and stream
835	flow decline in southwestern Australia. Geophysical Research Letters, $39(3)$.
836	Katz, R. W. (2013). Statistical methods for nonstationary extremes. In Extremes in a
837	changing climate (pp. 15–37). Springer.
838	Kendall, M. G. (1975). Rank correlation methods. (4th ed. 2d impression). Griffin.
839	Kiem, A. S., & Verdon-Kidd, D. C. (2010). Towards understanding hydroclimatic change
840	in Victoria, Australia-preliminary insights into the "Big Dry". Hydrology and Earth
841	System Sciences, $14(3)$, $433-445$. doi: $10.5194/hess-14-433-2010$
842	Kinal, J., & Stoneman, G. (2012). Disconnection of groundwater from surface water causes a
843	fundamental change in hydrology in a forested catchment in south-western Australia.
844	Journal of Hydrology, 472, 14–24.
845	Kohler, M. A., & Linsley, R. K. (1951). Predicting the runoff from storm rainfall (Vol. 30).
846	US Department of Commerce, Weather Bureau.
847	Li, LJ., Zhang, L., Wang, H., Wang, J., Yang, JW., Jiang, DJ., Qin, DY. (2007).
848	Assessing the impact of climate variability and human activities on streamflow from
849	the Wuding River basin in China. Hydrological Processes: An International Journal,
850	21(25), 3485 - 3491.
851	Liu, X., Liu, C., & Brutsaert, W. (2018). Investigation of a generalized nonlinear form
852	of the complementary principle for evaporation estimation. Journal of Geophysical
853	Research: Atmospheres, $123(8)$, $3933-3942$.
854	Liu, Y. Y., Parinussa, R., Dorigo, W. A., De Jeu, R. A., Wagner, W., Van Dijk, A.,
855	Evans, J. (2011). Developing an improved soil moisture dataset by blending passive
856	and active microwave satellite-based retrievals. Hydrology and Earth System Sciences,
857	15(2), 425-436.
858	Mallya, G., Tripathi, S., Kirshner, S., & Govindaraju, R. S. (2013). Probabilistic Assess-
859	ment of Drought Characteristics Using Hidden Markov Model. Journal of Hydrologic
860	Engineering, 18(7), 834–845. doi: 10.1061/(asce)he.1943-5584.0000699
861	Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the
862	econometric society, 245–259.
863	Miao, C., Ashouri, H., Hsu, KL., Sorooshian, S., & Duan, Q. (2015). Evaluation of
864	the PERSIANN-CDR daily rainfall estimates in capturing the behavior of extreme
865	precipitation events over China. Journal of Hydrometeorology, $16(3)$, 1387–1396.
866	Miller, W. P., & Piechota, T. C. (2008). Regional analysis of trend and step changes
867	observed in hydroclimatic variables around the Colorado River Basin. Journal of
868	Hydrometeorology, 9(5), 1020-1034.
869	Peel, M. C., McMahon, T. A., & Finlayson, B. L. (2004). Continental differences in the
870	variability of annual runoff-update and reassessment. <i>Journal of Hydrology</i> , 295(1-4),
871	185-197.
872	Peterson, T. J., Saft, M., Peel, M. C., & John, A. (2021). Watersheds may not recover from
873	drought. Science, $372(6543)$, $745-749$. doi: 10.1126/science.abd5085
874	Peterson, T. J., & Western, A. (2014). Multiple hydrological attractors under stochastic

daily forcing: 1. Can multiple attractors exist? Water Resources Research, 50(4), 2993–3009.

Peterson, T. J., Western, A., & Argent, R. (2014). Multiple hydrological attractors under stochastic daily forcing: 2. Can multiple attractors emerge? *Water Resources Research*, 50(4), 3010–3029.

875

876

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

910

911

912

913

914

915

918

919

920

- Pushpalatha, R., Perrin, C., Le Moine, N., & Andréassian, V. (2012). A review of efficiency
 criteria suitable for evaluating low-flow simulations. *Journal of Hydrology*, 420, 171–182.
- R Core Team. (2021). R: A Language and Environment for Statistical Computing [Computer software manual]. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org/
 - Robertson, A. W., Kirshner, S., & Smyth, P. (2003). Hidden Markov models for modeling daily rainfall occurrence over Brazil. *Information and Computer Science*, University of California.
 - Robertson, A. W., Kirshner, S., & Smyth, P. (2004). Downscaling of daily rainfall occurrence over northeast Brazil using a hidden Markov model. *Journal of climate*, 17(22), 4407– 4424.
 - Rolim, L. Z. R., & de Souza Filho, F. d. A. (2020). Shift detection in hydrological regimes and pluriannual low-frequency streamflow forecasting using the hidden markov model. *Water*, 12(7), 2058.
 - Saft, M., Western, A. W., Zhang, L., Peel, M. C., & Potter, N. J. (2015). The influence of multiyear drought on the annual rainfall-runoff relationship: An Australian perspective. Water Resources Research, 51(4), 2444–2463. doi: 10.1002/2014WR015348
 - Sagarika, S., Kalra, A., & Ahmad, S. (2014). Evaluating the effect of persistence on long-term trends and analyzing step changes in streamflows of the continental United States. *Journal of Hydrology*, 517, 36–53.
 - Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). *Biometrika*, 52(3/4), 591–611.
- Solander, K. C., Bennett, K. E., & Middleton, R. S. (2017). Shifts in historical streamflow
 extremes in the Colorado River Basin. Journal of Hydrology: Regional Studies, 12, 363–377.
- Tauro, F. (2021). River basins on the edge of change. Science, 372(6543), 680-681.
- Thyer, M., & Kuczera, G. (2000). Modeling long-term persistence in hydroclimatic time series using a hidden state Markov model. *Water resources research*, 36(11), 3301– 3310.
 - Thyer, M., & Kuczera, G. (2003). A hidden Markov model for modelling long-term persistence in multi-site rainfall time series 1. Model calibration using a Bayesian approach. *Journal of Hydrology*, 275(1-2), 12–26.
 - Tian, W., Bai, P., Wang, K., Liang, K., & Liu, C. (2020). Simulating the change of precipitation-runoff relationship during drought years in the eastern monsoon region of China. Science of the Total Environment, 723, 138172.
- Turner, S., & Galelli, S. (2016). Regime-shifting streamflow processes: Implications for
 water supply reservoir operations. Water Resources Research, 52(5), 3984–4002.
 - Ukkola, A. M., Prentice, I. C., Keenan, T. F., Van Dijk, A. I., Viney, N. R., Myneni, R. B., & Bi, J. (2016). Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. *Nature Climate Change*, 6(1), 75–78.
- Van Dijk, A. I., Beck, H. E., Crosbie, R. S., De Jeu, R. A., Liu, Y. Y., Podger, G. M., ...
 Viney, N. R. (2013). The Millennium Drought in southeast Australia (2001-2009):
 Natural and human causes and implications for water resources, ecosystems, economy,
 and society. Water Resources Research, 49(2), 1040–1057. doi: 10.1002/wrcr.20123
- Wasko, C., Shao, Y., Vogel, E., Wilson, L., Wang, Q. J., Frost, A., & Donnelly, C. (2021).
 Understanding trends in hydrologic extremes across Australia. *Journal of Hydrology*, 593, 125877. doi: 10.1016/j.jhydrol.2020.125877
- Wilhite, D. A., & Glantz, M. H. (1985). Understanding: the drought phenomenon: the role
 of definitions. Water international, 10(3), 111–120.

930	Williams, A. P., Cook, B. I., & Smerdon, J. E. (2022). Rapid intensification of the emerging
931	southwestern North American megadrought in 2020–2021. Nature Climate Change,
932	12(3), 232-234.
933	Xu, L., Chen, N., & Zhang, X. (2019). Global drought trends under 1.5 and 2 C warming.
934	International Journal of Climatology, 39(4), 2375–2385. doi: 10.1002/joc.5958
935	Zhang, X., Harvey, K. D., Hogg, W., & Yuzyk, T. R. (2001). Trends in Canadian streamflow.
936	Water Resources Research, 37(4), 987–998.
937	Zhang, X. S., Amirthanathan, G. E., Bari, M. A., Laugesen, R. M., Shin, D., Kent, D. M.,
938	Tuteja, N. K. (2016). How streamflow has changed across Australia since the
939	1950s: evidence from the network of hydrologic reference stations. Hydrology and
940	Earth System Sciences, $20(9)$, $3947-3965$.
941	Zipper, S., Popescu, I., Compare, K., Zhang, C., & Seybold, E. C. (2022). Alternative
942	stable states and hydrological regime shifts in a large intermittent river. Environmental
943	Research Letters, $17(7)$, 074005 .
944	Zucchini, W., & MacDonald, I. L. (2009). Hidden Markov models for time series: an
945	introduction using R . Chapman and Hall/CRC.

Supporting Information for "On the existence of multiple states of low flow regimes in catchments in southeast Australia"

Pallavi Goswami¹, Tim J. Peterson^{2,3}, Arpita Mondal^{4,5}, Christoph

Rüdiger^{2,6}

¹IITB-Monash Research Academy, IIT Bombay, Mumbai, India ²Department of Civil Engineering, Monash University, Clayton, Victoria, Australia ³Department of Infrastructure Engineering, University of Melbourne, Parkville, Victoria, Australia ⁴Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India ⁵Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai, India ⁶Bureau of Meteorology, Melbourne, Victoria, Australia

Introduction

This document contains text, figures, and tables that are meant to provide additional

details that supplements some of the information provided in the Methods and Results &

Discussion sections of the paper to which this SI is associated.

Contents of this file:

- 1. Text S1–S5 $\,$
- 2. Tables S1–S3
- 3. Figures S1–S6

Corresponding author: Pallavi Goswami, IITB-Monash Research Academy, IIT Bombay, Mumbai, Maharashtra 400076, India. (Pallavi.Goswami@monash.edu)

Text S1. Details of the streamflow gauge stations

Table S1, adopted from Supplementary Information of Goswami et al. (2022), details information on the gauges used for the study. The streamflow data was taken from Peterson et al. (2021), wherein all the gauges used were quality controlled. Monthly streamflow data as flow depth (in mm) are available for these catchments, obtained by aggregating daily data. The area of these catchments ranges from 5.5 to 8463.6 km^2 , with a median catchment area of 295.6 km^2 . For more details, the reader is referred to the Supplementary Material of Peterson et al. (2021). The streamflow data used for this study, along with the catchment shapefiles, are available at https://zenodo.org/record/6659706#.Y52tpHZBxdg. Table S1 is followed by Table S2, displaying the overall mean and median values of flow depth for all these catchments taken together.

