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Abstract

Climate change and nitrogen (N) pollution are altering biogeochemical and ecohydrological processes in dryland watersheds,

increasing N export, and threatening water quality. While simulation models are useful for projecting how N export will change

in the future, most models ignore biogeochemical “hotspots” that develop in drylands as moist microsites become hydrologically

disconnected from plant roots when soils dry out. These hotspots enable N to accumulate over dry periods and rapidly flush

to streams when soils wet up. To better project future N export, we developed a framework for representing hotspots using

the ecohydrological model RHESSys. We then conducted a series of virtual experiments to understand how uncertainties in

model structure and parameters influence N export. Modeled export was sensitive to the abundance of hotspots in a watershed,

increasing linearly and then reaching an asymptote with increasing hotspot abundance. Peak streamflow N was also sensitive

to a soil moisture threshold at which subsurface flow from hotspots reestablished, allowing N to be transferred to streams; it

increased and then decreased with an increasing threshold value. Finally, N export was generally higher when water diffused

out of hotspots slowly. In a case study, we found that when hotspots were modeled explicitly, peak streamflow nitrate export

increased by 29%, enabling us to better capture the timing and magnitude of N losses observed in the field. This modeling

framework can improve projections of N export in watersheds where hotspots play an increasingly important role in water

quality.
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Abstract 24 

 Climate change and nitrogen (N) pollution are altering biogeochemical and 25 

ecohydrological processes in dryland watersheds, increasing N export, and threatening water 26 

quality. While simulation models are useful for projecting how N export will change in the 27 

future, most models ignore biogeochemical “hotspots” that develop in drylands as moist 28 

microsites become hydrologically disconnected from plant roots when soils dry out. These 29 

hotspots enable N to accumulate over dry periods and rapidly flush to streams when soils wet up. 30 

To better project future N export, we developed a framework for representing hotspots using the 31 

ecohydrological model RHESSys. We then conducted a series of virtual experiments to 32 

understand how uncertainties in model structure and parameters influence N export. Modeled 33 

export was sensitive to the abundance of hotspots in a watershed, increasing linearly and then 34 

reaching an asymptote with increasing hotspot abundance. Peak streamflow N was also sensitive 35 

to a soil moisture threshold at which subsurface flow from hotspots reestablished, allowing N to 36 

be transferred to streams; it increased and then decreased with an increasing threshold value. 37 

Finally, N export was generally higher when water diffused out of hotspots slowly. In a case 38 

study, we found that when hotspots were modeled explicitly, peak streamflow nitrate export 39 

increased by 29%, enabling us to better capture the timing and magnitude of N losses observed 40 

in the field. N export further increased in response to interannual variability in precipitation, 41 

particularly when multiple dry years were followed by a wet year. This modeling framework can 42 

improve projections of N export in watersheds where hotspots play an increasingly important 43 

role in water quality. 44 
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1 Introduction 45 

 Climate change and atmospheric nitrogen (N) deposition are accelerating biogeochemical 46 

cycling in dryland ecosystems and increasing N loading in streams, which can pose a major 47 

threat to water quality (Borer & Stevens, 2022; Fenn et al., 2003). However, the extent to which 48 

deposited N is exported to streams remains difficult to predict, in part because models are limited 49 

in their ability to capture hotspots—defined as wetter microsites in the soil that have 50 

disproportionately high rates of biogeochemical cycling—which can strongly influence N fluxes 51 

in dryland soils (Vargas et al., 2013). For example, hotspots enable N to accumulate over dry 52 

periods and rapidly flush to streams when soils wet up (McClain et al., 2003; Parker & Schimel, 53 

2011). This can occur even when plants are N-limited because precipitation pulses can mobilize 54 

accumulated N more quickly than plants are able to take it up (Homyak et al., 2014). As the 55 

global distribution of drylands expands with climate warming (Seager et al., 2018), and as 56 

urbanization increases rates of N deposition (Borer & Stevens, 2022), it is critical to better 57 

account for the mechanisms driving N export in models (Gustine et al., 2022; Schimel, 2018).   58 

 Hotspots can range in size from microsites within soil aggregates (Ebrahimi & Or, 2018) 59 

to islands of fertility within landscape patches (Osborne et al., 2020). While landscape models 60 

may effectively represent the later by parameterizing plant physiological processes that promote 61 

resource heterogeneity—for example, transpiration-driven nutrient accumulation beneath woody 62 

plant canopies in savannas; (Ridolfi et al., 2008)—representing the role of microscale 63 

biogeochemical hotspots is much more challenging at watershed scales. For one, soil moisture 64 

and subsurface transport processes are often oversimplified and not fully integrated into 65 

landscape-scale N-cycling models (Ouyang et al., 2017; Poblador et al., 2017; Schmidt et al., 66 

2007; Zhang et al., 2018). When models do incorporate coupled hydrological-biogeochemical 67 



4 
 

processes, they often reduce spatial heterogeneity by averaging soil hydraulic parameters across 68 

a basin (Crow et al., 2012; Lin et al., 2015; Tague, 2009; Zhu et al., 2012, 2015). As a result, 69 

these models do not capture the role of soil microsites that remain wetter than bulk soils for at 70 

least some time into the dry season. While more detailed representation of soil heterogeneity is 71 

needed, at least three key uncertainties remain in scaling microsite processes across an entire 72 

watershed: (1) how hotspots are distributed across watersheds (McClain et al., 2003) (2) the 73 

amount of precipitation required to reestablish for hydrological connection between hotspots and 74 

bulk soils and to generate subsurface flow (Zhu et al., 2018), and (3) how the physical 75 

parameters governing fine-scale water diffusion from hotspots are distributed across a watershed 76 

(Clark et al., 2017).  77 

 A common modeling approach to represent the effects of fine-scale spatial heterogeneity 78 

on large-scale hydrologic fluxes is to incorporate distributions of sub-grid state variables that 79 

influence large-scale fluxes (i.e., statistical-dynamical flux parameterizations occurring within a 80 

grid cell; the smallest spatially explicit model unit; Clark et al., 2017; Wood et al., 1992). For 81 

example, Burke et al. (2021) developed an approach using the ecohydrological model RHESSys, 82 

which uses a distribution of aspatial, sub-grid vegetation patches that interact to influence grid-83 

scale ecohydrological processes. This approach can better capture spatial heterogeneity without 84 

requiring detailed spatial information at sub-grid scales or increasing computational costs. To 85 

better predict how climate change modifies N retention and export, we developed a framework 86 

for modeling belowground hotspots and their interactions with soil moisture and subsurface flow 87 

by expanding the Burke et al. (2021) aspatial approach. 88 

  89 
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Our new modeling framework enables N to accumulate in microscale hotspots—90 

represented aspatially within 10-m resolution grid cells—which contain sufficient moisture for 91 

decomposition to occur but are hydrologically disconnected from roots when the soils dry out. 92 

These micro-scale hotspot patches slowly lose water through diffusion and evaporation over the 93 

course of the dry season and can become hydrologically reconnected to the surrounding 94 

vegetated patches when soils wet up. Using this framework, we conducted a set of virtual 95 

experiments in a dryland, chaparral watershed in Southern California to characterize model 96 

sensitivity to three key sources of uncertainty: (1) the area percentage of hotspots within the 97 

watershed, (2) the length of time it takes for water to diffuse from hotspots during periods of 98 

drought, and (3) the moisture conditions under which hydrological connectivity between hotspot 99 

and non-hotspot locations reestablishes. Finally, we used field observations of N export to 100 

optimize the parameters controlling N dynamics and then with an optimized model, we 101 

investigated how precipitation patterns can influence hotspot effects on N export. This case study 102 

demonstrates how our modeling framework can be used to improve our theoretical understanding 103 

of the role biogeochemical hotspots play in N cycling and retention in drylands. 104 

2 Methods 105 

2.1 Study area  106 

 Model simulations were conducted in the Bell 4 basin (0.14 km2), which is part of the 107 

San Dimas experimental forest located northeast of Los Angeles, California (34°12´N, 117°47´E; 108 

Figure 1). Elevations in Bell 4 range from 700 to 1024 meters. The topography is characterized 109 

by steep slopes with steep channel gradients. Soils are shallow, coarse-textured sandy loams, 110 

which are weathered from granite (Chaney et al., 2016; Dunn et al., 1988) and classified as Typic 111 

Xerorthents (Soil Survey Staff, 2022) The region has hot, dry summers (June to September 112 
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around 17 mm precipitation) and cool, moist winters (698 mm precipitation); mean annual 113 

precipitation is around 715 mm and daily temperatures range from -8 °C to 40 °C. Vegetation 114 

cover is mainly mixed chaparral with chamise (Adenostoma fasciculatum), ceanothus 115 

(Ceanothus spp.), and black sage (Salvia mellifera) on south-facing slopes; ceanothus and 116 

California laurel (Umbellularia californica) on north-facing slopes; and some live oak (Quercus 117 

agrifolia) along riparian areas (Wohlgemuth, 2006).  118 

 119 

Figure 1. Bell 4 watershed in the San Dims experimental forest located in Southern California, 120 
U.S. (34°12´N, 117°47´E). The watershed is 0.14 km2. 121 

2.2 RHESSys model  122 

The regional hydro-ecologic simulation system (RHESSys) is a spatially distributed, 123 

process-based model that simulates interacting ecohydrological and biogeochemical processes at 124 

multiple scales (Chen et al., 2020; Hanan et al., 2017; Tague, 2009; Tague & Band, 2004). The 125 

smallest spatial unit is the “patch,” which has a 10-meter resolution in the current study. At the 126 
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patch scale, vertical hydrologic fluxes include canopy interception, transpiration, evaporation, 127 

infiltration, capillary rise, and drainage from the rooting zone to the saturated zone. Carbon (C) 128 

cycling processes are tightly coupled with hydrology and soil moisture and include 129 

photosynthesis, allocation of net photosynthate, plant and soil respiration, and litter and soil 130 

decomposition. Nitrogen cycling includes atmospheric N deposition, mineralization, nitrification, 131 

immobilization, denitrification, plant uptake, and export to streams (Hanan et al., 2017; Lin et 132 

al., 2015). RHESSys has been parameterized and validated in several watersheds across the 133 

western USA, including in several chaparral watersheds (Burke et al., 2021; Chen et al., 2020; 134 

Hanan et al., 2017, 2021; Lin et al., 2015; Meentemeyer & Moody, 2002; Ren et al., 2021, 2022; 135 

Tague, 2009).  136 

There are four layers for vertical soil moisture processes, including a surface detention 137 

store, a root zone store, an unsaturated store below the root zone, and a saturated store. The 138 

vertical hydrologic processes also include canopy layers, snowpack, and litter moisture stores. 139 

Rain throughfall from multiple canopy layers and a litter layer provide potential infiltration. If 140 

the precipitation falls as snow, snow throughfall updates a snowpack store. Then the surface 141 

detention storage receives water from canopy throughfall and snowmelt at a daily time step. 142 

Following precipitation and throughfall, water infiltrates into the soil following the Phillip 143 

(1957) infiltration equation. At a daily timestep, ponded water that has not infiltrated is added to 144 

detention storage and any water that is above detention storage capacity generates overland flow.  145 

Infiltration updates one of three possible stores: a saturated store when the water table 146 

reaches the surface, a rooting zone store, or an unsaturated store for unvegetated patches. A 147 

portion of infiltrated water can bypass the rooting zone and unsaturated store through 148 

macropores. This bypass flow (carrying N) is added to a deeper groundwater store at the 149 
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subbasin scale. Water drains vertically from the unsaturated store or root zone store based on 150 

hydraulic conductivity. Capillary rise moves water from the saturated zone to the root zone or 151 

unsaturated store based on Eagleson (1978). Lateral fluxes can occur through both shallow 152 

subsurface flow between patches and through bypass flow that contributes to a deeper hillslope-153 

scale groundwater flow model. Shallow subsurface saturated flow between patches follows 154 

topography and changes with saturation deficit and transmissivity.  155 

 RHESSys simulates subsurface lateral redistribution of water and N between patches 156 

based on topographic gradients and soil hydraulic parameters (Tague, 2009). Nitrification rates 157 

in RHESSys are calculated based on the CENTURYNGAS model, where the nitrification rate is a 158 

function of soil pH (𝑓௣ு; Hanan et al 2017), moisture (𝑓ுమை), soil temperature (𝑓 ), and available 159 

soil ammonium (𝑓ேுర
; Parton, 1996):  160 

𝑁௡௜௧௥௜௙ = 𝑠𝑜𝑖𝑙. 𝑁𝐻4 × 𝑓௣ு  × 𝑓ுమை × 𝑓 × 𝑓ேுర
    Eq (1) 161 

The pH scalar (𝑓௣ு) is calculated as: 162 

𝑓௣ு =  
଴.ହ଺ା௔௥௖௧௔௡ (గ × ଴.ସହ× (ିହା௣ு))

గ
                        Eq (2) 163 

The soil moisture scalar (𝑓ுమை ) is calculated as: 164 

𝑓ுమை = (
ఏି௕

௔ି௕
)ௗ(

್షೌ

ೌష೎
)(

ఏି௖

௔ି௖
)ௗ      Eq (3) 165 

Where a, b, c, and d are parameters related to soil texture based on Parton et al. (1996) and 𝜃 is 166 

volumetric soil moisture.  167 

The temperature scalar (𝑓 ) is calculated as:  168 

𝑓 = 0.06 + 0.13𝑒𝑥𝑝଴.଴଻்ೞ೚೔೗      Eq (4) 169 
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Where Tsoil is the surface soil temperature in degrees C. 170 

The ammonium concentration available for nitrification is calculated as: 171 

𝑓ேுర
= 1.0 −  𝑒𝑥𝑝[ି଴.଴ଵ଴ହ∗ேுర೎೚೙೎]     Eq (5) 172 

Where 𝑁𝐻ସ௖௢௡  is the soil ammonium concentration in the fast-cycling soil layer.  173 

 N export includes denitrification and subsurface lateral flow of ammonium, nitrate, and 174 

dissolved organic N (DON). Denitrification is calculated based on a maximum denitrification 175 

rate (𝑅ேைయ
), and is modified by soil moisture (𝑓ுమை), and soil respiration (𝑓௛௥஼ைమ

): 176 

𝑁ௗ௘௡௜௧௥௜௙ = 𝑅ேைయ
× 𝑓ுమை × 𝑓௛௥஼ைమ

     Eq (6) 177 

The maximum denitrification rate is calculated as:   178 

𝑅ேைଷ = 0.0011 +  
௔ ௧௔௡ (గ×଴.଴଴ଶ×൬

ಿೀయ_ೞ೚೔೗
ಿೞ೚೔೗శ಴ೞ೚೔೗

ିଵ଼଴൰)

గ
                        Eq (7) 179 

Where NO3_soil is the available nitrate (kg N/m2) in soil and Nsoil and Csoil are soil N (kg N/m2) 180 

and C (kg C/m2) amounts, respectively.  181 

The soil moisture limitation is calculated as:  182 

𝑓ுమை =  
௔

௕
(

೎

್೏×ഇ
)
        Eq (7) 183 

𝜃, a, b, c, and d are defined in eq. 3 above.  184 

The effect of soil respiration is calculated as: 185 

𝑓௛௥஼ைమ
=  

଴.଴଴ଶସ

ଵା 
మబబ

೐(య.ఱ×೓ೝ)

