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Abstract

Algorithms to determine regions of interest in large or highly complex and nonlinear data is becoming increasingly important.

Novel methodologies from computer science and dynamical systems are well placed as analysis tools, but are underdeveloped for

applications within the Earth sciences, and many produce misleading results. I present a novel and general workflow, the Native

Emergent Manifold Interrogation (NEMI) method, which is easy to use and widely applicable. NEMI is able to quantify and

leverage the highly complex ‘latent’ space presented by noisy, nonlinear and unbalanced data common in the Earth sciences.

NEMI uses dynamical systems and probability theory to strengthen associations, simplifying covariance structures, within the

data with a manifold, or a Riemannian, methodology that uses domain specific charting of the underlying space. On the

manifold, an agglomerative clustering methodology is applied to isolate the now observable areas of interest. The construction

of the manifold introduces a stochastic component which is beneficial to the analysis as it enables latent space regularization.

NEMI uses an ensemble methodology to quantify the sensitivity of the results noise. The areas of interest, or clusters, are

sorted within individual ensemble members and co-located across the set. A metric such as a majority vote, entropy, or similar

the quantifies if a data point within the original data belongs to a certain cluster. NEMI is clustering method agnostic, but the

use of an agglomerative methodology and sorting in the described case study allows a filtering, or nesting, of clusters to tailor

to a desired application.
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ABSTRACT8

Algorithms to determine regions of interest in large or highly complex and nonlinear data is becoming
increasingly important. Novel methodologies from computer science and dynamical systems are well
placed as analysis tools, but are underdeveloped for applications within the Earth sciences, and many
produce misleading results. I present a novel and general workflow, the Native Emergent Manifold Interro-
gation (NEMI) method, which is easy to use and widely applicable. NEMI is able to quantify and leverage
the highly complex ‘latent’ space presented by noisy, nonlinear and unbalanced data common in the Earth
sciences. NEMI uses dynamical systems and probability theory to strengthen associations, simplifying
covariance structures, within the data with a manifold, or a Riemannian, methodology that uses domain
specific charting of the underlying space. On the manifold, an agglomerative clustering methodology is
applied to isolate the now observable areas of interest. The construction of the manifold introduces a
stochastic component which is beneficial to the analysis as it enables latent space regularization. NEMI
uses an ensemble methodology to quantify the sensitivity of the results noise. The areas of interest, or
clusters, are sorted within individual ensemble members and co-located across the set. A metric such
as a majority vote, entropy, or similar the quantifies if a data point within the original data belongs to a
certain cluster. NEMI is clustering method agnostic, but the use of an agglomerative methodology and
sorting in the described case study allows a filtering, or nesting, of clusters to tailor to a desired application.
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Plain language summary27

Within the Earth sciences data is increasingly becoming unmanageably large, noisy and nonlinear. Most28

methods that are commonly in use employ highly restrictive assumptions regarding the underlying statis-29

tics of the data and may even offer misleading results. To enable and accelerate scientific discovery, I drew30

on tools from computer science, statistics and dynamical systems theory to develop the Native Emergent31

Manifold Interrogation (NEMI) method. Nemi is intended for wide use within the Earth sciences and32

applied to an oceanographic example here. Using domain specific theory, manifold representation of the33

data, clustering and sophisticated ensembling, NEMI is able to highlight particularly interesting areas34

within the data. In the paper, I stresses the underlying philosophy and appreciation of methods to facilitate35

understanding of data mining; a tool to gain new knowledge.36

37

Key points:38

1: Few tools for data mining within the Earth Sciences use recent advances in methodologies despite data39

available becoming unwieldly40

41

2: The method Native Emergent Manifold Interrogation (NEMI) is presented. NEMI scales and performs42

well on very complex and nonlinear data43

44

3: I stresses the underlying philosophy and appreciation of methods to facilitate understanding of data45

mining; a tool to gain new knowledge46



47

1 INTRODUCTION AND PROBLEM STATEMENT48

In this manuscript I introduce a generic methodology to determine areas of interest in a dataset that49

can have arbitrarily complex and nonlinear covariance structures. For simplicity, the method is given50

a name: Native Emergent Manifold Interrogation (NEMI). Nemi was developed to address the need to51

identify patterns and perform ‘data mining’ in the increasingly large, highly complex and complicated52

data that is becoming common within the Earth sciences. Due to the challenges posed by modern data,53

traditional methods of analysis are often inadequate, meaning that they fail to converge or offer little54

insight. NEMI blends dynamical systems theory with clustering, but importantly invites room at key areas55

for domain specific input ‘native’ to the research problem NEMI is applied to. With NEMI, I address56

the issue of mismatching ‘data science’ methods and data, where the practitioners of Earth science or57

more computational sciences often suffer under the difficulty of interdisciplinary communication. NEMI58

is a generalisation of the methodology in Sonnewald et al. (2020) that targeted plankton ecosystems,59

in that is is designed to scale to larger datasets. Scaling is one of the true bottlenecks in data mining60

for scientific applications. NEMI is generalised to work with any data, where the particular example61

application used here is geospatial data. I have used an explicitly hierarchical approach, making NEMI62

less parametric (fewer parameters to tune and less danger of noise interference) and intuitively useful both63

for global (for example the whole Earth in the present example) or more local applications (for example64

a basin or more regional assessment). Another novelty in NEMI is the lack of a fixed field-specific65

benchmark criteria (used in Sonnewald et al. (2020)), where I have generalised so a field agnostic option66

is available. Lastly, NEMI invites the use of a range of uncertainty quantification options in the final67

cluster evaluation. The intended readership of this manuscript are interested practitioners from the Earth68

sciences, meaning scientists interested in applying NEMI, with an interest in understanding the underlying69

philosophy and rationale beneath the architecture of the pipeline. I have attempted to describe concepts70

in detail and refer the interested reader to further materials. Here there are two main actors; the data71

and the methods of analysis. Oceanographic examples are used and an ocean numerical model dataset72

used as an example. Note that the present manuscript focuses on NEMI, and I do not include an general73

overview of data-mining within the Earth sciences (see Götz et al. (2015)), or provide a general overview74

of machine learning within the Earth sciences (see Fleming et al. (2021); Sonnewald et al. (2021); Beucler75

et al. (2021)).76

The paper is structured as follows: to give NEMI context, I initially move through explaining the77

problems related to exploring data using machine learning methodologies, these being the data (section78

2) and the methodologies (section 2.2) in very general terms. I move through a synthetic example of79

a simpler method to illustrate how, and why, this fails on more complex data (section 2.2.2). Then, in80

section 3, I move through the manifold-based projection for data cleaning, visualizing, and strengthening81

the associations between different components of the data. In section 2.2 I explain the actual clustering,82

and how this is chosen based on observations of the manifold. Sections 3 and 2.2 are part a) of NEMI83

as shown in Fig. 1. Section 4 illustrates the important step regarding how to treat and sort the resultant84

clusters for enhanced utility. Then, in section 5, I return to the issue of stochasticity, and demonstrate85

simple and more advanced methods to utilize this aspect of NEMI. Sections 4 and 5 are part b) of NEMI86

as shown in Fig. 1. Finally, section 6 provides an outlook on potential application and implications. NEMI87

is a method that can not only be applied to complex data, but is also flexible and verifiable. I refer to88

NEMI as the full workflow, but separate parts can be used and adapted as appropriate for the practitioner.89

The following provided code and examples uses the python programming language and key parameters90

are highlihgted. Note that parameters not discussed could be significant depending on the application, and91

the documentation should be read. The manuscript intends to give a thorough explanation of the reasoning92

behind NEMI, and aims to empower practitioners with the rationale behind different method choices so it93

can be applied to different data. I do not intend for the manuscript to stand entirely on its own as many94

methods NEMI draws from span a wide array of fields and, only brief explanations are within scope and95

should be seen as starting points for further reading. The code for NEMI is available on GitHub and also96

as a PyPi package: https://github.com/maikejulie/NEMI97
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Figure 1. Sketch of workflow in NEMI. Sketch of NEMI workflow. Part 1 (top rwo) illustrates moving
from the data in its rew form, through initial symbolic renditioning, manifold transformation and
clustering. Part 2 (bottom row) shows the ensembling, agglomerative utility ranking and native (field
specific) utility ranking within each ensemble member. Finally, the cluster for each location is determined
looking across the ensemble. (Top left image of model adapted from encyclopedie-environnement.org).

2 DATA98

Data is at the core of most discoveries within the Earth sciences and can come from numerical models or99

in situ or remote observations. However, what data to choose can be the most crucial step of any scientific100

endeavor.101

2.1 The ocean data102

In the illustration of a NEMI application in the present manuscript, I take data from an ocean model103

(MOM6, Griffies et al., 2023). Working on the full set of fields would have many parameters. The ocean104

model is discretized in latitude and longitude, as well as in depth, meaning that the model equations105

are solved on a grid that subdivides the ocean area and depth. The area covered within each grid point106

varies widely. Each data point approached naively would consist of one point in the depth, latitude, and107

longitude, where the model has 75 depth levels. We are interested in how the ocean is moving (as is108

described by the model equations in terms of momentum), and for each data point this amounts to 39109

different fields for each depth level, where each field is one term in the equations that the model is solving,110

along with three additional ones at the sea floor. The equation terms can be thought of as our ‘features’ or111

‘dimensions’. As such, each location in latitude and longitude amounts to a vector of length 2989 entries112

or dimensions (39*75+3). See Khatri et al., 2023 for further details on the momentum budget closure in113

MOM6.114

Working in a space consisting of 2928 dimensions is difficult, so we initially make the data more115

manageable using oceanographic theory. This can be thought of as simplifying the latent space within116

the data and is highly field-specific. This was described in detail in Sonnewald et al. (2019). For this117

simplification I use the barotropic vorticity (BV) equation terms as the data for NEMI, reducing the 2928118

dimensions to five (Fig. 2). Although generally applicable to any data, NEMI was developed around the119

BV data as output from a fully realistic numerical ocean model. As such, the data that is used here is a120

parameter x that is a vector field defined at every grid cell (lon, lat) on the discretized MOM6 ocean sphere,121

with each element xi representing a five-dimensional vector on the horizontal grid of the model. The index122

i uniquely identifies a grid point on the sphere, with (lon,lat) = (φi,θi). The features (dimensions) of each123

vector xi correspond to the five terms in the BV budget. For the interested reader a description of the BV124

equation and how it relates to the numerical model follows. Skip ahead for further discussion of NEMI.125

Early works (Sverdrup, 1947; Munk, 1950; Stommel, 1948) recast the intractably complicated full126

equations to describe how meridional ocean flows develop by taking the curl of the depth-integrated127
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momentum equations, and arriving at the barotropic vorticity (BV) equation. The steady BV balance128

under incompressibility is expressed as:129

βV = ∇× (pb∇H)+∇× τ +∇×A+∇×B, (1)

where β = ∂ f/∂y is the northward derivative of the Coriolis parameter ( f ), V =
∫

ρvdz is the depth-130

integrated northward mass transport from density ρ and meridional velocity v, ∇ is the horizontal gradient131

operator, pb is the pressure at the bottom, and H = h+η is the bottom depth. H is the water column132

thickness, an h is the distance from the resting ocean surface to the bottom topography and η the sea133

surface height anomaly. The stress produced by wind and bottom friction (external) is denoted by τ , and134

A and B are the depth integrals of the nonlinear and the horizontal viscous terms, respectively (Hughes135

and de Cuevas, 2001).136

137

Figure 2. The terms of the barotropic vorticity equation. Each term is in ms−1. Note how certain
areas have clear large spatial patterns, while others can be highly variable. Top from left: ∇× τ ,
∇× (pb∇H) and ∇×A. Bottom from left: −βV and ∇×B. See Fig. 3 for close-ups illustrating the
complexity of the data further.