Sr.	Gauge ID	Gauge name	Catchment	Latitude	Longitude	Data starting	Data up to	No. of months	Years of
No.	Guuge 12	Guige hune	area (km^2)	(°S)	(°E)	from	Data ap to	for which data	available data
				(-)	(=)			was unavailable	
1	221201	CANN RIVER (WEST BRANCH) WEERAGUA	323.30	37.37	149.2	May 1922	Jul 2017	271	72.67
2	221207	ERRINUNDRA RIVER ERRINUNDRA	160.88	37.45	148.92	Apr 1968	Jul 2017	7	48.83
3	221208	WINGAN RIVER WINGAN INLET NATIONAL PARK	419.83	37.69	149.49	Sep 1979	Jul 2017	0	38.08
4	221209	CANN RIVER (EAST BRANCH) WEERAGUA	148.09	37.36	149.21	Feb 1973	Jul 2017	3	44.5
5	221210	GENOA RIVER THE GORGE	836.84	37.42	149.52	Jan 1973	Jul 2017	0	44.92
6	221211	COMBIENBAR RIVER COMBIENBAR	178.54	37.44	148.98	Feb 1975	Jul 2017	0	42.92
7	221212	BEMM RIVER PRINCES HIGHWAY	730.62	37.61	148.9	Nov 1975	Jul 2017	4	41.92
8	222202	BRODRIBB RIVER SARDINE CREEK	650.16	37.51	148.55	Dec 1922	Aug 2017	198	78.83
9	222206	BUCHAN RIVER BUCHAN	847.74	37.5	148.17	Dec 1926	Aug 2017	206	74.25
10	222210	DEDDICK RIVER DEDDICK (CASEYS)	847.70	37.09	148.42	Jan 1965	Aug 2017	47	49.5
11	222217	RODGER RIVER JACKSONS CROSSING	433.18	37.41	148.36	Apr 1977	Aug 2017	0	41.25
12	223202	TAMBO RIVER SWIFTS CREEK	896.08	37.27	147.73	May 1948	Jul 2017	1	70.08
13	223204	NICHOLSON RIVER DEPTFORD	289.37	37.59	147.7	Jun 1962	Jul 2017	7	55.58
14	223205	TAMBO RIVER D/S OF RAMROD CREEK	2676.68	37.67	147.87	Aug 1966	Jul 2017	0	52.08
15	224201	WONNANGATTA RIVER WATERFORD	1974.27	37.49	147.17	Jun 1923	Jul 2017	292	71
16	224203	MITCHELL RIVER GLENALADALE	3920.57	37.76	147.37	Dec 1938	Jul 2017	0	79.92
17	224206	WONNANGATTA BIVEB. CROOKED BIVEB	1103.33	37.41	147.09	Oct 1954	Jul 2017	4	63.83
18	224213	DARGO RIVER LOWER DARGO ROAD	668.17	37.5	147.27	Nov 1974	Jul 2017	2	44
19	224214	WENTWORTH RIVER TABBERABBERA	440.75	37.5	147.39	Feb 1976	Jul 2017	3	42.75
20	225201	AVON RIVER STRATFORD	1467.28	37.97	147.08	Jul 1978	Jul 2017	õ	40.67
21	225209	MACALISTER BIVER LICOLA	1237.60	37.63	146.62	Apr 1954	Jul 2017	9	64.25
22	225213	ABERFELDY RIVER BEARDMORE	312.39	37.85	146.43	Apr 1965	Aug 2017	ĩ	54.08
23	225218	FREESTONE CREEK BRIAGALONG	304 99	37.81	147.1	Mar 1969	Aug 2017	0	50.33
24	225219	MACALISTER RIVER GLENCAIRN	572.36	37.52	146.57	Apr 1969	Jul 2017	2	50.08
25	225221	MACALISTER BIVER STRINGYBARK CREEK	1542.29	37 77	146.67	Apr 1970	Aug 2017	54	44 92
26	225221	VALENCIA CREEK, GILLIO BOAD	203 19	37.74	146.99	Nov 1973	Aug 2017	19	44.33
27	225224	AVON BIVEB THE CHANNEL	557 42	37.8	146.88	Oct 1974	Aug 2017	1	45
28	226023	TRABALGON CREEK TRABALGON	172.40	38.19	146 54	Feb 1963	Jul 2017	72	50 75
29	226204	LATBOBE BIVEB WILLOW GBOVE	560.91	38.09	146.16	Mar 1927	Aug 2017	0	92.83
30	226205	LATROBE RIVER NOOJEE	295.57	37.91	146.02	Sep 1959	Jul 2017	3	60.08
31	226200	MOE BIVEB DARNUM	230.59	38 21	146	Eeb 1964	Aug 2017	0	56.08
32	226218	NABBACAN CREEK THORPDALE	65 73	38.27	146.19	Feb 1958	Aug 2017	Ő	62.17
32	226220	LOCH BIVER NOOIEE	106.01	37.87	146.01	Dec 1959	Jul 2017	37	57.25
34	226226	TANUL RIVER TANUL UNCTION	207 73	37.98	146.19	Mar 1963	Aug 2017	1	57.17
35	226402	MOE DRAIN TRAFALGAR FAST	610.47	38.18	146.21	May 1960	Aug 2017	0	60.17
36	226402	MORWELL RIVER BOOLARBA	116 51	38.41	146.31	Oct 1961	Aug 2017	120	48.83
37	227200	TARRA RIVER VARRAM	217.08	38.54	146.67	Mar 1949	Jul 2017	18	69.92
38	227200	TARWIN RIVER MEENIVAN	1072.24	38.58	145.99	Aug 1958	Aug 2017	10	62.17
30	227202	MEBRIMAN CREEK CALICNEE SOUTH	39.48	38.35	146.65	Mar 1950	Aug 2017	189	54.92
40	227210	PRUTHEN CREEK CARRAUNC LOWER	17.01	28.4	146.74	Dog 1055	Jul 2017	105	64.02
40	227210	AGNES BIVER TOORA	66.09	38.64	146.37	May 1956	Aug 2017	45	60.92
42	227211	IACK RIVER IACK RIVER	34.88	38.53	146.54	Mar 1964	Jul 2017	40	56.83
42	227210	PASS DIVED LOCU	52.21	28.26	140.34	Oct 1060	Jul 2017	0	51.17
43	227215	TABBA BIVER FISCHERS	19.00	38.30	146.56	Dec 1971	Jul 2017	2	49.08
45	227220	TARWIN RIVER EAST BRANCH DUMBALK NORTH	125.64	38.5	146.16	Jan 1974	Aug 2017	0	47.33
46	221220	WILKID CDEEK LEONCATHA	105.04	28 20	145.16	May 1074	Jul 2017	0	47.33
40	221221	POWLETT RIVER D/S FOSTER CREEK UNCTION	233 33	38.56	145.90	Δpr 1974	Jul 2017	1	38.08
41	221230	EDANKLIN DIVED TOODA	200.00	28.62	140.71	Jun 1082	Aug 2017	1	28.17
40	221231	DEED CREEK BULLA (D/S OF EMU CREEV HINCE)	10.20	27.62	140.31	Juli 1965	Aug 2017	5	00.17 61.75
49 50	230203	PARDINCO CREEK PARRINCO (U/S OF DIVERSION)	5 52	27 41	144.0	Jul 1959 Aug 1070	Aug 2017	ບ 1	51.08
00	200209	BRITINGO OTEER BRITINGO (0/5 OF DIVERSION)	0.00	01.41	144.00	Aug 1310	11ug 2017	1	01.00