− 0.00001     Eq (8) 186 

Where hr is total daily respiration (g C/m2/day). 187 
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 Nitrate enters the soil from infiltration or from the surface detention store. Nitrate in the 188 

soil is transported by subsurface flow in the saturated zone, while in the unsaturated soil, there is 189 

no lateral nitrate transport (Chen et al., 2020; Tague & Band, 2004). Vertical distribution of 190 

nitrate in the unsaturated zone soil profile is assumed to follow an exponential decay function, 191 

where the surface layer has more nitrate and deeper soil has less. the available nitrate at soil 192 

depth z is calculated as  193 

𝑁𝑂ଷ_௦௢௜௟(𝑧) = 𝑁𝑂ଷ_௦௨௥௙௔௖௘  × 𝑒𝑥𝑝ିே೏೐೎ೌ೤ ×௭   Eq (10) 194 

Where NO3_surface is nitrate at soil surface and Ndecay is a soil specific parameter that defines the 195 

rate of nitrate decay. When water is moving between the unsaturated zone and the saturated 196 

zone, through downward leaching or upward capillary rise, nitrate moves with water based on its 197 

concentration.  198 

Nitrate export follows the flushing hypothesis (Chen et al., 2020). As the water table rises, more 199 

N becomes available for flushing. The total soil nitrate export (NO3_out) is calculated as the 200 

integration of soil nitrate below the water table:  201 

𝑁𝑂ଷ_௢௨௧ =  ∫  
௭ೞ

௭೘ೌೣ

௤೥

ௌ೥
𝑁𝑂ଷ_௦௢௜௟𝑁𝑂ଷ_௠௢௕௜௟௘   Eq (11) 202 

Where zmax is the maximum water table depth, zs is current water table depth, qz is the net lateral 203 

transport of water from the patch at depth Z; Sz is the soil water content (in meters) and NO3_mobile 204 

is a parameter that defines the portion of nitrate that is mobile (related to soil type). Mobile 205 

surface N can also be transported to deep ground water through preferential flow paths.  206 

 Recent improvements to RHESSys enable users to account for fine-scale (within patch) 207 

heterogeneity (e.g., different types of vegetation cover and associated soil layers that may share 208 
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water within a single patch; Burke et al. 2021). These are referred to as "aspatial patches." When 209 

running RHESSys using the aspatial patch framework, “patch families” become the smallest 210 

spatially explicit model unit, and aspatial patches (nested within a patch family) are the smallest 211 

aspatial model unit. Note that an aspatial patch within a patch family is used to represent 212 

a distribution of a given vegetation type (e.g., trees or shrubs) based on observed (or 213 

hypothetical) distributions. It can but does not necessarily represent a single stand or clump 214 

of vegetation cover; vegetation from a single aspatial patch within a patch family does not have a 215 

defined distribution in RHESSys, so the assumption is that biophysical interactions, such as the 216 

extent to which a given cover type shares water, are more important than their physical location 217 

within the finest grid cell. Because there are no physical locations of aspatial patches within a 218 

patch family, within patch heterogeneity can be modeled without explicitly parameterizing and 219 

modeling fine scale spatial units that would be both computationally prohibitive and nearly 220 

impossible to parameterize with measured data.  221 

Local water routing between aspatial patches inside a patch family is based on root access 222 

to water (Figure 2). Local routing moves water between aspatial patches based on user defined 223 

rules. Most commonly, water is distributed among aspatial patches as a function of relative 224 

differences between their rooting and unsaturated zone water contents and mediated by gaining 225 

and losing coefficients defined for each cover type. In this framework, an aspatial patch will gain 226 

water if its water content is below the patch family mean and vice versa, with the rate of water 227 

transfer controlled by sharing coefficients. Sharing coefficients to capture the integrated effects 228 

of uncertain, fine-scale variation in root distributions, and how root distributions and forest 229 

structure interact with fine-scale soil drainage characteristics. Nitrate and dissolved organic C are 230 
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exchanged along with water during local routing. A detailed description of aspatial patches can 231 

be found in Burke et al. (2021).  232 

2.3 Model development 233 

To enable RHESSys to account for biogeochemical hotspots, we expanded the aspatial 234 

patch framework to incorporate “hotspot” aspatial patches within each patch family. These 235 

aspatial patches represent a distribution of unvegetated microsites where biogeochemical cycling 236 

can be hydrologically disconnected, as soils dry out, from aspatial patches that contain plant 237 

roots (Figure 2). To model hotspot aspatial patches (hereafter called hotspots), we implemented 238 

three key model developments: (1) model algorithms that enable hotspots to access soil and litter 239 

C and N from neighboring non-hotspot patches for decomposition and biogeochemical cycling, 240 

and (2) algorithms and parameters that control the moisture conditions under which hotspots are 241 

hydrologically disconnected from other aspatial patches in the saturated zone, (3) parameters that 242 

control water diffusion in the unsaturated and/or root zone between hotspot and non-hotspot 243 

patches as soils dry out.  244 

Research has shown that N-rich microsites can occur in unvegetated locations where 245 

there is less N uptake and less water demand from plants (Zhu et al., 2018). In the original 246 

RHESSys framework, unvegetated patches were used to represent large (e.g., 10 to 30-m) areas 247 

with no vegetation. Without vegetation inputs, these patches did not develop C and N stores to 248 

support microbial biogeochemical cycling. To generate hotspots, we implemented a litter sharing 249 

scheme that moves litter from vegetated aspatial patches to hotspots at an annual timestep to 250 

coincide with litter fall (Figure 2). Because we assume that hotspot aspatial patches occur at fine 251 

scales across a given 10-m patch family, it is reasonable to assume that they have access to plant 252 

litter for decomposition and N cycling from other aspatial patches within the patch family. The 253 
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amount of litter shared (CNshare) is a function of the mean litter C and N content of the patch 254 

family (CNmean), where the amount of C and N in a hotspot patch after litter sharing (CNhotspot) 255 

cannot be above the patch family mean (Eq 12). To enable N cycling in hotspots, hotspots also 256 

have access to 1% of the protected soil organic C and N pools from the vegetated patch families. 257 

The litter C and N routing is described as  258 

𝐶𝑁௦௛௔௥௘ =
(∑  

೙ೡ೐೒
೔సభ

൫஼ேೡ೐೒_೔ି ஼ே೘೐ೌ೙൯ ×௖௢௘௙_௟௜௧௧௘௥)

௡೓೚೟ೞ೛೚೟
     Eq (12) 259 

𝐶𝑁௛௢௧௦௣ _௔௙௧௘௥ = 𝑚𝑖𝑛 (𝐶𝑁௛௢௧௦௣௢௧_௕௘௙௢௥௘ + 𝐶𝑁௦௛௔௥௘  ,  𝐶𝑁௠௘௔௡)               Eq (13) 260 

           𝐶𝑁௩௘௚_௔௙௧௘௥_௜ = 𝐶𝑁௩௘௚_௜ −  ൫𝐶𝑁௩௘௚_௜ −  𝐶𝑁௠௘௔௡൯ × 𝑐𝑜𝑒𝑓_𝑙𝑖𝑡𝑡𝑒𝑟                     Eq (14) 261 

Where, nveg is the number of non-hotspot patches in a patch family, CNveg is the amount 262 

of litter C and N in a non-hotspot patch, nhotspot is the number of hotspot patches in a patch 263 

family. Coef_litter is the sharing coefficient parameter that controls the amount of litter sharing. 264 

Hotspot patches can also be assigned a finer soil texture (e.g., loam), which can hold more water 265 

than non-hotspot patches. In the current model, non-hotspot patches were comprised of sandy 266 

loam (based on the POLARIS database; Chaney et al., 2016).  267 

 To control subsurface hydrologic flow from hotspots to vegetated patches, we set up a 268 

soil moisture threshold for non-hotspot patches ( 𝜃௧௛), above which, water flows into them from 269 

the saturated zone in hotspots. In other words, when non-hotspot patches dry down, they become 270 

hydrologically disconnected from hotspots and they become reconnected when soils wet up 271 

(Figure 2c & Eq 15).  272 

൜
𝜃௩௘௚ >  𝜃௧௛:  𝑠𝑢𝑏𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑓𝑙𝑜𝑤 𝑚𝑜𝑣𝑒 𝑤𝑎𝑡𝑒𝑟 𝑎𝑛𝑑 𝑛𝑖𝑡𝑟𝑎𝑡𝑒 𝑓𝑟𝑜𝑚 ℎ𝑜𝑡𝑠𝑝𝑜𝑡𝑠 𝑡𝑜 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 𝑛𝑜𝑛 − ℎ𝑜𝑡𝑠𝑝𝑜𝑡 𝑝𝑎𝑡ℎ𝑒𝑠  

𝜃௩௘௚ ≤   𝜃௧௛:  𝑛𝑜 𝑠𝑢𝑏𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑓𝑙𝑜𝑤 𝑓𝑟𝑜𝑚 ℎ𝑜𝑡𝑠𝑝𝑜𝑡𝑠 𝑡𝑜 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑛𝑜𝑟𝑚𝑎𝑙 𝑝𝑎𝑡𝑐ℎ𝑒𝑠                         𝑬𝒒 (𝟏𝟓)                     
 273 
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This threshold is used to define a condition where “water films” can form as soils dry 274 

down, which enables microscale biogeochemical cycling while reducing nitrate leaching from 275 

hotspots over the course of the hot, dry summer (Parker & Schimel, 2011). When soils are 276 

rewetted at the onset of the rainy season, the water table rises, and hydrologic connectivity 277 

reestablishes between hotspot and non-hotspot patches. This can lead to rapid nitrification and 278 

nitrate export before plants become active and gain access to N that accumulated during dry 279 

periods of hydrologic disconnection (Parker & Schimel, 2011). While the thresholds at which 280 

hydrologic connectivity reestablishes are not currently well established, the threshold parameter 281 

can be calibrated to match field observations.  282 

 Although subsurface flow from hotspot patches remains somewhat disconnected during 283 

the dry season, water can still slowly diffuse from hotspots as soils dry out. To account for this, 284 

we developed water gain coefficients (sh_g) and water loss coefficients (sh_l) that constrain 285 

local routing to and from hotspots and the unsaturated and rooting zone in the surrounding non-286 

hotspot patches (Figure 2a). During the dry season (June to November), the default sh_g was set 287 

to 0.05 and sh_l was set to 0.9 to simulate hotspots losing water. During the wet season 288 

(December to May), the default sh_g was 0.9 and sh_l was 0.05 to simulate hotspots gaining 289 

water. We rely on sharing coefficients here to capture “film” dynamics that depend on micro-290 

scale characteristics that are not feasible to explicitly model but have been documented to 291 

influence hot-spot dynamics in field and lab-studies (Homyak et al., 2016; Parker & Schimel, 292 

2011). To summarize, while soil moisture gradients control whether routing occurs in the 293 

saturated zone between hotspot and non-hotspot patches, the sharing coefficients control the rate 294 

of local water transfer in the unsaturated zone.   295 
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 296 

Figure 2. Conceptual overview of hotspots patches nested within each patch family. Each year, 297 
vegetated patches share litter C and N with hotspot patches from the portions of their stores that 298 
are greater than the patch family means. Note that the conceptual figure does not indicate that 299 
there is only one hotpot and one non-hotspot patch in a patch family, but rather represents their 300 
cover fraction. Key model uncertainties include: (a) hotspot cover fraction m%, which can vary 301 
by location, (b) local routing of water and N in the unsaturated zone between aspatial patches 302 
based on the mean water content of the patch family, which can be mediated by sharing 303 
coefficients sh_l and sh_g; and (c) topographic routing in the saturated zone from patches in one 304 
patch family to patches in downslope patch families, which can be controlled by a soil moisture 305 
threshold  𝜃௧௛. The dashed lines signify that hotspots are hydrologically disconnected from non-306 
hotspot patches during dry periods but reconnect during wet periods when soil moisture in non-307 
hotspot patch is larger than  𝜃௧௛. The extent of hydrological routing between hotspot and non-308 
hotspot patches is controlled by  𝜃௧௛, which can be calibrated to match field observations. 309 

2.4 Data 310 

 To generate metrological inputs for RHESSys scenarios in Bell 4 using the new hotspot 311 

framework, we compared daily meteorological data from gridMET (Abatzoglou, 2013), 312 

including maximum and minimum temperatures, precipitation, relative humidity, radiation, and 313 

wind speed, from 1979 to 2020, to daily meteorological data at a station located near Bell 4 (San 314 
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Dimas Tanbark) from the U.S. Forest Service (USFS). Because gridMET matched closely with 315 

ground station data but does not require gap filling, gridMET was selected as a suitable 316 

meteorological forcing dataset for our analyses. To calibrate drainage parameters, we used 317 

streamflow data from the USFS for the years 1980 to 2002; data were missing for some months 318 

(Figure 3). We omitted 8 years of streamflow data (1984-1992) following a prescribed fire that 319 

occurred in 1984 (Meixner et al., 2006). We selected streamflow data from 1993 to 2002 for 320 

model calibration and 1980 to 1983 for validation (described in section 2.5 below).  321 

 322 

Figure 3. Streamflow and climate data for Bell 4. The temperature is yearly average, and 323 
streamflow is calculated as the volume divided by the catchment area (0.14 km2). 324 

 We aggregated a 1-m resolution Digital Elevation Model (DEM) from LiDAR to 10 325 

meters to represent topography across the watershed. To map landcover, we aggregated 1-m 326 

resolution land cover data from the National Agriculture Imagery Program (NAIP; collected on 327 

June 5, 2016) to 3-m and classified three land cover types: chaparral, live oak, and bare ground 328 
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(Maxwell et al., 2017). We then overlapped the 10-meter DEM with 3-meter vegetation cover 329 

data to classify aspatial patch distributions in each patch family using a k-means function 330 

(Hartigan & Wong, 1979) in R version 4.3.0 (R Core Team, 2022). This resulted in 331 

approximately 11 aspatial patches in each patch family and 375 different vegetation 332 

combinations across the watershed. We acquired soil texture data from POLARIS (Chaney et al., 333 

2016).  334 

 To measure streamflow, two pressure transducers (Water level data loggers), 335 

compensated for barometric pressure (Barologgers; Solinst Canada Ltd, Georgetown, Ontario, 336 

Canada), were used to record stream stage at the Bell 4 weir. Water stage was measured at 5-337 

minute intervals and converted to discharge using a rating curve developed for the v-notch weir. 338 

Stream samples were collected using an automatic sampler (Teledyne, ISCO model 6712C, 339 

Lincoln, Nebraska, US) set to collect 500-mL samples every 2 hours over a 48-hour period at the 340 

onset of flow. Samples were then filtered through pre-baked whatman GF/F filters and stored at -341 