Figure 3. The terms of the barotropic vorticity equation, North Atlantic section. Each term is in
ms−1. Terms labeled as in Fig. 2.
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2.1.1 Common problems with realistic data138

In the example featuring the BV data from the numerical ocean model MOM6, NEMI is applied to a very139

complex problem. In general terms, data can suffer from issues such as: 1) noise, which is meaningless140

data that mask components of interest and sources can include instrument error or numerical artifacts;141

2) sparseness, where only part of the desired data is available and examples include the wealth of data142

available at the ocean surface, but difficulty in acquiring subsurface data; 3) unbalance, which refers to143

data that has a wide range and only a small proportion of information of interest, for example a global144

dataset where one wishes to detect episodic ocean convection. The extent to which data is afflicted by145

these issues is often unknown, and checking the nature of the data extensively before starting analysis is146

always advisable. For the BV data, issues 1 and 3 are of note. The raw data, here only a smoother with a147

Gaussian kernel with a standard deviation of 1, is presented in Fig. 4 as a ‘pairplot’ (terminology from the148

‘seaborn’ python library). The pairplot shows each dimension (here each term in the BV equation) as a149

scatterplot of each other term, with the associated probability distribution function of the dimension as a150

barplot. Such a pairplot is a nice way of initially assessing what issues are present within the data. In Fig.151

4, the points are unreasonably centered around zero, and it suffers from outliers.152

For NEMI, as is generally advisable, the data must by appropriately cleaned and pre-processed.153

Standardizing and normalizing are standard; for example, one can scale as z = (x−u)/s, where z is the154

scaled data, x is the original data, u is the mean and s is the standard deviation. This is done separately155

for each dimension, or equation term. Applied to the BV data, we arrive at the pairplot shown in Fig. 5156

that reveals different structures. Note that the individual distributions only give a vague representation157

of data density. Many other methods for data-scaling exist that are suited for e.g., log distributed158

data. Experimenting with the initial scaling can be highly beneficial. The rationale behind scaling159

and normalizing is that the covariance between variables is much more interesting than their individual160

magnitudes. For example, consider the global data of ocean temperature and fish stock abundance, where161

the magnitude of variability in temperature is small compared to the magnitude of variability in fish stock162

abundance. Without scaling, the temperature variable would appear meaningless for fish stock abundance,163

even though we expect a difference between Arctic and tropical regions. After getting to know the data164

through initial inspection and scaling, we are ready to consider methodologies for further exploration.165

2.2 Methods for data mining from unsupervised learning166

Novel methods from ‘data science’ are increasingly being used to great advantage. In Sonnewald et al.167

(2021) a review of current progress and a brief introduction of methods can be found focused on physical168

oceanography. However, matching methods to data and robustly verifying their results requires knowledge169

both of the algorithm and the application. A computer scientist may believe she has arrived at a significant170

and interesting answer, but this may not be useful to an earth scientist if, for example, the uncertainty171

related to the spatial position of an identified region is too great. Along with a method’s power must172

also come an appropriate level of skepticism and emphasis on validation, statistical or otherwise. NEMI173

is an answer to the issue of not having satisfying metrics to use to determine statistical significance of174

clustering results. Clustering is the task of dividing data into sub-groups so that data points within each175

group are similar and dissimilar to the data points in other groups. Clustering is largely regarded to be176

an ‘unsupervised’ machine learning methodology, meaning that the data is given to the method without177

explicit ‘labels’. Clustering can be seen as the act of determining labels that can then be interpreted and178

offer insight to the practitioner.179

There is a large and growing number of clustering algorithms available. It is beyond the scope of this180

article to give an overview of these. In general terms, common to all clustering methodologies is that the181

act of seeking to determine sub-groups within the data means that the differences between the overall182

data and the sub-sets that the clustering method has chosen should be determined. Put differently, every183

methodology should evaluate the differences between the overall data and clustered sub-sets. Note that184

such partitioning of the data’s covariance space is also the backbone of, for example, neural networks.185

When applying a clustering algorithm, the resultant ‘model’ is the algorithm and the chosen values for186

any parameters or similar, referred to as clustering model hereafter. As such, it is critical to quantify how187

well the clustering model is able to represent the data. This is also seen in simple regression. Within188

clustering and regression, we search for an underlying and general model, or formula, to describe the189

data. To illustrate, the left column in 6 shows an underfitted model, attempting to partition the data with190

a straight line. This misclassifies large amounts of data. The rightmost column illustrates a model fit191
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Figure 4. A basic look at the data. Each variable in the BV data is plotted against the other. Note that
the data is not scaled, and the odd lack of structure indicates that the data is heavily skewed towards
smaller numbers. See Fig. 5 for the scaled example.

where every point is accounted for, which also fails to reasonably approximate the underlying model. The192

middle column illustrates a general fit that represents a model that closely approximates the underlying193

model from which the data was drawn.194

2.2.1 Validation195

To validate a clustering application, showing that we have successfully discovered a reasonable repre-196

sentation of the underlying model, there are two main techniques: 1) external, and 2) internal validation.197

External validation requires a subset of the data to have known labels to compare to. Internal validation198

revolves around cohesion within a cluster and the degree of separation between different clusters. If the199

cohesion within a cluster is bigger than the degree of separation between clusters, then the clustering200

method is successful. However, recall the problem of overfitting. Many methods for verification of model201

skill exist, including the Silhouette coefficient, the Calisnki-Harabasz coefficient, the Dunn index, the202

Xie-Beni score, the Hartigan index, and the use of information criteria. It is beyond the scope of this203

article to go through all the above, but the example below will briefly introduce information criteria.204

2.2.2 Practical example: k-means on idealised and BV data205

A very popular method for clustering is called k-means (MacQueen, 1965). It is fast and conceptually206

simple, making it an excellent first choice for data exploration. The k-means algorithm involves an207

iterative minimization of the sum of squares of the Euclidean distance partitioning of the hyperspace208

given by the terms in the BV equation. To initialize, the k-means algorithm makes a stochastic guess.209

This means that points are initially scattered across the data, and the algorithm iterates until a “maximum”210

in found. This maximum is determined by minimizing the objective function J:211

J =
k

∑
j=1

n

∑
i=1

||x j
i − c j||2,

where k is the number of clusters, n is the number of data points, the vector xi correspond to the five212
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Figure 5. The scaled BV data. Each variable in the BV data is plotted against the other. Note that
compared to Fig. 4 much more structure is visible.

terms in the BV budget, and c j is the estimated location of cluster j. The number of k clusters is a free213

parameter that is chosen before the algorithm is applied. Initially, the cluster centers have random values214

scattered throughout the parameter space. Each cluster j = 1, . . . ,k is represented by the five-dimensional215

characterizing vector c j, and the k-means classification attributes each vector xi to a unique cluster c j,216

so xi = x j
i . The distance between a data point is given by x j

i and the cluster center c j is determined as:217

||x j
i − c j||2. In this way, each data point in x is associated with the closest k-cluster. Then, the position of218

c j is calculated again, and the association is reassessed until the solution converges.219

Note that k-means uses only one parameter (the number of clusters) and an initial stochastic guess220

for the cluster centers. Effectively, k-means clustering minimizes within-cluster variances (squared221

Euclidean distances), which also entails that k-means would work perfectly if the data were separated222

into tidy clumps with Gaussian distributions (round). Unfortunately, very few data have this type of223

covariance space and suffer from interconnected and decidedly non-Gaussian (and nonlinear) statistics.224

Put differently, the strength but also the weakness of this clustering method is that it works by partitioning225

the data into Voronoi cells. Effectively, the algorithm can only draw straight lines to partition the data and226

cannot isolate any more complex covariance structures.227

In contrast to the BV example, Fig. 7 shows an idealized scenario that illustrates how k-means can be228

successfully used. The top left panel shows a dataset of tightly clustered points that are well-separated229

from neighbouring clusters and each has a Gaussian distribution (round). The top middle panel illustrates230

how k-means is successfully applied to discover this correct underlying structure in the data (here called231

‘true’). The top right panel shows the same data but with noise added. Using the labels discovered from232

the ‘true’ underlying model in the top middle panel, the bottom left panel shows where the data should be233

classified. The middle lower panel contain the classification results. The colors are arbitrary, but note234

that while there is some misclassification, the performance of the model determined using k-means is235

reasonable.236

Each run of the k-means algorithm on the BV data results in one statistical ‘model’. As such, we237

want to assess how well different models fit the data, where we can vary the number of clusters (k) and238
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Figure 6. Figure illustrating a model fitting exercise. Adapted from 365datascience.com 1.

different model initializations, which give different results due to the initial stochastic guess (note that239

some implementations use a fixed seed which masks this potential source of model error). To assess the240

fit of the model, we apply validation methods. Here, the ‘fit’ of the model is assessed using information241

criteria (IC). The IC can tell us how ‘complex’ our k-means model should be, where increasing the number242

of k is equivalent to increasing the complexity. The IC illustrates if we are capturing more information if243

we add another k, or if the maximum is reached and the model is complex enough. Recalling the example244

in Fig. 6 where accounting for every data-point is not desirable, and this statistical model of the data is245

too complex, meaning it will not generalise well.246

Different methods exist for estimating the IC, and here I will discuss the Akaike IC and Bayesian IC247

(AIC and BIC respectively). The AIC and BIC have been very well studied, and are therefore preferred.248

The maximum likelihood function is the basis of both and is the primary tool for estimating the parameters249

of an assumed probability distribution given data (here the data we cluster on). The likelihood (L ) is250

defined as:251

L (θ | x) = pθ (x) = Pθ (X = x),

Here, X is a discrete random variable with probability mass function p depending on a parameter θ .252

If thought of as a function of θ , it is the likelihood function, given the outcome x of the random variable253

X . Suppose that we have a statistical model of some data. Let k be the number of estimated parameters in254

the model (for example the number of cluster guesses from k-means). Then, L̂ is the maximum value of255

the likelihood function for the model. Then the AIC value is estimated as follows:256

AIC = 2k−2ln(L̂).

With a set of different candidate models (for example, comparing models determined using different257

numbers of k clusters), the AIC with the lowest number will be the one that fits the data best. The258

goodness of fit is assessed by the likelihood function. To discourage overfitting, the penalty term (2k)259

increases as the complexity (number of k clusters) increases. As such, the AIC will in general asymptote,260

and a good model is determined when this happens.261

The BIC also uses the likelihood function to determine the goodness of fit, but uses a different262

penalisation to determine if the model is overfitted:263

BIC = ln(n)k−2ln(L̂),

where n is the sample size. As discussed by Yang (2005); Harvey (1982), the AIC can overestimate264

the order, where the BIC penalisation term discourages this more strongly. See figures in section 2.2 for265

an example of how a model can fail to find an underlying model. In short, the AIC should asymptote,266

while the BIC should start increasing. A number of k somewhere between these two (if they both occur)267

could offer a good fit.268

It follows that the AIC and BIC are inappropriate if the number of k is unmanageably large, or is269

close to the number of data points when we have no reason to suspect it should. The relative simplicity of270
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the AIC and BIC compared to many other model validation methods demonstrates the difficult nature of271

assessing if a ‘good’ approximation of the underlying model has been found, and stresses the importance272

of applying common sense, additional checks, and caution. Note the AIC and BIC are useful in many273

applications of model selection, for example auto-regressive model estimation (Sonnewald et al., 2018) as274

is commonly used without validation of the chosen order. Use of a statistical model without assessment275

of how well the model approximates the data can be highly unfortunate, including that a model that is276

needlessly complex is chosen or vise versa as discussed in Sonnewald et al. (2018).277

Returning to the idealised example in Fig. 7, the bottom right panel illustrates the use of the AIC and278

BIC, where the ‘correct’ number of k is 5. In Fig. 7 the AIC appears to have asymptoted, and the BIC279

to reach its lowest point before going upwards again. As such, 5 clusters are correctly identified as the280

optimal number.281

In Sonnewald et al. (2019), using BV data on a 1◦ horizontal resolution ocean model (See Sonnewald282

et al. (2019) for details on the model), k-means was used to good effect. This was astonishing, as the283

success of k-means suggested that large proportions of the ocean had an underlying linear distribution.284

Sonnewald et al. (2019) both illustrated that there were dominant partitioning within the BV data at this285

relatively low resolution, but also that the data was relatively normally distributed. This was unexpected286

in an oceanographic context using data from a realistic model. The partitioning of the data has led to287

scientific insight as the ML effectively performs an empirical leading order analysis that can subsequently288

be explored.289

Running an AIC/BIC check on BV data from MOM6 at 1/4◦ (Fig. 9) illustrates that k-means is an290

inappropriate method for exploring this data. This is evident in that the AIC has not asymptoted after291

adding even 350 k, and while the BIC has started turning upwards the standard deviation (shown in292

the blue shading) is fairly large. To illustrate spatially on the ocean, Fig. 8 shows the spatial patterns293

associated with k set to 50 and 200. Neither are helpful, and section 2.2 illustrates that k-means is actually294

doing with its inability to work with nonlinear data.295

Figure 7. An illustration of concepts on idealised data.

3 MANIFOLD APPROXIMATION OF THE UNDERLYING COVARIANCE STRUC-296

TURE297

The NEMI methodology takes the approach that validation is of the utmost importance. As discussed298

above, validation can take multiple forms. The data-mining challenge that NEMI addresses uses a299

symbolic methodology to characterize the ‘latent space’. The latent space is the covariance structures300

in the data hidden to our human perception. This can be imagined as how variables relate and change301

according to one another. The ‘symbolic’ methodology refers to reducing the size of the latent space from302

the original dimensions (over 270 for the closed momentum budget of the ocean model) down to a few303
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Figure 8. An illustration of running k-means on the BV data. To the left a k of 50 is chosen. To the
right a k of 200 is used.

Figure 9. An illustration of the AIC and BIC criteria run on the BV data. Note that the AIC fails to
converge and the BIC stays fairly flat. The AIC and BIC indicate that the k-means algorithm is not
converging.