Dist Dist <thdist< th=""> Dist Dist <thd< th=""><th>Sr. No.</th><th>Gauge ID</th><th>Gauge name</th><th>Catchment area (km^2)</th><th>$\begin{array}{c} \text{Latitude} \\ (^{\circ}\mathbf{S} \) \end{array}$</th><th>$\begin{array}{c} \text{Longitude} \\ (^{\circ}\text{E} \) \end{array}$</th><th>Data starting from</th><th>Data up to</th><th>No. of months for which data was unavailable</th><th>Years of available data</th></thd<></thdist<>	Sr. No.	Gauge ID	Gauge name	Catchment area (km^2)	$\begin{array}{c} \text{Latitude} \\ (^{\circ}\mathbf{S} \) \end{array}$	$\begin{array}{c} \text{Longitude} \\ (^{\circ}\text{E} \) \end{array}$	Data starting from	Data up to	No. of months for which data was unavailable	Years of available data
1 1	51 52	230210 231225	SALTWATER CREEK BULLENGAROOK WERRIBEE RIVER BALLAN (U/S OLD WESTERN HWY)	38.91 107.49	37.47 37.6	144.52 144.25	Aug 1972 Sep 1977	Aug 2017 Aug 2017	2	49.08 44.17
St. Steph Average F. S.	53	231231	TOOLERN CREEK MELTON SOUTH	94.53	37.73	144.58	Sep 1983	Dec 2015	0	36.67
2 2011 Intervention of the section of t	55	232214 232215	WOOLLEN CREEK U/S OF BUNGAL DAM	8.62	37.63	144.08	Jan 1982	Aug 2017 Aug 2017	0	40.17
Sig Sig <td>$\frac{56}{57}$</td> <td>233211 233214</td> <td>BIRREGURRA CREEK RICKETTS MARSH BARWON RIVER EAST BRANCH FORREST</td> <td>114.29 16.59</td> <td>38.3 38.53</td> <td>143.84 143.73</td> <td>Feb 1958 Feb 1960</td> <td>Aug 2017 Aug 2017</td> <td>14 0</td> <td>63 62.25</td>	$\frac{56}{57}$	233211 233214	BIRREGURRA CREEK RICKETTS MARSH BARWON RIVER EAST BRANCH FORREST	114.29 16.59	38.3 38.53	143.84 143.73	Feb 1958 Feb 1960	Aug 2017 Aug 2017	14 0	63 62.25
60 Del P NADIRS NADIRS NADIRS NADIRS	58 59	233223 234200	WARRAMBINE CREEK WARRAMBINE WOADY YALOAK RIVER PITFIELD	53.87 315-32	37.93 37.81	143.87 143.59	Mar 1975 Jun 1922	Aug 2017 Aug 2017	1 355	47.17 70.5
a) 2000 FARMON PALLON LAW TO ALL TO	60	234200	WOADY YALOAK RIVER CRESSY (YARIMA)	1155.17	38.01	143.64	May 1960	Aug 2017	7	61.67
64 2020 LTTERE PERFORMENT 79.49 84.4 1200 Au 1600 Au 2000 Au 2	61 62	234203 234209	DEAN CREEK LAKE COLAC	169.11 53.12	38.35 38.34	143.42 143.56	May 1969 Jan 1981	Jul 2017 Aug 2017	0	53.25 41.75
cd 5000 TABLE REVERE BOOM TOUSSET 52.21 6.67 11.22 ALE 1000 ALE 2007 0 51.22 C 2001 CARDEN CONSTRUCTOR STATUS 50.44 50.41 51.22 ALE 2007 ALE 2007 50.50 C 2001 CARDEN CONSTRUCTOR STATUS 50.44 50.41 50.50 ALE 2007 ALE 2007 50.50 C 2001 CARDEN CONSTRUCTOR STATUS 50.64 50.51 ALE 2007 ALE 2007 50.50 C 2002 CARDEN CONSTRUCTOR STATUS 50.64 50.52 ALE 2007 ALE 2007 ALE 2007 50.64 50.52 C 2000 MARCENT REVENTION STATUS 50.64 50.53 ALE 2007 ALE 2007 60.64 50.53 10.50 ALE 2007	63 64	235203 235204	CURDIES RIVER CURDIE LITTLE AIRE CREEK BEECH FOREST	781.68 11.17	38.44 38.65	142.96 143.53	Jan 1961 Aug 1960	Jul 2017 Aug 2017	3 70	61.5 56.5
0 02/02 REASONAL CHEEK ALL ADDALY OF LEEK 02/02 14.20 0.20 02/02 <th< td=""><td>65</td><td>235209</td><td>AIRE RIVER BEECH FOREST</td><td>25.22</td><td>38.67</td><td>143.58</td><td>Aug 1969</td><td>Aug 2017</td><td>0</td><td>53.42</td></th<>	65	235209	AIRE RIVER BEECH FOREST	25.22	38.67	143.58	Aug 1969	Aug 2017	0	53.42
64 2010 Childrel AND RUPE, LONS 36.0 36.7 14.00 Do. 217 A.2071 0 14.77 77 2027 RABINATION DIVER LONSED MULLATIONE 10.00	66 67	235210 235211	KENNEDYS CREEK KENNEDYS CREEK	269.42	38.53 38.59	143.54 143.26	Jan 1970	Aug 2017 Aug 2017	47	52.83 52.58
10 2022 CHLIDEAND RUTE BILLERAD ANALON 31.0 43.0 44.0 30.0 <	$68 \\ 69$	235216 235219	CUMBERLAND RIVER LORNE AIRE RIVER WYELANGTA	38.19 91.16	38.57 38.7	143.95 143.48	Dec 1971 Dec 1972	Aug 2017 Aug 2017	0 3	51.33 50.17
T Display Large CHEEK COLUMNATION Tope Display Tope Display	70	235227	GELLIBRAND RIVER BUNKERS HILL BARHAM RIVER FAST REANCH APOLLO RAY PARADISE	313.65	38.52	143.48	Jan 1976	Aug 2017	8	46.75
12 DAGES LODENDE HUNDER VERLEPPE LIGS Def 20 LIG 20 LIG 20 <th< td=""><td>72</td><td>235233</td><td>LOVE CREEK GELLIBRAND</td><td>76.66</td><td>38.48</td><td>143.57</td><td>Apr 1985</td><td>Aug 2017 Aug 2017</td><td>0</td><td>38.33</td></th<>	72	235233	LOVE CREEK GELLIBRAND	76.66	38.48	143.57	Apr 1985	Aug 2017 Aug 2017	0	38.33
10 20000 FTENT CHEER STREATION 000.7 37.00 14.00 50.7 15.00 44.00 15.00	73 74	236202 236203	HOPKINS RIVER WICKLIFFE MOUNT EMU CREEK SKIPTON	1358.79 1230.00	37.7 37.69	142.72 143.36	Jun 1970 Aug 1926	Aug 2017 Aug 2017	4 142	52.92 85.33
TT SEADE NOTE TOPELINE FULLY Note 100 SEADE	75 76	236204	FIERY CREEK STREATHAM MEREL RIVER WOODFORD	1001.32	37.68	143.06	Sep 1926 New 1054	Aug 2017	123	86.92
The solution The solution Total No.	77	236209	HOPKINS RIVER HOPKINS FALLS	8463.59	38.34	142.63	Oct 1961	Jul 2017 Jul 2017	3	61.92
96 20213 MOUNTE DMI CREEK MENA PARK 32.91 37.3 18.94 App. 2017 App. 2017 2 90.5 92720 MOUNTE MAL CREEK MENA PARK 26.04 32.01 32.01 30.01 <td>78 79</td> <td>236210 236212</td> <td>HOPKINS RIVER FRAMLINGHAM BRUCKNELL CREEK CUDGEE</td> <td>5143.99 230.51</td> <td>$\frac{38.24}{38.35}$</td> <td>142.7 142.65</td> <td>Dec 1961 Jan 1972</td> <td>Jul 2017 Jul 2017</td> <td>0 0</td> <td>62.08 52.08</td>	78 79	236210 236212	HOPKINS RIVER FRAMLINGHAM BRUCKNELL CREEK CUDGEE	5143.99 230.51	$\frac{38.24}{38.35}$	142.7 142.65	Dec 1961 Jan 1972	Jul 2017 Jul 2017	0 0	62.08 52.08
Bit Source Month Inteller Total Source Source Bit Source Source Bit Source Sourc	80	236213	MOUNT EMU CREEK MENA PARK	313.91	37.53	143.46	Aug 1973	Aug 2017	2	50.5
81 25700 Interface metry metry metry mode 9411 81.8 11.0 11.0 Aug 2017 0 64.9 82 27200 TERMER LAL HUNG CONDENCTOR 25.0 3.27 11.0.4 Aug 1077 4.20 7.3 84 27200 TERMER LAL HUNG CONDENCTOR 25.0 3.27 11.0.4 Aug 1077 4.20 0.7 0 4.23 85 22610 CONDELAC DEDUS MODELAN 1100.9 7.7 11.0.4 No.9777 Aug 0.7 5.0 0.2 85 22620 CHERNEN MURL CHERNENT 10.4.0 7.7 11.0.4 3.0 1077 3.0 2.0 86 22020 CHERNEN MURL MURL HUNDH MURL 10.2 2.0 1.0 10.0 1.0 10.0 <td>82</td> <td>237200</td> <td>MOUNT EMU CREEK TAROON (ATRIORD ROAD BRIDGE) MOYNE RIVER TOOLONG</td> <td>568.69</td> <td>38.32</td> <td>142.23</td> <td>Mar 1955</td> <td>Jul 2017 Jul 2017</td> <td>0</td> <td>69.17</td>	82	237200	MOUNT EMU CREEK TAROON (ATRIORD ROAD BRIDGE) MOYNE RIVER TOOLONG	568.69	38.32	142.23	Mar 1955	Jul 2017 Jul 2017	0	69.17
88 20700 EDMPRIALLA RUPE CONNENCTON 45.01 38.26 11.91 Aug 107 Aug 2017 0 13.51 88 20800 CHANGE BURG MORELAN AU 11.9.91 77.77 142.51 Aug 107 Aug 2017 5.5 48.4 88 20800 CHANGE BURG MORELAN AU 11.9.91 77.7 142.51 Aug 107 5.5 48.4 90 20800 CHANGE BURG MORELAN AU 11.9.91 77.7 142.51 Aug 107 5 48.4 91 20800 CHANGE BURG MORELAN AU 11.9.91 77.2 14.4 Aug 107 2 0.1.9 91 20800 CHANGE MORELAN AU 11.9.2 20.6.9 14.4 Aug 107 2 0.1.9 14.2 91 40210 SOMY CHEEK MORELAN AU 11.9.2 20.6.9 14.4 Aug 107 2 0.0.9 14.2 94 40210 SOMY CHEEK MORELAN AUAL 20.5.2 30.4 14.5 Aug 107 1 0.2.2 14.2 14.2	83 84	237202 237205	FITZROY RIVER HEYWOOD DARLOT CREEK HOMERTON BRIDGE	264.11 748.34	38.13 38.15	141.62 141.77	Jun 1955 Jan 1970	Aug 2017 Aug 2017	0	69.08 54.58
97 92858 JUMY ("TERE JUMY "CREEK JUMY "CREEK JUST 17.3 11.2 11.	85	237206	EUMERALLA RIVER CODRINGTON	458.01	38.26	141.94	Mar 1971 Jun 1077	Aug 2017	0	53.5
88 28219 GRANCE BURN MORCIAN [110.0] 7.71 [11.8] North J. 2017 5 40.67 922252 CHENTWINN INCE INFORMATION 101.4 7.72 11.1.4 North J. 2017 7 40.67 912 28252 CHENTWINN INCE INFORMATION 101.4 7.72 11.1.4 North J. 2017 7 40.67 912 28252 CHENTWINN INCE INFORMATION 101.4 7.72 11.1.4 North J. 2017 2 50.65 913 01030 CUTY CVL CHENT MERINALIZATION 50.72 30.72 J. 2017 J. 2017 0 6.3.3 914 01216 CUTY CVL CHENT MERINALIZATION 50.72 30.52 30.52 30.52 30.52 J. 2017 J. 201	87	238208	JIMMY CREEK JIMMY CREEK	22.24	37.37	142.51	Apr 1957	Aug 2017 Aug 2017	0	67.58
99 28/28/2 CHETWYND 06/7.5 37.2 11.48 5.9 7.4 5.0 97.3 1.0 97.4 1.0 97.4 1.0 97.4 1.0 97.4 1.0 97.4 1.0 97.4 1.0 97.4 1.0 97.4 1.0 97.4 1.0 97.4 1.0 97.4 1.0 97.4 1.0 97.4 1.0 97.2 1.0 97.4 1.0 1.0	88 89	238219 238223	GRANGE BURN MORGIANA WANDO RIVER WANDO VALE	1110.91 173.58	37.71 37.5	141.83 141.43	Nov 1970 Sep 1971	Jul 2017 Aug 2017	55 2	49.42 53.17
92 93 935 935 0.15.00 17.58 141.45 0.01.78 Aug. 2017 0 0.25.25 04 00130 MITA MITA RUER MINOMINAL 131.32 165.37 147.41 Mate 1002 0 0.0130 05 00120 SNOWY CREEK DELOW GIAATTE FLAT 131.32 165.37 147.41 Mate 1002 0 0.0130 06 00120 SNOWY CREEK DELOW GIAATTE FLAT 131.32 165.37 147.41 Mate 1002 0 0.0137 06 00120 SNOWY CREEK DELOW GIAATTE FLAT 131.32 147.41 147.43 Aug. 2017 1 0.037 06 00236 MICANNA CREEK CONSIGNES FLAT 272.16 30.3 146.91 144.91	90	238229	CHETWYND RIVER CHETWYND	69.75	37.32	141.48	Sep 1974	Jun 2017	7	49.67
98 91<	91 92	238230 238235	CRAWFORD RIVER LOWER CRAWFORD	191.46 613.62	37.87 37.98	141.41 141.45	Jan 1974 Jan 1978	Aug 2017 Aug 2017	3 0	47.25
95 91200 SNOWY CREER BELOW GRAATER FLAT 41.32 96.7 147.34 April 104 Aug 2017 0 84.85 96 40123 NAREL CREEK (PREN TARGE 257.7 84.64 147.34 April 201 34.92 34.9	93 94	401203 401208	MITTA MITTA RIVER HINNOMUNJIE CUDGEWA CREEK BERRINGAMA	1531.39 357.52	36.95 36.21	147.61 147.68	Mar 1933 Feb 1961	Jul 2017 Aug 2017	2	91.92 64.33