20 °C. Nitrate and ammonium concentrations were measured colorimetrically using an AQ2 342 

SEAL discrete analyzer (methods EPA-129-A and EPA-126-A). 343 

2.5 Model initialization, calibration, and evaluation 344 

 We initialized the soil C and N pools by spinning them up to steady state (i.e., running 345 

the model until the pools stabilized). For the vegetation C and N pools, we used a target-driven 346 

method that allows vegetation to grow until it reaches target leaf area index (LAI) values from 347 

remote sensing data (Hanan et al., 2018). This method enables C and N pools to spin up 348 

mechanistically while still capturing landscape heterogeneity resulting from local resource 349 

limitations and disturbance histories. To construct a map of target LAI values, we chose the 350 
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clearest available NAIP image during the growing season (i.e., April 24, 2010). We then 351 

calculated NDVI using equation 1.  352 

𝑁𝐷𝑉𝐼 =  
ఘಿ಺ೃି ఘೃ

ఘಿ಺ೃା ఘೃ
                                           (1) 353 

In this equation, 𝜌ேூோ is the reflectance in the near-infrared, and 𝜌ோ is reflectance in the red 354 

(Hanan et al., 2018). We then estimated LAI using a generalized NDVI-LAI model developed by 355 

(Baret et al. 1989; equation 2).   356 

𝐿𝐴𝐼 =  −
ଵ

௞
 × 𝑙𝑛 (

ே஽௏ூ೘ೌೣିே஽௏ூ

ே஽௏ூ೘ೌೣିே஽௏ ್ೌ೎ೖ
)                       (2)         357 

Here, k is the extinction of solar radiation through a canopy. NDVImax is the maximum NDVI 358 

occurring in the region, and NDVIback is the background NDVI (i.e., from pixels without 359 

vegetation). We obtained k value from Smith et al. (1991) and White et al. (2000). The other 360 

parameters were obtained for each vegetation type (Table 1). 361 

Table 1. Parameters used for calculating LAI from NDVI 362 

Vegetation type k NDVI max NDVI back 

Live oak 0.500 0.379 -0.160 

Chaparral  0.371 0.372 -0.160 

 363 

We used observed streamflow for Bell 4 to calibrate six soil parameters: saturated 364 

hydraulic conductivity (Ksat), the decay of Ksat with depth (m), pore size index (b), air entry 365 

pressure (ϕ), bypass flow to deeper groundwater storage (gw1), and deep groundwater drainage 366 

rates to stream (gw2). We selected the best parameter set by comparing observed and modeled 367 

streamflow using monthly Nash-Sutcliffe efficiency (NSE; Nash & Sutcliffe, 1970) and percent 368 
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error in annual flow estimates. NSE is used to evaluate peak flows and can range from -∞ to 1, 369 

where 1 represents a perfect fit between modeled and observed data. Percent error is used to 370 

compare differences between the total quantity of modeled and observed streamflow; values 371 

closer to zero represent better fit.  372 

2.6 Sensitivity analyses and simulation scenarios: 373 

After model initialization and calibration, we used the new model framework to build in 374 

microscale hotspots. We assumed the hotspots were evenly distributed across the landscape and 375 

converted one bare ground patch inside of every patch family to an aspatial hotspot patch. Note 376 

that this does not mean that there was only one hotspot in a patch family, but one aspatial patch 377 

was used to represent the distribution (or percent cover) of microscale hotspots. If no bare 378 

ground patches existed in the patch family, we instead converted a chaparral patch to an aspatial 379 

hotspot patch. Because there were approximately 11 patches in each patch family, this setup 380 

resulted in approximately 9% of each patch family (and of the overall basin) consisting of 381 

microscale hotspots. We also assigned a loam soil texture to hotspot patches to represent the soil 382 

physical properties that may also increase moisture retention. The default parameters used to 383 

represent hotspot hydrological and biogeochemical dynamics are shown in Table 2. 384 

Table 2. Default parameters for hotspots. Sh_l and sh_g control water diffusion in the 385 
unsaturated zone between hotspot and non-hotspot patches, the default values promote strong 386 
seasonality in hotspot soil moisture. The soil moisture threshold controls water flow in the 387 
saturated zone between hotspot and non-hotspot patches; the default value promotes the 388 
maximum peak streamflow N. We defined one aspatial patch as a hotspot inside of each family. 389 
This leads to 9.1% cover of hotspot patches evenly distributed across the landscape. 390 

Parameters  Value 

Sharing coefficient of losing water in unsaturated zone from 
hotspots (sh_l) 

Dry season: 0.9 
Wet season: 0.05 

Sharing coefficient of gaining water in unsaturated zone of 
hotspots (sh_g) 

Dry season: 0.05 
Wet season: 0.9 
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Soil moisture threshold of non-hotspot above which water 
in saturated zone flows from hotspots to non-hotspot ( 𝜃௧௛) 

21% 

Percentage cover of hotspots 9.1% 

Sharing coefficient of litter from non-hotspot patches to 
hotspot patches (coef_litter) 

1 

 391 

To evaluate the uncertainties related to model structure and parameters, we conducted a set of 392 

virtual experiments, or sensitivity analyses. For each sensitivity analysis, we ran RHESSys for 60 393 

years by looping the available climate data from 1979-2020. Results are presented as simulation 394 

years and capture the climate variability from the available record. First, we examined how the 395 

percentage cover of hotspots can influence N export. We built hotspot patches from zero percent 396 

to 13.7 percent at 2.3 percent increments (i.e., 0%, 2.2%, 4.5%, 6.8%, 9.1%, 11.4%, 13.7%). 397 

When the hotspot percentage was equal to 9.1%, there were exactly one aspatial hotspot patch in 398 

each patch family. When the hotspot percentage was larger than 9.1%, we needed to convert two 399 

aspatial patches in some patch families to hotspot patches. For example, the scenario with 11.4% 400 

hotspot cover at the watershed scale, required 2.3% of patch families to have two aspatial hotspot 401 

patches. Again, this does not mean that there were only one or two hotspots in a patch family, 402 

but one or two aspatial patches were used to represent their distribution. 403 

Second, we investigated how the saturation status of hotspots influences nitrate export. 404 

We built three soil moisture conditions for hotspots by changing the sharing coefficients for local 405 

routing which influenced connectivity between hotspot and surrounding patches (Figure 2b): wet 406 

(sh_l was 0.05  and sh_g was 0.9 throughout the year; water diffused slowly from hotspots), dry 407 

(sh_l and sh_g were set to default values, hotspots diffused water quickly during the dry season), 408 

and intermediate (sh_l was 0.1 and sh_g was 0.8 during the dry season but used default values in 409 

the wet season; water diffused from hotspots at an intermediate rate). The hotspots in the wet 410 
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scenario were saturated almost all the time and had small interannual variation in soil moisture. 411 

The hotspots in the dry scenario lost water during dry periods and had large interannual soil 412 

moisture variation. The hotspots in the intermediate scenario had soil moisture dynamics in 413 

between the levels observed in the dry and wet scenarios (Figure 4).     414 

 415 

Figure 4. Hotspot volumetric soil moisture conditions used to examine the sensitivity of N 416 
cycling and export to hotspot soil moisture saturation status and timing.  417 

Lastly, we examined how uncertainty in the subsurface connectivity threshold parameter, 418 

which determines when non-hotspot patches become reconnected and can receive substantial N 419 

and water from the hotspot ( 𝜃௧௛; Figure 2c). By establishing conditions for this larger scale 420 

connectivity, this parameter can influence streamflow nitrate export. We then compared modeled 421 

streamflow nitrate export (under a range of parameter values based on the range of basin scale 422 

soil moisture: 0.15, 0.21, 0.25, 0.31, 0.35) to observed data (from 1988 to 2001).  423 
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Following the sensitivity analyses, we used available data and literature to estimate the 424 

most likely value for these parameters. We selected hotspot abundance of 9.1% assuming every 425 

patch family had the same hotspot coverage (using the default value in Table 2). We then 426 

selected the “dry” hotspot scenario in order to most closely match the seasonality of N dynamics 427 

observed in dryland ecosystems (Parker & Schimel 2011). Finally, as a simple optimization 428 

strategy, we selected a value for the soil moisture threshold parameter that enabled us to best 429 

capture observed peak N export. Then using these values, we conducted modeling scenarios to 430 

investigate how biogeochemical hotspots influence N export.   431 

Modeling scenarios were based on the presence or absence of biogeochemical hotspots. 432 

For the hotspot scenario, we used the optimized soil moisture threshold determined using the 433 

approach described above, along with default parameters shown in Table 2, which created “dry” 434 

hotspots (i.e., with rapid water diffusion) that had distinct seasonality in denitrification as 435 

observed in field data (Li et al., 2006; Parker & Schimel, 2011). In this scenario, the hotspot 436 

patches received litter and protected C and N from vegetated patches and both biogeochemical 437 

and hydrologic processes still occurred within the hotspot patches. For the non-hotspot scenario, 438 

we used unvegetated patches in place of the hotspot patches, which were initialized to zero. 439 

However, in these unvegetated patches, we did not route litter and recalcitrant soil C and N from 440 

the vegetated patches. As a result, only hydrologic processes occurred there. We ran these two 441 

scenarios for 120 years, 60 years to stabilize the hotspot patches, and another 60 years to 442 

compare differences between scenarios. 443 
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3 Results 444 

3.1 Initialization and calibration results 445 

Using the target-driven initialization method of Hanan et al. (2018), we were able to 446 

capture the spatial distribution of leaf area index (LAI) and associated C stores across the Bell 4 447 

watershed, with some minor underestimates in riparian areas (covered by live oak) and 448 

overestimates in a small percentage of patches, which occurred because RHESSys allocates C to 449 

LAI at the end of growing season. Overall, the initialized and remotely sensed LAI were a strong 450 

match (Figure S1).  451 

During the calibration period, the monthly NSE (a metric to evaluate the extent to which 452 

models capture peak streamflow; values close to 1 represent the best correspondence between 453 

modeled and observed values) was 0.88. Percent error (a metric to evaluate total flow; values 454 

close to 0 represent low error in the total amount of streamflow for modeled vs. observed data) 455 

was 5.45%. For the evaluation period, the monthly NSE was 0.8 with a percent error of -3.92%. 456 

In general, the model captured the seasonality, recession, and low flow patterns observed in the 457 

streamflow record.  458 

3.2 Sensitivity of N fluxes to the abundance of hotspots  459 

 Total N export increased with increasing hotspot cover and then reached an asymptote 460 

when hotspot cover was greater than 9.1% (Figure 5). Denitrification rates were very low in the 461 

zero percent hotspot cover scenario and increased with an increasing percentage of hotspot 462 

patches. However, the rate of increase declined when hotspot cover was greater than 9.1%. 463 

Median streamflow nitrate export began increasing when hotspot cover was above 4.5% but 464 

reached an asymptote at 9.1%. Maximum streamflow nitrate export also increased with 465 

increasing hotspot cover, but the rate of increase declined when cover was above 9.1%. This 466 
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occurred because increasing hotspot cover led to concomitant decreases in vegetation cover and 467 

therefore less carbon and nitrogen inputs from vegetation to soil. As a result, N cycling processes 468 

became limited by productivity of the patch family. Although this result was partly an artifact of 469 

the model's structure—which resulted in more than one aspatial hotspot patch occurring in some 470 

patch families when the hotspot percentage cover exceeded 9.1%—it still demonstrates the 471 

mechanism by which increases in hotspot cover above a given threshold can decrease 472 

productivity. However, the actual threshold value should be interpreted with caution.  473 

 474 

Figure 5. Sensitivity of N processes to the percent cover of hotspots. Box plots show 25th, 475 
median, and 75th percentile values, and the red line connects the median of each scenario to show 476 
trends. Streamflow nitrate is calculated as total mass of nitrate in discharge divided by the basin 477 
area.  478 

3.3 The sensitivity of N fluxes to the parameters controlling water diffusion during periods 479 

of hydrologic disconnection. 480 

 To examine how the rate at which hotspots dry out during periods of hydrologic 481 

disconnection influences N fluxes, we ran three scenarios: a scenario where soil moisture in the 482 

hotspots diffused slowly to non-hotspot patches and hotspots retained their soil moisture 483 

throughout the year (i.e., a wet hotspot scenario), and a scenario where the diffusion speed was 484 

intermediate (i.e., an intermediately moist hotspot scenario), and a scenario where soil moisture 485 
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diffused relative quickly from hotspot to non-hotspot patches (i.e., a dry hotspot scenario). We 486 

found that basin-scale nitrification rates can increase or decrease with the moisture content of 487 

hotspots (Figure 6 b&g). Higher moisture content in hotspots led to relatively lower moisture 488 

content in non-hotspot patches (based on water balance). In the wet-hotspot scenario, basin-scale 489 

nitrification was lower than in the dry-hotspot scenario where water slowly diffused to non-490 

hotspot patches. This occurred because in the wet-hotspot scenario, soil moisture in non-hotspot 491 

patches was lower, which reduced total nitrification, even though nitrification rates increased in 492 

the hotspots.  493 

Basin-scale denitrification increased with higher moisture content in hotspots since 494 

denitrification mainly occurs in those locations (Figure 6 d&g). For both nitrification and 495 

denitrification, the differences between the three scenarios were most pronounced during dry 496 

years when soil moisture differences between hotspots and non-hotspot patches were higher 497 

(Figure 6 b&d). During dry and average years, streamflow nitrate export was higher in the 498 

scenarios where hotspots remained saturated or close to saturated (i.e., the wet- and 499 

intermediately-moist- hotspot scenarios) than in the scenario where water diffused rapidly during 500 

dry periods (i.e., the dry-hotspot scenario). However, there was higher total annual and peak 501 

streamflow nitrate export during the wet years in the dry-hotspot scenario especially after 502 

multiple dry years (Figure 6c&e). Altogether, the closer hotspots are to being water-saturated, 503 

the more quickly N is exported to streamflow.  504 

During multiple dry years, for the rapid diffusion (dry hotspot) scenario, nitrate 505 

accumulated in the saturated zone. Once a wet year occurred, that nitrate was flushed out to 506 

streams (Figure 6a). In the more continuously saturated (wet hotspot) hotspot scenario, higher 507 

denitrification, and faster leaching of nitrate from hotspots led to less nitrate accumulation in the 508 
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saturated zone. This suggests that soil moisture in hotspots and the subsurface flow interact to 509 

drive N movement from soil to streams.  510 

 511 

Figure 6. N processes for three different scenarios, one where hotspots were saturated most of 512 
the time (i.e., the slow diffusion, wet hotspot scenario), one where water diffused more rapidly 513 
from hotspots during the dry season (i.e., the rapid diffusion, dry hotspot scenario), and one 514 
where diffusion was intermediate (i.e., the intermediately moist hotspot scenario). Streamflow is 515 
calculated as the average water depth over the basin area of Bell 4 (0.14 km2). Panel (g) is the 516 
distribution of annual N fluxes, box plots show 25th, median, 75th percentile, and the black line 517 
connects the median of each scenario. 518 
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3.4 Sensitivity of N export to the subsurface connectivity parameter 519 