(i.e., five) using oceanographic theory. However, five is still too many for human perception. As such, we304

further characterize the latent space using a manifold methodology.305

A mathematical manifold is a construct from topology: any local point resembles the Euclidean space306

near each point. Effectively, the ‘distances’ between different datapoints are used to determine relations.307

This has the convenient property, which makes it useful in NEMI, that the space is homeomorphic. This308

homeomorphism means that one shape can be transformed to another, without violating the relationships309

between the datapoints. One common example is that a doughnut (torus) can be transformed into a coffee310

mug, as both have one hole. It is beyond the scope of this article to give a thorough introduction to311

topology, but the key utility is that a confusing ball of covariances can efficiently be untangled without312

losing the nonlinear structures. For a visual example, imagine a scarf tangled on a table. The scarf313

has various patterns that may look oddly disjointed and tangled together. If you spread out the scarf, the314

complicated 3D structure becomes a smooth and fully visible (approximately) two-dimensional object.315

Any patterns on the scarf can be seen. In NEMI, the threads making up the scarf and its pattern are the316

barotropic vorticity equation terms.317

Manifold methodologies have two further convenient properties: they can be used to reduce the318

dimensionality for visualization and ‘strengthen’ associations between different areas of the data, allowing319

patterns to emerge more clearly. NEMI employs the manifold methodology UMAP (Uniform Manifold320

Approximation and Projection McInnes et al. (2018)) as a processing step with considerable advantages.321

First, the UMAP methodology projects the data into three dimensions, meaning that the data can be322

10/22



visualized. This allows an additional external validation step that will be discussed later. Second, the323

UMAP methodology works by assessing the connectedness of the data as described above. Third, through324

the UMAP application, the noise that posed an issue in the k-means application is lessened.325

So what is a manifold in relation to actual data? We start with simple combinatorial building blocks326

(called simplices) of the distances between the data points. One data point is a 0 simplex, two connected327

points is a 1 simplex, three connected points is a 2 simplex (a triangle), a 3 simplex has four connected328

points (a pyramid), and we can continue upwards adding dimensions. We can construct different simplexes329

and combine these together, and in practice the simplexes do not need to have very high order to cover330

their local space. If this sounds similar to a k nearest neighbour graph (distinct from k-means) note that331

there the choice of the radii can have immediate detrimental impact on a graphs ability to approximate332

the underlying space, which is amplified if a dimensionality reduction is attempted (if the space were333

uniformly sampled it would work). The problem of having non-ideal data remains, and we can only334

assume that we are not uniformly distributed. Using Riemannian geometry the non-uniformness can be335

leveraged as fortuitous. In UMAP we assume that we have uniformly distributed data, and then use the336

actual distances between the data-points to create a map of the underlying manifold. Effectively, to map337

out the manifold we choose a unit ‘ball’ about a point stretches to the k-th nearest neighbor of the point,338

where k is the sample size we are using to approximate the local sense of distance (I use ‘k’ to conform339

with the overall machine learning literature, but note that this is distinct from the k in k-means). In UMAP,340

each point is given its own unique distance function. This lets us choose a number of ‘neighbouring’341

data-points to use, rather than needing to determine the distance as k nearest neighbours would have342

required.343

We now add to the concept of the manifold that it is locally connected, meaning that it describes one344

space, rather than a set of disconnected spaces. However, in a simplified sense, because we looked at345

the neighbouring points to assess the distances, two neighbouring points may individually have different346

values describing the same distance. As such, a useful mental construct with which to envision this set347

of UMAP is to think of it as a weighted graph, where the weights describe the distances. If there are348

conflicting weights associated with the simplices we will interpret the weights as the probability of the349

simplex existing.350

Embedding the manifold into a lower-dimensional space can now happen based on the notion that351

we have the information about the manifold approximated by the data points, and we wish to conserve352

the associated probabilities between the data points in the lower dimensional space. In comparing the353

original topological structure of the manifold with a lower dimensional candidate. Both would share the354

same 0 simplices, and we can imagine that we are comparing the two vectors of probabilities indexed by355

the 1-simplices. For this we use the cross-entropy. In Information theory, the cross-entropy is a concept356

describing if two probability distributions are drawn from the same set.357

To estimate the cross-entropy, say the set of all 1-simplices is E, and we have arrived at weight358

functions so the weight of the 1-simplex e is wh(e) in the high dimensional case. Now wl(e) is the weight359

of e in the low dimensional case, and the cross entropy will be:360

∑
e∈E

wh(e) log
(

wh(e)
wl(e)

)
+(1−wh(e)) log

(
1−wh(e)
1−wl(e)

)
.

Now, we minimize the cross-entropy to arrive at our low dimensional embedding of the migh dimensional361

manifold. Here, the first term wh(e) log
(

wh(e)
wl(e)

)
can be thought of as a force that attracts the points362

whenever there is a large weight associated in the high dimensional case. If wl(e) is as large as possible,363

the term will be minimized. This occurrs when the distance between the points is as small as possible,364

and effectively when the UMAP algorithm is focusing on the very local structure. In contrast, a repulsive365

force is found in the (1−wh(e)) log
(

1−wh(e)
1−wl(e)

)
term between the ends of e when wh(e) is small.366

Key concepts to understand the limitation of such ‘manifold’ based methods is that we are assuming367

that our data points populate the manifold of the underlying model well enough. For example, if we368

think about a landscape with mountains, we may have less data points among the mountains than in the369

surrounding areas that are also ‘smoother’. A manifold representation of the landscape based on this data370

would only roughly describe the true landscape in the mountaineous regions.371

Now, what does a UMAP rendition of the highly complex and complicated BV data look like? In Fig.372

10 a three dimensional rendition is demonstrated from different angles. The shape can vary depending373
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on the parameters chosen, as stressed above. In Fig. 10 we can see that there are clear areas that, from374

all angles, are more dense and some that are more sparsely populated. We will use the visualization for375

choosing a clustering algorithm below. The sensitivity to parameters (or how ‘brittle’ the method is) is376

highly dependent on how the data’s complexity. In this example, a large ensemble sweeping through the377

parameters (described above) was needed to arrive at a reproducible manifold representation. The concept378

of a reproducible manifold means that one should be able to run the algorithm on the data and recover the379

same (or sufficiently similar) structure. Here, small differences can have large impact, and they can be380

difficult to pick up by eye. The importance of small differences is part of the reason why NEMI employs381

the additional checks and leverages the associated uncertainty. In Fig. 11 three renditions of running the382

UMAP algorithm on the processed BV data. The plots in panels a-c in Fig. 11 may look very similar to383

the human eye, but note the differences in the arrays. For example, the first number in the array goes from384

7.895877 in the manifold in Fig. 11a, to 7.892489 and 7.875971 in b and c respectively. These differences385

may appear small, but they are present and can skew results. Determining the acceptable and appropriate386

level of difference is critical to the success of NEMI.387

UMAP is similar to other methods such as t-SNE (t-Distributed Stochastic Neighbor Embedding,388

van der Maaten and Hinton (2008)). NEMI as presented here uses UMAP, but note that the t-SNE method389

was used in Sonnewald et al. (2020). Both UMAP and t-SNE have drawbacks, and one should weight390

carefully if these are appropriate for the data. These include that t-SNE, like UMAP, does not completely391

preserve density. UMAP, like t-SNE, can also create tears in clusters that should not be there, resulting in392

a finer clustering than is necessarily present in the data. Overall, such issues are exactly why NEMI was393

developed with additional validation steps. As such, NEMI uses both external and internal validation.394

Figure 10. One UMAP manifold from different angles.

Figure 11. Three different ensemble members, with a part of the associated data. Note that while
the manifold renditions look very similar, the data associated highlights the slight differences.
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4 CLUSTERING: LEVERAGING MANIFOLD APPROXIMATION395

The use of manifold and dimensionality reduction methodologies in NEMI leads to a very convenient396

three-dimensionsl visualization of the data (Figs. 10 and 11). In terms of clustering (or data-mining) this397

makes it visually apparent that an algorithm needs to be able to deal with data that is: 1) not well-separated398

(e.g., one continuous-seeming structure), 2) highly nonlinear, and 3) of varying densities meaning that the399

points are more likely to be found in certain areas.400

There is growing number of different clustering algorithms available to the practitioner. For validation401

NEMI uses a hierarchical cluster analysis (HCA, the clusters found by the ML method will hereafter402

be refrered to as ‘HCA clusters’), specifically an agglomerative methodology. Here, an agglomerative403

algorithm initially assumes that each data-point is its own cluster, and pairs of clusters are merged as404

one moves up the hierarchy. This is a “bottom-up” approach, where a “divisive” approach would be the405

opposite (“top-down”) and assume that the initial step is to have one cluster represent the whole dataset406

and proceed to divide the data. Note that the agglomerative clustering methodology is not stochastic. The407

hierarchical element is useful as it means that running the algorithm on the same data will not introduce408

uncertainty in what clusters are found. In NEMI this refers to the same manifold rendition of the BV409

data. Using a hierarchical method is intuitively useful both for global (for example the whole Earth in the410

present example) or more local applications (for example a basin or more regional assessment).411

The agglomerative hierarchical clustering methodology is presented as a cartoon in Fig. 12. Here, Fig.412

12a shows the data points 1 to 6 in a two dimensional space (here ‘UMAP 1’ and ‘UMAP 2’ for simplicity413

in relating to the present section, although this is strictly a cartoon and UMAP was not applied). The data414

points have a certain distance to each other within this space. In Fig. 12b, initially each data point is415

progressively clumped together in relation to the distance between the points in panel a. As such points 4416

and 5 and initially grouped, as are 3&2, while 6 and 1 remain isolated. In the next aggregation level, 6 is417

brought into the 5&4 cluster, becoming 6&5&4. The other points remain disaggregated as the distance418

between them is still too large (see Fig. 12a) ). At the next level, the 3&2 and 6&5&4 clusters are merged419

into 6&5&4&3&2. Finally, on the next level the data point 1 is brought into the cluster, comprising now420

of the entire data set.421

Figure 12. Sketch of the agglomerative clustering functions.

Having chosen an agglomerative methodology, I will highlight two hyperparameters that are of422

greatest relevance to the practitioner. The choices are that of the distance metric and linkage method. The423

distance metric is an expression of how the separation of the points is quantified. To illustrate, imagine424

a room of people, such as an auditorium with a lecturer on a podium and students sitting at a distance.425

If grouping the people using physical distance, the students would be clustered together because the426

gap between the students would be smaller than the distance to the lecturer. That is, the gap between427

the teacher and the closest students would be a defining feature of the data. However, if one used a428

metric such as how well the students know each other (e.g., how many friends they have in common),429
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there would likely be clear groupings within the students. As such, the distance metric chosen should be430

considered carefully. In NEMI, the use of the manifold methodology and a closed budget means that we431

can directly link the distance in UMAP space (seen in Figs. 11 and 10 as the distance between points)432

to the clustering. The use of budgets implies that a Euclidean methodology is appropriate. A Euclidean433

metric effectively uses Pythagoras’s theorem in Cartesian coordinates. Next, the choice of the linkage434

method is often dictated by computational capacity. Note that methods scale differently with the size of435

the dataset. Here, the simplest method (single linkage) scales as O(n3) where n is the number of points436

and should be avoided unless the dataset is very small. The second hyperparameter of interest, the linkage437

method, groups points. Recall the validation methodologies that look at internal versus external validation.438

Here, the linkage method can be seen in relation to the internal method. In NEMI we have used the Ward439

linkage method Ward (1963). Ward’s method uses a minimum variance criterion that minimizes the total440

within-cluster variance. Let d be the distance between points i and j in data vector x. The initial distances441

in Ward’s method are Euclidean distances between points:442

di j = ||xi −x j||2.

Note that in NEMI the use of the ‘cut’ is equivalent to the direct number of clusters that are returned443

(the HCA clusters). So why not just use these? The reason for this was illustrated in Fig. 12, where in our444

BV data example the more ‘extreme’ outliers would be immediately focused on, and the wide swaths of445

the open ocean that are dynamically highly interesting would not be identified. For example constitute446

term balances that are opposite. The HCA clusters, approached naively, therefore have limited utility.447

Figure 13. The agglomerative clustering on UMAP with 17 clusters. Panels a, b, and c show the
same manifold from different angles. See sub-sampled version of a) in Fig. 14 to highlight shapes that are
picked up by NEMI.

In Fig. 4 the application of the hierarchical clustering to a UMAP rendition is illustrated from a448

few angles (panels a-b are from the same manifold with the same clusters). The colors indicate the 17449

different clusters (more detail on this below) and show how the clusters successfully isolate the ridges450

running along the sides of the data (see Fig. 14 for a sub-sampled version of panel a from Fig. 14 where451

details are highlighted). Note also that Fig. a displays one arbitrary iteration (i.e., ensemble member (i.e.,452

ensemble member) of UMAP, with clusters determined on another UMAP ensemble member. In Fig.453

15, a k-means rendition with 200 k (as looked visually reasonable in section 2.2.2) is displayed on the454

manifold used in Fig. 4 and 14 (the pale and translucent colours were chosen to enhance the readability455

due to the large number of colors). Note that the clustering was performed on the BV data before the456

UMAP algorithm and only subsequently projected onto the UMAP manifold. Each data-point is projected457

onto three dimensions from a five-dimensional space the locations are retained, the number of data-points458

remain the same, but the number of dimensions change. In Fig. 15 colors do not delineate the areas that459

are observed to be grouped together; this is a visual demonstration of how k-means fails to identify key460

regions. The figures illustrates what k-means does: the algorithm is applied to the manifold rendition461

in Fig. 16 and is forced to artificially separate the data coarsely using ‘straight lines’ across the entire462

data volume. Remembering that the UMAP rendition of the BV data is used to ‘simplify’ and ‘clean’463

the data, it becomes apparent how difficult it would be to apply k-means to the non-transformed data. In464

supplement to the information criteria, this additional visual appraisal of the performance of the algorithm465
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underscores that the k-means algorithm is a poor choice. This method of validation can be applied widely466

beyond the examples used here.467

As with most clustering and machine learning applications, there is no guarantee of finding the468

optimum solution. There might not even be one. However, if an optimum does exist for the agglomerated469

clusters, it is guaranteed to be found via single-linkage. Due to computational costs the application470

of single-linkage application is largely impractical. Other methods, such as the Density-based spatial471

clustering of applications with noise (DBSCAN Ester et al. (1996)) used in Sonnewald et al. (2020) can472

be useful, especially if the data is more separated. However, in this example arriving at a robust set of473

clusters was difficult using DBSCAN. Note that DBSCAN performs considerably better, in terms of474

scaling to larger datasets, so if possible this method is recommended.475

Figure 14. The agglomerative clustering on UMAP with 17 clusters, heavily sub-sampled.
Illustration to supplement Fig. 4. Note I use an arbitrary ensemble member for the manifold and a
different ensemble member for the clusters.
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Figure 15. The k-means algorithm with k = 200 result projected onto a UMAP manifold. Panels a,
b, and c show the same manifold from different angles. Note that the clusters should be coherent on the
manifold if the method is successful. Note there is poor coherence and the clusters are somewhat
arbitrarily separating chunks of the space. This confirms earlier suspicions that the k-means algorithm
was not succeeding in arriving at a good model representation.