m m	95	401210	SNOWY CREEK BELOW GRANITE FLAT	413.32	36.57	147.41	Sep 1940	Aug 2017	0	84.83
96 96 96 96 96.111 BIG HUREL JORERS (NEEK) 37.44 36.26 14.74 No.112 No.1012 3 82.77 100 902201 TALLARGATTA CREEK (NECALLUNS) 45.44 36.3 146.97 Mar 2017 3 52.58 101 402204 YACKANDAKDAR CREEK (NECALLUNS) 45.44 36.3 146.97 Mar 2017 3 52.58 102 402204 YACKANDAKDAR CREEK (NECALLUNS) 45.44 36.3 146.97 Mar 2017 1 4 13 103 40230 OVERS INFRET (NECAL SCHER) 30.52 36.53 166.35 Not 197 Aug 2017 1 1 13 107 402315 HPTEEN MURE WARGARATTA 51.107 36.2 166.24 Jun 197 Aug 2017 2 55.26 108 40232 HUREL CREEK ROSUMITE 120.47 36.3 166.43 Jun 174 Aug 2017 2 55.26 110 40222 HUREL CREEK ROSUMITE 120.47 36.3	96 97	401212 401215	MORASS CREEK UPLANDS	235.72 536.17	36.87	147.85	Nov 1937	Jul 2017	1	87.67
100 01220 TALLANGATTA CREEK MCALLUMS 454.4 50.21 11.34 Nor 1955 Aug 2017 2 30.92 101 40221 VIAKASNNMAL (TREEK CORDINSE) FLAT 120.25 33.32 144.84 Nor 1975 Alg 2017 3 34.73 103 402213 FINCEINCTION CREEK CORDINSE FLAT 120.25 33.32 144.83 Nor 1977 Alg 2017 14 71.1 103 403200 OVENS RIVER WANGAMATTA 100.74 33.38 34.83 Nor 1977 Alg 2017 14 71.1 104 403200 OVENS RIVER WANGAMATTA 100.74 35.83 35.33 146.43 Nor 1967 Aug 2017 1 71.7 105 403214 MEEDY CREEK WORLSHEE 121.47 36.33 146.43 Jan 1907 Aug 2017 2 52.58 111 403222 RUFFLOR REEW CREEK WORLSHEE 121.47 35.61 146.43 Jan 1907 Aug 2017 3 51.52 113 403222 RUFFLOR REEW CREEK WORLSHEE 11.47 35.61 146.43 Jan 1907 Aug 2017 1 51.52 <	98 99	401216 401217	BIG RIVER JOKERS CREEK GIBBO RIVER GIBBO PARK	357.48 389.34	36.93 36.76	147.47 147.71	Oct 1942 Oct 1979	Jul 2017 Jul 2017	3 0	82.67 46
100 100 100 127.0 20.3 11.0 100	100	401220	TALLANGATTA CREEK McCALLUMS	454.44	36.21	147.34	Nov 1985	Aug 2017	2	39.92
101 0213 KINCHINGTON CREEK, ORBORNES FLAT 120.2 36.2 14.80 Nov 1977 Jul 2017 8 47.58 64 40500 OVENS RIVERS BRIGHT 40.57 36.32 14.60 59.03 Aug 2017 1.3 71.57 106 40320 PREEPV CREEK WANGARATTA NORTH 389.83 36.33 14.64.34 Mar 1969 Aug 2017 1.6 71.57 109 40321 PREEM CREE CREEK WANGARATTA NORTH 389.83 36.33 14.64.58 Sep 1971 Aug 2017 2 52.85 110 40321 REEDV CREER KOOLSHED 11.47 38.31 14.66 30.077 Aug 2017 3 13.33 112 403224 HURDE CREER KOOLSHED 10.10 36.61 14.64.58 Sep 1975 Aug 2017 1 51.33 113 403224 HURDE CREER KOOLSHED 10.01 36.61 14.64.58 Aug 1076 Aug 2017 1 63.33 114 40322 MORES CREEK WANDLICONG 12.96.2 357.3 <t< td=""><td>101 102</td><td>402204 402206</td><td>RUNNING CREEK RUNNING CREEK</td><td>1275.16</td><td>36.3 36.54</td><td>146.91 147.04</td><td>Oct 1973</td><td>Aug 2017 Aug 2017</td><td>3 5</td><td>52.58 50.92</td></t<>	101 102	402204 402206	RUNNING CREEK RUNNING CREEK	1275.16	36.3 36.54	146.91 147.04	Oct 1973	Aug 2017 Aug 2017	3 5	52.58 50.92
105 GOVENS RIVERS NUCLES MURCHT 40.67 30.73 106.05 Sep 103 Aug 2017 128 82 106 40320 REERVY CREEK MORGARTA NORTH 380.38 146.31 Man 1904 Aug 2017 1 7.7.17 108 40321 FIADPY ALLEY (REEK ROSEWHITE 380.38 146.32 Man 1904 Aug 2017 2 5.6 109 403217 ROSE RIVER MATONG NORTH 173.61 36.3 146.45 Sep 1977 Aug 2017 3 5.2.5 111 40222 REERV CREEK ROSENNER 101.61 36.31 146.45 Sep 1977 Aug 2017 0 51.33 113 40224 HURDLE CREEK BORNAWARARA 150.63 36.51 146.45 Sep 1977 Aug 2017 0 51.33 114 40224 HURDLE CREEK BORNAWARARA 150.63 36.51 146.45 Sep 1977 Aug 2017 0 51.33 114 40232 MOCKNER CADE PROFIL 100.10 36.72 146.45 Sep 1977 Aug 2017 <	103 104	402213 403200	KINCHINGTON CREEK OSBORNES FLAT OVENS RIVER WANGABATTA	120.28 5119.74	36.32 36.35	146.89 146.32	Nov 1977 Feb 1894	Jul 2017 Aug 2017	8 14	47.58 131
107 48023 PIFTEEN MILE CREEK GRETA SOUTH 226,77 36.62 166.23 North off Aug 2017 6 55.7 109 40211 HOSE RIVER MATCON ORTH 178.41 38.82 146.23 North off Aug 2017 7 5.4.42 100 40211 HOSE RIVER AMTCON ORTH 178.41 38.82 146.23 Sep 1071 Aug 2017 7 5.4.42 111 40222 RUPERAD RIVER AMETVARD 141.07 38.82 Hose 2017 3 5.1.33 112 40223 KING RIVER DOCKER ROBINAVARRAPA 150.03 36.51 146.43 Sep 1075 Aug 2017 0 4.3.33 113 40223 MORSIS CREEK KANDILGONG 120.02 36.53 146.43 Aug 2017 10 4.5.92 116 40323 GUCKLAND RUVER HARREY LAVE 45.07 36.71 146.48 Sep 1070 Aug 2017 0 4.5.92 116 40324 BUCKLAND RUVER HARREY LAVE 45.07 36.71 146.45 Sep 1070 Aug 2017<	105	403205	OVENS RIVERS BRIGHT	493.67	36.73	146.95	Sep 1933 Mar 1040	Aug 2017	128	82
108 403214 IAPPY VALEY CREEK ROSEWHITE 139.81 36.58 146.52 Jan 1970 Aug 2017 2 56 104 40222 REEDY CREEK WOOLSERED 121.14 46.31 146.75 Sam 1974 Aug 2017 3 51.92 111 40322 RUFG RIVER ROCK PREMOD 15.09 36.52 146.53 May 1975 Aug 2017 3 51.33 114 40223 RUFG RIVER ROCK PORCHER NOD BRIDGE 109.19 36.61 146.35 May 1975 Aug 2017 1 45.13 114 40232 RUFK ROCK PORT 297.15 36.53 146.67 Jan 1975 Aug 2017 0 45.27 118 44024 BOOSEN (CREEK TUNCAMAR) 480.78 36.12 146.38 Sep 1976 Aug 2017 0 45.77 118 44024 BOOSEN (CREEK TUNCAMAR) 480.78 36.12 146.38 Sep 1976 Aug 2017 0 77.57 124 40620 MURRINDININ RANDER AURINDININA AUR AURONOV COLWELLS 107.73 146	106	403209 403213	FIFTEEN MILE CREEK GRETA SOUTH	226.77	36.62	146.34 146.24	Nov 1967	Aug 2017 Aug 2017	6	58.17
101 40222 REEDY CREEK WOOLSHED 21.47 36.31 146.6 Jan. 1974 Aug. 2017 2 52.85 111 40322 HUPFALO RUYRE ABLEYANGOG 11.00 36.01 146.37 Sep. 1974 Aug. 2017 3 51.92 113 40322 KINTEDLE CLEEK HOMINAWAIRAH 106.03 36.61 146.43 Aug. 1975 Aug. 2017 4 51.32 115 40323 DOCENS RIVER NCKY POINT 2970.15 36.51 146.68 Jul 1985 Aug. 2017 1 4.323 115 40230 MURRINGENEK WADDILLCORCE 126.42 8.57.5 146.68 Jul 1987 Aug. 2017 1 4.323 118 440204 BOOSEY CREEK TUNCAMAH 480.67 36.61 146.66 Apr 1976 Aug. 2017 1 77.15 124 40240 MURRINDININER MURRINDI ABOVE COUNCLES 107.75 37.41 14.55 Jul 1940 Jul 2017 1 77.5 124 40247 MURRINDININER MURRINDI RUPER MURRINDI RUPER 36.61 145.60 Apr 1977 Aug. 2017 0 70.5 124	108 109	403214 403217	HAPPY VALLEY CREEK ROSEWHITE ROSE RIVER MATONG NORTH	139.81 178.61	36.58 36.82	146.82 146.58	Jun 1970 Sep 1971	Aug 2017 Aug 2017	2 7	$56 \\ 54.42$
112 440322 KING HIVER DOCKER ROAD BIHDOR 108.5.1 36.5.2 144.39 Mag 1975 Aug 2017 3 51.33 113 40224 HURDLE CREEK BOHNAWARAH 150.60 36.51 146.45 Sep 1975 Aug 2017 4 61.33 114 40226 BOGCY CREEK ANGLESIDE 100.19 36.61 146.45 Sep 1975 Aug 2017 4 61.84 116 40232 OVENS RIVER ROCK PORT 20701 3 57.37 146.45 Sep 1976 Aug 2017 6 44.75 117 402323 BUCKLAND RIVER HARRIS LANE 47.07 36.72 144.88 Sep 1976 Aug 2017 1 57.17 118 402407 HURRINDING HARK KLEFERA 460.78 36.61 146.46 Apr 1976 Aug 2017 1 77.5 124 40247 HURRINDING HARK KLEFERA 38.65 37.23 146.55 Jun 1996 Jul 2017 1 77.5 124 405217 HURRINDING HARK KLEFERA 38.65 37.23 146.411 Apr 1977 Aug 2017 2 51.83	110	403221	REEDY CREEK WOOLSHED BUFFALO BIVER ABBEVARD	211.47	36.31	146.6 146.7	Jan 1974 Sep 1974	Aug 2017	2	52.58 51.92
113 00223 HUBDLE CREEK BOBINAWARRAM 150.03 3621 144.45 Sep 1975 Aug 2017 0 51.33 115 403232 MORSES CREEK WANDLIGONG 120.02 36.53 146.67 30.175 Aug 2017 1 41.38 116 403232 MORSES CREEK WANDLIGONG 120.02 36.72 146.67 30.175 Aug 2017 1 45.38 117 40234 BUCKLAND RIVER HORKY WANDLACK 450.67 36.72 146.88 Fel 1982 Aug 2017 1 57.73 118 40234 BUOKKLAND MIVER HORKY BLACK 450.67 36.72 146.56 Jula 1949 Jul 2017 1 77.83 120 405205 MURRINDIN RIVER TAGEGRTY 620.25 37.23 145.71 Jan 1957 Aug 2017 0 63.17 124 405219 MURRINDIN RIVER TAGEGRTY 620.25 37.23 146.17 Jal 1964 Jul 2017 1 77.83 124 405219 MURRINDIN RIVER TAGEGRTANO 620.25 37.23 146.19 Jul 1964 Jul 2017 1 63.17 124 </td <td>112</td> <td>403222</td> <td>KING RIVER DOCKER ROAD BRIDGE</td> <td>1085.31</td> <td>36.52</td> <td>146.39</td> <td>May 1975</td> <td>Aug 2017</td> <td>3</td> <td>51.33</td>	112	403222	KING RIVER DOCKER ROAD BRIDGE	1085.31	36.52	146.39	May 1975	Aug 2017	3	51.33
115 403230 OVENS RIVER ROCKY FORT 2970.15 36.3 146.07 Jai 1975 Aug 2017 4 51.83 116 40323 BUCKLAND RIVER HARRIS LANE 457.07 36.75 146.08 Jules Aug 2017 6 44.75 118 40323 BUCKLAND RIVER HARRIS LANE 457.07 36.75 146.08 Jules Aug 2017 1 47.74 120 405205 MURRINDINDI REEK (KAPDINC) 60.02 37.32 146.06 Jules Jules 7.78 7.783 121 405205 MURRINDINDI RIVER MURRINDINDI ABOVE COLVELLS 107.70 37.12 146.17 Jules Jules 1 7.75.3 124 405214 DELATTER RIVER TOKGA BRIDGE 358.13 37.38 146.17 Jules Jules 4 63.17 125 405218 JAMIESON RIVER TORGRANG BRIDGE 367.23 37.32 146.17 Jules Aug 2017 0 63.17 126 405228 PINIP CREEK MARDIBERON 701.16 36.63 144.57 Jule 1064 Jule 2017 1 63.17	113 114	403224 403226	HURDLE CREEK BOBINAWARRAH BOGGY CREEK ANGLESIDE	156.03 109.19	36.51 36.61	146.45 146.36	Sep 1975 Aug 1976	Aug 2017 Aug 2017	0 18	51.33 49
117 403233 BUCKLAND RIVER HARRIS LANE 47:07 36:72 146.88 Feb 1982 A.R. 2017 6 44.75 118 402407 HOLLAND CREEK KUEFEERA 460.78 36:61 145.83 Sep 1976 Aug 2017 1 57.77 120 405205 MURRINDIR IVER TAGCERTY 622.25 37.22 145.13 Jan 1966 Jul 2017 1 77.83 121 405205 MURRINDIR IVER TAGCERTY 622.25 37.22 145.11 Jan 1966 Jul 2017 1 71.5 124 405215 HUNRIN CHER CERALAN ESK 386.65 37.23 146.21 Nov 1964 Aug 2017 0 63.17 124 405215 JAMIESON NIVER GERALOSEK 386.65 37.23 37.29 146.13 Nov 1964 Aug 2017 0 63.17 125 405216 PAANIPC REEK MOORLIM 71.16 38.62 143.31 Jul 1964 Jul 2017 1 63.53 124 405226 PAANIPC REEK MOADT 48.80 36.61 144.81 Aug 2017 1 57.14 134 405224<	115	403230	OVENS RIVER ROCKY POINT MORSES CREEK WANDU IGONG	2970.15 126.02	36.53 36.75	146.67 146.98	Jan 1975 Jul 1982	Aug 2017	4	51.83