 The soil moisture threshold, which controls the connectivity of hotspots to non-hotspot 520 

patches, had a stronger influence on streamflow nitrate export than on nitrification and 521 

denitrification fluxes (Figure 7). This occurred because streamflow N export is influenced by 522 

both soil moisture content and subsurface lateral transport. Thus, when the threshold was high 523 

(i.e., when more moisture was required to establish hydrologic connectivity), streamflow N 524 

export was close to zero. With a higher soil moisture threshold, hotspots also tended to have 525 

higher moisture content, which increased nitrification and denitrification (Figure 7e), although 526 

the increases were small. The soil moisture threshold affected both the magnitude and timing of 527 

streamflow nitrate export. At a very low threshold of 0.15, there was higher magnitude and 528 

similar timing of peak nitrate export to streams compared to the no-threshold scenario (fully 529 

connected). This occurred because soil moisture in non-hotspot patches was higher than 0.15 530 

most of the time (Figure 7d). A threshold of 0.21, which was around the median basin-scale soil 531 

moisture, caused the largest peak in streamflow nitrate export. This occurred because 532 

connectivity was delayed until the threshold was reached, allowing nitrate to accumulate. When 533 

the threshold was larger than 0.21, peak streamflow nitrate was smaller and came later because 534 

hotspots were disconnected from non-hotspot patches most of the time.  535 
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 536 

Figure 7. Sensitivity of N fluxes to the soil moisture threshold. Panels (a), (b) and (c) are mean 537 
daily N fluxes over 60 years. Panel (d) is the distribution of daily soil moisture at the basin scale 538 
over 60 years. Panel (e) is the distribution of annual fluxes, box plots show 25th, median, 75th 539 
percentile, and the black line connects the median of each scenario. Different colors represent 540 
different soil moisture thresholds.  541 

3.5 Prediction of streamflow N export compared with observations. 542 

We selected the optimal soil moisture threshold from section 3.2 for capturing the 543 

magnitude of observed nitrate export (i.e., 0.21; this parameter value maximized peak 544 

streamflow nitrate export) and we used the default values shown in Table 2 for the other 545 

parameters. Using these values, we found that hydrologic disconnection of soil hotspots during 546 

the dry periods and reconnection during wet periods enabled us to capture the observed 547 
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magnitude of nitrate export in streamflow, which we could not otherwise capture in the non-548 

hotspot scenario (Figure 8). For example, the non-hotspot scenario underestimated nitrate export 549 

with a NSE of 0.22, while the hotspot scenario increased the estimation peak streamflow nitrate 550 

by 29% and captured its timing better with a NSE of 0.4 (in 1988, 1991, 1992, 1993, 2000).  551 

However, after optimizing the moisture threshold parameter, the timing of stream nitrate export 552 

was still slightly off; for example, in 1998, the modeled stream nitrate export peak was higher 553 

and occurred slightly later than observed.  554 

  555 

Figure 8. Simulated and observed nitrate export in streamflow. The dots show observed 556 
streamflow nitrate. 557 

3.6 Comparison of hotspot and non-hotspot scenarios  558 

At the basin-scale, there was higher N export in the hotspot scenario than in the non-559 

hotspot scenario (Figure 9). Increases in streamflow nitrate with the hotspot scenario closely 560 

corresponded with increases in soil nitrate. Nitrate accumulated during dry years and there was 561 

substantial nitrate export to streams in wet years, especially when a wet year followed multiple 562 
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dry years (e.g., in year 40). We also found that streamflow nitrate export was further influenced 563 

by interannual precipitation patterns. The differences between the hotspot and non-hotspot 564 

scenarios were most evident during wet years when the basin was more connected. During wet 565 

years, more nitrate was flushed out from hotspots, which illustrates how subsurface connectivity 566 

can be an important factor driving streamflow N export. Consequently, the differences in 567 

streamflow nitrate between the hotspot and non-hotspot scenarios were less consistent than the 568 

differences in nitrification and denitrification, which had similar temporal patterns but differing 569 

magnitude (e.g., Figure 9 c&d). 570 

 571 

Figure 9. Nitrogen and hydrologic cycling processes (annual sum) and nitrate pools (annual 572 
mean) at the full basin scale for Bell 4.  573 

4 Discussion 574 

 Modeling hotspots at watershed scales has been challenging because most models, 575 

including RHESSys, lack corresponding fine-scale (e.g., below 1-meter resolution) parameters 576 
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and variables (Tague, 2009). To address this limitation, we developed a framework for 577 

representing hotspots aspatially within 10-m resolution patches. Using this framework, we 578 

conducted a series of virtual experiments to investigate how uncertainties in model structure and 579 

parameters influence N cycling and export. Then using the new modeling framework, we 580 

examined how precipitation can affect N export in a dryland watershed in California. Our model 581 

framework and virtual experiments improve our ability to connect plot-scale measurements to 582 

catchment scale projections by developing integrative model algorithms and parameters that 583 

control the biophysical behavior of hotspots across a landscape. These parameters can be 584 

optimized using field observations of N cycling and export. We illustrate how uncertainty in 585 

model parameters can influence projections of N export. Future research should aim to reduce 586 

these uncertainties, and ultimately represent hotspot behavior more mechanistically across 587 

watersheds. 588 

 589 

Figure 10. Conceptual framework summarizing how total annual streamflow nitrate and 590 
denitrification respond to (a) hotspots abundance, (b) the soil moisture threshold required to 591 
trigger subsurface flow, and (c) the rate of water diffusion from hotspots. 592 
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4.1. Uncertainties related to hotspot abundance and distribution 593 

Estimating nitrogen (N) export at watershed and regional scales is limited by uncertainty 594 

in how hotspots are distributed across landscapes. Our research is among the few studies that 595 

have evaluated how hotspot abundance influences watershed-scale N export and illustrates the 596 

need to quantify hotspot cover to effectively scale N dynamics from ecosystems to watersheds 597 

(Anderson et al., 2015; Groffman, 2012). We parameterized the hotspots with varying cover 598 

percentages across a small watershed (0.14 km2) and found that N export increased with hotspot 599 

abundance (Figure 5& Figure 10), but with an asymptotic relationship due to limitations in N 600 

inputs and plant productivity (i.e., energy input for denitrification). However, in less N-limited 601 

and more mesic sites (e.g., under elevated N deposition and increasing precipitation), N export 602 

may be more sensitive to increasing hotspot abundance.   603 

One limitation of our study is that we did not examine how the spatial distribution of 604 

hotspots influences N export. Previous research has shown that hotspots can be more 605 

concentrated in riparian corridors and wetlands where moisture content is higher (Pinay et al., 606 

2015). We did however find that wet hotspots, which may serve as a surrogate for riparian and 607 

wetland locations, can in some cases increase both denitrification and N export in streams 608 

(Figure 6). However, because the location and arrangement of hotspots across a landscape can 609 

significantly influence streamflow N export (Laudon et al., 2011; Pinay et al., 2015), more 610 

research is needed to understand these spatial relationships (Haas et al., 2013). For example, 611 

combing high-resolution remote sensing data with field observations may help us better constrain 612 

hotspot distribution and abundance in ecohydrological models (Goodridge et al., 2018; 613 

Groffman, 2012; Tague, 2009; Walter et al., 2000). 614 
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4.2 Uncertainties in how rapidly hotspots dry out 615 

 Soil moisture is a major factor regulating denitrification and streamflow nitrate export 616 

(Pinay et al., 2015; Zhu et al., 2012). Our modeling experiments illustrate how the relationships 617 

between soil moisture and N dynamics can be complex and non-linear. Elevated soil moisture 618 

may reduce nitrification, increase denitrification, and ultimately decrease the amount of nitrate 619 

available for hydrologic flushing. Drier soils on the other hand can decrease denitrification and 620 

increase the amount of nitrate available for flushing (Homyak et al., 2016). We found that during 621 

dry and average years, higher moisture in hotspots increased nitrate infiltration from the 622 

unsaturated zone to the saturated zone, resulting in elevated and more rapid nitrate export to 623 

streams (Figure 6c). However, during wet years, higher soil moisture led to less nitrate export to 624 

streams due to increases in denitrification combined with less nitrate in the subsurface from the 625 

legacy effects of leaching in prior average and dry years. The dry hotspot scenario captured the 626 

observed nitrate-flushing better than the wet scenario, suggesting that hotspots are not likely to 627 

be continuously saturated (Figure 6). Because recent studies have shown that very small changes 628 

in soil moisture can change N fluxes abruptly (Castellano et al., 2013; Evans et al., 2016), it is 629 

important to improve our representation of soil moisture conditions in hotspots to accurately 630 

predict nitrate export.   631 

 Soil water residence time is an important factor affecting N export (Pinay et al., 2015; 632 

Zarnetske et al., 2011). The slower water diffuses from hotspots, the longer nitrate is exposed to 633 

denitrifying conditions (McClain et al., 2003). Our study shows that longer water residence time 634 

in hotspots (i.e., in the wet hotspot scenario) increases both denitrification and total N export to 635 

streams (Figure 6 & Figure 10). We used water diffusion coefficients to model water residence 636 

time in hotspots and we selected coefficients that enabled us to best capture the plausible timing 637 
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of denitrification and streamflow N fluxes. While this is a simplified, proxy approach, adding 638 

further complexity by explicitly modeling diffusion maybe infeasible since it would require 639 

local, spatially explicit soil parameters (Wood et al., 2011). However, further investigation into 640 

how proxy parameters may be calibrated is recommended for future research. 641 

Stream nitrate export was also affected by precipitation patterns. When there were 642 

multiple dry years in a row, nitrate accumulated to a greater extent than in average years (Figure 643 

6a). When a wet year followed a multi-year drought, there was higher streamflow nitrate export 644 

in the dry hotspot scenario (Figure 6c). This is corroborated by field observations, which suggest 645 

that severe drought promoted nitrate accumulation in soil due to less denitrification and plant 646 

uptake, resulting in more nitrate available for flushing with the return of precipitation (Winter et 647 

al. 2023). We found that the length of drought and precipitation variability were more important 648 

in driving streamflow N export than the amount of precipitation (Figure 6c&e). For example, 649 

even with similar amount of precipitation in simulation years 26 and 40, N export was much 650 

higher in year 40 due to the legacy of a multi-year drought (Figure 6c&e). Recent research has 651 

similarly shown that precipitation variability can have positive or negative legacy effects on 652 

dryland productivity, which can in turn influence N cycling and export (Gherardi & Sala, 2015; 653 

Krichels et al., 2022). However, the direction of N responses vary along long-term precipitation 654 

gradients (Gherardi & Sala, 2015, 2019).  655 

4.3 Uncertainties in hydrologic connectivity 656 

The subsurface flow threshold also plays a role in how much nitrate is transported to 657 

streams. In this study, we found that the optimal volumetric soil moisture to trigger subsurface 658 

flow from hotspot to non-hotspot patches was around 21% (Figure 7). Other studies have 659 

similarly shown that to trigger a subsurface flow, the soil moisture needs to reach a threshold of 660 
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18% (Liao et al., 2016). However, this threshold may vary with soil texture and water potential 661 

dynamics. While our new model framework can improve the prediction of streamflow nitrate 662 

with a static soil moisture threshold, topography and vegetation cover can also influence the 663 

connectivity and amount of subsurface flow, suggesting that soil moisture thresholds should be 664 

dynamic (Crow et al., 2012, Zhu et al., 2018). 665 

Coupling soil biogeochemical models with hydrological models has become increasingly 666 

popular for investigating N cycling and export (Schimel, 2018). To save time, researchers 667 

typically prefer to couple existing models rather than build new ones (Malek et al., 2017; Zhu et 668 

al., 2018). Since most hydrologic models do not account for fine-scale heterogeneity in available 669 

moisture, they may not be able to capture biogeochemical hotspots even when coupled with 670 

biogeochemical models (Chen et al., 2020). Our new model framework provides a relatively 671 

simple way to capture hotspots without having to explicitly represent sub-meter scale spatial 672 

heterogeneity. While this intermediate complexity approach enables us to represent hotspots 673 

across a watershed, it does not fully capture some of the potential controls on hotspot function. 674 

For example, although our model captured the variability and magnitude of streamflow nitrate, 675 

there was some error associated with its timing (Figure 8). Future work can build upon our 676 

simple hotspot model to develop more process-based and dynamic representation of subsurface 677 

flow thresholds. This can be achieved by improving our understanding of hydrology and N 678 

processes in soil through hydrogeochemical observations. 679 

4.4 The role of hotspots and hot moments in watershed models 680 

We found that the catchment-scale denitrification rate in the hotspot scenarios was 681 

significantly higher than that observed in the non-hotspot scenario (Figure 5& Figure 9), aligning 682 

with the concept that small areas often account for a high percentage of denitrification activity 683 
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(McClain et al., 2003). Additionally, denitrification was more sensitive to hotspot abundance, 684 

while N export to streams was more sensitive to the soil moisture threshold that triggers 685 

subsurface flow (Figure 10). Both are affected by the speed at which water diffuses from 686 

hotspots, which influences soil moisture levels, water residence time in soil, and vertical and 687 

horizontal transport of water. Our virtual experiments provide information on model uncertainty 688 

and sensitivity that can inform future studies focused on scaling N processes from plots to 689 

catchments. For example, in areas with high N deposition, managers who are interested in 690 

predicting how much N ends up in streams should focus on reducing model uncertainties in 691 

subsurface flow thresholds and soil moisture retention in hotspots. 692 

In the context of predicting N export, hot moments—defined as wet periods after a 693 

prolonged dry spell (Groffman et al., 2009)—are currently better represented in the RHESSys 694 

model than hotspots. Even in our no hotspot scenario, there was a pulse of streamflow N export 695 

when wet years followed multiple dry years (Figure 6 & Figure 9). However, models of how hot 696 

moments influence streamflow N export are still limited by uncertainties in soil moisture 697 

dynamics. For instance, we found that in the wet hotspot scenario, there was an earlier 698 

streamflow N pulse than in the dry hotspot scenario (Figure 6c). Thus, hotspot conditions can 699 

affect the timing of hot moments, which has not been previously explored in modeling studies. In 700 

future studies, it is important to consider interactions between hotspots and hot moments rather 701 

than discussing them in isolation.  702 

5 Conclusion 703 

Coupling hydrologic processes with biogeochemical processes in watershed-scale models 704 

is challenging due to subsurface heterogeneity and the existence of hotspots and hot moments 705 

that are not well represented in models. We developed a framework for representing hotspots 706 
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explicitly in dryland watersheds and using this framework, we demonstrated how hydrologic 707 

connectivity and precipitation can affect N export in a dryland watershed in California. With 708 

increasing hotspot coverage (up to a threshold), both denitrification and N export to streams 709 

increased. The partitioning between denitrification and N-export, and the timing and magnitude 710 

of N-export were largely controlled by hotspot soil moisture dynamics. Specifically, we found 711 

that when the soil moisture threshold required for reestablishing subsurface flow was 712 

intermediate, nitrate was able to accumulate during drier periods and then be flushed to the 713 

stream upon wet up. This led to the highest peak nitrate export to streams, which tended to 714 

better-capture observed nitrate patterns. To our knowledge, this is the first time biogeochemical 715 

hotspots have been modeled explicitly using a coupled biogeochemical-ecohydrological model in 716 

a dryland watershed. This modeling framework can help better project N export in dryland 717 

watersheds where hotspots may play an increasingly important role in governing water quality as 718 

drought and N deposition continue to increase. 719 
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Abstract 24 