Figure 16. The k-means algorithm applied to a UMAP manifold. Panels a, b, and c show the same
manifold from different angles. Here the impact of k-means is illustrated. Note how the manifold is
artificially ‘chopped’ up in ways that clearly do not respect the data.

SORTING FOR DESIRED TRAITS: UTILITY AND VALIDATION476

The visual check of the clustering algorithm chosen in NEMI as discussed in section 4 is the first step477

towards validation. However, the second validation step also builds on the hierarchical aspect of the478

clustering algorithm. For additional external validation in NEMI, we turn to established oceanographic479

theory and leverage that the data we are using is the BV budget. While this may appear specific to the BV480

data, it is generalizable such as in Sonnewald et al. (2020), who used the idea of ‘provinces’ in ecology481

and how they compared to established notions.482

For validation and utility, let us return to a concept introduced in ? in relation to cluster validation483

and assessment. The concept of using what is useful in an oceanographic context. Put differently, having484

a model that is a good fit to the data can be completely useless and misleading, for example, if a key485

parameter was missing from the data (think of the hydrodynamic paradox where missing boundary layer486

friction stood in the way of progress for over 100 years). A focus on the scientific problem at hand can be487

very powerful (in the hydrodynamic paradox this would be working on the equation terms ?). Here, as in488

?, it is critical that the algorithm can robustly recover and reproduce geographical sub-regions. Namely, if489

the algorithm does not repeatedly recover the same geographical areas, the identified clusters, however490

reasonable it may look given statistical checks or other validation, have no utility. Ultimately, a criteria,491

defined here by the practitioner as finding the same spatial area, is the final objective. From Figs. 4,492

14 and 11, it may seem surprising that the same area is not recovered precisely after each iteration of493

this component of NEMI. However, despite the precision apparent in the Figs. 4, 14 and 11, there is494

geographical variability. This variability, as discussed in the next section, is intrinsically useful.495
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The next step in NEMI is to sort the clusters for each UMAP rendition by spatial similarity. For this496

sorting, we weight by geographical extent is used as a weighting because large areal extents are seen as a497

relevant feature to favor. As such, the next component of NEMI sorts the clusters from each UMAP and498

agglomerative clustering iteration and then assesses which clusters are most similar in the geographical499

region covered (scaled by area covered which varies widely across the model grid) across the ensemble500

members.501

In addition to sorting via coherent spatial cover across the ensemble of UMAP and agglomerative502

clustering repeats, the agglomerative methodology allows the selection of different aggregation levels,503

with NEMI having these be the number of HCA clusters. As such, NEMI is designed to be appropriate504

both for global and regional applications. Specifically, a practitioner in need of a globally representative505

set of clusters would select a small level of aggregation, while a regional application should choose a506

higher one.507

In combination, the choice of aggregation level, as well as sorting by area size, allows one to select508

the number of clusters, together with the spatial level one is wishing to focus on. Note that it is up to509

the practitioner to determine a reasonable level and effectively number of clusters, as well as acceptable510

uncertainty/entropy (discussed below). Overall, note that this feature is of specific concern if working511

in the equatorial region compared to high latitude regions. Mid-latitudes see much less impact, as is512

expected.513

The level of aggregation as well as the number of clusters is illustrated in Fig. 17. Three different514

ensemble members are shown separately (rows), with an aggregation level of 350 with 6 clusters in515

the first two columns, and an aggregation level of 350 with 20 clusters in the third and fourth columns.516

Columns one and three show the global ocean, and columns two and four show the North Atlantic. Note517

that the three members look very similar, particularly in their global distributions. I omit plotting the 350518

clusters as this offers limited insight due the colour scale.519

Figure 17. Demonstration of the changes in cluster locations within the ensemble. Three arbitrarily
chosen different ensemble members are shown separately (rows), with an aggregation level of 350 with 6
clusters in the first two columns, and an aggregation level of 350 with 20 clusters in the third and fourth
columns. Columns one and three show the global ocean, and columns two and four show the North
Atlantic. Note plotting the 350 clusters offers limited insight due the colour scale.

Having determined the desired level of aggregation as well as number of clusters, validation via theory,520

or field-specific intuition should also occur. For example, within the BV budget certain balances are521

known and expected in certain regions. Specifically, a canonical balance between the windstress curl522

and advective component (see Sonnewald et al. (2019); Sonnewald and Lguensat (2021) for extensive523
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Figure 18. Figure showing canonical and expected balance for validation via expert judgement.
The expected balance (meaning that the terms add up to zero) between the windstress curl and advective
component can be seen. Fig. 18a shows its geographical extent, and Fig. 18b shows the area averaged
terms balances in the locations NEMI highlighted.

description). If this balance between dominant terms is not seen, this does not necessarily invalidate the524

results, but it should mean that the results are treated with increased caution. For example, NEMI here525

is applied to a realistic coupled model ?, where intuition and experience strongly suggests the balance526

between the windstress curl and advective component should emerge in the subtropics in the Northern527

Hemisphere (Munk, 1950; Sverdrup, 1947). In Fig. 18, just this balance (meaning that the terms add528

up to zero) between the windstress curl and advective component can be seen, where Fig. 18a shows529

its geographical extent, and Fig. 18b shows the area averaged terms balances in the locations NEMI530

highlighted. The exact locations where the balance does not hold (where there are other clusters mixed in,531

for example, over ridges) can lead to new studies and new scientific insight (For example ?). As such,532

NEMI is an avenue towards generating new knowledge with machine learning. However, if this were533

a BV balance in an idealized channel-model set-up one would not necessarily flag the absence of this534

balance as suspicious. As a general tool, this step of NEMI requires field specific intuition, where the535

machine learning and scientist should interact to forge and identify new avenues of discovery.536

5 LEVERAGING AND MANAGING NOISE537

The issue of noise and stochasticity within data and methods may at first appear to be a challenge that538

only increases the difficulty of building applications interpeting them. In this section I will describe the539

final notion and step of NEMI and make a case that a stochastic-friendly methods are needed for crafting540

methodologies applied to ‘real’ data.541

No data is perfect, and methods, like most from machine learning, must find optimal ways of542

approximating the ‘underlying’ model. However, as demonstrated in Fig. 6, being able to account for543

the slight variations, for example in the sine curve in the top middle panel, can improve a model’s utility.544

Having a methodology that is able to reflect the uncertainty of the model fit can be highly beneficial.545

The two-dimensional examples in Fig. 6 are simple cases, but the highly nonlinear BV data poses a546

more difficult problem. In NEMI, as with any neural network application or optimization algorithm, the547

method application will determine the best fit given its initial conditions (i.e., parameters), including a548

stochastic or random seed. In many cases, a slight perturbation in initial conditions can lead to a different549

result, meaning a different model representation. In NEMI, this would be a different manifold, as was550

demonstrated in Fig. 11. What this sensitivity to initial conditions means in practice is that there are551

multiple landscape of possible solutions that the model can converge to and that these different states can552

be reached given just a small difference in parameters.553

The sensitivity to parameters may appear to be a weakness in a methodology, and will be if a model of554

sufficient utility is not arrived. However, in the application of NEMI to the BV data the slight sensitivity to555

parameters allows the exploration of the complex covariance space of the BV data. Consequently, NEMI556

allows an estimation of the uncertainty. Thought of in the framework of bias versus variance, having a557

good approximation of the variance within the covariance space of the data a methodology describes is558

highly beneficial. The application of a manifold methodology facilitates this.559

18/22



Figure 19. The clusters (BV dynamical regimes). For aggregation level 350, cluster numbers of 6 and
20 are shown. Note that in comparison to Fig. 17 the clusters here are much smoother.

A number of methods and approached can be used to estimate the uncertainty. In the BV example560

a geographic majority vote was used. This means that for each geographical location, the cluster that561

was most often flagged throughout the ensemble was the one chosen. Here, this was done largely for562

simplicity. Note that other methods, such as entropy are highly suitable as described in appendix A. Using563

entropy would allow the assessment of how many different clusters were chosen. If the majority was564

between two very different ones, this could be important information or If an area were highly contested565

then our confidence in that area would be lowered. Naturally, having this information is highly valuable566

in an of itself, and for the interested practitioner I recommend exploring this avenue and feature of NEMI.567

5.1 Oceanographic interpretation of regimes568

In Fig. 19 the product of applying NEMI to the BV data is shown. An HCA cluster aggregation level of569

350 is chosen, and six (top row) and twenty (bottom row) clusters are demonstrated. Comparing to Fig.570

19, we can see that while the figures look somewhat similar, the ‘static’ (the result of the clusters changing571

ever so slightly) has been greatly suppressed. Overall, the clusters are much smoother and crucially572

reproducible. To illustrate the utility of these choices of cluster numbers, I will briefly give two examples573

of the utility. Note however, that the number of clusters (here dynamical regimes) is entirely up to the574

practitioner and will likely depend on the research question at hand. To illustrate the now oceanographic575

context I will refer to the final cluster products as ‘dynamical regimes’ as these illustrate an objective576

empirical leading order analysis of the closed BV equation.577

In Fig. 19, the top row shows the large overall dynamical regimes that are very interesting when578

assessing the global structures. Note that coherent areas in the areas where the wind stress curl (∇× τ)579

are largely coherent have been grouped together, despite having opposite signs. Note how we know580

from Fig. 18 and from oceanographic intuition that these areas should be similar but have opposite main581

drivers. For example, in the Northern Hemisphere in the large wind gyre areas (see Sonnewald et al., 2023582

for a detailed theoretical description) the wind stress curl is negative and balanced largely by positive583

planetary advection. In similar areas in the Southern Hemisphere this effect is opposite, which is also584
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intuitive due to the symmetry of the Earth around the equator. From a clustering perspective, the fact that585

the terms are similar allows them to be grouped together, and different areas to stand out more. See for586

example the grey streaks through the North Atlantic running approximately latitudinally from 43 to 17◦N.587

These are colocated with where significant areas of variability in the sea floor are found (for example the588

mid-Atlantic ridge). The clustering here illustrates what an important feature this is, and that this should589

be paid close attention to.590

In the bottom row of Fig. 17 an example where there are 20 dynamical regimes is shown. Here, the591

area where the ‘classical’ wind gyres are found are seen and the Northern Hemisphere and Southern592

Hemisphere dynamical regimes are distinguished. Note the increased detail around, for example, the593

coast. As a thought example, imagine that a current is flowing along the coast. The coasts have large594

features such as canyons. Moving south to north, a current moving into a canyon would suddenly have595

more room, and the vorticity contributed by the bottom pressure torque would decrease significantly. As596

the current moves further north the other side of the canyon would be reached and the current would597

become more constricted again, where the bottom pressure torque term would increase. These would598

emerge as separate dynamical regimes in a study where a larger number of dynamical regimes is chosen,599

but most likely not appear in a study choosing a lower number.600

Note that the two examples above use examples where one as ‘equal but opposite’ scenarios being601

grouped together. This was chosen as an accessible example but should by no means be seen as the only602

possible cancelling effect. Recall the complicated covariance space being queried and the highly nonlinear603

data. Further investigation of the dynamical regimes in the BV equation in MOM6 is the topic of another604

study.605

6 CONCLUSION606

Here, I presented the method Native Emergent Manifold Interrogation (NEMI), which is a generalisation607

of the methodology presented in Sonnewald et al. (2020). NEMI is designed for ‘data mining’, or put608

differently, to find underlying patterns within data. Nemi is a generalisation of the methodology in609

Sonnewald et al. (2020) that targeted plankton ecosystems, in that is is designed to scale to larger datasets.610

Scaling is a formidable bottlenecks in data mining for scientific applications. In NEMI I have generalised611

a workflow that can accommodate a wide array of data, where the particular example application used612

here is geospatial data. An explicitly hierarchical approach is used, making NEMI less parametric (fewer613

parameters to tune and less danger of noise interference) and intuitively useful both for global (for614

example the whole Earth in the present example) or more local applications (for example a basin or more615

regional assessment). NEMI does not use a fixed field-specific benchmark criteria (used in Sonnewald616

et al. (2020)), but is generalised so a field agnostic option is available. Lastly, NEMI invites the use617

of a range of uncertainty quantification options in the final cluster evaluation, from a majority vote to618

entropy. I demonstrate NEMI’s application to a numerical ocean model, namely MOM6 (Griffies et al.,619

2023), and represent the barotropic vorticity balance of a time-mean of a model run. Here, the data serves620

as an example of a highly nonlinear and complicated covariance structure, within which reside highly621

valuable oceanographic patterns. NEMI is used to extract these patterns and facilitate further scientific622

discovery. However, NEMI is entirely general, and can be used on a range of data from the Earth sciences623

and beyond.624
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APPENDIX637

A: Entropy for uncertainty estimation638

Entropy (H) can be used as a measure of uncertainty. As discussed in Clare et al. (2022): In information639

theory, entropy is the expected information of a random variable, and for each sample i is given by640