118 404294 MODELY CREER TURGARAN 850.0 30.12 110-83 Sep. 10/n Aug 2017 0 90.75 121 405205 MURRINDIN RIVER TAGGERTY 622.5 37.32 141 145.56 Jul 2017 1 77.33 121 405209 ACHERON RIVER TAGGERTY 622.5 37.32 146.21 Map 1057 Aug 2017 2 7.45 123 405215 HOWQUA RIVER TAGGERTY 622.5 37.32 146.21 Map 1057 Aug 2017 4 65 123 405215 HOWQUA RIVER DEVLINS BUDGE 35.12 37.33 146.42 Map 1057 Aug 2017 4 65 124 405215 HOWQUA RIVER DEVLINS BUDGE 35.13 37.33 146.43 Pub 1065 Aug 2017 0 59.5 128 405225 PANJIP CREEK TAGONRILM 791.16 36.64 145.31 Jul 1960 Jul 2017 1 57.57 138 405225 PANJIP CREEK TAGONRILM 791.16 36.64 145.97 Jun 1960 Jul 2017 1 57.57 139 405224	117	403233	BUCKLAND RIVER HARRIS LANE	457.07	36.72	146.88	Feb 1982	Aug 2017	6	44.75
120 405205 MURRINDIADI NIVER MURRINDINAI ABOVE COLWELLS 107.70 37.41 145.56 Jun 1964 Jul 2017 3 77.33 121 405214 DELANTTE RIVER TONGA BILDGE 358.12 37.33 146.11 Apr 1957 Aug 2017 0 70.3 121 405214 DELANTTE RIVER TONGA BILDGE 358.12 37.33 146.41 Apr 1957 Aug 2017 0 63.13 125 405214 JAMIESON RIVER GERRANG BRIDGE 361.53 37.33 146.19 No 1964 Aug 2017 0 63.17 126 405219 GOULBURN RIVER DOVELNON 701.64 37.33 146.13 Jul 1966 Jul 2017 1 59.88 128 405225 PHANIP CREEK MOORILM 791.16 36.62 144.52 Jun 1966 Jul 2017 1 59.58 129 405225 HUGHES CREEK TARCOMER RAD 483.80 36.40 144.84 Jul 2017 1 56.59 134 405224 HUGHES CREEK TARCOMER RAD 155.58 36.50	118	404204 404207	HOLLAND CREEK KELFEERA	830.67 460.78	36.12 36.61	145.83 146.06	Sep 1976 Apr 1970	Aug 2017 Aug 2017	0	50.75 57.17
122 405214 DELATTE RIVER TONGA BRIDGE 35.16 146.11 Apr 1977 Aug 2017 0 70.5 123 405215 HOWQUA RIVER GLAN ESK 368.65 37.38 144.47 Jul 1964 Jul 2017 4 63 124 405217 YEA RIVER DEVLINS BRIDGE 367.23 37.38 144.13 Feb 1965 Aug 2017 2 63.17 126 405219 GOULBURN RIVER CERKANO BRIDGE 367.23 37.38 146.13 Feb 1965 Aug 2017 2 63.37 126 405229 PRANIP CREEK MOORILM 791.16 36.22 445.30 7.47 1 67.17 131 405237 BRIC RIVER JAMESON 620.5 37.37 146.00 Oct 1968 Jul 2017 1 50.95 132 405237 WANNITA CREEK WANAITA 106.16 36.89 146.68 Jul 1971 Jul 2017 1 50.92 133 405237 SEVEN CREEKS V/S OF POLIV MCQUINN WEIR 154.62 36.69 146.56 Jul 1977	120 121	405205 405209	MURRINDINDI RIVER MURRINDINDI ABOVE COLWELLS ACHERON RIVER TAGGERTY	107.70 626.25	37.41 37.32	145.56 145.71	Jun 1949 Jan 1956	Jul 2017 Jul 2017	3	77.83 71.5
Lai abox107 CONVERTING abox107 Alle 2.17 Alle 2.	122	405214	DELATITE RIVER TONGA BRIDGE	358.12	37.16	146.11	Apr 1957	Aug 2017	0	70.5
125 405218 JAMIESON RIVER GERRANG BRIDGE 37.23 37.23 37.24 146.13 Nov 1964 Aug 2017 0 65.17 126 405226 PRANJIP CREEK MOORLIM 791.64 37.33 146.13 Fob 1965 Aug 2017 0 55.58 128 405226 PRANJIP CREEK MOORLIM 791.64 37.37 146.66 Oc 1968 Aug 2017 1 55.75 129 405228 HUGHES CREEK TARCOMBE ROAD 48.80 36.94 145.29 Jun 1969 Jul 2017 1 55.75 130 405228 HUGHES CREEK NANALTA 100.16 36.63 145.47 Aug 1971 Aug 2017 1 57.17 134 40524 SEVEN CREEKS D/S OF POLY MUQUINN WEIR 35.42 36.83 145.87 Jun 1976 Aug 2017 1 45.92 134 405248 MOLLISON CREEK PALONATO 157.3 37.04 146.56 Sep 1981 Aug 2017 1 45.12 135 405246 CASTLE CREEK ANCONA 202.72 36.59 145.35 Oc 1981 Jun 2017 2 46.25	123 124	405215 405217	YEA RIVER DEVLINS BRIDGE	368.65 361.53	37.23 37.38	146.21 145.47	May 1957 Jul 1964	Aug 2017 Jul 2017	224 4	51.83 63
127 40526 PRANIP CREEK MOORLIM 791.16 36.62 145.31 Jul 1968 Jul 2017 0 55.58 128 405227 BIG RIVER JAMESON 626.51 37.37 146.06 Oct 1968 Aug 2017 1 57.57 130 405229 WNALTA CREEK VARCOMBE ROAD 483.80 36.64 144.87 Mar 1971 Aug 2017 1 57.57 131 405230 CORNELLA CREEK COLBINABBIN 253.08 36.6 144.87 Apr 1971 Aug 2017 1 45.092 133 405237 SEVEN CREEKS D/S OF POLLY MCQUINW WEI 154.63 36.63 145.65 Jul 1977 Sep 2016 6 49.83 134 405237 SUGARLOAF CREEK ANSPIELD 115.73 37.06 145.06 Mar 1984 Aug 2017 1 47.17 137 405246 CASTLE CREEK ARODIA 284.69 36.89 145.35 Oct 1981 Juu 2017 32 44.42 138 405248 MAJOR CREEK ARODIA 284.69 36.89 145.79 Dec 1982 Aug 2017 1 46.25 134	125 126	405218 405219	JAMIESON RIVER GERRANG BRIDGE GOULBURN RIVER DOHERTYS	367.23 701.64	37.29 37.33	146.19 146.13	Nov 1964 Feb 1965	Aug 2017 Aug 2017	0	63.17 62.33
128 40022/ DIG NIVER JARNESON 620.31 313 140.00 OCI 1905 Aug 2017 1 58.75 129 400220 UNINES CREEK TARCOMBE ROAD 488.8 36.41 144.87 Mar 1977 Aug 2017 1 55.75 131 400220 UNINELA CREEK AND 56.76 56.75 56.75 57.75 132 400220 CONCLISION COUDINAGEN 156.46 36.30 144.87 Mar 1977 Aug 2017 1 55.75 133 400237 SEVEN CREEKS D/S OF POLLY MCQUINN WEIR 154.64 36.83 145.57 Jun 1974 Jul 2017 10 53.33 134 400238 MOLLISON CREEK PALONG 165.47 37.12 144.86 Jul 1977 Sep 2016 6 49.83 135 405240 FORD CREEK MANSFIELD 115.73 37.06 145.06 Mar 1984 Aug 2017 1 47.17 137 405246 CASTLE CREEK ANCONA 284.69 36.85 144.91 Oct 1984 Jun 2017 0 42.25 138 405251 BIG RIVER D/S OF FRENCHAN CREEK JUNCTION	127	405226	PRANJIP CREEK MOORILIM	791.16	36.62	145.31	Jul 1968	Jul 2017	0	59.58
130 405229 WANALTA CREEK WANALTA 100.16 36.63 144.87 Mar 1971 Aug 2017 1 57.17 131 405230 CORNELLA CREEK COLDINABBIN 25.88 36.6 144.87 Mar 1971 Aug 2017 1 55.92 133 405234 SEVEN CREEKS EUROA TOWNSHIP 347.86 36.73 145.75 Jun 1976 Jul 2017 10 53.33 134 405238 MOLLISON CREEK PVALONG 163.47 37.12 144.86 Jul 1977 Sep 2016 6 49.83 135 405240 SUGARLOAF CREEK ASH BINGE 60.80 37.06 145.06 Mar 1971 Aug 2017 1 47.17 134 405245 FORD CREEK ASH BINGEN 284.69 36.85 144.91 Oct 1982 Aug 2017 1 46.25 134 405244 MAJOR CREEK ASH BINCEN 284.69 36.85 144.81 Nor 1986 Jul 2017 0 42.25 144 405244 BG RUVER D/S OF FRENCHMAN CREEK JUNCTION 331.66 37.39 144.45 Sep 1945 Jul 2017 0 42.25 <	128	405227 405228	HUGHES CREEK TARCOMBE ROAD	483.80	36.94	145.29	Jun 1969	Jul 2017	1	58.75
132 405234 SEVEN CREEKS D/S OF POLIX'MCQUINN WEIR 154.62 36.89 145.68 Jm 1076 Jul 2017 14 50.92 133 405237 SEVEN CREEKS SURDA TOWNSHIP 347.86 36.73 145.57 Jun 1976 Jul 2017 15 63.33 134 405238 MOLLISON CREEK PYALONG 163.47 37.12 144.86 Jul 1977 Sep 2016 6 49.83 136 405245 FORD CREEK MANSFIELD 115.73 37.06 146.05 Sep 1981 Aug 2017 1 47.17 137 405246 CASTLE CREEK ARCADIA 202.72 36.59 144.91 Oct 1981 Jun 2017 2 46.08 140 405264 BIG RIVER CREEK ARCONA 18.78 36.97 145.79 Dec 1982 Aug 2017 0 42.25 144 405264 BIG RIVER NEEK SHOCNA 18.08 37.11 144.61 Mar 1989 Jul 2017 0 43.33 144 406204 CAMPASPE RIVER ASHDOURNE 39.05 37.39 144.45 Feb 1945 Aug 2017 0 45.33	130 131	405229 405230	WANALTA CREEK WANALTA CORNELLA CREEK COLBINABBIN	106.16 253.08	36.63 36.6	144.87 144.8	Mar 1971 Apr 1971	Aug 2017 Aug 2017	1 4	57.17 56.92
133 406237 SEVEN CREEK SEDIDATIOWISHIP 347.80 36.73 145.57 Jun 1974 Jun 2017 10 53.33 134 405238 MOLLISON CREEK PANDOR 165.47 37.12 144.86 Jul 1977 Sep 2016 6 49.83 135 405240 SUGARLOAF CREEK ASH BRIDGE 609.80 37.04 146.05 Sep 1981 Aug 2017 1 47.17 137 405246 CASTLE CREEK ARCADIA 202.72 36.59 145.35 Oct 1981 Jun 2017 32 44.42 138 405246 BAJOR CREEK GRAYTOWN 284.69 36.85 144.91 Oct 1981 Jun 2017 2 46.05 139 405246 BIG RIVER CREEK ANCONA 118.78 36.73 144.50 Nov 1986 Jun 2017 0 40.225 141 405274 HOME CREEK VARCK 180.80 37.11 144.50 Mar 1989 Jul 2017 0 44.83 143 406213 CAMPASPE RIVER ASHBOURNE 39.05 37.39 144.45 Sep 1965 Jul 2017 0 52.33 144 40	132	405234	SEVEN CREEKS D/S OF POLLY MCQUINN WEIR	154.62	36.89	145.68	Jun 1976	Jul 2017	14	50.92
135 405240 SUGARLOAF CREEK ASH BRIDGE 600.80 37.06 145.06 Mar 1984 Aug 2017 15 43.42 136 405245 FORD CREEK MARSPIELD 115.73 37.04 146.05 Sep 1981 Aug 2017 1 47.17 137 405246 CASTLE CREEK ARCADIA 202.72 36.59 145.35 Oct 1982 Aug 2017 1 46.25 139 405251 BRANKEET CREEK ANCONA 118.78 36.97 145.79 Dec 1982 Aug 2017 2 46.08 140 405264 BIG RIVER D/S OF FRENCHMAN CREEK JUNCTION 331.66 37.52 146.08 Nov 1986 Jun 2017 0 42.25 141 406208 CAMPASPE RIVER ASHBOUNNE 39.05 37.39 144.45 Feb 1945 Aug 2017 0 85.75 143 406214 AXE CREEK LONCLEA 235.63 36.77 144.43 Mar 1977 Jul 2017 0 58.92 144 406214 AXE CREEK EDENDAL 175.63 36.85 144.66 Jul 1909 Jul 2017 10 38.82 145	133	405237 405238	MOLLISON CREEK PYALONG	163.47	37.12	145.57 144.86	Jul 1974 Jul 1977	Sep 2016	6	49.83
137 405246 CASTLE CREEK ARCADIA 202.72 36.59 14.535 Oct. 1981 Jun 2017 32 44.42 138 405248 MAJOR CREEK GRAYDOWN 284.69 368.55 144.91 Oct. 1982 Aug. 2017 2 46.625 139 405251 BRANKEET CREEK ANCONA 118.78 36.97 145.79 Dec. 1982 Aug. 2017 2 46.08 140 405264 BIG RIVER D/S OF FRENCHMAN CREEK JUNCTION 331.66 37.52 146.08 Nov 1986 Jun 2017 0 42.25 141 405274 HOME CREEK YARCK 380.05 37.39 144.45 Feb 1945 Aug. 2017 0 84.33 142 406208 CAMPASPE RIVER REDESDALE 637.64 37.39 144.45 Sep 1965 Jul 2017 0 58.73 144 406214 AXE CREEK LONCLEA 235.63 36.77 144.43 Mar 1977 Jul 2017 0 58.92 144 406235 WILD DUCK CREEK U/S OF HEATHCOTE-MIA MIA ROAD 21.92 36.95 144.66 Jul 1901 Jul 2017 10 58.82 <	135 136	405240 405245	SUGARLOAF CREEK ASH BRIDGE FORD CREEK MANSFIELD	609.80 115.73	37.06 37.04	145.06 146.05	Mar 1984 Sep 1981	Aug 2017 Aug 2017	15 1	43.42 47.17