 Climate change and nitrogen (N) pollution are altering biogeochemical and 25 

ecohydrological processes in dryland watersheds, increasing N export, and threatening water 26 

quality. While simulation models are useful for projecting how N export will change in the 27 

future, most models ignore biogeochemical “hotspots” that develop in drylands as moist 28 

microsites become hydrologically disconnected from plant roots when soils dry out. These 29 

hotspots enable N to accumulate over dry periods and rapidly flush to streams when soils wet up. 30 

To better project future N export, we developed a framework for representing hotspots using the 31 

ecohydrological model RHESSys. We then conducted a series of virtual experiments to 32 

understand how uncertainties in model structure and parameters influence N export. Modeled 33 

export was sensitive to the abundance of hotspots in a watershed, increasing linearly and then 34 

reaching an asymptote with increasing hotspot abundance. Peak streamflow N was also sensitive 35 

to a soil moisture threshold at which subsurface flow from hotspots reestablished, allowing N to 36 

be transferred to streams; it increased and then decreased with an increasing threshold value. 37 

Finally, N export was generally higher when water diffused out of hotspots slowly. In a case 38 

study, we found that when hotspots were modeled explicitly, peak streamflow nitrate export 39 

increased by 29%, enabling us to better capture the timing and magnitude of N losses observed 40 

in the field. N export further increased in response to interannual variability in precipitation, 41 

particularly when multiple dry years were followed by a wet year. This modeling framework can 42 

improve projections of N export in watersheds where hotspots play an increasingly important 43 

role in water quality. 44 
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1 Introduction 45 

 Climate change and atmospheric nitrogen (N) deposition are accelerating biogeochemical 46 

cycling in dryland ecosystems and increasing N loading in streams, which can pose a major 47 

threat to water quality (Borer & Stevens, 2022; Fenn et al., 2003). However, the extent to which 48 

deposited N is exported to streams remains difficult to predict, in part because models are limited 49 

in their ability to capture hotspots—defined as wetter microsites in the soil that have 50 

disproportionately high rates of biogeochemical cycling—which can strongly influence N fluxes 51 

in dryland soils (Vargas et al., 2013). For example, hotspots enable N to accumulate over dry 52 

periods and rapidly flush to streams when soils wet up (McClain et al., 2003; Parker & Schimel, 53 

2011). This can occur even when plants are N-limited because precipitation pulses can mobilize 54 

accumulated N more quickly than plants are able to take it up (Homyak et al., 2014). As the 55 

global distribution of drylands expands with climate warming (Seager et al., 2018), and as 56 

urbanization increases rates of N deposition (Borer & Stevens, 2022), it is critical to better 57 

account for the mechanisms driving N export in models (Gustine et al., 2022; Schimel, 2018).   58 

 Hotspots can range in size from microsites within soil aggregates (Ebrahimi & Or, 2018) 59 

to islands of fertility within landscape patches (Osborne et al., 2020). While landscape models 60 

may effectively represent the later by parameterizing plant physiological processes that promote 61 

resource heterogeneity—for example, transpiration-driven nutrient accumulation beneath woody 62 

plant canopies in savannas; (Ridolfi et al., 2008)—representing the role of microscale 63 

biogeochemical hotspots is much more challenging at watershed scales. For one, soil moisture 64 

and subsurface transport processes are often oversimplified and not fully integrated into 65 

landscape-scale N-cycling models (Ouyang et al., 2017; Poblador et al., 2017; Schmidt et al., 66 

2007; Zhang et al., 2018). When models do incorporate coupled hydrological-biogeochemical 67 
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processes, they often reduce spatial heterogeneity by averaging soil hydraulic parameters across 68 

a basin (Crow et al., 2012; Lin et al., 2015; Tague, 2009; Zhu et al., 2012, 2015). As a result, 69 

these models do not capture the role of soil microsites that remain wetter than bulk soils for at 70 

least some time into the dry season. While more detailed representation of soil heterogeneity is 71 

needed, at least three key uncertainties remain in scaling microsite processes across an entire 72 

watershed: (1) how hotspots are distributed across watersheds (McClain et al., 2003) (2) the 73 

amount of precipitation required to reestablish for hydrological connection between hotspots and 74 

bulk soils and to generate subsurface flow (Zhu et al., 2018), and (3) how the physical 75 

parameters governing fine-scale water diffusion from hotspots are distributed across a watershed 76 

(Clark et al., 2017).  77 

 A common modeling approach to represent the effects of fine-scale spatial heterogeneity 78 

on large-scale hydrologic fluxes is to incorporate distributions of sub-grid state variables that 79 

influence large-scale fluxes (i.e., statistical-dynamical flux parameterizations occurring within a 80 

grid cell; the smallest spatially explicit model unit; Clark et al., 2017; Wood et al., 1992). For 81 

example, Burke et al. (2021) developed an approach using the ecohydrological model RHESSys, 82 

which uses a distribution of aspatial, sub-grid vegetation patches that interact to influence grid-83 

scale ecohydrological processes. This approach can better capture spatial heterogeneity without 84 

requiring detailed spatial information at sub-grid scales or increasing computational costs. To 85 

better predict how climate change modifies N retention and export, we developed a framework 86 

for modeling belowground hotspots and their interactions with soil moisture and subsurface flow 87 

by expanding the Burke et al. (2021) aspatial approach. 88 

  89 
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Our new modeling framework enables N to accumulate in microscale hotspots—90 

represented aspatially within 10-m resolution grid cells—which contain sufficient moisture for 91 

decomposition to occur but are hydrologically disconnected from roots when the soils dry out. 92 

These micro-scale hotspot patches slowly lose water through diffusion and evaporation over the 93 

course of the dry season and can become hydrologically reconnected to the surrounding 94 

vegetated patches when soils wet up. Using this framework, we conducted a set of virtual 95 

experiments in a dryland, chaparral watershed in Southern California to characterize model 96 

sensitivity to three key sources of uncertainty: (1) the area percentage of hotspots within the 97 

watershed, (2) the length of time it takes for water to diffuse from hotspots during periods of 98 

drought, and (3) the moisture conditions under which hydrological connectivity between hotspot 99 

and non-hotspot locations reestablishes. Finally, we used field observations of N export to 100 

optimize the parameters controlling N dynamics and then with an optimized model, we 101 

investigated how precipitation patterns can influence hotspot effects on N export. This case study 102 

demonstrates how our modeling framework can be used to improve our theoretical understanding 103 

of the role biogeochemical hotspots play in N cycling and retention in drylands. 104 

2 Methods 105 

2.1 Study area  106 

 Model simulations were conducted in the Bell 4 basin (0.14 km2), which is part of the 107 

San Dimas experimental forest located northeast of Los Angeles, California (34°12´N, 117°47´E; 108 

Figure 1). Elevations in Bell 4 range from 700 to 1024 meters. The topography is characterized 109 

by steep slopes with steep channel gradients. Soils are shallow, coarse-textured sandy loams, 110 

which are weathered from granite (Chaney et al., 2016; Dunn et al., 1988) and classified as Typic 111 

Xerorthents (Soil Survey Staff, 2022) The region has hot, dry summers (June to September 112 
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around 17 mm precipitation) and cool, moist winters (698 mm precipitation); mean annual 113 

precipitation is around 715 mm and daily temperatures range from -8 °C to 40 °C. Vegetation 114 

cover is mainly mixed chaparral with chamise (Adenostoma fasciculatum), ceanothus 115 

(Ceanothus spp.), and black sage (Salvia mellifera) on south-facing slopes; ceanothus and 116 

California laurel (Umbellularia californica) on north-facing slopes; and some live oak (Quercus 117 

agrifolia) along riparian areas (Wohlgemuth, 2006).  118 

 119 

Figure 1. Bell 4 watershed in the San Dims experimental forest located in Southern California, 120 
U.S. (34°12´N, 117°47´E). The watershed is 0.14 km2. 121 

2.2 RHESSys model  122 

The regional hydro-ecologic simulation system (RHESSys) is a spatially distributed, 123 

process-based model that simulates interacting ecohydrological and biogeochemical processes at 124 

multiple scales (Chen et al., 2020; Hanan et al., 2017; Tague, 2009; Tague & Band, 2004). The 125 

smallest spatial unit is the “patch,” which has a 10-meter resolution in the current study. At the 126 
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patch scale, vertical hydrologic fluxes include canopy interception, transpiration, evaporation, 127 

infiltration, capillary rise, and drainage from the rooting zone to the saturated zone. Carbon (C) 128 

cycling processes are tightly coupled with hydrology and soil moisture and include 129 

photosynthesis, allocation of net photosynthate, plant and soil respiration, and litter and soil 130 

decomposition. Nitrogen cycling includes atmospheric N deposition, mineralization, nitrification, 131 

immobilization, denitrification, plant uptake, and export to streams (Hanan et al., 2017; Lin et 132 

al., 2015). RHESSys has been parameterized and validated in several watersheds across the 133 

western USA, including in several chaparral watersheds (Burke et al., 2021; Chen et al., 2020; 134 

Hanan et al., 2017, 2021; Lin et al., 2015; Meentemeyer & Moody, 2002; Ren et al., 2021, 2022; 135 

Tague, 2009).  136 

There are four layers for vertical soil moisture processes, including a surface detention 137 

store, a root zone store, an unsaturated store below the root zone, and a saturated store. The 138 

vertical hydrologic processes also include canopy layers, snowpack, and litter moisture stores. 139 

Rain throughfall from multiple canopy layers and a litter layer provide potential infiltration. If 140 

the precipitation falls as snow, snow throughfall updates a snowpack store. Then the surface 141 

detention storage receives water from canopy throughfall and snowmelt at a daily time step. 142 

Following precipitation and throughfall, water infiltrates into the soil following the Phillip 143 

(1957) infiltration equation. At a daily timestep, ponded water that has not infiltrated is added to 144 

detention storage and any water that is above detention storage capacity generates overland flow.  145 

Infiltration updates one of three possible stores: a saturated store when the water table 146 

reaches the surface, a rooting zone store, or an unsaturated store for unvegetated patches. A 147 

portion of infiltrated water can bypass the rooting zone and unsaturated store through 148 

macropores. This bypass flow (carrying N) is added to a deeper groundwater store at the 149 
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subbasin scale. Water drains vertically from the unsaturated store or root zone store based on 150 

hydraulic conductivity. Capillary rise moves water from the saturated zone to the root zone or 151 

unsaturated store based on Eagleson (1978). Lateral fluxes can occur through both shallow 152 

subsurface flow between patches and through bypass flow that contributes to a deeper hillslope-153 

scale groundwater flow model. Shallow subsurface saturated flow between patches follows 154 

topography and changes with saturation deficit and transmissivity.  155 

 RHESSys simulates subsurface lateral redistribution of water and N between patches 156 

based on topographic gradients and soil hydraulic parameters (Tague, 2009). Nitrification rates 157 

in RHESSys are calculated based on the CENTURYNGAS model, where the nitrification rate is a 158 

function of soil pH (𝑓௣ு; Hanan et al 2017), moisture (𝑓ுమை), soil temperature (𝑓 ), and available 159 

soil ammonium (𝑓ேுర
; Parton, 1996):  160 

𝑁௡௜௧௥௜௙ = 𝑠𝑜𝑖𝑙. 𝑁𝐻4 × 𝑓௣ு  × 𝑓ுమை × 𝑓 × 𝑓ேுర
    Eq (1) 161 

The pH scalar (𝑓௣ு) is calculated as: 162 

𝑓௣ு =  
଴.ହ଺ା௔௥௖௧௔௡ (గ × ଴.ସହ× (ିହା௣ு))

గ
                        Eq (2) 163 

The soil moisture scalar (𝑓ுమை ) is calculated as: 164 

𝑓ுమை = (
ఏି௕

௔ି௕
)ௗ(

್షೌ

ೌష೎
)(

ఏି௖

௔ି௖
)ௗ      Eq (3) 165 

Where a, b, c, and d are parameters related to soil texture based on Parton et al. (1996) and 𝜃 is 166 

volumetric soil moisture.  167 

The temperature scalar (𝑓 ) is calculated as:  168 

𝑓 = 0.06 + 0.13𝑒𝑥𝑝଴.଴଻்ೞ೚೔೗      Eq (4) 169 
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Where Tsoil is the surface soil temperature in degrees C. 170 

The ammonium concentration available for nitrification is calculated as: 171 

𝑓ேுర
= 1.0 −  𝑒𝑥𝑝[ି଴.଴ଵ଴ହ∗ேுర೎೚೙೎]     Eq (5) 172 

Where 𝑁𝐻ସ௖௢௡  is the soil ammonium concentration in the fast-cycling soil layer.  173 

 N export includes denitrification and subsurface lateral flow of ammonium, nitrate, and 174 

dissolved organic N (DON). Denitrification is calculated based on a maximum denitrification 175 

rate (𝑅ேைయ
), and is modified by soil moisture (𝑓ுమை), and soil respiration (𝑓௛௥஼ைమ

): 176 

𝑁ௗ௘௡௜௧௥௜௙ = 𝑅ேைయ
× 𝑓ுమை × 𝑓௛௥஼ைమ

     Eq (6) 177 

The maximum denitrification rate is calculated as:   178 

𝑅ேைଷ = 0.0011 +  
௔ ௧௔௡ (గ×଴.଴଴ଶ×൬

ಿೀయ_ೞ೚೔೗
ಿೞ೚೔೗శ಴ೞ೚೔೗

ିଵ଼଴൰)

గ
                        Eq (7) 179 

Where NO3_soil is the available nitrate (kg N/m2) in soil and Nsoil and Csoil are soil N (kg N/m2) 180 

and C (kg C/m2) amounts, respectively.  181 

The soil moisture limitation is calculated as:  182 

𝑓ுమை =  
௔

௕
(

೎

್೏×ഇ
)
        Eq (7) 183 

𝜃, a, b, c, and d are defined in eq. 3 above.  184 

The effect of soil respiration is calculated as: 185 

𝑓௛௥஼ைమ
=  

଴.଴଴ଶସ

ଵା 
మబబ

೐(య.ఱ×೓ೝ)