Hi =−
Nl

∑
j=1

pi j log(pi j), (2)641

here Nl is the number of possible outcomes for each location and pi j is the probability of each outcome j642

for sample i (Goodfellow et al., 2016). The larger the entropy, the less skewed the distribution will be and643

the more uncertain the outcome. The concept of entropy can be directly applied to manage the potentially644

different results from NEMI for each geographic location within the ensemble. If this is better than a645

simpler method, such as a majority vote, depends entirely on the application.646
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ABSTRACT8

Algorithms to determine regions of interest in large or highly complex and nonlinear data is becoming
increasingly important. Novel methodologies from computer science and dynamical systems are well
placed as analysis tools, but are underdeveloped for applications within the Earth sciences, and many
produce misleading results. I present a novel and general workflow, the Native Emergent Manifold Interro-
gation (NEMI) method, which is easy to use and widely applicable. NEMI is able to quantify and leverage
the highly complex ‘latent’ space presented by noisy, nonlinear and unbalanced data common in the Earth
sciences. NEMI uses dynamical systems and probability theory to strengthen associations, simplifying
covariance structures, within the data with a manifold, or a Riemannian, methodology that uses domain
specific charting of the underlying space. On the manifold, an agglomerative clustering methodology is
applied to isolate the now observable areas of interest. The construction of the manifold introduces a
stochastic component which is beneficial to the analysis as it enables latent space regularization. NEMI
uses an ensemble methodology to quantify the sensitivity of the results noise. The areas of interest, or
clusters, are sorted within individual ensemble members and co-located across the set. A metric such
as a majority vote, entropy, or similar the quantifies if a data point within the original data belongs to a
certain cluster. NEMI is clustering method agnostic, but the use of an agglomerative methodology and
sorting in the described case study allows a filtering, or nesting, of clusters to tailor to a desired application.
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Plain language summary27

Within the Earth sciences data is increasingly becoming unmanageably large, noisy and nonlinear. Most28

methods that are commonly in use employ highly restrictive assumptions regarding the underlying statis-29

tics of the data and may even offer misleading results. To enable and accelerate scientific discovery, I drew30

on tools from computer science, statistics and dynamical systems theory to develop the Native Emergent31

Manifold Interrogation (NEMI) method. Nemi is intended for wide use within the Earth sciences and32

applied to an oceanographic example here. Using domain specific theory, manifold representation of the33

data, clustering and sophisticated ensembling, NEMI is able to highlight particularly interesting areas34

within the data. In the paper, I stresses the underlying philosophy and appreciation of methods to facilitate35

understanding of data mining; a tool to gain new knowledge.36

37

Key points:38

1: Few tools for data mining within the Earth Sciences use recent advances in methodologies despite data39

available becoming unwieldly40

41

2: The method Native Emergent Manifold Interrogation (NEMI) is presented. NEMI scales and performs42

well on very complex and nonlinear data43

44

3: I stresses the underlying philosophy and appreciation of methods to facilitate understanding of data45

mining; a tool to gain new knowledge46



47

1 INTRODUCTION AND PROBLEM STATEMENT48

In this manuscript I introduce a generic methodology to determine areas of interest in a dataset that49

can have arbitrarily complex and nonlinear covariance structures. For simplicity, the method is given50

a name: Native Emergent Manifold Interrogation (NEMI). Nemi was developed to address the need to51

identify patterns and perform ‘data mining’ in the increasingly large, highly complex and complicated52

data that is becoming common within the Earth sciences. Due to the challenges posed by modern data,53

traditional methods of analysis are often inadequate, meaning that they fail to converge or offer little54

insight. NEMI blends dynamical systems theory with clustering, but importantly invites room at key areas55

for domain specific input ‘native’ to the research problem NEMI is applied to. With NEMI, I address56

the issue of mismatching ‘data science’ methods and data, where the practitioners of Earth science or57

more computational sciences often suffer under the difficulty of interdisciplinary communication. NEMI58

is a generalisation of the methodology in Sonnewald et al. (2020) that targeted plankton ecosystems,59

in that is is designed to scale to larger datasets. Scaling is one of the true bottlenecks in data mining60

for scientific applications. NEMI is generalised to work with any data, where the particular example61

application used here is geospatial data. I have used an explicitly hierarchical approach, making NEMI62

less parametric (fewer parameters to tune and less danger of noise interference) and intuitively useful both63

for global (for example the whole Earth in the present example) or more local applications (for example64

a basin or more regional assessment). Another novelty in NEMI is the lack of a fixed field-specific65

benchmark criteria (used in Sonnewald et al. (2020)), where I have generalised so a field agnostic option66

is available. Lastly, NEMI invites the use of a range of uncertainty quantification options in the final67

cluster evaluation. The intended readership of this manuscript are interested practitioners from the Earth68

sciences, meaning scientists interested in applying NEMI, with an interest in understanding the underlying69

philosophy and rationale beneath the architecture of the pipeline. I have attempted to describe concepts70

in detail and refer the interested reader to further materials. Here there are two main actors; the data71

and the methods of analysis. Oceanographic examples are used and an ocean numerical model dataset72

used as an example. Note that the present manuscript focuses on NEMI, and I do not include an general73

overview of data-mining within the Earth sciences (see Götz et al. (2015)), or provide a general overview74

of machine learning within the Earth sciences (see Fleming et al. (2021); Sonnewald et al. (2021); Beucler75

et al. (2021)).76

The paper is structured as follows: to give NEMI context, I initially move through explaining the77

problems related to exploring data using machine learning methodologies, these being the data (section78

2) and the methodologies (section 2.2) in very general terms. I move through a synthetic example of79

a simpler method to illustrate how, and why, this fails on more complex data (section 2.2.2). Then, in80

section 3, I move through the manifold-based projection for data cleaning, visualizing, and strengthening81

the associations between different components of the data. In section 2.2 I explain the actual clustering,82

and how this is chosen based on observations of the manifold. Sections 3 and 2.2 are part a) of NEMI83

as shown in Fig. 1. Section 4 illustrates the important step regarding how to treat and sort the resultant84

clusters for enhanced utility. Then, in section 5, I return to the issue of stochasticity, and demonstrate85

simple and more advanced methods to utilize this aspect of NEMI. Sections 4 and 5 are part b) of NEMI86

as shown in Fig. 1. Finally, section 6 provides an outlook on potential application and implications. NEMI87

is a method that can not only be applied to complex data, but is also flexible and verifiable. I refer to88

NEMI as the full workflow, but separate parts can be used and adapted as appropriate for the practitioner.89

The following provided code and examples uses the python programming language and key parameters90

are highlihgted. Note that parameters not discussed could be significant depending on the application, and91

the documentation should be read. The manuscript intends to give a thorough explanation of the reasoning92

behind NEMI, and aims to empower practitioners with the rationale behind different method choices so it93

can be applied to different data. I do not intend for the manuscript to stand entirely on its own as many94

methods NEMI draws from span a wide array of fields and, only brief explanations are within scope and95

should be seen as starting points for further reading. The code for NEMI is available on GitHub and also96

as a PyPi package: https://github.com/maikejulie/NEMI97
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Figure 1. Sketch of workflow in NEMI. Sketch of NEMI workflow. Part 1 (top rwo) illustrates moving
from the data in its rew form, through initial symbolic renditioning, manifold transformation and
clustering. Part 2 (bottom row) shows the ensembling, agglomerative utility ranking and native (field
specific) utility ranking within each ensemble member. Finally, the cluster for each location is determined
looking across the ensemble. (Top left image of model adapted from encyclopedie-environnement.org).

2 DATA98

Data is at the core of most discoveries within the Earth sciences and can come from numerical models or99

in situ or remote observations. However, what data to choose can be the most crucial step of any scientific100

endeavor.101

2.1 The ocean data102

In the illustration of a NEMI application in the present manuscript, I take data from an ocean model103

(MOM6, Griffies et al., 2023). Working on the full set of fields would have many parameters. The ocean104

model is discretized in latitude and longitude, as well as in depth, meaning that the model equations105

are solved on a grid that subdivides the ocean area and depth. The area covered within each grid point106

varies widely. Each data point approached naively would consist of one point in the depth, latitude, and107

longitude, where the model has 75 depth levels. We are interested in how the ocean is moving (as is108

described by the model equations in terms of momentum), and for each data point this amounts to 39109

different fields for each depth level, where each field is one term in the equations that the model is solving,110

along with three additional ones at the sea floor. The equation terms can be thought of as our ‘features’ or111

‘dimensions’. As such, each location in latitude and longitude amounts to a vector of length 2989 entries112

or dimensions (39*75+3). See Khatri et al., 2023 for further details on the momentum budget closure in113

MOM6.114

Working in a space consisting of 2928 dimensions is difficult, so we initially make the data more115

manageable using oceanographic theory. This can be thought of as simplifying the latent space within116

the data and is highly field-specific. This was described in detail in Sonnewald et al. (2019). For this117

simplification I use the barotropic vorticity (BV) equation terms as the data for NEMI, reducing the 2928118

dimensions to five (Fig. 2). Although generally applicable to any data, NEMI was developed around the119

BV data as output from a fully realistic numerical ocean model. As such, the data that is used here is a120

parameter x that is a vector field defined at every grid cell (lon, lat) on the discretized MOM6 ocean sphere,121

with each element xi representing a five-dimensional vector on the horizontal grid of the model. The index122

i uniquely identifies a grid point on the sphere, with (lon,lat) = (φi,θi). The features (dimensions) of each123

vector xi correspond to the five terms in the BV budget. For the interested reader a description of the BV124

equation and how it relates to the numerical model follows. Skip ahead for further discussion of NEMI.125

Early works (Sverdrup, 1947; Munk, 1950; Stommel, 1948) recast the intractably complicated full126

equations to describe how meridional ocean flows develop by taking the curl of the depth-integrated127
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momentum equations, and arriving at the barotropic vorticity (BV) equation. The steady BV balance128

under incompressibility is expressed as:129

βV = ∇× (pb∇H)+∇× τ +∇×A+∇×B, (1)

where β = ∂ f/∂y is the northward derivative of the Coriolis parameter ( f ), V =
∫

ρvdz is the depth-130

integrated northward mass transport from density ρ and meridional velocity v, ∇ is the horizontal gradient131

operator, pb is the pressure at the bottom, and H = h+η is the bottom depth. H is the water column132

thickness, an h is the distance from the resting ocean surface to the bottom topography and η the sea133

surface height anomaly. The stress produced by wind and bottom friction (external) is denoted by τ , and134

A and B are the depth integrals of the nonlinear and the horizontal viscous terms, respectively (Hughes135

and de Cuevas, 2001).136

137

Figure 2. The terms of the barotropic vorticity equation. Each term is in ms−1. Note how certain
areas have clear large spatial patterns, while others can be highly variable. Top from left: ∇× τ ,
∇× (pb∇H) and ∇×A. Bottom from left: −βV and ∇×B. See Fig. 3 for close-ups illustrating the
complexity of the data further.

Figure 3. The terms of the barotropic vorticity equation, North Atlantic section. Each term is in
ms−1. Terms labeled as in Fig. 2.
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2.1.1 Common problems with realistic data138

In the example featuring the BV data from the numerical ocean model MOM6, NEMI is applied to a very139

complex problem. In general terms, data can suffer from issues such as: 1) noise, which is meaningless140

data that mask components of interest and sources can include instrument error or numerical artifacts;141

2) sparseness, where only part of the desired data is available and examples include the wealth of data142

available at the ocean surface, but difficulty in acquiring subsurface data; 3) unbalance, which refers to143

data that has a wide range and only a small proportion of information of interest, for example a global144

dataset where one wishes to detect episodic ocean convection. The extent to which data is afflicted by145

these issues is often unknown, and checking the nature of the data extensively before starting analysis is146

always advisable. For the BV data, issues 1 and 3 are of note. The raw data, here only a smoother with a147

Gaussian kernel with a standard deviation of 1, is presented in Fig. 4 as a ‘pairplot’ (terminology from the148

‘seaborn’ python library). The pairplot shows each dimension (here each term in the BV equation) as a149

scatterplot of each other term, with the associated probability distribution function of the dimension as a150

barplot. Such a pairplot is a nice way of initially assessing what issues are present within the data. In Fig.151

4, the points are unreasonably centered around zero, and it suffers from outliers.152

For NEMI, as is generally advisable, the data must by appropriately cleaned and pre-processed.153

Standardizing and normalizing are standard; for example, one can scale as z = (x−u)/s, where z is the154

scaled data, x is the original data, u is the mean and s is the standard deviation. This is done separately155

for each dimension, or equation term. Applied to the BV data, we arrive at the pairplot shown in Fig. 5156

that reveals different structures. Note that the individual distributions only give a vague representation157

of data density. Many other methods for data-scaling exist that are suited for e.g., log distributed158

data. Experimenting with the initial scaling can be highly beneficial. The rationale behind scaling159

and normalizing is that the covariance between variables is much more interesting than their individual160

magnitudes. For example, consider the global data of ocean temperature and fish stock abundance, where161

the magnitude of variability in temperature is small compared to the magnitude of variability in fish stock162

abundance. Without scaling, the temperature variable would appear meaningless for fish stock abundance,163

even though we expect a difference between Arctic and tropical regions. After getting to know the data164

through initial inspection and scaling, we are ready to consider methodologies for further exploration.165