138 405249 MAJOR CREEK GRATIOWN 284.09 30.85 144.91 Oct 1962 Aug 2017 1 40.53 149 405264 BIG RIVER D/S OF FRENCHMAN CREEK JUNCTION 331.66 37.52 146.08 Nov 1986 Jun 2017 0 42.25 144 405264 BIG RIVER D/S OF FRENCHMAN CREEK JUNCTION 331.66 37.52 146.08 Nov 1986 Jun 2017 0 42.25 144 406208 CAMPASPE RIVER ASHBOURNE 39.05 37.39 144.45 Feb 1945 Aug 2017 0 84.33 143 406213 CAMPASPE RIVER REDESDALE 637.64 37.02 144.43 Mar 1977 Jul 2017 0 58.75 144 406214 AXE CREEK LONCLEA 235.63 36.77 144.43 Mar 1977 Jul 2017 0 58.38 145 406236 MILD DUCK CREEK U/S OF HEATHCOTE-MIA MIA ROAD 211.92 36.95 144.66 Jul 1990 Jul 2017 10 35.83 147 407211 BET CREEK KANDOT 62.862 36.92 143.75 Dec 1955 Jul 2017 30 44.67	137	405246	CASTLE CREEK ARCADIA	202.72	36.59	145.35	Oct 1981	Jun 2017	32	44.42
140 405264 BIG RIVER D/S OF FRENCHMAN CREEK JUNCTION 331.66 37.52 146.08 Nov 1986 Jun 2017 0 42.25 141 405274 HOME CREEK YARCK 180.80 37.11 145.61 Mar 1989 Jul 2017 0 84.33 142 406208 CAMPASPE RIVER ASHBOURNE 39.05 37.39 144.45 Feb 1945 Aug 2017 0 84.33 143 406214 AXE CREEK LONCLEA 235.63 36.77 144.43 Mar 1977 Jul 2017 0 52.33 144 406214 AXE CREEK LONCLEA 235.63 36.77 144.43 Mar 1977 Jul 2017 0 52.83 146 406235 WILD DUCK CREEK U/S OF HEATHCOTE-MIA MIA ROAD 211.92 36.95 144.66 Jan 1993 Jul 2017 10 35.83 147 407211 BET BET CREEK BET 62.862 36.92 143.75 Dec 1955 Jul 2017 3 69.92 144 407214 CRESW VANDOT 166.79 37.16 144.21 Oct 1959 Jul 2017 3 69.92 151	139	405251	BRANKEET CREEK ANCONA	118.78	36.97	145.79	Dec 1982	Aug 2017 Aug 2017	2	46.08
142 406208 CAMPASPE RIVER ASHBOURNE 39.05 37.39 14.45 Feb 1945 Aug 2017 0 84.33 143 406213 CAMPASPE RIVER REDESDALE 637.64 37.09 144.45 Sep 1965 Jul 2017 60 58.75 144 406214 AXE CREEK LONCLEA 235.63 36.77 144.43 Mar 1977 Jul 2017 0 52.33 145 406236 WILD DUCK CREEK LONCLEA 235.63 36.77 144.43 Mar 1977 Jul 2017 0 52.33 145 406236 WILD DUCK CREEK U/S OF HEATHCOTE-MIA MIA ROAD 211.92 36.95 144.66 Jul 1990 Jul 2017 10 35.83 147 407211 BET EET CREEK BET BET 628.62 36.92 143.75 Dec 1955 Aug 2017 0 74 148 407217 LODDON RIVER VAUGHAN D/S FRYERS CREEK 295.45 37.16 144.21 Oct 1959 Jul 2017 3 62.83 151 407230 JOYCES CREEK STRATHLEA 149.01 37.16 143.96 Dec 1975 Jul 2017 0 54.17	$140 \\ 141$	405264 405274	BIG RIVER D/S OF FRENCHMAN CREEK JUNCTION HOME CREEK YARCK	331.66 180.80	37.52 37.11	146.08 145.61	Nov 1986 Mar 1989	Jun 2017 Jul 2017	0	42.25 40.08
Ho 400213 CAM RAY E INVER REDEMALE 001,04 37.02 143.3 Sep 1903 Jul 2017 00 35.03 144 406214 AXE CREEK LONGLEA 235.63 36.77 144.43 Mar 1977 Jul 2017 0 52.33 145 406226 WILD DUCK CREEK U/S OF HEATHCOTE-MIA MIA ROAD 175.63 36.88 144.65 Jul 1990 Jul 2017 10 35.83 147 407211 BET EET CREEK BET BET 628.62 36.92 143.75 Dec 1955 Jul 2017 10 74 148 407214 CRESWICK CREEK CLUNES 310.46 37.3 143.75 Dec 1955 Jul 2017 3 69.92 150 407217 LODDON RIVER VAUGHAN D/S FRYERS CREEK 295.45 37.16 144.121 Oct 1959 Jul 2017 3 62.83 151 407230 JOYCES CREEK STRATHLEA 149.01 37.16 143.96 Dec 1975 Jul 2017 0 54.17 152 407246 BULLOCK CREEK MARONG 188.61 36.73 144.14 Nov 1985 Jul 2017 14 45.17	142	406208	CAMPASPE RIVER ASHBOURNE	39.05	37.39	144.45	Feb 1945 Sop 1965	Aug 2017	0	84.33
145 406226 MOUNT IDA CREEK DERRINAL 175.63 36.88 144.65 Jul 1990 Jul 2017 2 38.92 146 406235 WILD DUCK CREEK U/S OF HEATHCOTE-MIA MIA ROAD 211.92 36.95 144.66 Jul 1990 Jul 2017 10 35.83 147 407211 BET BET CREEK BET BET 628.62 36.92 143.75 Dec 1955 Jul 2017 10 37.4 148 407214 CRESWICK CREEK CLUNES 310.46 37.3 143.79 Dec 1955 Aug 2017 0 74 149 407217 LODDON RIVER VAUGHAN D/S FRYERS CREEK 295.45 37.16 144.21 Oct 1959 Jul 2017 3 62.93 151 407230 JOYCES CREEK STRATHLEA 149.01 37.16 143.96 Dec 1975 Jul 2017 0 54.17 152 407246 BULLOCK CREEK MARONG 188.61 36.73 144.14 Nov 1985 Jul 2017 3 44.17 154 408202 AVOCA RIVER AMARITHEATRE 76.54 37.18 143.41 Aug 2017 7 50.25 155	143	406213	AXE CREEK LONGLEA	235.63	36.77	144.43	Mar 1977	Jul 2017 Jul 2017	0	52.33
$ \begin{array}{ccccccccccccccccccccccccccccccc$	145 146	406226 406235	MOUNT IDA CREEK DERRINAL WILD DUCK CREEK U/S OF HEATHCOTE-MIA MIA ROAD	175.63 211.92	36.88 36.95	144.65 144.66	Jul 1990 Jan 1993	Jul 2017 Jul 2017	2 10	38.92 35.83
International Control of the Control of Contecontrol of Control of Control of Control of Control of Control o	147	407211	BET BET CREEK BET BET CRESWICK CREEK CLUNES	628.62 310.46	36.92	143.75	Dec 1955	Jul 2017	350	44.67
1500 407/221 JIM CROW CREEK YANDOIT 166.79 37.21 144.1 Dec 1966 Jul 2017 3 62.83 151 407230 JOYCES CREEK STRTHLEA 149.01 37.16 143.96 Dec 1975 Jul 2017 0 54.17 152 407239 MIDDLE CREEK NOBOROUGH 148.06 37.14 143.91 Jan 1983 Jul 2017 144 45.17 153 407246 BULLOCK CREEK MARONG 188.61 36.73 144.14 Nov 1985 Jul 2017 3 44.17 154 408202 AVOCA RIVER AMPHITHEATRE 76.54 37.18 143.41 Aug 1979 Aug 2017 7 50.25 155 415206 WIMMERA RIVER GLENORCHY WEIR TAIL GAUGE 196.783 36.91 142.64 Nov 1962 Aug 2017 50.4 72.92 156 415206 WIMMERA RIVER EVERSLEY 305.00 37.19 143.18 Nov 1915 Aug 2017 708 55.83 158 415200 AVON RIVER WIMMERA HIGHWAY 519.88 36.	149	407217	LODDON RIVER VAUGHAN D/S FRYERS CREEK	295.45	37.16	144.21	Oct 1959	Jul 2017	3	69.92
152 407239 MIDDLE CREEK ROBBOROUGH 148.06 37.14 143.91 Jan 1983 Jul 2017 14 35.17 153 407246 BULLOCK CREEK MARONG 188.61 36.73 144.14 Nov 1985 Jul 2017 3 44.17 154 408202 AVOCA RIVER AMPHITHEATRE 76.54 37.18 143.41 Aug 1979 Aug 2017 7 50.25 155 415201 WIMMERA RIVER GLENORCHY WEIR TAIL GAUGE 1967.83 36.91 142.64 Nov 1962 Aug 2017 7 407.29 156 415206 WIMMERA RIVER GLENORCHY WEIR TAIL GAUGE 1967.83 36.91 142.64 Nov 1962 Aug 2017 70 407.29 157 415206 WIMMERA RIVER EVERSLEY 305.00 37.19 143.18 Nov 1915 Aug 2017 708 55.83 158 415200 AVON RIVER VIMMERA HIGHWAY 519.88 36.64 142.98 Mar 1976 Aug 2017 70 45.75 159 415226 RICHARDSON RIVER CARRS PLAINS 1	150 151	407221 407230	JIM CROW CREEK YANDOIT JOYCES CREEK STRATHLEA	166.79 149.01	37.21 37.16	144.1 143.96	Dec 1966 Dec 1975	Jul 2017 Jul 2017	3 0	62.83 54.17
100 101 101 101 101 101 101 101 101 101 101 101 3 44.17 154 408202 AVOCA RIVER AMPHITHEATRE 76.54 37.18 143.41 Aug 1979 Aug 2017 7 50.25 155 415201 WIMMERA RIVER GLENORCHY WEIR TAIL GAUGE 1967.83 36.91 142.64 Nov 1962 Aug 2017 4 67.33 156 415206 WIMMERA RIVER GLENORCHY WEIR TAIL GAUGE 1967.83 36.91 142.64 Nov 1962 Aug 2017 7 4 67.33 156 415206 WIMMERA RIVER EVERSLEY 305.00 37.19 143.18 Nov 1915 Aug 2017 708 55.83 158 415220 AVON RIVER CARRS PLAINS 129.91 36.74 142.79 Jul 1944 Aug 2017 7 45.75 159 415237 CONCONGELLA CREEK STAWELL 241.27 37.03 142.82 Apr 1990 Aug 2017 1 40.58 161 415238	152	407239	MIDDLE CREEK RODBOROUGH	148.06	37.14	143.91	Jan 1983	Jul 2017	144	35.17
155 415201 WIMMERA RIVER GLENORCHY WEIR TAIL GAUGE 1967.83 36.91 142.64 Nov 1962 Aug 2017 4 67.33 156 415206 WIMMERA RIVER GLENORCHY WEIR TAIL GAUGE 1967.83 36.91 142.64 Nov 1962 Aug 2017 4 67.33 156 415206 WIMMERA RIVER GLENORCHY WEIR 1377.05 36.95 142.86 Sep 1915 Aug 2017 504 72.92 157 415207 WIMMERA RIVER EVERSLEY 305.00 37.19 143.18 Nov 1915 Aug 2017 708 55.83 158 415220 AVON RIVER VIMMERA HIGHWAY 519.88 36.64 142.98 Mar 1976 Aug 2017 22 52.75 159 415226 RICHARDSON RIVER CARRS PLAINS 129.91 36.74 142.79 Jul 1984 Aug 2017 7 45.75 160 415237 CONCONGELLA CREEK STAWELL 241.27 37.03 142.82 Apr 1990 Aug 2017 1 40.58 161 415238 WATTLE CREEK NAVARRE	154	407240	AVOCA RIVER AMPHITHEATRE	76.54	37.18	143.41	Aug 1985	Aug 2017	3 7	50.25
157 415207 WIMMERA RIVER EVERSLEY 305.00 37.19 143.18 Nov. 1915 Aug 2017 708 55.83 158 415220 AVON RIVER WIMMERA HIGHWAY 519.88 36.64 142.98 Mar 1976 Aug 2017 22 52.75 159 415226 RICHARDSON RIVER CARRS PLAINS 129.91 36.74 142.79 Jul 1984 Aug 2017 7 45.75 160 415237 CONCONGELLA CREEK STAWELL 241.27 37.03 142.82 Apr 1990 Aug 2017 1 40.58 161 415238 WATTLE CREEK NAVARRE 138.75 36.9 143.11 Jul 1984 Aug 2017 1 40.58	$155 \\ 156$	415201 415206	WIMMERA RIVER GLENORCHY WEIR TAIL GAUGE WIMMERA RIVER GLYNWYLLN	1967.83 1377.05	36.91 36.95	142.64 142.86	Nov 1962 Sep 1915	Aug 2017 Aug 2017	4 504	67.33 72.92
105 41526 RICHARDSON RIVER CARRS PLAINS 129,06 30,04 142,59 Mill 1910 Aug 2017 7 45,75 160 415236 CONCONGELLA CREEK STAWELL 241,27 37,03 142,82 Apr 1990 Aug 2017 1 40,58 161 415236 WATTLE CREEK NAVARRE 138,75 36,9 143,11 Jul 1984 Aug 2017 1 40,58	157	415207	WIMMERA RIVER EVERSLEY	305.00	37.19	143.18	Nov 1915 Mar 1076	Aug 2017	708	55.83 52.75
160 415237 CONCONGELLA CREEK STAWELL 241.27 37.03 142.82 Apr 1990 Aug 2017 1 40.58 161 415238 WATTLE CREEK NAVARRE 138.75 36.9 143.11 Jul 1989 Aug 2017 11 40.58	159	415226	RICHARDSON RIVER CARRS PLAINS	129.91	36.74	142.79	Jul 1984	Aug 2017	7	45.75
	$160 \\ 161$	415237 415238	CONCONGELLA CREEK STAWELL WATTLE CREEK NAVARRE	241.27 138.75	37.03 36.9	142.82 143.11	Apr 1990 Jul 1989	Aug 2017 Aug 2017	1 11	40.58 40.58