− 0.00001     Eq (8) 186 

Where hr is total daily respiration (g C/m2/day). 187 
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 Nitrate enters the soil from infiltration or from the surface detention store. Nitrate in the 188 

soil is transported by subsurface flow in the saturated zone, while in the unsaturated soil, there is 189 

no lateral nitrate transport (Chen et al., 2020; Tague & Band, 2004). Vertical distribution of 190 

nitrate in the unsaturated zone soil profile is assumed to follow an exponential decay function, 191 

where the surface layer has more nitrate and deeper soil has less. the available nitrate at soil 192 

depth z is calculated as  193 

𝑁𝑂ଷ_௦௢௜௟(𝑧) = 𝑁𝑂ଷ_௦௨௥௙௔௖௘  × 𝑒𝑥𝑝ିே೏೐೎ೌ೤ ×௭   Eq (10) 194 

Where NO3_surface is nitrate at soil surface and Ndecay is a soil specific parameter that defines the 195 

rate of nitrate decay. When water is moving between the unsaturated zone and the saturated 196 

zone, through downward leaching or upward capillary rise, nitrate moves with water based on its 197 

concentration.  198 

Nitrate export follows the flushing hypothesis (Chen et al., 2020). As the water table rises, more 199 

N becomes available for flushing. The total soil nitrate export (NO3_out) is calculated as the 200 

integration of soil nitrate below the water table:  201 

𝑁𝑂ଷ_௢௨௧ =  ∫  
௭ೞ

௭೘ೌೣ

௤೥

ௌ೥
𝑁𝑂ଷ_௦௢௜௟𝑁𝑂ଷ_௠௢௕௜௟௘   Eq (11) 202 

Where zmax is the maximum water table depth, zs is current water table depth, qz is the net lateral 203 

transport of water from the patch at depth Z; Sz is the soil water content (in meters) and NO3_mobile 204 

is a parameter that defines the portion of nitrate that is mobile (related to soil type). Mobile 205 

surface N can also be transported to deep ground water through preferential flow paths.  206 

 Recent improvements to RHESSys enable users to account for fine-scale (within patch) 207 

heterogeneity (e.g., different types of vegetation cover and associated soil layers that may share 208 
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water within a single patch; Burke et al. 2021). These are referred to as "aspatial patches." When 209 

running RHESSys using the aspatial patch framework, “patch families” become the smallest 210 

spatially explicit model unit, and aspatial patches (nested within a patch family) are the smallest 211 

aspatial model unit. Note that an aspatial patch within a patch family is used to represent 212 

a distribution of a given vegetation type (e.g., trees or shrubs) based on observed (or 213 

hypothetical) distributions. It can but does not necessarily represent a single stand or clump 214 

of vegetation cover; vegetation from a single aspatial patch within a patch family does not have a 215 

defined distribution in RHESSys, so the assumption is that biophysical interactions, such as the 216 

extent to which a given cover type shares water, are more important than their physical location 217 

within the finest grid cell. Because there are no physical locations of aspatial patches within a 218 

patch family, within patch heterogeneity can be modeled without explicitly parameterizing and 219 

modeling fine scale spatial units that would be both computationally prohibitive and nearly 220 

impossible to parameterize with measured data.  221 

Local water routing between aspatial patches inside a patch family is based on root access 222 

to water (Figure 2). Local routing moves water between aspatial patches based on user defined 223 

rules. Most commonly, water is distributed among aspatial patches as a function of relative 224 

differences between their rooting and unsaturated zone water contents and mediated by gaining 225 

and losing coefficients defined for each cover type. In this framework, an aspatial patch will gain 226 

water if its water content is below the patch family mean and vice versa, with the rate of water 227 

transfer controlled by sharing coefficients. Sharing coefficients to capture the integrated effects 228 

of uncertain, fine-scale variation in root distributions, and how root distributions and forest 229 

structure interact with fine-scale soil drainage characteristics. Nitrate and dissolved organic C are 230 
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exchanged along with water during local routing. A detailed description of aspatial patches can 231 

be found in Burke et al. (2021).  232 

2.3 Model development 233 

To enable RHESSys to account for biogeochemical hotspots, we expanded the aspatial 234 

patch framework to incorporate “hotspot” aspatial patches within each patch family. These 235 

aspatial patches represent a distribution of unvegetated microsites where biogeochemical cycling 236 

can be hydrologically disconnected, as soils dry out, from aspatial patches that contain plant 237 

roots (Figure 2). To model hotspot aspatial patches (hereafter called hotspots), we implemented 238 

three key model developments: (1) model algorithms that enable hotspots to access soil and litter 239 

C and N from neighboring non-hotspot patches for decomposition and biogeochemical cycling, 240 

and (2) algorithms and parameters that control the moisture conditions under which hotspots are 241 

hydrologically disconnected from other aspatial patches in the saturated zone, (3) parameters that 242 

control water diffusion in the unsaturated and/or root zone between hotspot and non-hotspot 243 

patches as soils dry out.  244 

Research has shown that N-rich microsites can occur in unvegetated locations where 245 

there is less N uptake and less water demand from plants (Zhu et al., 2018). In the original 246 

RHESSys framework, unvegetated patches were used to represent large (e.g., 10 to 30-m) areas 247 

with no vegetation. Without vegetation inputs, these patches did not develop C and N stores to 248 

support microbial biogeochemical cycling. To generate hotspots, we implemented a litter sharing 249 

scheme that moves litter from vegetated aspatial patches to hotspots at an annual timestep to 250 

coincide with litter fall (Figure 2). Because we assume that hotspot aspatial patches occur at fine 251 

scales across a given 10-m patch family, it is reasonable to assume that they have access to plant 252 

litter for decomposition and N cycling from other aspatial patches within the patch family. The 253 
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amount of litter shared (CNshare) is a function of the mean litter C and N content of the patch 254 

family (CNmean), where the amount of C and N in a hotspot patch after litter sharing (CNhotspot) 255 

cannot be above the patch family mean (Eq 12). To enable N cycling in hotspots, hotspots also 256 

have access to 1% of the protected soil organic C and N pools from the vegetated patch families. 257 

The litter C and N routing is described as  258 

𝐶𝑁௦௛௔௥௘ =
(∑  

೙ೡ೐೒
೔సభ

൫஼ேೡ೐೒_೔ି ஼ே೘೐ೌ೙൯ ×௖௢௘௙_௟௜௧௧௘௥)

௡೓೚೟ೞ೛೚೟
     Eq (12) 259 

𝐶𝑁௛௢௧௦௣ _௔௙௧௘௥ = 𝑚𝑖𝑛 (𝐶𝑁௛௢௧௦௣௢௧_௕௘௙௢௥௘ + 𝐶𝑁௦௛௔௥௘  ,  𝐶𝑁௠௘௔௡)               Eq (13) 260 

           𝐶𝑁௩௘௚_௔௙௧௘௥_௜ = 𝐶𝑁௩௘௚_௜ −  ൫𝐶𝑁௩௘௚_௜ −  𝐶𝑁௠௘௔௡൯ × 𝑐𝑜𝑒𝑓_𝑙𝑖𝑡𝑡𝑒𝑟                     Eq (14) 261 

Where, nveg is the number of non-hotspot patches in a patch family, CNveg is the amount 262 

of litter C and N in a non-hotspot patch, nhotspot is the number of hotspot patches in a patch 263 

family. Coef_litter is the sharing coefficient parameter that controls the amount of litter sharing. 264 

Hotspot patches can also be assigned a finer soil texture (e.g., loam), which can hold more water 265 

than non-hotspot patches. In the current model, non-hotspot patches were comprised of sandy 266 

loam (based on the POLARIS database; Chaney et al., 2016).  267 

 To control subsurface hydrologic flow from hotspots to vegetated patches, we set up a 268 

soil moisture threshold for non-hotspot patches ( 𝜃௧௛), above which, water flows into them from 269 

the saturated zone in hotspots. In other words, when non-hotspot patches dry down, they become 270 

hydrologically disconnected from hotspots and they become reconnected when soils wet up 271 

(Figure 2c & Eq 15).  272 

൜
𝜃௩௘௚ >  𝜃௧௛:  𝑠𝑢𝑏𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑓𝑙𝑜𝑤 𝑚𝑜𝑣𝑒 𝑤𝑎𝑡𝑒𝑟 𝑎𝑛𝑑 𝑛𝑖𝑡𝑟𝑎𝑡𝑒 𝑓𝑟𝑜𝑚 ℎ𝑜𝑡𝑠𝑝𝑜𝑡𝑠 𝑡𝑜 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 𝑛𝑜𝑛 − ℎ𝑜𝑡𝑠𝑝𝑜𝑡 𝑝𝑎𝑡ℎ𝑒𝑠  

𝜃௩௘௚ ≤   𝜃௧௛:  𝑛𝑜 𝑠𝑢𝑏𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑓𝑙𝑜𝑤 𝑓𝑟𝑜𝑚 ℎ𝑜𝑡𝑠𝑝𝑜𝑡𝑠 𝑡𝑜 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑛𝑜𝑟𝑚𝑎𝑙 𝑝𝑎𝑡𝑐ℎ𝑒𝑠                         𝑬𝒒 (𝟏𝟓)                     
 273 
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This threshold is used to define a condition where “water films” can form as soils dry 274 

down, which enables microscale biogeochemical cycling while reducing nitrate leaching from 275 

hotspots over the course of the hot, dry summer (Parker & Schimel, 2011). When soils are 276 

rewetted at the onset of the rainy season, the water table rises, and hydrologic connectivity 277 

reestablishes between hotspot and non-hotspot patches. This can lead to rapid nitrification and 278 

nitrate export before plants become active and gain access to N that accumulated during dry 279 

periods of hydrologic disconnection (Parker & Schimel, 2011). While the thresholds at which 280 

hydrologic connectivity reestablishes are not currently well established, the threshold parameter 281 

can be calibrated to match field observations.  282 

 Although subsurface flow from hotspot patches remains somewhat disconnected during 283 

the dry season, water can still slowly diffuse from hotspots as soils dry out. To account for this, 284 

we developed water gain coefficients (sh_g) and water loss coefficients (sh_l) that constrain 285 

local routing to and from hotspots and the unsaturated and rooting zone in the surrounding non-286 

hotspot patches (Figure 2a). During the dry season (June to November), the default sh_g was set 287 

to 0.05 and sh_l was set to 0.9 to simulate hotspots losing water. During the wet season 288 

(December to May), the default sh_g was 0.9 and sh_l was 0.05 to simulate hotspots gaining 289 

water. We rely on sharing coefficients here to capture “film” dynamics that depend on micro-290 

scale characteristics that are not feasible to explicitly model but have been documented to 291 

influence hot-spot dynamics in field and lab-studies (Homyak et al., 2016; Parker & Schimel, 292 

2011). To summarize, while soil moisture gradients control whether routing occurs in the 293 

saturated zone between hotspot and non-hotspot patches, the sharing coefficients control the rate 294 

of local water transfer in the unsaturated zone.   295 
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 296 

Figure 2. Conceptual overview of hotspots patches nested within each patch family. Each year, 297 
vegetated patches share litter C and N with hotspot patches from the portions of their stores that 298 
are greater than the patch family means. Note that the conceptual figure does not indicate that 299 
there is only one hotpot and one non-hotspot patch in a patch family, but rather represents their 300 
cover fraction. Key model uncertainties include: (a) hotspot cover fraction m%, which can vary 301 
by location, (b) local routing of water and N in the unsaturated zone between aspatial patches 302 
based on the mean water content of the patch family, which can be mediated by sharing 303 
coefficients sh_l and sh_g; and (c) topographic routing in the saturated zone from patches in one 304 
patch family to patches in downslope patch families, which can be controlled by a soil moisture 305 
threshold  𝜃௧௛. The dashed lines signify that hotspots are hydrologically disconnected from non-306 
hotspot patches during dry periods but reconnect during wet periods when soil moisture in non-307 
hotspot patch is larger than  𝜃௧௛. The extent of hydrological routing between hotspot and non-308 
hotspot patches is controlled by  𝜃௧௛, which can be calibrated to match field observations. 309 

2.4 Data 310 

 To generate metrological inputs for RHESSys scenarios in Bell 4 using the new hotspot 311 

framework, we compared daily meteorological data from gridMET (Abatzoglou, 2013), 312 

including maximum and minimum temperatures, precipitation, relative humidity, radiation, and 313 

wind speed, from 1979 to 2020, to daily meteorological data at a station located near Bell 4 (San 314 
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Dimas Tanbark) from the U.S. Forest Service (USFS). Because gridMET matched closely with 315 

ground station data but does not require gap filling, gridMET was selected as a suitable 316 

meteorological forcing dataset for our analyses. To calibrate drainage parameters, we used 317 

streamflow data from the USFS for the years 1980 to 2002; data were missing for some months 318 

(Figure 3). We omitted 8 years of streamflow data (1984-1992) following a prescribed fire that 319 

occurred in 1984 (Meixner et al., 2006). We selected streamflow data from 1993 to 2002 for 320 

model calibration and 1980 to 1983 for validation (described in section 2.5 below).  321 

 322 

Figure 3. Streamflow and climate data for Bell 4. The temperature is yearly average, and 323 
streamflow is calculated as the volume divided by the catchment area (0.14 km2). 324 

 We aggregated a 1-m resolution Digital Elevation Model (DEM) from LiDAR to 10 325 

meters to represent topography across the watershed. To map landcover, we aggregated 1-m 326 

resolution land cover data from the National Agriculture Imagery Program (NAIP; collected on 327 

June 5, 2016) to 3-m and classified three land cover types: chaparral, live oak, and bare ground 328 
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(Maxwell et al., 2017). We then overlapped the 10-meter DEM with 3-meter vegetation cover 329 

data to classify aspatial patch distributions in each patch family using a k-means function 330 

(Hartigan & Wong, 1979) in R version 4.3.0 (R Core Team, 2022). This resulted in 331 

approximately 11 aspatial patches in each patch family and 375 different vegetation 332 

combinations across the watershed. We acquired soil texture data from POLARIS (Chaney et al., 333 

2016).  334 

 To measure streamflow, two pressure transducers (Water level data loggers), 335 

compensated for barometric pressure (Barologgers; Solinst Canada Ltd, Georgetown, Ontario, 336 

Canada), were used to record stream stage at the Bell 4 weir. Water stage was measured at 5-337 

minute intervals and converted to discharge using a rating curve developed for the v-notch weir. 338 

Stream samples were collected using an automatic sampler (Teledyne, ISCO model 6712C, 339 

Lincoln, Nebraska, US) set to collect 500-mL samples every 2 hours over a 48-hour period at the 340 

onset of flow. Samples were then filtered through pre-baked whatman GF/F filters and stored at -341 

20 °C. Nitrate and ammonium concentrations were measured colorimetrically using an AQ2 342 

SEAL discrete analyzer (methods EPA-129-A and EPA-126-A). 343 

2.5 Model initialization, calibration, and evaluation 344 

 We initialized the soil C and N pools by spinning them up to steady state (i.e., running 345 

the model until the pools stabilized). For the vegetation C and N pools, we used a target-driven 346 

method that allows vegetation to grow until it reaches target leaf area index (LAI) values from 347 

remote sensing data (Hanan et al., 2018). This method enables C and N pools to spin up 348 

mechanistically while still capturing landscape heterogeneity resulting from local resource 349 

limitations and disturbance histories. To construct a map of target LAI values, we chose the 350 
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clearest available NAIP image during the growing season (i.e., April 24, 2010). We then 351 

calculated NDVI using equation 1.  352 

𝑁𝐷𝑉𝐼 =  
ఘಿ಺ೃି ఘೃ

ఘಿ಺ೃା ఘೃ
                                           (1) 353 

In this equation, 𝜌ேூோ is the reflectance in the near-infrared, and 𝜌ோ is reflectance in the red 354 