2.2 Methods for data mining from unsupervised learning166

Novel methods from ‘data science’ are increasingly being used to great advantage. In Sonnewald et al.167

(2021) a review of current progress and a brief introduction of methods can be found focused on physical168

oceanography. However, matching methods to data and robustly verifying their results requires knowledge169

both of the algorithm and the application. A computer scientist may believe she has arrived at a significant170

and interesting answer, but this may not be useful to an earth scientist if, for example, the uncertainty171

related to the spatial position of an identified region is too great. Along with a method’s power must172

also come an appropriate level of skepticism and emphasis on validation, statistical or otherwise. NEMI173

is an answer to the issue of not having satisfying metrics to use to determine statistical significance of174

clustering results. Clustering is the task of dividing data into sub-groups so that data points within each175

group are similar and dissimilar to the data points in other groups. Clustering is largely regarded to be176

an ‘unsupervised’ machine learning methodology, meaning that the data is given to the method without177

explicit ‘labels’. Clustering can be seen as the act of determining labels that can then be interpreted and178

offer insight to the practitioner.179

There is a large and growing number of clustering algorithms available. It is beyond the scope of this180

article to give an overview of these. In general terms, common to all clustering methodologies is that the181

act of seeking to determine sub-groups within the data means that the differences between the overall182

data and the sub-sets that the clustering method has chosen should be determined. Put differently, every183

methodology should evaluate the differences between the overall data and clustered sub-sets. Note that184

such partitioning of the data’s covariance space is also the backbone of, for example, neural networks.185

When applying a clustering algorithm, the resultant ‘model’ is the algorithm and the chosen values for186

any parameters or similar, referred to as clustering model hereafter. As such, it is critical to quantify how187

well the clustering model is able to represent the data. This is also seen in simple regression. Within188

clustering and regression, we search for an underlying and general model, or formula, to describe the189

data. To illustrate, the left column in 6 shows an underfitted model, attempting to partition the data with190

a straight line. This misclassifies large amounts of data. The rightmost column illustrates a model fit191
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Figure 4. A basic look at the data. Each variable in the BV data is plotted against the other. Note that
the data is not scaled, and the odd lack of structure indicates that the data is heavily skewed towards
smaller numbers. See Fig. 5 for the scaled example.

where every point is accounted for, which also fails to reasonably approximate the underlying model. The192

middle column illustrates a general fit that represents a model that closely approximates the underlying193

model from which the data was drawn.194

2.2.1 Validation195

To validate a clustering application, showing that we have successfully discovered a reasonable repre-196

sentation of the underlying model, there are two main techniques: 1) external, and 2) internal validation.197

External validation requires a subset of the data to have known labels to compare to. Internal validation198

revolves around cohesion within a cluster and the degree of separation between different clusters. If the199

cohesion within a cluster is bigger than the degree of separation between clusters, then the clustering200

method is successful. However, recall the problem of overfitting. Many methods for verification of model201

skill exist, including the Silhouette coefficient, the Calisnki-Harabasz coefficient, the Dunn index, the202

Xie-Beni score, the Hartigan index, and the use of information criteria. It is beyond the scope of this203

article to go through all the above, but the example below will briefly introduce information criteria.204

2.2.2 Practical example: k-means on idealised and BV data205

A very popular method for clustering is called k-means (MacQueen, 1965). It is fast and conceptually206

simple, making it an excellent first choice for data exploration. The k-means algorithm involves an207

iterative minimization of the sum of squares of the Euclidean distance partitioning of the hyperspace208

given by the terms in the BV equation. To initialize, the k-means algorithm makes a stochastic guess.209

This means that points are initially scattered across the data, and the algorithm iterates until a “maximum”210

in found. This maximum is determined by minimizing the objective function J:211

J =
k

∑
j=1

n

∑
i=1

||x j
i − c j||2,

where k is the number of clusters, n is the number of data points, the vector xi correspond to the five212
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Figure 5. The scaled BV data. Each variable in the BV data is plotted against the other. Note that
compared to Fig. 4 much more structure is visible.

terms in the BV budget, and c j is the estimated location of cluster j. The number of k clusters is a free213

parameter that is chosen before the algorithm is applied. Initially, the cluster centers have random values214

scattered throughout the parameter space. Each cluster j = 1, . . . ,k is represented by the five-dimensional215

characterizing vector c j, and the k-means classification attributes each vector xi to a unique cluster c j,216

so xi = x j
i . The distance between a data point is given by x j

i and the cluster center c j is determined as:217

||x j
i − c j||2. In this way, each data point in x is associated with the closest k-cluster. Then, the position of218

c j is calculated again, and the association is reassessed until the solution converges.219

Note that k-means uses only one parameter (the number of clusters) and an initial stochastic guess220

for the cluster centers. Effectively, k-means clustering minimizes within-cluster variances (squared221

Euclidean distances), which also entails that k-means would work perfectly if the data were separated222

into tidy clumps with Gaussian distributions (round). Unfortunately, very few data have this type of223

covariance space and suffer from interconnected and decidedly non-Gaussian (and nonlinear) statistics.224

Put differently, the strength but also the weakness of this clustering method is that it works by partitioning225

the data into Voronoi cells. Effectively, the algorithm can only draw straight lines to partition the data and226

cannot isolate any more complex covariance structures.227

In contrast to the BV example, Fig. 7 shows an idealized scenario that illustrates how k-means can be228

successfully used. The top left panel shows a dataset of tightly clustered points that are well-separated229

from neighbouring clusters and each has a Gaussian distribution (round). The top middle panel illustrates230

how k-means is successfully applied to discover this correct underlying structure in the data (here called231

‘true’). The top right panel shows the same data but with noise added. Using the labels discovered from232

the ‘true’ underlying model in the top middle panel, the bottom left panel shows where the data should be233

classified. The middle lower panel contain the classification results. The colors are arbitrary, but note234

that while there is some misclassification, the performance of the model determined using k-means is235

reasonable.236

Each run of the k-means algorithm on the BV data results in one statistical ‘model’. As such, we237

want to assess how well different models fit the data, where we can vary the number of clusters (k) and238
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Figure 6. Figure illustrating a model fitting exercise. Adapted from 365datascience.com 1.

different model initializations, which give different results due to the initial stochastic guess (note that239

some implementations use a fixed seed which masks this potential source of model error). To assess the240

fit of the model, we apply validation methods. Here, the ‘fit’ of the model is assessed using information241

criteria (IC). The IC can tell us how ‘complex’ our k-means model should be, where increasing the number242

of k is equivalent to increasing the complexity. The IC illustrates if we are capturing more information if243

we add another k, or if the maximum is reached and the model is complex enough. Recalling the example244

in Fig. 6 where accounting for every data-point is not desirable, and this statistical model of the data is245

too complex, meaning it will not generalise well.246

Different methods exist for estimating the IC, and here I will discuss the Akaike IC and Bayesian IC247

(AIC and BIC respectively). The AIC and BIC have been very well studied, and are therefore preferred.248

The maximum likelihood function is the basis of both and is the primary tool for estimating the parameters249

of an assumed probability distribution given data (here the data we cluster on). The likelihood (L ) is250

defined as:251

L (θ | x) = pθ (x) = Pθ (X = x),

Here, X is a discrete random variable with probability mass function p depending on a parameter θ .252

If thought of as a function of θ , it is the likelihood function, given the outcome x of the random variable253

X . Suppose that we have a statistical model of some data. Let k be the number of estimated parameters in254

the model (for example the number of cluster guesses from k-means). Then, L̂ is the maximum value of255

the likelihood function for the model. Then the AIC value is estimated as follows:256

AIC = 2k−2ln(L̂).

With a set of different candidate models (for example, comparing models determined using different257

numbers of k clusters), the AIC with the lowest number will be the one that fits the data best. The258

goodness of fit is assessed by the likelihood function. To discourage overfitting, the penalty term (2k)259

increases as the complexity (number of k clusters) increases. As such, the AIC will in general asymptote,260

and a good model is determined when this happens.261

The BIC also uses the likelihood function to determine the goodness of fit, but uses a different262

penalisation to determine if the model is overfitted:263

BIC = ln(n)k−2ln(L̂),

where n is the sample size. As discussed by Yang (2005); Harvey (1982), the AIC can overestimate264

the order, where the BIC penalisation term discourages this more strongly. See figures in section 2.2 for265

an example of how a model can fail to find an underlying model. In short, the AIC should asymptote,266

while the BIC should start increasing. A number of k somewhere between these two (if they both occur)267

could offer a good fit.268

It follows that the AIC and BIC are inappropriate if the number of k is unmanageably large, or is269

close to the number of data points when we have no reason to suspect it should. The relative simplicity of270
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the AIC and BIC compared to many other model validation methods demonstrates the difficult nature of271

assessing if a ‘good’ approximation of the underlying model has been found, and stresses the importance272

of applying common sense, additional checks, and caution. Note the AIC and BIC are useful in many273

applications of model selection, for example auto-regressive model estimation (Sonnewald et al., 2018) as274

is commonly used without validation of the chosen order. Use of a statistical model without assessment275

of how well the model approximates the data can be highly unfortunate, including that a model that is276

needlessly complex is chosen or vise versa as discussed in Sonnewald et al. (2018).277

Returning to the idealised example in Fig. 7, the bottom right panel illustrates the use of the AIC and278

BIC, where the ‘correct’ number of k is 5. In Fig. 7 the AIC appears to have asymptoted, and the BIC279

to reach its lowest point before going upwards again. As such, 5 clusters are correctly identified as the280

optimal number.281

In Sonnewald et al. (2019), using BV data on a 1◦ horizontal resolution ocean model (See Sonnewald282

et al. (2019) for details on the model), k-means was used to good effect. This was astonishing, as the283

success of k-means suggested that large proportions of the ocean had an underlying linear distribution.284

Sonnewald et al. (2019) both illustrated that there were dominant partitioning within the BV data at this285

relatively low resolution, but also that the data was relatively normally distributed. This was unexpected286

in an oceanographic context using data from a realistic model. The partitioning of the data has led to287

scientific insight as the ML effectively performs an empirical leading order analysis that can subsequently288

be explored.289

Running an AIC/BIC check on BV data from MOM6 at 1/4◦ (Fig. 9) illustrates that k-means is an290

inappropriate method for exploring this data. This is evident in that the AIC has not asymptoted after291

adding even 350 k, and while the BIC has started turning upwards the standard deviation (shown in292

the blue shading) is fairly large. To illustrate spatially on the ocean, Fig. 8 shows the spatial patterns293

associated with k set to 50 and 200. Neither are helpful, and section 2.2 illustrates that k-means is actually294

doing with its inability to work with nonlinear data.295

Figure 7. An illustration of concepts on idealised data.

3 MANIFOLD APPROXIMATION OF THE UNDERLYING COVARIANCE STRUC-296

TURE297

The NEMI methodology takes the approach that validation is of the utmost importance. As discussed298

above, validation can take multiple forms. The data-mining challenge that NEMI addresses uses a299

symbolic methodology to characterize the ‘latent space’. The latent space is the covariance structures300

in the data hidden to our human perception. This can be imagined as how variables relate and change301

according to one another. The ‘symbolic’ methodology refers to reducing the size of the latent space from302

the original dimensions (over 270 for the closed momentum budget of the ocean model) down to a few303
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Figure 8. An illustration of running k-means on the BV data. To the left a k of 50 is chosen. To the
right a k of 200 is used.

Figure 9. An illustration of the AIC and BIC criteria run on the BV data. Note that the AIC fails to
converge and the BIC stays fairly flat. The AIC and BIC indicate that the k-means algorithm is not
converging.