:

Table S2: Median and mean flow depths for the study region taking all catchments into account

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Median of flow depth (mm)	2.26	1.37	1.36	1.96	3.52	7.95	16.96	24.93	22.79	15.23	7.74	4.27
Mean of flow depth (mm)	6.55	4.90	4.83	6.70	10.77	20.36	32.11	40.24	37.35	29.93	17.86	11.35

Text S2. Box-Cox transformation of streamflows

The flow data for most of the studied catchments was highly skewed towards lower flow values. Since the analysis required deriving a standardized streamflow index, it is important that the series of this standardized streamflow index is as close to a normal distribution as possible. However, with skewed flow data, such an outcome could not be achieved. A Box-cox transformation was thus used to normalize the flow data. The Box-Cox transformation is a power transformation that eliminates non-linearity between variables, differing variances, and variable asymmetry. It is commonly used to transform a series into a new series with an almost normal distribution. Although it is not always possible for a power transformation to bring the distribution to exactly normal, the usual estimates of λ will lead to a distribution that satisfies certain restrictions on the first 4 moments which thus will usually be symmetric. For the present study, a one-parameter Box-Cox transformation of the original streamflow depth data (for $Q_i > 0$) was done, as expressed below.

$$\widehat{Q_i} = (Q_i + 1)^{\lambda} - 1 for \lambda \neq 0 \tag{1}$$

$$\widehat{Q_i} = \ln\left(Q_i + 1\right) for \lambda = 0 \tag{2}$$

In the above equation, a value of 1 was added to the original value of Q_i to ensure that the quantity being transformed was always greater than 1 for the transformation to be feasible. Here, λ is the transformation parameter of the transformation and was estimated using the MASS package available in R, through maximum likelihood estimation. Figure S1 shows the plot of log-likelihood vs lambda for station ID 235204 with the dotted lines indicating the 95% confidence interval for the optimum lambda value. Initially, the optimum value of λ was arrived at by trying values from the set (0.1, 5] at increments of 0.1. However, while using this range it was later realized that allowing λ to take negative values improves the transformation for many catchments. Additionally, positive values beyond 2 were hardly selected. The range was thus revised to be [-2,2].

Figure S1: Log-likelihood vs λ for the identification of the optimum value of λ for station ID 235204. The optimization yields a value of $\lambda = 0.18$ as the optimum lambda for the BC transform for this station. The vertical dotted lines around the vertical line at 0.18 indicate the 95% confidence interval for the optimum lambda value.

Text S3. Calibration of the HMMs

The parameters of the HMM were arrived at using a constrained maximum likelihood estimation, where the likelihood function \mathscr{L}_T is expressed as:

$$\mathscr{L}_T = \boldsymbol{\delta} \boldsymbol{P}(x_1) \boldsymbol{\Gamma} \boldsymbol{P}(x_2) \dots \boldsymbol{\Gamma} \boldsymbol{P}(x_T) \mathbf{1}'$$
(3)

Here δ is the initial state distribution (Equation 8 in the paper), Γ (as Γ_1 or Γ_2) is the transition matrix for the relevant model and T is the number of time steps. P(x) is the $m \times m$ diagonal emissions matrix of probabilities for an m-state HMM, obtained from the error distribution model having the *i*th diagonal element equal to the probability of being in state *i* at a given point in time (Equation 9,12, or 15 in the paper). The emission probabilities P were obtained from the corresponding error distribution model used to model the variable x.