(Hanan et al., 2018). We then estimated LAI using a generalized NDVI-LAI model developed by 355 

(Baret et al. 1989; equation 2).   356 

𝐿𝐴𝐼 =  −
ଵ

௞
 × 𝑙𝑛 (

ே஽௏ூ೘ೌೣିே஽௏ூ

ே஽௏ூ೘ೌೣିே஽௏ ್ೌ೎ೖ
)                       (2)         357 

Here, k is the extinction of solar radiation through a canopy. NDVImax is the maximum NDVI 358 

occurring in the region, and NDVIback is the background NDVI (i.e., from pixels without 359 

vegetation). We obtained k value from Smith et al. (1991) and White et al. (2000). The other 360 

parameters were obtained for each vegetation type (Table 1). 361 

Table 1. Parameters used for calculating LAI from NDVI 362 

Vegetation type k NDVI max NDVI back 

Live oak 0.500 0.379 -0.160 

Chaparral  0.371 0.372 -0.160 

 363 

We used observed streamflow for Bell 4 to calibrate six soil parameters: saturated 364 

hydraulic conductivity (Ksat), the decay of Ksat with depth (m), pore size index (b), air entry 365 

pressure (ϕ), bypass flow to deeper groundwater storage (gw1), and deep groundwater drainage 366 

rates to stream (gw2). We selected the best parameter set by comparing observed and modeled 367 

streamflow using monthly Nash-Sutcliffe efficiency (NSE; Nash & Sutcliffe, 1970) and percent 368 
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error in annual flow estimates. NSE is used to evaluate peak flows and can range from -∞ to 1, 369 

where 1 represents a perfect fit between modeled and observed data. Percent error is used to 370 

compare differences between the total quantity of modeled and observed streamflow; values 371 

closer to zero represent better fit.  372 

2.6 Sensitivity analyses and simulation scenarios: 373 

After model initialization and calibration, we used the new model framework to build in 374 

microscale hotspots. We assumed the hotspots were evenly distributed across the landscape and 375 

converted one bare ground patch inside of every patch family to an aspatial hotspot patch. Note 376 

that this does not mean that there was only one hotspot in a patch family, but one aspatial patch 377 

was used to represent the distribution (or percent cover) of microscale hotspots. If no bare 378 

ground patches existed in the patch family, we instead converted a chaparral patch to an aspatial 379 

hotspot patch. Because there were approximately 11 patches in each patch family, this setup 380 

resulted in approximately 9% of each patch family (and of the overall basin) consisting of 381 

microscale hotspots. We also assigned a loam soil texture to hotspot patches to represent the soil 382 

physical properties that may also increase moisture retention. The default parameters used to 383 

represent hotspot hydrological and biogeochemical dynamics are shown in Table 2. 384 

Table 2. Default parameters for hotspots. Sh_l and sh_g control water diffusion in the 385 
unsaturated zone between hotspot and non-hotspot patches, the default values promote strong 386 
seasonality in hotspot soil moisture. The soil moisture threshold controls water flow in the 387 
saturated zone between hotspot and non-hotspot patches; the default value promotes the 388 
maximum peak streamflow N. We defined one aspatial patch as a hotspot inside of each family. 389 
This leads to 9.1% cover of hotspot patches evenly distributed across the landscape. 390 

Parameters  Value 

Sharing coefficient of losing water in unsaturated zone from 
hotspots (sh_l) 

Dry season: 0.9 
Wet season: 0.05 

Sharing coefficient of gaining water in unsaturated zone of 
hotspots (sh_g) 

Dry season: 0.05 
Wet season: 0.9 
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Soil moisture threshold of non-hotspot above which water 
in saturated zone flows from hotspots to non-hotspot ( 𝜃௧௛) 

21% 

Percentage cover of hotspots 9.1% 

Sharing coefficient of litter from non-hotspot patches to 
hotspot patches (coef_litter) 

1 

 391 

To evaluate the uncertainties related to model structure and parameters, we conducted a set of 392 

virtual experiments, or sensitivity analyses. For each sensitivity analysis, we ran RHESSys for 60 393 

years by looping the available climate data from 1979-2020. Results are presented as simulation 394 

years and capture the climate variability from the available record. First, we examined how the 395 

percentage cover of hotspots can influence N export. We built hotspot patches from zero percent 396 

to 13.7 percent at 2.3 percent increments (i.e., 0%, 2.2%, 4.5%, 6.8%, 9.1%, 11.4%, 13.7%). 397 

When the hotspot percentage was equal to 9.1%, there were exactly one aspatial hotspot patch in 398 

each patch family. When the hotspot percentage was larger than 9.1%, we needed to convert two 399 

aspatial patches in some patch families to hotspot patches. For example, the scenario with 11.4% 400 

hotspot cover at the watershed scale, required 2.3% of patch families to have two aspatial hotspot 401 

patches. Again, this does not mean that there were only one or two hotspots in a patch family, 402 

but one or two aspatial patches were used to represent their distribution. 403 

Second, we investigated how the saturation status of hotspots influences nitrate export. 404 

We built three soil moisture conditions for hotspots by changing the sharing coefficients for local 405 

routing which influenced connectivity between hotspot and surrounding patches (Figure 2b): wet 406 

(sh_l was 0.05  and sh_g was 0.9 throughout the year; water diffused slowly from hotspots), dry 407 

(sh_l and sh_g were set to default values, hotspots diffused water quickly during the dry season), 408 

and intermediate (sh_l was 0.1 and sh_g was 0.8 during the dry season but used default values in 409 

the wet season; water diffused from hotspots at an intermediate rate). The hotspots in the wet 410 
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scenario were saturated almost all the time and had small interannual variation in soil moisture. 411 

The hotspots in the dry scenario lost water during dry periods and had large interannual soil 412 

moisture variation. The hotspots in the intermediate scenario had soil moisture dynamics in 413 

between the levels observed in the dry and wet scenarios (Figure 4).     414 

 415 

Figure 4. Hotspot volumetric soil moisture conditions used to examine the sensitivity of N 416 
cycling and export to hotspot soil moisture saturation status and timing.  417 

Lastly, we examined how uncertainty in the subsurface connectivity threshold parameter, 418 

which determines when non-hotspot patches become reconnected and can receive substantial N 419 

and water from the hotspot ( 𝜃௧௛; Figure 2c). By establishing conditions for this larger scale 420 

connectivity, this parameter can influence streamflow nitrate export. We then compared modeled 421 

streamflow nitrate export (under a range of parameter values based on the range of basin scale 422 

soil moisture: 0.15, 0.21, 0.25, 0.31, 0.35) to observed data (from 1988 to 2001).  423 
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Following the sensitivity analyses, we used available data and literature to estimate the 424 

most likely value for these parameters. We selected hotspot abundance of 9.1% assuming every 425 

patch family had the same hotspot coverage (using the default value in Table 2). We then 426 

selected the “dry” hotspot scenario in order to most closely match the seasonality of N dynamics 427 

observed in dryland ecosystems (Parker & Schimel 2011). Finally, as a simple optimization 428 

strategy, we selected a value for the soil moisture threshold parameter that enabled us to best 429 

capture observed peak N export. Then using these values, we conducted modeling scenarios to 430 

investigate how biogeochemical hotspots influence N export.   431 

Modeling scenarios were based on the presence or absence of biogeochemical hotspots. 432 

For the hotspot scenario, we used the optimized soil moisture threshold determined using the 433 

approach described above, along with default parameters shown in Table 2, which created “dry” 434 

hotspots (i.e., with rapid water diffusion) that had distinct seasonality in denitrification as 435 

observed in field data (Li et al., 2006; Parker & Schimel, 2011). In this scenario, the hotspot 436 

patches received litter and protected C and N from vegetated patches and both biogeochemical 437 

and hydrologic processes still occurred within the hotspot patches. For the non-hotspot scenario, 438 

we used unvegetated patches in place of the hotspot patches, which were initialized to zero. 439 

However, in these unvegetated patches, we did not route litter and recalcitrant soil C and N from 440 

the vegetated patches. As a result, only hydrologic processes occurred there. We ran these two 441 

scenarios for 120 years, 60 years to stabilize the hotspot patches, and another 60 years to 442 

compare differences between scenarios. 443 
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3 Results 444 

3.1 Initialization and calibration results 445 

Using the target-driven initialization method of Hanan et al. (2018), we were able to 446 

capture the spatial distribution of leaf area index (LAI) and associated C stores across the Bell 4 447 

watershed, with some minor underestimates in riparian areas (covered by live oak) and 448 

overestimates in a small percentage of patches, which occurred because RHESSys allocates C to 449 

LAI at the end of growing season. Overall, the initialized and remotely sensed LAI were a strong 450 

match (Figure S1).  451 

During the calibration period, the monthly NSE (a metric to evaluate the extent to which 452 

models capture peak streamflow; values close to 1 represent the best correspondence between 453 

modeled and observed values) was 0.88. Percent error (a metric to evaluate total flow; values 454 

close to 0 represent low error in the total amount of streamflow for modeled vs. observed data) 455 

was 5.45%. For the evaluation period, the monthly NSE was 0.8 with a percent error of -3.92%. 456 

In general, the model captured the seasonality, recession, and low flow patterns observed in the 457 

streamflow record.  458 

3.2 Sensitivity of N fluxes to the abundance of hotspots  459 

 Total N export increased with increasing hotspot cover and then reached an asymptote 460 

when hotspot cover was greater than 9.1% (Figure 5). Denitrification rates were very low in the 461 

zero percent hotspot cover scenario and increased with an increasing percentage of hotspot 462 

patches. However, the rate of increase declined when hotspot cover was greater than 9.1%. 463 

Median streamflow nitrate export began increasing when hotspot cover was above 4.5% but 464 

reached an asymptote at 9.1%. Maximum streamflow nitrate export also increased with 465 

increasing hotspot cover, but the rate of increase declined when cover was above 9.1%. This 466 
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occurred because increasing hotspot cover led to concomitant decreases in vegetation cover and 467 

therefore less carbon and nitrogen inputs from vegetation to soil. As a result, N cycling processes 468 

became limited by productivity of the patch family. Although this result was partly an artifact of 469 

the model's structure—which resulted in more than one aspatial hotspot patch occurring in some 470 

patch families when the hotspot percentage cover exceeded 9.1%—it still demonstrates the 471 

mechanism by which increases in hotspot cover above a given threshold can decrease 472 

productivity. However, the actual threshold value should be interpreted with caution.  473 

 474 

Figure 5. Sensitivity of N processes to the percent cover of hotspots. Box plots show 25th, 475 
median, and 75th percentile values, and the red line connects the median of each scenario to show 476 
trends. Streamflow nitrate is calculated as total mass of nitrate in discharge divided by the basin 477 
area.  478 

3.3 The sensitivity of N fluxes to the parameters controlling water diffusion during periods 479 

of hydrologic disconnection. 480 

 To examine how the rate at which hotspots dry out during periods of hydrologic 481 

disconnection influences N fluxes, we ran three scenarios: a scenario where soil moisture in the 482 

hotspots diffused slowly to non-hotspot patches and hotspots retained their soil moisture 483 

throughout the year (i.e., a wet hotspot scenario), and a scenario where the diffusion speed was 484 

intermediate (i.e., an intermediately moist hotspot scenario), and a scenario where soil moisture 485 
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diffused relative quickly from hotspot to non-hotspot patches (i.e., a dry hotspot scenario). We 486 

found that basin-scale nitrification rates can increase or decrease with the moisture content of 487 

hotspots (Figure 6 b&g). Higher moisture content in hotspots led to relatively lower moisture 488 

content in non-hotspot patches (based on water balance). In the wet-hotspot scenario, basin-scale 489 

nitrification was lower than in the dry-hotspot scenario where water slowly diffused to non-490 

hotspot patches. This occurred because in the wet-hotspot scenario, soil moisture in non-hotspot 491 

patches was lower, which reduced total nitrification, even though nitrification rates increased in 492 

the hotspots.  493 

Basin-scale denitrification increased with higher moisture content in hotspots since 494 

denitrification mainly occurs in those locations (Figure 6 d&g). For both nitrification and 495 

denitrification, the differences between the three scenarios were most pronounced during dry 496 

years when soil moisture differences between hotspots and non-hotspot patches were higher 497 

(Figure 6 b&d). During dry and average years, streamflow nitrate export was higher in the 498 

scenarios where hotspots remained saturated or close to saturated (i.e., the wet- and 499 

intermediately-moist- hotspot scenarios) than in the scenario where water diffused rapidly during 500 

dry periods (i.e., the dry-hotspot scenario). However, there was higher total annual and peak 501 

streamflow nitrate export during the wet years in the dry-hotspot scenario especially after 502 

multiple dry years (Figure 6c&e). Altogether, the closer hotspots are to being water-saturated, 503 

the more quickly N is exported to streamflow.  504 

During multiple dry years, for the rapid diffusion (dry hotspot) scenario, nitrate 505 

accumulated in the saturated zone. Once a wet year occurred, that nitrate was flushed out to 506 

streams (Figure 6a). In the more continuously saturated (wet hotspot) hotspot scenario, higher 507 

denitrification, and faster leaching of nitrate from hotspots led to less nitrate accumulation in the 508 
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saturated zone. This suggests that soil moisture in hotspots and the subsurface flow interact to 509 

drive N movement from soil to streams.  510 

 511 

Figure 6. N processes for three different scenarios, one where hotspots were saturated most of 512 
the time (i.e., the slow diffusion, wet hotspot scenario), one where water diffused more rapidly 513 
from hotspots during the dry season (i.e., the rapid diffusion, dry hotspot scenario), and one 514 
where diffusion was intermediate (i.e., the intermediately moist hotspot scenario). Streamflow is 515 
calculated as the average water depth over the basin area of Bell 4 (0.14 km2). Panel (g) is the 516 
distribution of annual N fluxes, box plots show 25th, median, 75th percentile, and the black line 517 
connects the median of each scenario. 518 
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3.4 Sensitivity of N export to the subsurface connectivity parameter 519 

 The soil moisture threshold, which controls the connectivity of hotspots to non-hotspot 520 

patches, had a stronger influence on streamflow nitrate export than on nitrification and 521 

denitrification fluxes (Figure 7). This occurred because streamflow N export is influenced by 522 

both soil moisture content and subsurface lateral transport. Thus, when the threshold was high 523 