(i.e., five) using oceanographic theory. However, five is still too many for human perception. As such, we304

further characterize the latent space using a manifold methodology.305

A mathematical manifold is a construct from topology: any local point resembles the Euclidean space306

near each point. Effectively, the ‘distances’ between different datapoints are used to determine relations.307

This has the convenient property, which makes it useful in NEMI, that the space is homeomorphic. This308

homeomorphism means that one shape can be transformed to another, without violating the relationships309

between the datapoints. One common example is that a doughnut (torus) can be transformed into a coffee310

mug, as both have one hole. It is beyond the scope of this article to give a thorough introduction to311

topology, but the key utility is that a confusing ball of covariances can efficiently be untangled without312

losing the nonlinear structures. For a visual example, imagine a scarf tangled on a table. The scarf313

has various patterns that may look oddly disjointed and tangled together. If you spread out the scarf, the314

complicated 3D structure becomes a smooth and fully visible (approximately) two-dimensional object.315

Any patterns on the scarf can be seen. In NEMI, the threads making up the scarf and its pattern are the316

barotropic vorticity equation terms.317

Manifold methodologies have two further convenient properties: they can be used to reduce the318

dimensionality for visualization and ‘strengthen’ associations between different areas of the data, allowing319

patterns to emerge more clearly. NEMI employs the manifold methodology UMAP (Uniform Manifold320

Approximation and Projection McInnes et al. (2018)) as a processing step with considerable advantages.321

First, the UMAP methodology projects the data into three dimensions, meaning that the data can be322
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visualized. This allows an additional external validation step that will be discussed later. Second, the323

UMAP methodology works by assessing the connectedness of the data as described above. Third, through324

the UMAP application, the noise that posed an issue in the k-means application is lessened.325

So what is a manifold in relation to actual data? We start with simple combinatorial building blocks326

(called simplices) of the distances between the data points. One data point is a 0 simplex, two connected327

points is a 1 simplex, three connected points is a 2 simplex (a triangle), a 3 simplex has four connected328

points (a pyramid), and we can continue upwards adding dimensions. We can construct different simplexes329

and combine these together, and in practice the simplexes do not need to have very high order to cover330

their local space. If this sounds similar to a k nearest neighbour graph (distinct from k-means) note that331

there the choice of the radii can have immediate detrimental impact on a graphs ability to approximate332

the underlying space, which is amplified if a dimensionality reduction is attempted (if the space were333

uniformly sampled it would work). The problem of having non-ideal data remains, and we can only334

assume that we are not uniformly distributed. Using Riemannian geometry the non-uniformness can be335

leveraged as fortuitous. In UMAP we assume that we have uniformly distributed data, and then use the336

actual distances between the data-points to create a map of the underlying manifold. Effectively, to map337

out the manifold we choose a unit ‘ball’ about a point stretches to the k-th nearest neighbor of the point,338

where k is the sample size we are using to approximate the local sense of distance (I use ‘k’ to conform339

with the overall machine learning literature, but note that this is distinct from the k in k-means). In UMAP,340

each point is given its own unique distance function. This lets us choose a number of ‘neighbouring’341

data-points to use, rather than needing to determine the distance as k nearest neighbours would have342

required.343

We now add to the concept of the manifold that it is locally connected, meaning that it describes one344

space, rather than a set of disconnected spaces. However, in a simplified sense, because we looked at345

the neighbouring points to assess the distances, two neighbouring points may individually have different346

values describing the same distance. As such, a useful mental construct with which to envision this set347

of UMAP is to think of it as a weighted graph, where the weights describe the distances. If there are348

conflicting weights associated with the simplices we will interpret the weights as the probability of the349

simplex existing.350

Embedding the manifold into a lower-dimensional space can now happen based on the notion that351

we have the information about the manifold approximated by the data points, and we wish to conserve352

the associated probabilities between the data points in the lower dimensional space. In comparing the353

original topological structure of the manifold with a lower dimensional candidate. Both would share the354

same 0 simplices, and we can imagine that we are comparing the two vectors of probabilities indexed by355

the 1-simplices. For this we use the cross-entropy. In Information theory, the cross-entropy is a concept356

describing if two probability distributions are drawn from the same set.357

To estimate the cross-entropy, say the set of all 1-simplices is E, and we have arrived at weight358

functions so the weight of the 1-simplex e is wh(e) in the high dimensional case. Now wl(e) is the weight359

of e in the low dimensional case, and the cross entropy will be:360

∑
e∈E

wh(e) log
(

wh(e)
wl(e)

)
+(1−wh(e)) log

(
1−wh(e)
1−wl(e)

)
.

Now, we minimize the cross-entropy to arrive at our low dimensional embedding of the migh dimensional361

manifold. Here, the first term wh(e) log
(

wh(e)
wl(e)

)
can be thought of as a force that attracts the points362

whenever there is a large weight associated in the high dimensional case. If wl(e) is as large as possible,363

the term will be minimized. This occurrs when the distance between the points is as small as possible,364

and effectively when the UMAP algorithm is focusing on the very local structure. In contrast, a repulsive365

force is found in the (1−wh(e)) log
(

1−wh(e)
1−wl(e)

)
term between the ends of e when wh(e) is small.366

Key concepts to understand the limitation of such ‘manifold’ based methods is that we are assuming367

that our data points populate the manifold of the underlying model well enough. For example, if we368

think about a landscape with mountains, we may have less data points among the mountains than in the369

surrounding areas that are also ‘smoother’. A manifold representation of the landscape based on this data370

would only roughly describe the true landscape in the mountaineous regions.371

Now, what does a UMAP rendition of the highly complex and complicated BV data look like? In Fig.372

10 a three dimensional rendition is demonstrated from different angles. The shape can vary depending373
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on the parameters chosen, as stressed above. In Fig. 10 we can see that there are clear areas that, from374

all angles, are more dense and some that are more sparsely populated. We will use the visualization for375

choosing a clustering algorithm below. The sensitivity to parameters (or how ‘brittle’ the method is) is376

highly dependent on how the data’s complexity. In this example, a large ensemble sweeping through the377

parameters (described above) was needed to arrive at a reproducible manifold representation. The concept378

of a reproducible manifold means that one should be able to run the algorithm on the data and recover the379

same (or sufficiently similar) structure. Here, small differences can have large impact, and they can be380

difficult to pick up by eye. The importance of small differences is part of the reason why NEMI employs381

the additional checks and leverages the associated uncertainty. In Fig. 11 three renditions of running the382

UMAP algorithm on the processed BV data. The plots in panels a-c in Fig. 11 may look very similar to383

the human eye, but note the differences in the arrays. For example, the first number in the array goes from384

7.895877 in the manifold in Fig. 11a, to 7.892489 and 7.875971 in b and c respectively. These differences385

may appear small, but they are present and can skew results. Determining the acceptable and appropriate386

level of difference is critical to the success of NEMI.387

UMAP is similar to other methods such as t-SNE (t-Distributed Stochastic Neighbor Embedding,388

van der Maaten and Hinton (2008)). NEMI as presented here uses UMAP, but note that the t-SNE method389

was used in Sonnewald et al. (2020). Both UMAP and t-SNE have drawbacks, and one should weight390

carefully if these are appropriate for the data. These include that t-SNE, like UMAP, does not completely391

preserve density. UMAP, like t-SNE, can also create tears in clusters that should not be there, resulting in392

a finer clustering than is necessarily present in the data. Overall, such issues are exactly why NEMI was393

developed with additional validation steps. As such, NEMI uses both external and internal validation.394

Figure 10. One UMAP manifold from different angles.

Figure 11. Three different ensemble members, with a part of the associated data. Note that while
the manifold renditions look very similar, the data associated highlights the slight differences.
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4 CLUSTERING: LEVERAGING MANIFOLD APPROXIMATION395

The use of manifold and dimensionality reduction methodologies in NEMI leads to a very convenient396

three-dimensionsl visualization of the data (Figs. 10 and 11). In terms of clustering (or data-mining) this397

makes it visually apparent that an algorithm needs to be able to deal with data that is: 1) not well-separated398

(e.g., one continuous-seeming structure), 2) highly nonlinear, and 3) of varying densities meaning that the399

points are more likely to be found in certain areas.400

There is growing number of different clustering algorithms available to the practitioner. For validation401

NEMI uses a hierarchical cluster analysis (HCA, the clusters found by the ML method will hereafter402

be refrered to as ‘HCA clusters’), specifically an agglomerative methodology. Here, an agglomerative403

algorithm initially assumes that each data-point is its own cluster, and pairs of clusters are merged as404

one moves up the hierarchy. This is a “bottom-up” approach, where a “divisive” approach would be the405

opposite (“top-down”) and assume that the initial step is to have one cluster represent the whole dataset406

and proceed to divide the data. Note that the agglomerative clustering methodology is not stochastic. The407

hierarchical element is useful as it means that running the algorithm on the same data will not introduce408

uncertainty in what clusters are found. In NEMI this refers to the same manifold rendition of the BV409

data. Using a hierarchical method is intuitively useful both for global (for example the whole Earth in the410

present example) or more local applications (for example a basin or more regional assessment).411

The agglomerative hierarchical clustering methodology is presented as a cartoon in Fig. 12. Here, Fig.412

12a shows the data points 1 to 6 in a two dimensional space (here ‘UMAP 1’ and ‘UMAP 2’ for simplicity413

in relating to the present section, although this is strictly a cartoon and UMAP was not applied). The data414

points have a certain distance to each other within this space. In Fig. 12b, initially each data point is415

progressively clumped together in relation to the distance between the points in panel a. As such points 4416

and 5 and initially grouped, as are 3&2, while 6 and 1 remain isolated. In the next aggregation level, 6 is417

brought into the 5&4 cluster, becoming 6&5&4. The other points remain disaggregated as the distance418

between them is still too large (see Fig. 12a) ). At the next level, the 3&2 and 6&5&4 clusters are merged419

into 6&5&4&3&2. Finally, on the next level the data point 1 is brought into the cluster, comprising now420

of the entire data set.421

Figure 12. Sketch of the agglomerative clustering functions.

Having chosen an agglomerative methodology, I will highlight two hyperparameters that are of422

greatest relevance to the practitioner. The choices are that of the distance metric and linkage method. The423

distance metric is an expression of how the separation of the points is quantified. To illustrate, imagine424

a room of people, such as an auditorium with a lecturer on a podium and students sitting at a distance.425

If grouping the people using physical distance, the students would be clustered together because the426

gap between the students would be smaller than the distance to the lecturer. That is, the gap between427

the teacher and the closest students would be a defining feature of the data. However, if one used a428

metric such as how well the students know each other (e.g., how many friends they have in common),429
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there would likely be clear groupings within the students. As such, the distance metric chosen should be430

considered carefully. In NEMI, the use of the manifold methodology and a closed budget means that we431

can directly link the distance in UMAP space (seen in Figs. 11 and 10 as the distance between points)432

to the clustering. The use of budgets implies that a Euclidean methodology is appropriate. A Euclidean433

metric effectively uses Pythagoras’s theorem in Cartesian coordinates. Next, the choice of the linkage434

method is often dictated by computational capacity. Note that methods scale differently with the size of435

the dataset. Here, the simplest method (single linkage) scales as O(n3) where n is the number of points436

and should be avoided unless the dataset is very small. The second hyperparameter of interest, the linkage437

method, groups points. Recall the validation methodologies that look at internal versus external validation.438

Here, the linkage method can be seen in relation to the internal method. In NEMI we have used the Ward439

linkage method Ward (1963). Ward’s method uses a minimum variance criterion that minimizes the total440

within-cluster variance. Let d be the distance between points i and j in data vector x. The initial distances441

in Ward’s method are Euclidean distances between points:442

di j = ||xi −x j||2.

Note that in NEMI the use of the ‘cut’ is equivalent to the direct number of clusters that are returned443

(the HCA clusters). So why not just use these? The reason for this was illustrated in Fig. 12, where in our444

BV data example the more ‘extreme’ outliers would be immediately focused on, and the wide swaths of445

the open ocean that are dynamically highly interesting would not be identified. For example constitute446

term balances that are opposite. The HCA clusters, approached naively, therefore have limited utility.447

Figure 13. The agglomerative clustering on UMAP with 17 clusters. Panels a, b, and c show the
same manifold from different angles. See sub-sampled version of a) in Fig. 14 to highlight shapes that are
picked up by NEMI.

In Fig. 4 the application of the hierarchical clustering to a UMAP rendition is illustrated from a448

few angles (panels a-b are from the same manifold with the same clusters). The colors indicate the 17449

different clusters (more detail on this below) and show how the clusters successfully isolate the ridges450

running along the sides of the data (see Fig. 14 for a sub-sampled version of panel a from Fig. 14 where451

details are highlighted). Note also that Fig. a displays one arbitrary iteration (i.e., ensemble member (i.e.,452

ensemble member) of UMAP, with clusters determined on another UMAP ensemble member. In Fig.453

15, a k-means rendition with 200 k (as looked visually reasonable in section 2.2.2) is displayed on the454

manifold used in Fig. 4 and 14 (the pale and translucent colours were chosen to enhance the readability455

due to the large number of colors). Note that the clustering was performed on the BV data before the456

UMAP algorithm and only subsequently projected onto the UMAP manifold. Each data-point is projected457

onto three dimensions from a five-dimensional space the locations are retained, the number of data-points458

remain the same, but the number of dimensions change. In Fig. 15 colors do not delineate the areas that459

are observed to be grouped together; this is a visual demonstration of how k-means fails to identify key460

regions. The figures illustrates what k-means does: the algorithm is applied to the manifold rendition461

in Fig. 16 and is forced to artificially separate the data coarsely using ‘straight lines’ across the entire462

data volume. Remembering that the UMAP rendition of the BV data is used to ‘simplify’ and ‘clean’463

the data, it becomes apparent how difficult it would be to apply k-means to the non-transformed data. In464

supplement to the information criteria, this additional visual appraisal of the performance of the algorithm465
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underscores that the k-means algorithm is a poor choice. This method of validation can be applied widely466

beyond the examples used here.467

As with most clustering and machine learning applications, there is no guarantee of finding the468

optimum solution. There might not even be one. However, if an optimum does exist for the agglomerated469

clusters, it is guaranteed to be found via single-linkage. Due to computational costs the application470

of single-linkage application is largely impractical. Other methods, such as the Density-based spatial471

clustering of applications with noise (DBSCAN Ester et al. (1996)) used in Sonnewald et al. (2020) can472

be useful, especially if the data is more separated. However, in this example arriving at a robust set of473

clusters was difficult using DBSCAN. Note that DBSCAN performs considerably better, in terms of474

scaling to larger datasets, so if possible this method is recommended.475

Figure 14. The agglomerative clustering on UMAP with 17 clusters, heavily sub-sampled.
Illustration to supplement Fig. 4. Note I use an arbitrary ensemble member for the manifold and a
different ensemble member for the clusters.

15/22



Figure 15. The k-means algorithm with k = 200 result projected onto a UMAP manifold. Panels a,
b, and c show the same manifold from different angles. Note that the clusters should be coherent on the
manifold if the method is successful. Note there is poor coherence and the clusters are somewhat
arbitrarily separating chunks of the space. This confirms earlier suspicions that the k-means algorithm
was not succeeding in arriving at a good model representation.