The likelihood was estimated recursively as $\mathscr{L}_T = \alpha_T 1'$, where

$$\alpha_1 = \boldsymbol{\delta} \boldsymbol{P}(x_1) \tag{4}$$

and

$$\alpha_t = \alpha_{t-1} \boldsymbol{\Gamma} \boldsymbol{P}(x_t) \quad for \ t = 2, 3, 4, \dots T$$

Numerically, \mathscr{L}_T was maximized by rearrangement to a negative log-likelihood and minimized using global optimization.

The optimization response surface of a multi-state HMM often tends to have multiple local optima (Supplementary Material of Peterson et al., 2021). To reliably identify the global optima, a Differential Evolution-based global optimization scheme (Storn & Price, 1997) was adopted. This scheme involves transforming a set of parameter vectors, termed as population, into a new parameter vector set at each generation of evolution. The evolution is brought about by perturbing an old parameter vector with the scaled difference of two arbitrarily selected parameter vectors. The new set members thus obtained are more likely to optimize the objective function. To ensure a robust optimization, the population size per parameter was set as 10 as it has been noted that convergence to the global optimum is facilitated if this value is 10 or greater (Price et al., 2006). Higher values in this case incurred undesirably larger computational time without significant improvement in the model fit. Further, the maximum number of generations was set to 550 as nearly all the models were seen to converge at either far less than or near to 550 generations. Model calibration at each catchment was performed 10 times for each state model for the given low flow characteristic. Each calibration was run with a different random seed and a randomly selected differential evolution strategy. To arrive at the most probable sequence of states from all possible combinations of sequences for the given observation sequence of intensity/duration/frequency (I/D/F), an efficient dynamic programming method, called the Viterbi algorithm (Forney, 1973; Zucchini & MacDonald, 2009) was used. This algorithm identifies the most probable sequence of states from the Markov chain of probabilities. The states of I/D/F obtained through this were also referred to as the Viterbi states (named after the algorithm). The algorithm was applied over the entire observation record to identify the most probable sequence of I/D/F states, thereby also identifying any switching, if at all, in the states of the I/D/F.

Figure S3: (a) Time series of standardized Antecedent Precipitation Index (sAPI) obtained for station ID 407230. (b) Variation of SDI and sAPI over time for the catchment. The sAPI mirrors the variability in the SDI series of the catchment, making it a suitable choice for a predictor in the HMMs of the low flow characteristics.

Text S4. Assessing model reliability of IDF HMMs through diagnostic plots of residuals

The validity and reliability of the IDF HMMs emerging from the application as discussed in the paper were assessed by inspecting whether the pseudo-residuals were normally distributed or not (Zucchini & MacDonald, 2009). This was carried out by visual inspection of pseudo-residual plots and through the Shapiro-Wilk test (alpha = 0.05) as discussed in the paper under Section 3.1. For models to be accurate, the pseudo-residuals must be normally distributed. The autocorrelation plots of the pseudo-residuals help determine if the model has performed sufficiently well. If

minimal autocorrelation is seen to carry into subsequent time steps, it indicates that errors do not accumulate over time and that no information is 'leftover' and not incorporated in the model.

:

The next three figures represent the assessment of the behavior of residuals of the HMMs of the three low flow characteristic for selected sample stations. Figure S4 gives an example of an acceptable model performance as per the pseudo-residual analysis where the residuals may be considered to be very close to being normally distributed. The auto-correlation of the pseudo-residuals is almost always within the acceptable bounds for many consecutive time steps, indicating that significant information from the data has been included in the model. No or minimal serial correlation of the pseudo-residuals implies that inaccuracies in the model at a given time step have very little effect on future time steps. The Shapiro-Wilk p-value is greater than 0.05 for the pseudo-residuals in Figure S4 which confirms that the residuals are normal and that the model is performing adequately.

Figure S4: Diagnostic plots of the model residuals corresponding to the intensity HMM output as discussed in Figure 6 for station ID 238223. (a) Time series of the normal pseudo-residuals corresponding to the low flow peaks occurring over time (red lines at $0, \pm 1.96, \pm 2.58$). (b) Auto-correlation of the normal pseudo-residuals, with the blue dotted lines indicating the 95th percentile confidence intervals for uncorrelated series. (c) Histogram of the normal pseudoresiduals, with the red dotted line indicating a standard normal distribution. (d) Quantile-Quantile (Q-Q) plot of the normal pseudo-residuals in relation to the theoretical quantiles.

Figure S5: Diagnostic plots of the model residuals corresponding to the duration HMM output as discussed in Figure 7 for station ID 227211. (a) Time series of the normal pseudo-residuals corresponding to the low flow peaks occurring over time (red lines at 0, ± 1.96 , ± 2.58). (b) Auto-correlation of the normal pseudo-residuals, with the blue dotted lines indicating the 95th percentile confidence intervals for uncorrelated series. (c) Histogram of the normal pseudoresiduals, with the red dotted line indicating a standard normal distribution. (d) Quantile-Quantile (Q-Q) plot of the normal pseudo-residuals in relation to the theoretical quantiles.

Figure S6: Diagnostics of the model residuals corresponding to the frequency HMM output as discussed in Figure 8 for station ID 227237. Residual (a) Annual time series of the normal pseudo-residuals (red lines at $0, \pm 1.96, \pm 2.58$). (b) Auto-correlation of the normal pseudo-residuals, with the blue dotted lines indicating the 95th percentile confidence intervals for uncorrelated series. (c) Histogram of the normal pseudo-residuals, with the red dotted line indicating a standard normal distribution. (d) Quantile-Quantile (Q-Q) plot of the normal pseudo-residuals in relation to the theoretical quantiles.
Text S5. Warm periods of ENSO as used in the study

The ONI value at a given month is obtained from a 3-month running mean of the sea surface temperature anomalies of the Niño3.4 region (5°N-5°S, 120-170°W) in the equatorial Pacific Ocean that are above a threshold of 0.5° C. Warm (positive) SST anomalies are associated with El Niño events while La Niña events are typically associated with cold (negative) SST anomalies. Any given value would be considered to be indicating the occurrence of a warm ENSO episode when at least 5 consecutive values in the ONI series lie above the threshold of 0.5° C. The warm periods identified in this way are shown below and are displayed as red vertical strips in Figure 10 of the paper. These were sourced from the United States National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Centre (CPC) (www.cpc.ncep.ncaa.gov). Table S3: List of the warm periods of the ONI as used in Figure 10 of the paper.

:

MJJ 1951	MJJ 1958	AMJ 1969	AMJ 1982	JAS 1991	SON 2002	MJJ 2015
JJA 1951	JJA 1958	JAS 1969	MJJ 1982	ASO 1991	OND 2002	JJA 2015
JAS 1951	OND 1958	ASO 1969	JJA 1982	SON 1991	NDJ 2002	JAS 2015
ASO 1951	NDJ 1958	SON 1969	JAS 1982	OND 1991	DJF 2003	ASO 2015
SON 1951	DJF 1959	OND 1969	ASO 1982	NDJ 1991	JFM 2003	SON 2015
OND 1951	JFM 1959	NDJ 1969	SON 1982	DJF 1992	JJA 2004	OND 2015
NDJ 1951	FMA 1959	DJF 1970	OND 1982	JFM 1992	JAS 2004	NDJ 2015
DJF 1952	MJJ 1963	AMJ 1972	NDJ 1982	FMA 1992	ASO 2004	DJF 2016
JFM 1953	JJA 1963	MJJ 1972	DJF 1983	MAM 1992	SON 2004	JFM 2016
FMA 1953	JAS 1963	JJA 1972	JFM 1983	AMJ 1992	OND 2004	FMA 2016
MAM 1953	ASO 1963	JAS 1972	FMA 1983	MJJ 1992	NDJ 2004	MAM 2016
AMJ 1953	SON 1963	ASO 1972	MAM 1983	ASO 1994	DJF 2005	
MJJ 1953	OND 1963	SON 1972	AMJ 1983	SON 1994	${ m JFM}2005$	
JJA 1953	NDJ 1963	OND 1972	MJJ 1983	OND 1994	ASO 2006	
JAS 1953	DJF 1964	NDJ 1972	ASO 1986	NDJ 1994	SON 2006	
ASO 1953	JFM 1964	DJF 1973	SON 1986	DJF 1995	OND 2006	
SON 1953	AMJ 1965	JFM 1973	OND 1986	JFM 1995	NDJ 2006	
OND 1953	MJJ 1965	FMA 1973	NDJ 1986	FMA 1995	DJF 2007	
NDJ 1953	JJA 1965	ASO 1976	DJF 1987	AMJ 1997	JJA 2009	
DJF 1954	JAS 1965	SON 1976	JFM 1987	MJJ 1997	JAS 2009	
JFM 1954	ASO 1965	OND 1976	FMA 1987	JJA 1997	ASO 2009	
MAM 1957	SON 1965	NDJ 1976	MAM 1987	JAS 1997	SON 2009	
AMJ 1957	OND 1965	DJF 1977	AMJ 1987	ASO 1997	OND 2009	
MJJ 1957	NDJ 1965	JFM 1977	MJJ 1987	SON 1997	NDJ 2009	
JJA 1957	DJF 1966	ASO 1977	JJA 1987	OND 1997	DJF 2010	
JAS 1957	JFM 1966	SON 1977	JAS 1987	NDJ 1997	JFM 2010	
ASO 1957	FMA 1966	OND 1977	ASO 1987	DJF 1998	FMA 2010	
SON 1957	MAM 1966	NDJ 1977	SON 1987	JFM 1998	SON 2014	
OND 1957	SON 1968	DJF 1978	OND 1987	FMA 1998	OND 2014	
NDJ 1957	OND 1968	SON 1979	NDJ 1987	MAM 1998	NDJ 2014	
DJF 1958	NDJ 1968	OND 1979	DJF 1988	AMJ 1998	DJF 2015	
JFM 1958	DJF 1969	NDJ 1979	JFM 1988	MJJ 2002	JFM 2015	
FMA 1958	JFM 1969	DJF 1980	AMJ 1991	JJA 2002	FMA 2015	
MAM 1958	FMA 1969	JFM 1980	MJJ 1991	JAS 2002	MAM 2015	
AMJ 1958	MAM 1969	MAM 1982	JJA 1991	ASO 2002	AMJ 2015	

References

Forney, G. D. (1973). The viterbi algorithm. *Proceedings of the IEEE*, 61(3), 268–278.

- Goswami, P., Peterson, T. J., Mondal, A., & Rüdiger, C. (2022). Non-stationary Influences of Large-scale Climate Drivers on Low Flow Extremes in Southeast Australia. *Water Resources Research*, e2021WR031508.
- Peterson, T. J., Saft, M., Peel, M. C., & John, A. (2021). Watersheds may not recover from drought. *Science*, 372(6543), 745–749. doi: 10.1126/science.abd5085
- Price, K., Storn, R. M., & Lampinen, J. A. (2006). Differential evolution: a practical approach to global optimization. Springer Science & Business Media.
- Storn, R., & Price, K. (1997). Differential Evolution A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization, 11(4), 341–359. doi: 10.1023/A:1008202821328

Zucchini, W., & MacDonald, I. L. (2009). Hidden Markov models for time series: an introduction using R. Chapman and Hall/CRC.