(i.e., when more moisture was required to establish hydrologic connectivity), streamflow N 524 

export was close to zero. With a higher soil moisture threshold, hotspots also tended to have 525 

higher moisture content, which increased nitrification and denitrification (Figure 7e), although 526 

the increases were small. The soil moisture threshold affected both the magnitude and timing of 527 

streamflow nitrate export. At a very low threshold of 0.15, there was higher magnitude and 528 

similar timing of peak nitrate export to streams compared to the no-threshold scenario (fully 529 

connected). This occurred because soil moisture in non-hotspot patches was higher than 0.15 530 

most of the time (Figure 7d). A threshold of 0.21, which was around the median basin-scale soil 531 

moisture, caused the largest peak in streamflow nitrate export. This occurred because 532 

connectivity was delayed until the threshold was reached, allowing nitrate to accumulate. When 533 

the threshold was larger than 0.21, peak streamflow nitrate was smaller and came later because 534 

hotspots were disconnected from non-hotspot patches most of the time.  535 
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 536 

Figure 7. Sensitivity of N fluxes to the soil moisture threshold. Panels (a), (b) and (c) are mean 537 
daily N fluxes over 60 years. Panel (d) is the distribution of daily soil moisture at the basin scale 538 
over 60 years. Panel (e) is the distribution of annual fluxes, box plots show 25th, median, 75th 539 
percentile, and the black line connects the median of each scenario. Different colors represent 540 
different soil moisture thresholds.  541 

3.5 Prediction of streamflow N export compared with observations. 542 

We selected the optimal soil moisture threshold from section 3.2 for capturing the 543 

magnitude of observed nitrate export (i.e., 0.21; this parameter value maximized peak 544 

streamflow nitrate export) and we used the default values shown in Table 2 for the other 545 

parameters. Using these values, we found that hydrologic disconnection of soil hotspots during 546 

the dry periods and reconnection during wet periods enabled us to capture the observed 547 
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magnitude of nitrate export in streamflow, which we could not otherwise capture in the non-548 

hotspot scenario (Figure 8). For example, the non-hotspot scenario underestimated nitrate export 549 

with a NSE of 0.22, while the hotspot scenario increased the estimation peak streamflow nitrate 550 

by 29% and captured its timing better with a NSE of 0.4 (in 1988, 1991, 1992, 1993, 2000).  551 

However, after optimizing the moisture threshold parameter, the timing of stream nitrate export 552 

was still slightly off; for example, in 1998, the modeled stream nitrate export peak was higher 553 

and occurred slightly later than observed.  554 

  555 

Figure 8. Simulated and observed nitrate export in streamflow. The dots show observed 556 
streamflow nitrate. 557 

3.6 Comparison of hotspot and non-hotspot scenarios  558 

At the basin-scale, there was higher N export in the hotspot scenario than in the non-559 

hotspot scenario (Figure 9). Increases in streamflow nitrate with the hotspot scenario closely 560 

corresponded with increases in soil nitrate. Nitrate accumulated during dry years and there was 561 

substantial nitrate export to streams in wet years, especially when a wet year followed multiple 562 
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dry years (e.g., in year 40). We also found that streamflow nitrate export was further influenced 563 

by interannual precipitation patterns. The differences between the hotspot and non-hotspot 564 

scenarios were most evident during wet years when the basin was more connected. During wet 565 

years, more nitrate was flushed out from hotspots, which illustrates how subsurface connectivity 566 

can be an important factor driving streamflow N export. Consequently, the differences in 567 

streamflow nitrate between the hotspot and non-hotspot scenarios were less consistent than the 568 

differences in nitrification and denitrification, which had similar temporal patterns but differing 569 

magnitude (e.g., Figure 9 c&d). 570 

 571 

Figure 9. Nitrogen and hydrologic cycling processes (annual sum) and nitrate pools (annual 572 
mean) at the full basin scale for Bell 4.  573 

4 Discussion 574 

 Modeling hotspots at watershed scales has been challenging because most models, 575 

including RHESSys, lack corresponding fine-scale (e.g., below 1-meter resolution) parameters 576 
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and variables (Tague, 2009). To address this limitation, we developed a framework for 577 

representing hotspots aspatially within 10-m resolution patches. Using this framework, we 578 

conducted a series of virtual experiments to investigate how uncertainties in model structure and 579 

parameters influence N cycling and export. Then using the new modeling framework, we 580 

examined how precipitation can affect N export in a dryland watershed in California. Our model 581 

framework and virtual experiments improve our ability to connect plot-scale measurements to 582 

catchment scale projections by developing integrative model algorithms and parameters that 583 

control the biophysical behavior of hotspots across a landscape. These parameters can be 584 

optimized using field observations of N cycling and export. We illustrate how uncertainty in 585 

model parameters can influence projections of N export. Future research should aim to reduce 586 

these uncertainties, and ultimately represent hotspot behavior more mechanistically across 587 

watersheds. 588 

 589 

Figure 10. Conceptual framework summarizing how total annual streamflow nitrate and 590 
denitrification respond to (a) hotspots abundance, (b) the soil moisture threshold required to 591 
trigger subsurface flow, and (c) the rate of water diffusion from hotspots. 592 
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4.1. Uncertainties related to hotspot abundance and distribution 593 

Estimating nitrogen (N) export at watershed and regional scales is limited by uncertainty 594 

in how hotspots are distributed across landscapes. Our research is among the few studies that 595 

have evaluated how hotspot abundance influences watershed-scale N export and illustrates the 596 

need to quantify hotspot cover to effectively scale N dynamics from ecosystems to watersheds 597 

(Anderson et al., 2015; Groffman, 2012). We parameterized the hotspots with varying cover 598 

percentages across a small watershed (0.14 km2) and found that N export increased with hotspot 599 

abundance (Figure 5& Figure 10), but with an asymptotic relationship due to limitations in N 600 

inputs and plant productivity (i.e., energy input for denitrification). However, in less N-limited 601 

and more mesic sites (e.g., under elevated N deposition and increasing precipitation), N export 602 

may be more sensitive to increasing hotspot abundance.   603 

One limitation of our study is that we did not examine how the spatial distribution of 604 

hotspots influences N export. Previous research has shown that hotspots can be more 605 

concentrated in riparian corridors and wetlands where moisture content is higher (Pinay et al., 606 

2015). We did however find that wet hotspots, which may serve as a surrogate for riparian and 607 

wetland locations, can in some cases increase both denitrification and N export in streams 608 

(Figure 6). However, because the location and arrangement of hotspots across a landscape can 609 

significantly influence streamflow N export (Laudon et al., 2011; Pinay et al., 2015), more 610 

research is needed to understand these spatial relationships (Haas et al., 2013). For example, 611 

combing high-resolution remote sensing data with field observations may help us better constrain 612 

hotspot distribution and abundance in ecohydrological models (Goodridge et al., 2018; 613 

Groffman, 2012; Tague, 2009; Walter et al., 2000). 614 
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4.2 Uncertainties in how rapidly hotspots dry out 615 

 Soil moisture is a major factor regulating denitrification and streamflow nitrate export 616 

(Pinay et al., 2015; Zhu et al., 2012). Our modeling experiments illustrate how the relationships 617 

between soil moisture and N dynamics can be complex and non-linear. Elevated soil moisture 618 

may reduce nitrification, increase denitrification, and ultimately decrease the amount of nitrate 619 

available for hydrologic flushing. Drier soils on the other hand can decrease denitrification and 620 

increase the amount of nitrate available for flushing (Homyak et al., 2016). We found that during 621 

dry and average years, higher moisture in hotspots increased nitrate infiltration from the 622 

unsaturated zone to the saturated zone, resulting in elevated and more rapid nitrate export to 623 

streams (Figure 6c). However, during wet years, higher soil moisture led to less nitrate export to 624 

streams due to increases in denitrification combined with less nitrate in the subsurface from the 625 

legacy effects of leaching in prior average and dry years. The dry hotspot scenario captured the 626 

observed nitrate-flushing better than the wet scenario, suggesting that hotspots are not likely to 627 

be continuously saturated (Figure 6). Because recent studies have shown that very small changes 628 

in soil moisture can change N fluxes abruptly (Castellano et al., 2013; Evans et al., 2016), it is 629 

important to improve our representation of soil moisture conditions in hotspots to accurately 630 

predict nitrate export.   631 

 Soil water residence time is an important factor affecting N export (Pinay et al., 2015; 632 

Zarnetske et al., 2011). The slower water diffuses from hotspots, the longer nitrate is exposed to 633 

denitrifying conditions (McClain et al., 2003). Our study shows that longer water residence time 634 

in hotspots (i.e., in the wet hotspot scenario) increases both denitrification and total N export to 635 

streams (Figure 6 & Figure 10). We used water diffusion coefficients to model water residence 636 

time in hotspots and we selected coefficients that enabled us to best capture the plausible timing 637 
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of denitrification and streamflow N fluxes. While this is a simplified, proxy approach, adding 638 

further complexity by explicitly modeling diffusion maybe infeasible since it would require 639 

local, spatially explicit soil parameters (Wood et al., 2011). However, further investigation into 640 

how proxy parameters may be calibrated is recommended for future research. 641 

Stream nitrate export was also affected by precipitation patterns. When there were 642 

multiple dry years in a row, nitrate accumulated to a greater extent than in average years (Figure 643 

6a). When a wet year followed a multi-year drought, there was higher streamflow nitrate export 644 

in the dry hotspot scenario (Figure 6c). This is corroborated by field observations, which suggest 645 

that severe drought promoted nitrate accumulation in soil due to less denitrification and plant 646 

uptake, resulting in more nitrate available for flushing with the return of precipitation (Winter et 647 

al. 2023). We found that the length of drought and precipitation variability were more important 648 

in driving streamflow N export than the amount of precipitation (Figure 6c&e). For example, 649 

even with similar amount of precipitation in simulation years 26 and 40, N export was much 650 

higher in year 40 due to the legacy of a multi-year drought (Figure 6c&e). Recent research has 651 

similarly shown that precipitation variability can have positive or negative legacy effects on 652 

dryland productivity, which can in turn influence N cycling and export (Gherardi & Sala, 2015; 653 

Krichels et al., 2022). However, the direction of N responses vary along long-term precipitation 654 

gradients (Gherardi & Sala, 2015, 2019).  655 

4.3 Uncertainties in hydrologic connectivity 656 

The subsurface flow threshold also plays a role in how much nitrate is transported to 657 

streams. In this study, we found that the optimal volumetric soil moisture to trigger subsurface 658 

flow from hotspot to non-hotspot patches was around 21% (Figure 7). Other studies have 659 

similarly shown that to trigger a subsurface flow, the soil moisture needs to reach a threshold of 660 
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18% (Liao et al., 2016). However, this threshold may vary with soil texture and water potential 661 

dynamics. While our new model framework can improve the prediction of streamflow nitrate 662 

with a static soil moisture threshold, topography and vegetation cover can also influence the 663 

connectivity and amount of subsurface flow, suggesting that soil moisture thresholds should be 664 

dynamic (Crow et al., 2012, Zhu et al., 2018). 665 

Coupling soil biogeochemical models with hydrological models has become increasingly 666 

popular for investigating N cycling and export (Schimel, 2018). To save time, researchers 667 

typically prefer to couple existing models rather than build new ones (Malek et al., 2017; Zhu et 668 

al., 2018). Since most hydrologic models do not account for fine-scale heterogeneity in available 669 

moisture, they may not be able to capture biogeochemical hotspots even when coupled with 670 

biogeochemical models (Chen et al., 2020). Our new model framework provides a relatively 671 

simple way to capture hotspots without having to explicitly represent sub-meter scale spatial 672 

heterogeneity. While this intermediate complexity approach enables us to represent hotspots 673 

across a watershed, it does not fully capture some of the potential controls on hotspot function. 674 

For example, although our model captured the variability and magnitude of streamflow nitrate, 675 

there was some error associated with its timing (Figure 8). Future work can build upon our 676 

simple hotspot model to develop more process-based and dynamic representation of subsurface 677 

flow thresholds. This can be achieved by improving our understanding of hydrology and N 678 

processes in soil through hydrogeochemical observations. 679 

4.4 The role of hotspots and hot moments in watershed models 680 

We found that the catchment-scale denitrification rate in the hotspot scenarios was 681 

significantly higher than that observed in the non-hotspot scenario (Figure 5& Figure 9), aligning 682 

with the concept that small areas often account for a high percentage of denitrification activity 683 
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(McClain et al., 2003). Additionally, denitrification was more sensitive to hotspot abundance, 684 

while N export to streams was more sensitive to the soil moisture threshold that triggers 685 

subsurface flow (Figure 10). Both are affected by the speed at which water diffuses from 686 

hotspots, which influences soil moisture levels, water residence time in soil, and vertical and 687 

horizontal transport of water. Our virtual experiments provide information on model uncertainty 688 

and sensitivity that can inform future studies focused on scaling N processes from plots to 689 

catchments. For example, in areas with high N deposition, managers who are interested in 690 

predicting how much N ends up in streams should focus on reducing model uncertainties in 691 

subsurface flow thresholds and soil moisture retention in hotspots. 692 

In the context of predicting N export, hot moments—defined as wet periods after a 693 

prolonged dry spell (Groffman et al., 2009)—are currently better represented in the RHESSys 694 

model than hotspots. Even in our no hotspot scenario, there was a pulse of streamflow N export 695 

when wet years followed multiple dry years (Figure 6 & Figure 9). However, models of how hot 696 

moments influence streamflow N export are still limited by uncertainties in soil moisture 697 

dynamics. For instance, we found that in the wet hotspot scenario, there was an earlier 698 

streamflow N pulse than in the dry hotspot scenario (Figure 6c). Thus, hotspot conditions can 699 

affect the timing of hot moments, which has not been previously explored in modeling studies. In 700 

future studies, it is important to consider interactions between hotspots and hot moments rather 701 

than discussing them in isolation.  702 

5 Conclusion 703 

Coupling hydrologic processes with biogeochemical processes in watershed-scale models 704 

is challenging due to subsurface heterogeneity and the existence of hotspots and hot moments 705 

that are not well represented in models. We developed a framework for representing hotspots 706 
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explicitly in dryland watersheds and using this framework, we demonstrated how hydrologic 707 

connectivity and precipitation can affect N export in a dryland watershed in California. With 708 

increasing hotspot coverage (up to a threshold), both denitrification and N export to streams 709 

increased. The partitioning between denitrification and N-export, and the timing and magnitude 710 

of N-export were largely controlled by hotspot soil moisture dynamics. Specifically, we found 711 

that when the soil moisture threshold required for reestablishing subsurface flow was 712 

intermediate, nitrate was able to accumulate during drier periods and then be flushed to the 713 

stream upon wet up. This led to the highest peak nitrate export to streams, which tended to 714 

better-capture observed nitrate patterns. To our knowledge, this is the first time biogeochemical 715 

hotspots have been modeled explicitly using a coupled biogeochemical-ecohydrological model in 716 

a dryland watershed. This modeling framework can help better project N export in dryland 717 

watersheds where hotspots may play an increasingly important role in governing water quality as 718 

drought and N deposition continue to increase. 719 
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Figure S1. Vegetation initialization results for Bell 4: (a) initialized LAI from 

RHESSys, (b) target LAI calculated from a NAIP image from April 26, 2010, (c) 

comparison of density distributions between target and simulated LAIs; the dashed 

line is the mean of the two LAI distributions, and (d) scatter plot showing target LAI 

vs. initialized LAI for each patch. 
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