Figure 16. The k-means algorithm applied to a UMAP manifold. Panels a, b, and c show the same
manifold from different angles. Here the impact of k-means is illustrated. Note how the manifold is
artificially ‘chopped’ up in ways that clearly do not respect the data.

SORTING FOR DESIRED TRAITS: UTILITY AND VALIDATION476

The visual check of the clustering algorithm chosen in NEMI as discussed in section 4 is the first step477

towards validation. However, the second validation step also builds on the hierarchical aspect of the478

clustering algorithm. For additional external validation in NEMI, we turn to established oceanographic479

theory and leverage that the data we are using is the BV budget. While this may appear specific to the BV480

data, it is generalizable such as in Sonnewald et al. (2020), who used the idea of ‘provinces’ in ecology481

and how they compared to established notions.482

For validation and utility, let us return to a concept introduced in ? in relation to cluster validation483

and assessment. The concept of using what is useful in an oceanographic context. Put differently, having484

a model that is a good fit to the data can be completely useless and misleading, for example, if a key485

parameter was missing from the data (think of the hydrodynamic paradox where missing boundary layer486

friction stood in the way of progress for over 100 years). A focus on the scientific problem at hand can be487

very powerful (in the hydrodynamic paradox this would be working on the equation terms ?). Here, as in488

?, it is critical that the algorithm can robustly recover and reproduce geographical sub-regions. Namely, if489

the algorithm does not repeatedly recover the same geographical areas, the identified clusters, however490

reasonable it may look given statistical checks or other validation, have no utility. Ultimately, a criteria,491

defined here by the practitioner as finding the same spatial area, is the final objective. From Figs. 4,492

14 and 11, it may seem surprising that the same area is not recovered precisely after each iteration of493

this component of NEMI. However, despite the precision apparent in the Figs. 4, 14 and 11, there is494

geographical variability. This variability, as discussed in the next section, is intrinsically useful.495
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The next step in NEMI is to sort the clusters for each UMAP rendition by spatial similarity. For this496

sorting, we weight by geographical extent is used as a weighting because large areal extents are seen as a497

relevant feature to favor. As such, the next component of NEMI sorts the clusters from each UMAP and498

agglomerative clustering iteration and then assesses which clusters are most similar in the geographical499

region covered (scaled by area covered which varies widely across the model grid) across the ensemble500

members.501

In addition to sorting via coherent spatial cover across the ensemble of UMAP and agglomerative502

clustering repeats, the agglomerative methodology allows the selection of different aggregation levels,503

with NEMI having these be the number of HCA clusters. As such, NEMI is designed to be appropriate504

both for global and regional applications. Specifically, a practitioner in need of a globally representative505

set of clusters would select a small level of aggregation, while a regional application should choose a506

higher one.507

In combination, the choice of aggregation level, as well as sorting by area size, allows one to select508

the number of clusters, together with the spatial level one is wishing to focus on. Note that it is up to509

the practitioner to determine a reasonable level and effectively number of clusters, as well as acceptable510

uncertainty/entropy (discussed below). Overall, note that this feature is of specific concern if working511

in the equatorial region compared to high latitude regions. Mid-latitudes see much less impact, as is512

expected.513

The level of aggregation as well as the number of clusters is illustrated in Fig. 17. Three different514

ensemble members are shown separately (rows), with an aggregation level of 350 with 6 clusters in515

the first two columns, and an aggregation level of 350 with 20 clusters in the third and fourth columns.516

Columns one and three show the global ocean, and columns two and four show the North Atlantic. Note517

that the three members look very similar, particularly in their global distributions. I omit plotting the 350518

clusters as this offers limited insight due the colour scale.519

Figure 17. Demonstration of the changes in cluster locations within the ensemble. Three arbitrarily
chosen different ensemble members are shown separately (rows), with an aggregation level of 350 with 6
clusters in the first two columns, and an aggregation level of 350 with 20 clusters in the third and fourth
columns. Columns one and three show the global ocean, and columns two and four show the North
Atlantic. Note plotting the 350 clusters offers limited insight due the colour scale.

Having determined the desired level of aggregation as well as number of clusters, validation via theory,520

or field-specific intuition should also occur. For example, within the BV budget certain balances are521

known and expected in certain regions. Specifically, a canonical balance between the windstress curl522

and advective component (see Sonnewald et al. (2019); Sonnewald and Lguensat (2021) for extensive523
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Figure 18. Figure showing canonical and expected balance for validation via expert judgement.
The expected balance (meaning that the terms add up to zero) between the windstress curl and advective
component can be seen. Fig. 18a shows its geographical extent, and Fig. 18b shows the area averaged
terms balances in the locations NEMI highlighted.

description). If this balance between dominant terms is not seen, this does not necessarily invalidate the524

results, but it should mean that the results are treated with increased caution. For example, NEMI here525

is applied to a realistic coupled model ?, where intuition and experience strongly suggests the balance526

between the windstress curl and advective component should emerge in the subtropics in the Northern527

Hemisphere (Munk, 1950; Sverdrup, 1947). In Fig. 18, just this balance (meaning that the terms add528

up to zero) between the windstress curl and advective component can be seen, where Fig. 18a shows529

its geographical extent, and Fig. 18b shows the area averaged terms balances in the locations NEMI530

highlighted. The exact locations where the balance does not hold (where there are other clusters mixed in,531

for example, over ridges) can lead to new studies and new scientific insight (For example ?). As such,532

NEMI is an avenue towards generating new knowledge with machine learning. However, if this were533

a BV balance in an idealized channel-model set-up one would not necessarily flag the absence of this534

balance as suspicious. As a general tool, this step of NEMI requires field specific intuition, where the535

machine learning and scientist should interact to forge and identify new avenues of discovery.536

5 LEVERAGING AND MANAGING NOISE537

The issue of noise and stochasticity within data and methods may at first appear to be a challenge that538

only increases the difficulty of building applications interpeting them. In this section I will describe the539

final notion and step of NEMI and make a case that a stochastic-friendly methods are needed for crafting540

methodologies applied to ‘real’ data.541

No data is perfect, and methods, like most from machine learning, must find optimal ways of542

approximating the ‘underlying’ model. However, as demonstrated in Fig. 6, being able to account for543

the slight variations, for example in the sine curve in the top middle panel, can improve a model’s utility.544

Having a methodology that is able to reflect the uncertainty of the model fit can be highly beneficial.545

The two-dimensional examples in Fig. 6 are simple cases, but the highly nonlinear BV data poses a546

more difficult problem. In NEMI, as with any neural network application or optimization algorithm, the547

method application will determine the best fit given its initial conditions (i.e., parameters), including a548

stochastic or random seed. In many cases, a slight perturbation in initial conditions can lead to a different549

result, meaning a different model representation. In NEMI, this would be a different manifold, as was550

demonstrated in Fig. 11. What this sensitivity to initial conditions means in practice is that there are551

multiple landscape of possible solutions that the model can converge to and that these different states can552

be reached given just a small difference in parameters.553

The sensitivity to parameters may appear to be a weakness in a methodology, and will be if a model of554

sufficient utility is not arrived. However, in the application of NEMI to the BV data the slight sensitivity to555

parameters allows the exploration of the complex covariance space of the BV data. Consequently, NEMI556

allows an estimation of the uncertainty. Thought of in the framework of bias versus variance, having a557

good approximation of the variance within the covariance space of the data a methodology describes is558

highly beneficial. The application of a manifold methodology facilitates this.559
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Figure 19. The clusters (BV dynamical regimes). For aggregation level 350, cluster numbers of 6 and
20 are shown. Note that in comparison to Fig. 17 the clusters here are much smoother.

A number of methods and approached can be used to estimate the uncertainty. In the BV example560

a geographic majority vote was used. This means that for each geographical location, the cluster that561

was most often flagged throughout the ensemble was the one chosen. Here, this was done largely for562

simplicity. Note that other methods, such as entropy are highly suitable as described in appendix A. Using563

entropy would allow the assessment of how many different clusters were chosen. If the majority was564

between two very different ones, this could be important information or If an area were highly contested565

then our confidence in that area would be lowered. Naturally, having this information is highly valuable566

in an of itself, and for the interested practitioner I recommend exploring this avenue and feature of NEMI.567

5.1 Oceanographic interpretation of regimes568

In Fig. 19 the product of applying NEMI to the BV data is shown. An HCA cluster aggregation level of569

350 is chosen, and six (top row) and twenty (bottom row) clusters are demonstrated. Comparing to Fig.570

19, we can see that while the figures look somewhat similar, the ‘static’ (the result of the clusters changing571

ever so slightly) has been greatly suppressed. Overall, the clusters are much smoother and crucially572

reproducible. To illustrate the utility of these choices of cluster numbers, I will briefly give two examples573

of the utility. Note however, that the number of clusters (here dynamical regimes) is entirely up to the574

practitioner and will likely depend on the research question at hand. To illustrate the now oceanographic575

context I will refer to the final cluster products as ‘dynamical regimes’ as these illustrate an objective576

empirical leading order analysis of the closed BV equation.577

In Fig. 19, the top row shows the large overall dynamical regimes that are very interesting when578

assessing the global structures. Note that coherent areas in the areas where the wind stress curl (∇× τ)579

are largely coherent have been grouped together, despite having opposite signs. Note how we know580

from Fig. 18 and from oceanographic intuition that these areas should be similar but have opposite main581

drivers. For example, in the Northern Hemisphere in the large wind gyre areas (see Sonnewald et al., 2023582

for a detailed theoretical description) the wind stress curl is negative and balanced largely by positive583

planetary advection. In similar areas in the Southern Hemisphere this effect is opposite, which is also584
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intuitive due to the symmetry of the Earth around the equator. From a clustering perspective, the fact that585

the terms are similar allows them to be grouped together, and different areas to stand out more. See for586

example the grey streaks through the North Atlantic running approximately latitudinally from 43 to 17◦N.587

These are colocated with where significant areas of variability in the sea floor are found (for example the588

mid-Atlantic ridge). The clustering here illustrates what an important feature this is, and that this should589

be paid close attention to.590

In the bottom row of Fig. 17 an example where there are 20 dynamical regimes is shown. Here, the591

area where the ‘classical’ wind gyres are found are seen and the Northern Hemisphere and Southern592

Hemisphere dynamical regimes are distinguished. Note the increased detail around, for example, the593

coast. As a thought example, imagine that a current is flowing along the coast. The coasts have large594

features such as canyons. Moving south to north, a current moving into a canyon would suddenly have595

more room, and the vorticity contributed by the bottom pressure torque would decrease significantly. As596

the current moves further north the other side of the canyon would be reached and the current would597

become more constricted again, where the bottom pressure torque term would increase. These would598

emerge as separate dynamical regimes in a study where a larger number of dynamical regimes is chosen,599

but most likely not appear in a study choosing a lower number.600

Note that the two examples above use examples where one as ‘equal but opposite’ scenarios being601

grouped together. This was chosen as an accessible example but should by no means be seen as the only602

possible cancelling effect. Recall the complicated covariance space being queried and the highly nonlinear603

data. Further investigation of the dynamical regimes in the BV equation in MOM6 is the topic of another604

study.605

6 CONCLUSION606

Here, I presented the method Native Emergent Manifold Interrogation (NEMI), which is a generalisation607

of the methodology presented in Sonnewald et al. (2020). NEMI is designed for ‘data mining’, or put608

differently, to find underlying patterns within data. Nemi is a generalisation of the methodology in609

Sonnewald et al. (2020) that targeted plankton ecosystems, in that is is designed to scale to larger datasets.610

Scaling is a formidable bottlenecks in data mining for scientific applications. In NEMI I have generalised611

a workflow that can accommodate a wide array of data, where the particular example application used612

here is geospatial data. An explicitly hierarchical approach is used, making NEMI less parametric (fewer613

parameters to tune and less danger of noise interference) and intuitively useful both for global (for614

example the whole Earth in the present example) or more local applications (for example a basin or more615

regional assessment). NEMI does not use a fixed field-specific benchmark criteria (used in Sonnewald616

et al. (2020)), but is generalised so a field agnostic option is available. Lastly, NEMI invites the use617

of a range of uncertainty quantification options in the final cluster evaluation, from a majority vote to618

entropy. I demonstrate NEMI’s application to a numerical ocean model, namely MOM6 (Griffies et al.,619

2023), and represent the barotropic vorticity balance of a time-mean of a model run. Here, the data serves620

as an example of a highly nonlinear and complicated covariance structure, within which reside highly621

valuable oceanographic patterns. NEMI is used to extract these patterns and facilitate further scientific622

discovery. However, NEMI is entirely general, and can be used on a range of data from the Earth sciences623

and beyond.624

OPEN RESEARCH625

The code for the Native Emergent Manifold Interrogation (NEMI) method is available here:626

https://github.com/maikejulie/NEMI627

DOI: 10.5281/zenodo.7764719628
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APPENDIX637

A: Entropy for uncertainty estimation638

Entropy (H) can be used as a measure of uncertainty. As discussed in Clare et al. (2022): In information639

theory, entropy is the expected information of a random variable, and for each sample i is given by640

Hi =−
Nl

∑
j=1

pi j log(pi j), (2)641

here Nl is the number of possible outcomes for each location and pi j is the probability of each outcome j642

for sample i (Goodfellow et al., 2016). The larger the entropy, the less skewed the distribution will be and643

the more uncertain the outcome. The concept of entropy can be directly applied to manage the potentially644

different results from NEMI for each geographic location within the ensemble. If this is better than a645

simpler method, such as a majority vote, depends entirely on the application.646
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